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ABSTRACT

Meeting timing constraint is one of the most important issues for
modern design automation tools. This situation is exacerbated with
the existence of process variation. Current high-level synthesis
tools, performing task scheduling, resource allocation and binding,
may result in unexpected performance discrepancy due to the igno-
rance of the impact of process variation, which requires a shift in
the design paradigm, from today’s deterministic design to statistical
or probabilistic design. In this paper, we present a variation-aware
performance yield-guaranteed high-level synthesis algorithm. The
proposed approach integrates high-level synthesis and statistical
static timing analysis into a simulated annealing engine to simul-
taneously explore solution space while meeting design objectives.
Our results show that the area reduction is in the average of 14%
when 95% performance yield is imposed with the same total com-
pletion time constraint.

1. INTRODUCTION

Aggressive technology scaling presents challenges to fabricate
small feature size transistors, and results in significant variations
in transistor parameters such as channel length, gate-oxide thick-
ness, and threshold voltage across identically designed neighbor-
ing transistors (intra-die variation) and across different identically
designed chips (inter-die variation). Process variations are primar-
ily due to uncertainty in the device and interconnect characteristics,
such as gate length, the thickness of gate oxide, and doping concen-
trations. Although designing for worst-case process margins has
been used as a traditional option when dealing with outliers, the
degree of variability encountered in the new process technologies
makes this a nonviable option. For example, variation on transistor
parameters causes 20X variation in chip leakage and 30% variation
in chip frequency [9]. It is inevitable to move the design method-
ologies from deterministic to probabilistic [9].

High-level synthesis (HLS) is the process of translating a behav-
ioral description into a register level structure description [11, 12].
This process consists of resource allocation, binding, scheduling,
and clock selection. Among these tasks performed during synthe-
sis, scheduling determines the execution sequence of operations in
terms of control steps. The scheduler tries to schedule as many op-
erations as possible in the same control step in attempt to extract

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICCAD’06, November 5-9, 2006, San Jose, CA

Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

303

more parallelism. Thus, the clock cycle time plays an important
role in deciding the overall system performance. The clock selec-
tion itself alone complicates HLS optimization, the complication of
HLS is even exacerbated when variation is presented due to the fact
that different clock cycle times result in a variety of clock latency
distributions.

The resource library is provided to the HLS algorithm to opti-
mize design goal, either area or latency, or both. The worst-case
latency for each function unit has traditionally been used for HLS
algorithm to perform design space exploration. However, it is be-
coming inapplicable as the timing variations continue to increase.
For example, the delay variation for an adder may be up to 27% of
its mean value [22]. Thus, under the influence of process variation,
the analysis that uses worst-case deterministic delays for the func-
tional units can overestimate the resource needed to meet a certain
performance goal, due to the statistical variation in timing. To mit-
igate the variation induced problems in HLS, the statistical static
timing analysis (SSTA) model is essentially needed to ensure tim-
ing correctness. Although SSTA was intended to model the delay
distribution of a gate-level design, it is also suitable to model the
latency distribution of a control data flow graph (CDFG) in high-
level synthesis. In SSTA, the functional delays are random vari-
ables. The concept of "fixed time unit” [1] is adapted to discretize
the delay random variables with respect to the selected clock cy-
cle time. This process transforms the probability density function
(PDF) of each functional unit delay into that of PDF in clock cycle
resolution without losing correct timing information while reduc-
ing the complexity of statistical static timing analysis.

While much work has been done recently to develop statistical
timing analysis methods [1, 2, 3, 4, 10] focusing on gate-level opti-
mization, process variation-aware high-level synthesis has not been
attempted. In this paper, we propose a HLS framework which tries
to simultaneously satisfy performance yield and area constraints
under variability. To the best of our knowledge, this is the first pro-
cess variation-aware HLS framework to guarantee the performance
yield requirements. The framework is based on a well-defined op-
timization technique, Simulated Annealing [13], and has taken the
clock selection into account, which translates an already compli-
cated HLS problem into a three-dimensional problem (area, la-
tency, and clock). The rationale to include the clock selection is
that process variation makes the delay of each functional unit be-
come a probabilistic distribution instead of a deterministic value.
As we will show in the latter section, by cleverly choosing the
clock cycle time, the delay of a functional unit can display dif-
ferent delay distributions in terms of the selected clock cycle time.
Thus, some of the units become variation free and some become
less variation sensitive. Our SA-based HLS integrates such facility
as one perturbation move with others in seeking a global optimal



solution meeting the yield constraint. To further improve the com-
putational efficiency, a fast simulated annealing scheme is adopted
to speed-up the annealing process and thus more solution space can
be explored.

