
Guaranteeing Soundness of Configurable Process

Variants in Provop

Alena Hallerbach and Thomas Bauer

Group Research and Advanced Engineering

Daimler AG, Ulm, Germany

{alena.hallerbach, thomas.tb.bauer}@daimler.com

Manfred Reichert

Institute of Databases and Information Systems

Ulm University, Germany

manfred.reichert@uni-ulm.de

Abstract

Usually, for a particular business process a multitude of variants exist.

Each of them constitutes an adjustment of a reference process model to

specific requirements building the process context. While some progress has

been achieved regarding the configuration of process variants, there exists

only little work on how to accomplish this in a sound and efficient manner,

especially when considering the large number of process variants that exist

in practice as well as the many syntactical and semantical constraints they

have to obey. In this paper we discuss advanced concepts for the context- and

constraint-based configuration of process variants, and show how they can

be utilized to ensure soundness of the configured process variants. Enhancing

process-aware information systems with the capability to easily configure

sound process models, belonging to the same process family and fitting to the

given application context, will enable a new quality in engineering process-

aware information systems.

1. Introduction

For several reasons companies are developing a growing

interest in improving the efficiency and quality of their internal

business processes and in optimizing their interactions with

customers and business partners [1]. During the last years

we have seen an increasing adoption of business process

management (BPM) tools by enterprises as well as emerging

standards for business process specification and execution

(e.g., BPMN, WS-BPEL) in order to meet these goals. Corre-

sponding technologies (e.g., workflow systems, case handling

tools) enable the definition, execution, and monitoring of the

operational processes of an enterprise.

1.1. Problem Statement

When engineering process-aware information systems

(PAIS) one of the fundamental challenges is to cope with

business process variability and the large number of variants

that may exist for a particular process [2], [3], [4], [5]. Usually,

each of these variants is valid in a particular context [6]. Re-

garding vehicle repair in a garage, for example, we have iden-

tified hundreds of process variants which smoothly differ from

each other depending on country-specific, garage-specific, and

vehicle-type-specific characteristics. Similar observations can

be made for release management processes, for which we

identified more than 20 different variants in an automotive

company depending on the respective car series, involved

suppliers, and development phases [7]. Or when studying the

product creation process in the automotive domain, we can

identify dozens of variants. Each of them is assigned to a

particular product type (e.g., car, truck, or bus) with different

organizational responsibilities and strategic goals, or varying

in some other aspects. We denote such a collection of related

variants as process family.

While some progress has been achieved regarding the

modeling and management of process variants, there are only

few approaches dealing with the fundamental question of

how to configure variants out of a master process such that

a sound (i.e. correct) execution behavior can be guaranteed

for them [3], [4], [5], [8].1 Though there exists considerable

work on how to ensure structural and behavioral soundness

of single process models [9], issues related to the correct

configuration of a whole process family have been neglected

so far. Here, the challenge is to guarantee soundness of a

collection of related process variant models taking into account

syntactical as well as semantical constraints. Thereby, our goal

is not to develop just another approach for checking soundness

of single process models, but to provide a framework for

configuring semantically valid and sound process variants. In

particular, soundness checks should be limited to those process

variants, which are relevant in practice, instead of considering

all configurable variants. This is particularly important for

scenarios with large numbers of variants.

1.2. Contribution

As motivated, variants exist for many business processes and

should therefore be adequately managed. In previous work,

we introduced the Provop (Process Variants by Options) ap-

proach for configuring and managing process variants [6], [10].

Provop considers the whole process life cycle and supports

variants in all phases following an operational approach [2],

[11], [12]. More precisely, a concrete variant can be configured

out of a master process model (denoted as base process in

Provop) by applying a set of high-level change operations

to it. Thereby, information about the process context can

be utilized for enabling automated configuration of process

variants [2], [10]. Provop provides a generic approach for

1. For a definition of soundness we refer to [9]. Behavioral soundness, for
example, implies the absence of deadlocks and livelocks.



variant management, which is independent of a particular

process meta model (e.g. BPMN or EPC). The illustrating

examples used in this paper are based on process patterns,

which are common to most existing process meta models.

So far, we have neglected the aspect of guaranteeing sound-

ness for a family of configurable process variants. This paper

extends the Provop framework to deal with this challenge.

In particular, we present advanced concepts for the context-

and constraint-based configuration of process variants, while

guaranteeing their soundness in an effective and efficient way.

In particular, we deal with the following research questions:

• How to adequately pre-define the adjustments of a given

base process and use them later to configure process

variant models?

• How to enable context-based configuration of process

variant models?

• How to cope with the structural and semantical con-

straints to be met when configuring process variants?

• How to guarantee soundness for a process family; i.e.,

for a collection of process variant models?