The remainder of the paper is organized as follows. Section 2
reviews related work. Section 3 gives the detailed explanation of
our performance yield-guaranteed high-level synthesis. Section 4
presents and discusses experimental results. We conclude this pa-
per in the last section.

2. RELATED WORK

While the high-level synthesis is a well-studied problem [11, 12],
none of work takes process variation into consideration. While the
concept of variable latency components is considered by Raghu-
nathan et al. [14], extra hardware is needed at the input side for
predicting the latency at output in order to capture the latency vari-
ation based on the input pattern. Unfortunately, the influence of real
variable latency introduced by process variation can not be captured
by such an approach. High-level synthesis for low power has at-
tracted significant attention [20, 21]; however, power savings from
using deterministic supply voltages and fixed transistor parameters
is not necessarily as effective as expected since process variation
introduces a wide range of possible values on these originally fixed
values. Physical information has also been included by incorporat-
ing floorplanning algorithms into HLS [15, 18, 19] in order to meet
the driving force of deep submicron technologies. The relative lo-
cation information from floorplanning is useful for determining the
correlation of the intra-die variation among functional units; unfor-
tunately, none of the above work makes use of this facility.

Some of recent HLS work [15, 16] target on temperature and
reliability issues whereas the effect of process variation is still ne-
glected. Many statistical timing analysis algorithms [2, 4] combat-
ing variability have been proposed and are effective when applied
in gate-level synthesis. Although the same fundamental idea is to
consider process variation during synthesis, the divergence raises in
that the allocated resource can be shared and the sequencing order
of tasks with respect to clock cycle time must be enforced in HLS,
which makes performance yield-guaranteed high-level synthesis a
unique problem.

To the best of our knowledge so far, it has not been attempted to
incorporate process variation consideration into higher level syn-
thesis tasks. In this work, we aim to accomplish this goal by inte-
grating statistical static timing analysis, developing resource bind-
ing and clock selection algorithms so that the impact of process
variation is minimized during high-level synthesis.

3. PERFORMANCE YIELD-GUARANTEED
HIGH-LEVEL SYNTHESIS

In this section, a new high-level synthesis (HLS) framework is
proposed to improve the performance yield of a design under pro-
cess variation. The new HLS algorithm consists of resource al-
location, binding, and scheduling. The clock selection facility is
also equipped to guarantee the performance yield while satisfying
a mix of area, latency, and clock optimization objectives. As the
constrained scheduling problem and the resource selection problem
have already been shown in the literature to be NP-complete [11],
heuristics are needed to solve the optimization problem in a com-
putationally efficient manner. In this work we have adopted a well-
studied combinational optimization method, Simulated Annealing
(SA) [13].

The complete flow of our HLS is depicted in Figure 1. First, we
apply the clock slack and timing event minimization algorithm to
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determine the range of candidate clocks. One of three perturbation
moves is then applied inside SA and followed by the scheduling
algorithm. Next, we perform the statistical static timing analysis
on the CDFG and find out latency distributions at the outputs of
functional units. The performance yield constraint is enforced on
the latency distributions and the cost function is evaluated. A fast
annealing schedule is put into action to facilitate the whole simu-
lated process until the terminating criterion is met. The best HLS
solution encountered is generated at the final stage. Each subtask
inside the flow will be explained in the following subsections.

Cost function evaluation
with performance yield constraint

Fast annealing schedule
Output best
HLS solution,

3.1 Statistical Static Timing Analysis

In order to consider the performance yield under process vari-
ability, statistical static timing analysis (SSTA) is needed. The ef-
fectiveness and efficiency of the methods of SSTA have been pro-
posed and demonstrated by many recent researchers [2, 3, 4, 10].
However, most of these techniques mainly focus on continuous de-
lay variables, which is not compatible with the discrete clock cycle
time used in HLS. Thus, we need to first translate the delay of the
functional unit in continuous form into that of in discrete form, and
this will be explained in the following.