Section 2 gives background information on Provop. Sec-

tion 3 extends our Provop framework by enabling context-

and constraint-based configuration of process variants. Picking

up this extension, Section 4 presents a procedure that ensures

soundness of all configurable process variants. Section 5 dis-

cusses related work and Section 6 concludes with a summary

and outlook.

2. Background - The Provop Approach

Generally, a process model variant (process variant for

short) can be created by “cloning” a given process model

and adjusting it according to the specific requirements of

its application context [13]. Provop adopts this metaphor for

variant creation. A particular process variant can be configured

by applying a set of predefined adaptations to a common

master process (denoted as base process in Provop). For de-

scribing respective adaptations, Provop supports well-defined

change patterns [14]: INSERT fragment, DELETE fragment,

MOVE fragment, and MODIFY attribute. While the first three

patterns may be applied to a model fragment (i.e., a connected

subgraph), the latter pattern can be used to modify the value

of process element attributes. (We provide a formal semantics

of change patterns in [15].)

In Provop, a base process can be associated with adjustment

points that correspond to entries or exits of activities and

connector nodes (i.e., split and join nodes) respectively (cf.

Fig. 1). This, in turn, enables designers of process adaptations

to refer to specific process fragments. By the use of explicit

adjustment points, we can restrict the regions of the base

process to which adaptations (e.g., insertion or deletion of a

fragment) may be applied when configuring a variant. Finally,

to enable more complex process adaptations as well as their

reuse in different context, Provop allows to group change

operations into reusable operation sets, which we denote as

Fig. 1: Examples of options in Provop

options. In summary, a particular variant can be configured

by applying one or more options to the given base process.

The set of configurable process variant models is denoted as

process family.

Fig. 1 presents basic Provop elements along a simple

example. The depicted vehicle repair process starts with the

reception of a vehicle in the garage. After a diagnosis is made,

the vehicle is repaired (if necessary). The process finishes

when handing over the repaired and maintained vehicle back

to the customer. Depending on the process context, different

variants are required. In our simplified example, three prede-

fined options exist, out of which a subset can be chosen to

configure a particular variant. Option 2, for example, suggests

to insert activity Maintenance between adjustment points

Start Treatments and Treatments finished. Option 3 comprises

two operations which allow to insert activity Commissioning

Subcontractor and to update attribute Role of activity Mainte-

nance. Fig. 4 shows different variants that can be configured

out of the base process from Fig. 1 by applying a subset of

the defined options. Note that for more complex scenarios the

number of variants becomes by far larger (e.g., dozens up to

hundreds of variants for a vehicle repair process in automotive

companies), and thus more options have to be defined to cover

all cases.

3. Process Variant Configuration

Provop provides support for the automatic configuration

of process variants making use of the process context and

considering semantic constraints regarding possible adapta-

tions of the given base process. To better understand those

factors which are relevant for configuring process variants,



we conducted several case studies in domains like automotive

engineering and healthcare. From this case study research

we have learned that there is a strong linkage between the

adaptations becoming necessary to configure a specific variant

and the current process context; i.e., the concrete adaptations

of the given base process depend on the process context

and application context respectively. Furthermore, there exist

different kinds of relations between the potential adaptations

of a base process. While certain adaptations are mutually

exclusive, for example, others are always applied conjointly.

If we explicitly express such (option) constraints we are able

to reduce the number of valid option combinations and thus

to decrease efforts for guaranteeing soundness of the config-

urable variants. This section summarizes how Provop enables

context- and constraint-based variant configuration. We pick

up these concepts in Section 4 when presenting the Provop

approach for guaranteeing soundness for the configurable

variants of a process family.

3.1. Context-aware Selection of Options

As particular process variants are often required in a spe-

cific context, Provop enables context-based configuration of

business process variants. For this purpose, a context model

capturing the process context has to be provided. In Provop,

such context model comprises a set of context variables

with a discrete and finite value range (cf. Fig. 2a). Thereby,

each context variable specifies one particular dimension of

the process context. Regarding our vehicle repair process,

for example, this can be visualized by a context cube as

depicted in Fig. 2c.2 Each sub-cube is enumerated for the

sake of readability. It represents one possible combination of

values assigned to the different context variables. We denote

corresponding value assignments as context descriptions in

the following. As not all possible context descriptions may

be semantically meaningful, Provop allows to restrict them

by context constraints (cf. Fig. 2b). Regarding the given

example, for instance, activity maintenance will have to be

performed if the required security level is high. Consequently,

the corresponding context constraint (cf. Fig. 2b) invalidates

sub-cubes 16, 17, and 18 (cf. Fig. 2c).

We define such a context model for each process family.