Run clcok S & T min. algorithm
to get the range of candidate clocks

Do one of HLS moves

; rebinding\?”
1 shifting Scheduling
clock sel.
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Figure 1: Flow of the SA-based HLS.

3.1.1 Discretizing Functional Unit Delay

Under the influence of process variation, the delay of a func-
tional unit, instead of a deterministic value, is now of a distribution
form. Figure 2 shows the delay variation for a carry-ripple adder
implemented in 130 nm technology, with a 15% of inter-die and
intra-die V4, variation. IBM has shown that the delay variation for
different adder designs in 90 nm technology could be 21-27% of
the mean values [22]. To model delay variation, we have adopted
the discretizing approach proposed by Liou et al. [1]. Their ap-
proach was the first one to address statistical static timing analysis
(SSTA) by using discretized probability density functions (PDFs)
to handle delay probability distributions. While the algorithm was
originally designated for modeling cell-based designs, we convert
it to characterize the functional unit delay used in HLS. In this ap-
proach, a fixed time unit is needed during discretization. Since the
clock cycle time (CCT) is a deterministic value and the selection of
clock is integrated in our proposed HLS, it is suitable for discretiz-
ing continuous delay variables. We will show an example later to
demonstrate that the choice of the clock cycle time has profound
effects on the translated delay distributions.

In our analysis, the effect of process parameter variations on the
delay of a functional unit is pre-characterized and accessed on the
fly during statistical static timing analysis. The pre-characterization
resource library contains statistical information on the delay of a
functional unit when process variation is introduced.

3.1.2  SSTA for Control Data Flow Graph in HLS

In HLS, each operation (such as add and multiply) in CDFG is
scheduled to one or more cycles (or control steps). Each control
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Figure 2: The delay variation of a carry-ripple adder imple-
mented in 130nm with 15% of inter-die and intra-die V};, vari-

ation and 1000 Monte Carlo runs.

step corresponds to a time interval equal to the clock period. As
a result of process variation, the functional units to implement the
operations may have a large delay variation, and may not work at
a particular clock frequency. Thus, under the effects of variability,
statistical static timing analysis is essentially needed in HLS so as
to meet the required performance yield.

The performance yield metric, which is the probability that the
fabricated hardware can work at a particular clock frequency, is
used to guide the high-level synthesis. For each functional unit
FUs;, the delay probability distribution D;(t) can be provided ei-
ther from simulation or from using gate-level statistical timing anal-
ysis. The calculation of the performance yield depends on mod-
ule selection, clock selection, scheduling, and resource binding.
For example as shown in Figure 3, the same CDFG can be either
scheduled into 4 clock cycles with a much shorter clock cycle time
Tshort, or scheduled into 2 clock cycles with a longer clock cycle
time Tjong. The computational time is 4 X Tspope and 2 X Tiong,
respectively.

Figure 3: A CDFG has two different schedules, with different
CCTs.

During statistical static timing analysis, the signal arrival time is
calculated at each functional unit by propagating the delay distri-
butions from the outputs of previous functional units. In the case of
propagating one single event group, the sum operation is needed
as in SSTA to combine the arrival delay distribution at the input of
the functional unit with the functional unit delay distribution. This
situation is shown in Figure 4, where a sum operation requires first
performing shift with scaling and then grouping all probabilities of
the same timing together. Note that, the notation for the probability
of the output at time ¢ is equal to the probability of outputting at ¢
divided by the summation of the probabilities of all output events;
e.g. probability of 1/4 for all timing events for the top-right event
group in the figure.

In case of multiple inputs, the max operation is performed af-
ter the sum operations and the latest arrival time should dominate.
The rationale behind this is based on Bayes’ Theorem. The the-
orem states that P(B) = >, P(B|A = i) - P(A = i), where
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Figure 4: Statistical timing propagation on the operation node.

P(B| A = i) refers to the probability of event B, given that A = 3.
As an example in the figure, the probability of timing event of 4 af-
ter the max operation is calculated as 15=2%(1+2)+3%(1)+2%3. The
term, 2*(1+2), means that the probability of event group A domi-
nates at output time 4. In order to make this assumption being true,
we need to make sure unit B should arrive at timings smaller than
4; hence, the numbers inside the parenthesis accumulate such prob-
abilities. Next, we need to count the probability if the event group
B dominates, which is the term of 3*(1). Finally, the probabilities
of both event groups arrive at the same time of 4, which is the term,
2*3. Other probabilities of different arrival times can be obtained
in the similar fashion.

3.2 Clock Cycle Time Selection

One of the tasks in high-level synthesis is to determine the jobs
needed to be done at each clock cycle. Therefore, the choice of
clock cycle time plays an important role in HLS. Including the
clock selection complicates the HLS problem and thus turns the
problem into a three-dimensional problem (area, latency, and clock).

The delay of a functional unit is not deterministic under the in-
fluence of process variation and instead is a delay distribution with
probabilities as shown in Figure 5. Based on different clock cycle
times, the resulting probabilities and the required clock cycles will
diversify accordingly. As two functional units, A and B, shown
in Figure 5, for the clock cycle time of 12, unit A has two timing
events. The first has the probability of 6/9 to finish in one clock
cycle while the second has 3/9 probability, on the other hand, to
finish in two clock cycles. In the case of CCT being 15, although
the job in unit A can be done within one clock cycle, which means
the unit is variation free under this CCT, functional unit B only re-
quires CCT to be 12. Although both units are now free of variation,
the slack of unit B is high and therefore the actual utilization rate
of unit B is low. From this example, we know that slack only con-
sideration is not sufficient to address the variation problem and the
timing event should be taken into account as well.
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Figure 5: An example of clock selection.

However, randomly choosing the clock cycle time without first
identifying possible candidate clocks leads to exhaustive search-
ing, which is highly undesirable. Additionally, if the selected CCT



is too small, it may not be practically possible to implement the
functional unit, and if the CCT is too large, then most of time func-
tional units will stay idling. Thus, we have applied the clock slack
minimization algorithm [5, 6] and modified it to include the con-
cept of timing events that is directly resulted from the impact of the
process variation. This algorithm is shown in Figure 6. In the ex-
periment later, we will apply this algorithm with the smallest and
with the fastest resource settings to determine the upper and the
lower bounds for the clock cycle time. This CCT range is then used
in our SA-based HLS as specified limits where clock perturbation
function can vary within. Under this situation, our clock selection
space contains both performance and area efficient solutions with
minimum slack and less variation.

Clock slack and timing event minimization algorithm
begin
best = 0;
compute CLK ypper and CLK g yer;
forall clk;, CLKower < clk; < CLKypper
compute slack(clk;,t;) and
compute timing_event(clk;,t;)
[(Delayman (t;) + clki)] — [(Delaymin (t;) + clki)] + 1,
for all operators of type t;;
average_slack
B [29/1:1 Occur(tj)Xslack(clki,ij)]
- 294:1 Occur(t;)
average_timing_event
_ z;‘/le occw(tj)xtimin_qevem(czki,tJ-)]~
- 294:1 Occur(t;) ’
clock-suitabilityclki =

1 (average.slack*raverage-timing.event) .
= clk )

i k2
if(clock-suitability(.ix;) > best)
best = clock_suitability(clki);
CLKbest = Clki
endif;
endfor
return CLKpest
end

Figure 6: Outline of the clock slack and timing event minimiza-
tion algorithm.

In the algorithm, C' LKy pper is the largest delay value of all op-
eration types while C'LK;,c, can be specified by the given re-
source library as long as a bistable transition is maintained. In our
experiment setting, we first set the smallest delay value of all op-
eration types as C LKower. Then, if the value of C LK ypper/c,
where c is a constant, is smaller than C L Koy, then C LK oyer
= CLKypper/c; otherwise, C LK oy, is not changed. From the
experiment conducted, ¢=3 gives the best results. Delaymi» and
Delayma= represent the earliest and the latest arrival timing events
in an event group, respectively. The calculation of slack(clk;,t;)
is formated as (([(Delaymaz (t;)+clk;)]) xclk;) - Delaymaz (t5)
while Occur(t;) represents the number of occurrences of operator
type j. Applying the clock slack and timing event algorithm to the
example in Figure 5, we have clock_suitability 0.375 and 0.866 for
CCTs 12 and 15, respectively, while the clock_suitability is 0.928
for the CCT of 14. This indicates that the selection of 14 for clock
cycle time brings high utilization and less variation sensitive set-
ting. The objective of adopting this algorithm is to provide a good
starting point for our SA-based HLS in seeking a performance yield
satisfied design.