Based on it, context rules can be created and assigned to one

or more options (i.e., pre-defined adjustments of the given base

process). This, in turn, enables context-aware option selection;

i.e., if the context rule of a particular option evaluates to

true for a given context this option will be (automatically)

applied to the base process when configuring a corresponding

variant. Generally, for a particular context description, the

context rules of multiple options may evaluate to true. In such

a case, all selected options are considered when configuring

the corresponding process variant out of the base process.

Fig. 3 visualizes the options from Fig. 1 together with

their associated context rules and constraints (see Section 3.2).

2. Note that the context cube is just a visualization used in this paper to
illustrate process context.

Fig. 2: Context model (a), constraints (b) and context cube (c)

From the context rule of Option 2, for example, we can

conclude that Option 2 will be applied to the base process

if context variable Maintenance has value “Yes” for a given

context description.

3.2. Constraint-based Use of Options

The adjustments becoming necessary to configure a par-

ticular process variant are often structurally or semantically

correlated. Regarding our example from Fig. 1, for instance,

the application of Option 3 to the depicted base process

requires the prior introduction of Option 2 (since Operation 2

of Option 3 refers to the activity inserted by Option 2). Besides

such structural dependencies semantical constraints have to be

considered as well. For instance, Option 3 semantically implies

Option 1 since activity Maintenance will always require

subsequent execution of activity Final Check, if maintenance

is not done by the garage itself, but quality of service has to

be ensured. (Option 3 updates the role attribute of activity

Maintenance to Subcontractor.) Amongst others, Provop

supports the following kinds of option relations in order to

constrain the use of options.

• Implication: If two options shall be always applied

together to the base process (e.g. due to a semantical

dependency) the option designer can define a directed

implication relation between them. Generally, from rela-

tion “Option 1 implies Option 2” we must not conclude

the reverse one (i.e., “Option 2 implies Option 1” ).

• Mutual exclusion: This constraint is useful to specify

that two options must never be applied together when

configuring a particular process variant.

• Option hierarchy: The explicit definition of an option

hierarchy enables inheritance of change operations. If an

option with ancestors is selected to configure a particular

process variant, its ancestor options will be applied as

well. This structures the total set of options, and also



reduces the average number of change operations needed

to define a particular option.

Fig. 3 shows the application of these constraints to our

example from Fig. 1.

Fig. 3: Option constraints

Generally, options and their corresponding change opera-

tions are not commutative. Consequently, for both options

and operations we need to define the order in which they

shall be applied at configuration time. Based on this infor-

mation, Provop allows to configure process variants through

the sequential application of a set of options (and their change

operations) to the given base process. In particular, the chosen

option set needs to match the current process context and

comply with the defined option constraints. Consider Fig. 4,

for example, which shows the process family that can be

derived from the base process and the options depicted in

Fig. 1. Note that only those option sets are considered that

match the given context and that are compliant with the defined

option constraints (cf. Fig. 3).

How the latter issue is achieved and how Provop guarantees

soundness for the configurable variants of a process family is

discussed in the next section.

4. Guaranteeing Soundness of Variants

Provop targets at guaranteeing soundness of all configurable

process variants. As mentioned before, our focus is not on

checking soundness of single process models, based on a

specific process metamodel (see [9] for details), but on es-

tablishing a framework for ensuring soundness of a potentially

large collection of process variant models. In the following we

show how Provop enables the context- and constraint-based

configuration of a process family consisting of sound variant

models.

4.1. Basic Issues and Motivation

One possibility to ensure soundness of configurable process

variants is to start the configuration procedure with a sound

model of the base process and to enforce soundness after each

applied change operation. Consequently, the application of a

set of change operations and a set of options respectively,

would result in a sound variant model.

Unlike existing configuration techniques [3], Provop does

not necessarily require a sound process model as starting

point for variant configuration. Instead we want to provide

high flexibility to users and therefore support different policies

when defining the base process of a process family. For

example, a base process may be designed in a way such that it

covers all configurable variants or only constitutes a minimal

process model (i.e., an intersection of its variant models) [2],

[10].

As example consider Fig. 5a where Variant 1 describes a

car-specific and Variant 2 a bus-specific process model. If

we define the base process as "intersection" of these two

variant models, we obtain the process model depicted at the

bottom of Fig. 5a. This base process comprises activities

CA1, CA2, and CA3, but does not contain the car- or bus-

specific activity. Interestingly, this model is not sound when

considering data flow, since the data object read by activity

CA3 is neither written by CA1 nor CA2. However, this will be

not a problem if we ensure that any variant model resulting

through configuration is sound.

Enforcing a sound base process, however, is not appropriate

in the given scenario. When choosing the model of Variant 1

as base process (cf. Fig. 5b), for example, visibility constraints

may become violated. Note that Variant 1 would then be

visible to the process owner of Variant 2, who additionally

must be able to track the adjustments of Variant 1 in order

to correctly evolve Variant 2 over time. Another inadequate

approach would be to restore soundness of the base process

model by adding an abstract activity to it, which writes the data

element. This would increase modeling efforts unnecessarily

when configuring the two variants depicted in Fig. 5a.