3.3 Scheduling Algorithm

High-level synthesis involves three subtasks, which are resource
allocation, binding, and scheduling. Both the resource allocation
and the binding are taken care of by the moves used in our sim-
ulated annealing engine, which will be detailed in the following
section. For the scheduling task, we have adopted the scheduling
algorithm [8] for this purpose. The outline of the scheduling al-
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gorithm is depicted in Figure 7. Note that, we use the worst case
delay for each functional unit when performing ASAP (As Soon
As Possible) algorithm; that is, the latest arrival time of an event
group.

In this algorithm, the latency is first determined by using ASAP
scheduling and then the latency is denoted as “partition” afterward.
The density is then assigned to each partition where the number of
partitions equal to the length of the latency. The density is defined
as Dij; = ¢/(ALAP; — ASAP; + 1) where c is a constant. The
meaning of density is to decide the probability that a node can be
scheduled at one specific partition. So the total density for a partic-
ular partition 5 is given as Zf"o‘ies D;;. Note that, only such node
whose earliest time (by ASAP) is smaller than or equal to, and lat-
est time (by ALAP) is larger than or equal to 5 will be considered.
Next, we schedule the least free node ¢ at the least density partition
j and update the mobilities of unscheduled nodes. The mobility is
defined as the difference of ALAP and ASAP. This process contin-
ues until the sequencing for all nodes is finalized. The objective of
this scheduling algorithm is to distribute nodes evenly among par-
titions such that the number of resources used are minimized in the
final design.

Scheduling algorithm
begin
given CDFG and resource library;
determine the minimum latency by using ASAP;
for each resource type k
done = false;
while(not done);
calculate the density for each partition;
partition i = find the least dense partition;
node j = find the least free node from partition i,
schedule node j at current partition i,
adjust the mobilities for unscheduled nodes;
if(all nodes of type k scheduled)
done = true;
else
done = false;
endfor
end

Figure 7: Outline of the scheduling algorithm.

3.4 Simulated Annealing Engine

Simulated annealing (SA) is an iterative technique for solving
optimization problems and has often been used in solving large-
scale problems, such as floorplanning and placement. SA-based
HLS is also in practice and is demonstrated in the recent litera-
ture [17, 18]. During the optimization process, one solution switches
to another by using the perturbation operations in a well-defined
way and thus the best solution can be obtained after evaluating a
large number of different solution configurations. The inputs to
our SA engine are the CDFG of an application and a resource li-
brary. The scheduling algorithm described above is used inside the
SA engine to perform the actual scheduling on CDFG. Note that,
the types of resources (resource allocation and binding) are chosen
through the perturbation operation before the scheduling is started.
The scheduler and statistical timing analyzer are then executed to
evaluate the goodness of the current solution.

For high-level synthesis with the performance yield constraint,
we have defined three perturbation operations which are listed be-
low:

(1) Resource re-binding,

(2) Operation shift (single shift and all shift),

(3) Clock selection.

Each perturbation move will be detailed in the following subsec-
tions.



3.4.1 Resource Re-binding

The first operation is the resource re-binding which serves the
role of resource allocation and binding in the traditional HLS. The
purpose of this operation is to minimize the resulting latency varia-
tion and area consumption. Two cases for re-binding are considered
and are shown in Figure 8. In the figure, node j is being considered
for resource re-binding while node ¢ is the predecessor of node j.
Note that, all event groups, (1), (2), (3), and (4) show the resulting
event distributions after executing the sum operation. For case A,
we can easily tell the event group (2) is better since the latest arrival
time and the event group are both smaller. However, it is not triv-
ial to decide which one is better for case B. Hence, we introduce
the product of standard deviation (o) and mean (x) to determine
the selection of the resource. The reason why we use this product
is that the standard deviation can tell how spread a distribution is
while the mean value determines an average value of a distribution.
Thus, the smaller o x p value is preferred. The value of o X p are
2.668 and 1.75, respectively, for event groups (1) and (2) in case
A while are 2.668 and 2.75 for event groups (3) and (4) in case B.
Thus, we choose event group (2) in case A while event group (3) in
case B.
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Figure 8: Two cases for re-binding operation.

3.4.2  Operation Shift

The second operation, operation shift, tries to move around the
non-critical nodes of a CDFG such that the overall resource usage
can be further reduced. One example is shown in Figure 9. The
CDFG is shown in the left side of the figure. We can see that both
nodes 8 and 9 are not on the critical path and thus their starting
steps can be delayed to the later clock cycles so that the scheduling
algorithm has the chance to find a lower area schedule. For opera-
tion shift, two different shifts, single shift and all shift, are defined.
Single shift only moves one node at a time while all shift moves
the node with its successors until the latest time constraint is vio-
lated. As shown in the figure assuming all nodes are of the same
functional type, the number of units needed for CC1 and CC2 re-
duce from 4 to 3 units after all shift operation. Although nodes 8
and 9 are now scheduled at CC3 and CC4, respectively, the actual
resource usage does not increase due to resource sharing. Thus, the
shift operation can serve as the area reduction move.

“ QO Q00
cc2 @ @@@
o6 TG
cc4 \@j HO) @

'single shift all shift

Figure 9: One CDFG example with two shift operations.
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3.4.3 Clock Selection

The last move is the clock selection operation. As mentioned
in section 3.2, the clock has profound effects on the resulting PDF
of the distribution of a functional unit delay. Thus, incorporating
automatic clock selection as one perturbation move can potentially
mitigate the effect of process variation while achieving good area
and latency tradeoffs. Note that, we have first used the clock slack
and timing event minimization algorithm described in section 3.2
to find out the range in which the length of a clock can vary. That
range is determined by mapping CDFGs to the fastest performance
and the smallest area resources. Since a clock cycle time is ran-
domly generated from the confined range, we have defined the
term, SE P (average slack and event count product), to guide the
selection of CCT during SA process. One thing to note is that the
slack defined here is the average slack based on the probability as-
sociated with a timing event and is not the slack under the worst
case delay. For example, the average slack of unit A for 12 CCT,
shown in Figure 5, is 2.66=(1/9%2+1/9%1+3/9*0+2/9*11+1/9*10)
while the slack is 10 for the worst case delay approach. The timing
event count is calculated the same as the method mentioned in Fig-
ure 5. When one CCT is chosen from the candidate clocks, we first
calculate its overall SEP = ). SEP(t;) on all operation type
t;. The acceptance is approved if the current SEP is smaller than
the SEP induced from the previous chosen clock cycle time. This
process is iterated until we find a suitable CCT.

3.5 Performance Yield Constraint

A new scheduled, resource allocated CDFG solution is acquired
when one of the three perturbations is applied. This new solution
will be judged to determine it is accepted or not in two aspects,
cost function and the current temperature of SA. The cost function
is defined based upon optimization criteria and is normally related
to area and latency constraints in high-level synthesis. Thus, the
following equation is adopted to optimize both area and latency of
a scheduled, resource allocated CDFG solution:

L

Lnorm

cost = o * +(1- (D

where A is the area needed to fulfill the scheduled CDFG ap-
plication, A, - is the average area, L is the required latency af-
ter scheduling, L,orm is the average latency, and « controls the
weights of area and latency, respectively.

After one iteration of SA, latency distributions are available at
the outputs of functional units of a CDFG. This distribution is rep-
resented as PDF and we can readily convert it into cumulative dis-
tribution function (CDF) by summation. The CDF of the latency
delay is used in confining the performance yield. Based on the re-
quired performance yield, the probability of obtaining a fabricated
die that meets this constraint, the maximum expected performance
can be obtained. In order to satisfy a specific yield point while
maintaining a reasonable area consumption, both factors must be
included in the cost function.

However, the latency used in equation 1 does not consider pro-
cess variation and is a deterministic value. Since the delays of
functional units are now of distribution forms, the latency obtained
through the traditional HLS is not correct and is either pessimistic
or optimistic. Thus, incorporating processor variations into HLS
optimization is of preference and is described following. After one
iteration of resource allocation, binding, and scheduling, we apply
SSTA on the CDFG to obtain the delay distributions at the outputs
of functional units of a CDFG. For a given performance yield point,
we can easily acquire the latency that meets the yield constraint
by extracting the corresponding latency in CDF. Then, this latency

Q) *



Benchmark Fastest Performance Smallest Area SA-based Speed
Area Total Run Area Total Run Area Total Run Reduc.
time(ns) | time(s) time(ns) | time(s) time(ns) | time(s) %

EW 400 143 1 240 253 1 360 143 22 10%
FIR 650 135 1 370 252 1 630 135 12 3%
Diff 875 60 1 495 112 1 715 60 5 18%
AR 1100 120 1 620 224 1 980 135 42 11%
det_dif 1200 105 1 680 196 1 970 105 5 19%
chemical 1525 90 1 865 168 1 1300 90 69 14%

Table 1: The results of fastest performance and smallest area resource settings, and SA-based speed optimization.

with variation is multiplied with the chosen clock and forms one
factor in the modified cost function. Under such setting, we can
consider area, clock, and latency with variability at the same time.
The modified cost function for HLS considering performance yield
can be written as:

T

TMam

cost = a 2)

T +(1—-a)=x

where Tarq. and Aprq. are the upper limits on the area and the
completion time, which are given as design specifications. T is the
product of selected clock and latency, where the latency is extracted
from the satisfied performance yield point of the delay distribution.
Thus, the SA-based HLS can proceed with the inclusion of the per-
formance yield while optimizing the solution.

3.6 Fast Simulated Annealing Scheme

Although simulated annealing is a powerful technique to tackle
various optimization problems, the excessive running time is its
major weakness. In order to accelerate the whole searching pro-
cess, we have adopted the fast simulated annealing scheme [7] and
integrated into our algorithm.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results for the perfor-
mance yield-guaranteed high-level synthesis algorithm described
in section 3. The algorithm was implemented in C++/STL and the
experiment was carried out on an Intel Xeon based Linux machine.
The resource library used in the experiment contains the delay dis-
tribution with probabilities and the area requirement for each func-
tional unit. For this work, five different types of adders and multi-
plier are included in the resource library. Each functional unit was
simulated in SPICE with Monte Carlo method to model both intra-
die and inter-die variations. Different levels of variability in delay
were explored ranging from 7-9% of o/ [22] and the distribution
was truncated at the 30 point. However, any delay distribution can
be used in our framework. We have used six high-level synthesis
benchmarks to evaluate the proposed approach; namely, a 16-point
symmetric FIR filter, a 16-point elliptic wave filter (EW), an autore-
gressive lattice filter (AR), an algorithm for computing Discrete Co-
sine Transform (dct_dif) [24], a differential equation solver (Diff),
and chemical is an IIR filter used in the industry.

In the first experiment, we demonstrate that the SA-based HLS
is effective in reducing the area requirement while achieving the
same timing performance. We first map the CDFG with the small-
est area and the fastest performance resource settings, and then use
the scheduling algorithm described in section 3.3 to assign each
node of the CDFG to the corresponding control step. Note that,
the scheduling algorithm [8] can distribute nodes evenly into dif-
ferent time steps such that the total resource usage is minimized.
This result is shown in the columns of 2 to 7 of Table 1. Next, we
use the SA-based HLS algorithm with two perturbation moves de-
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scribed in the previous section (resource re-binding and operation
shift) and equation 1 as the cost function. We refer this approach as
SA-based speed optimization afterward. The result of applying the
SA-based HLS for speed optimization is shown in the columns of
8 to 11. The average area reduction is around 13% when compared
to the scheduling with the fast resource setting. Thus, we know that
the resource re-binding and the operation shift moves can improve
the solution quality from the plain scheduling algorithm. The re-
sults shown here is to demonstrate that SA-based HLS is effective
at extracting good HLS solutions. Note that, the effect of process
variation is not considered here.

The second experiment we conduct is to demonstrate that when
the clock selection move is deployed, the area can be further re-
duced at different performance yield points. For this experiment,
we first use the area and the total completion time from the re-
sults of SA-based speed optimization and the fastest performance
resource setting depicted in Table 1 as the upper limits. This is
because that these values represent the best results so far we can
obtain for the completion time and the area, respectively, and thus
it is suitable to use them as the terms, Tarqz and Anrqz, in equa-
tion 2. The SA-based HLS is then executed with all three perturba-
tion moves and with the performance yield constraint. Due to the
space limitation, we only show the results of FIR, EW, and dct_fi
benchmarks, which are listed in Table 2. In the table, T and A
indicate the bound on the total completion time and the area re-
quirement, #CC is the number of clock cycles needed, clk shows
the clock length chosen from the algorithm, Total time is the prod-
uct of clock cycle time and #CC, and the last two columns show
the run time and the area improvement, respectively.

As can be seen from the table of FIR, we can still achieve 9.2%
area reduction compared to that of 3% obtained from the SA-based
speed optimization approach that does not use the clock selection
move while achieving the same total completion time with the re-
quired performance yield. As we relax the performance yield and/or
the total completion time (T) constraints, the area reduction is more
significant. The same trend can be observed from other bench-
marks. One thing to note from the tables of EW and dct_dif bench-
marks is that the chosen CCT varies depending upon the perfor-
mance yield with the area and the total completion time constraints.
This does validate that the choice of the clock cycle time has pro-
found impacts on the solution quality.

Figure 10 shows the area improvements of all benchmarks over
the fastest performance resource configurations at different perfor-
mance yields. In this figure, only the most rigid completion time
(T) constraint is used. The average area reduction are 14%, 19%,
and 24% for 95%, 90%, and 85% performance yield points, re-
spectively. Note that, we actually achieve the same total comple-
tion time with 95% point as that of 100% so our approach does not
sacrifice the performance to gain area reduction. Instead, our al-
gorithm uses all three moves, resource re-binding, operation shift,
and clock selection, to currently explore the solution space, and
thus optimized solutions can be acquired.



S. CONCLUSION

In this paper, we have presented a performance yield-guaranteed
high-level synthesis algorithm to consider the influence of process
variation. Our SA-based HLS tackles the already cumbersome
three-dimensional (area, latency, and clock) HLS problem with the
inclusion of process variation. We have demonstrated that incorpo-
rating the clock selection and different heuristic moves in SA-based
HLS can meet the area and the completion time constrains, effec-
tively. Experimental results on several HLS benchmarks show that
performance yield can be maintained while the savings in area are
achieved compared to the worst-case designs.

Bounds Area | #CC | clk | Total run Reduc.
T A ‘ time time(s) % H
95% yield
135 | 630 590 9 15 135 31 9.2%
150 | 630 520 9 15 135 31 20.0%
160 | 630 495 10 15 150 31 23.8%
90% yield
135 | 630 565 9 15 135 32 13.0%
150 | 630 465 9 15 135 48 28.4%
160 | 630 430 10 15 150 31 33.8%
85% yield
135 | 630 505 9 15 135 35 22.3%
150 | 630 455 10 15 150 32 30.0%
160 | 630 430 10 15 150 38 33.8%
(a) FIR filter.
Bounds Area | #CC | clk | Total run Reduc.
T A ‘ time time(s) % H
95% yield
143 | 360 360 11 13 143 165 10.0%
155 | 360 360 11 13 143 132 10.0%
165 | 360 320 12 13 156 160 20.0%
90% yield
143 | 360 350 11 13 143 167 12.5%
155 | 360 340 11 13 143 143 15.0%
165 | 360 270 11 15 165 133 32.5%
85% yield
143 | 360 340 11 13 143 131 15.0%
155 | 360 270 11 14 154 91 32.5%
165 | 360 270 11 14 154 132 40.0%
(b) EW filter.
Bounds Area | #CC | clk | Total run Reduc.
T A ‘ time | time(s) % H
95% yield
105 | 970 910 7 15 105 78 24.1%
120 | 970 870 7 17 119 61 27.5%
130 | 970 785 7 17 119 76 34.5%
90% yield
105 | 970 885 7 15 105 57 26.2%
120 | 970 810 7 16 112 50 32.5%
130 | 970 785 7 18 126 79 34.5%
85% yield
105 | 970 870 7 15 105 79 27.5%
120 | 970 730 7 16 112 84 39.1%
130 | 970 710 8 15 120 77 40.8%

(c) det_dif filter.

Table 2: Area reductions under different time, area, and yield
bounds. (a)FIR, (b)EW, (c¢)dct_dif.
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