Another possibility, followed by Provop, is to first apply

the desired options to the base process and then to check

soundness of the resulting process model afterwards. A naive

approach for guaranteeing soundness of a whole process

family would be to apply all possible combinations of options

to the base process and then to check soundness for each of

the resulting process models. However, this would be very

expensive. As example consider the simple scenario from

Fig. 1 for which three options exist. Assuming that options

are not commutative in general, we would have to check

for 16 different option combinations whether or not their

application to the base process results in a sound process

model. Obviously, for more complex scenarios with dozens

of options this is not a feasible approach. Thus, the challenge

is to reduce the number of configurable models (i.e., the

process family) that need to be checked. Therefore, we only

consider those process variant candidates for which the applied

options satisfy the corresponding context rules and also meet

the defined option constraints. Thereby, we do not only reduce

the number of process variant models for which soundness has

to be checked, but ensure structural and semantical soundness

of the whole process family as well.

4.2. Overview of the Provop Soundness Check

Guaranteeing soundness of configurable process variants is

accomplished in a number of steps (cf. Fig. 6). In Steps 1



Fig. 4: Resulting process family

Fig. 5: Inconsistent base process (a) with exemplary soundness
scenario (b)

and 2, valid context descriptions are identified, and for each

of them the corresponding option set (i.e., adjustments of the

base process) is determined. Step 3 then checks whether or

not the calculated option sets comply with the defined option

constraints (cf. Section 3.2). If an option set is not valid an

error will be reported to the designer. Otherwise, Steps 4 and

5 apply the options from this set to the base process and check

whether or not the resulting process variant model is sound.

Results of Steps 4 and 5 are logged in a report. In the following

we describe these five steps in more detail (see [16] for a report

with more technical details).

4.3. Basic Steps

We now describe the sketched procedure for checking

soundness of a process family in detail. It starts with

identifying all valid context descriptions (cf. Section 3.1) for

which process variants shall be configured. Consequently,

for corresponding cases we need to guarantee soundness of

the configurable variants. As invalid context descriptions are

implicitly specified by the given set of context constraints,

Provop first evaluates all possible allocations of values for

context variables. In order to check whether or not a given

context description is valid, function ctxtDescrValid is

provided. For a given context description this function will

return true if there is no context constraint in the given

context model that invalidates this context description. As

result we obtain the set of valid context descriptions (i.e.,

CDvalid).

// Step 1: Identify valid context descriptions

CDvalid = /0 // Initializing the set of valid context descriptions

// Create context descriptions by simulating all possible values

in the value range of each context variable CtxtVari, i=1,..,n

defined in the context model. We assume that corresponding

value ranges ValueRange(CtxtVari) are discrete and

finite.

for all CtxtDescr ∈ (ValueRange(CtxtVar1) × ... ×



Fig. 6: Overview of the Provop procedure for guaranteeing soundness

ValueRange(CtxtVarn)) do

// check whether or not the context description is valid

if ctxtDescrValid(CtxtDescr,CtxtModel) = true then

CDvalid := CDvalid ∪ {CtxtDescr}

Example 1: In our example from Fig. 2, sub-cubes 16, 17,

and 18 become invalid due to the constraint “IF security-

level = high THEN maintenance = yes”. However, all

other context descriptions are valid. Therefore, we add them

to the set of valid context descriptions and obtain CDvalid =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.

For each valid context description, Step 2 calculates the

option set to be applied when configuring the corresponding

variant. (An option set can be empty as the base process itself

can be a variant.) For this purpose, Step 2 utilizes function

contextRuleValid, which can be used to check whether or

not a particular option shall be applied in the given context.

This function returns true if the context rule of an option (cf.

Sect. 3.2) is valid regarding currently chosen values of the

context variables (i.e., regarding the given context description).

Thus contextRuleValid is applied to each option. If it

returns true for a selected one, this option is added to the

option set of the currently considered context description.

Otherwise, it is not considered for the given context.

As depicted in Fig. 7 different context descriptions may

have the same option set. To check only once whether or

not a particular option set is correctly applicable to the

base process, context descriptions with same option set are

grouped into context blocks. This is accomplished by functions

insCtxtBlock and extCtxtBlock. As a result of Step 2, we

obtain a set of <CtxtBlock,OptionSet> pairs; i.e., for each

context block (i.e., a set of context descriptions), we obtain the

option set to be applied when configuring the process variants

for the respective context. We denote this object as variant

candidates.

// Step 2: Calculate corresponding sets of options

// consider CDvalid as determined in Step 1

for each CtxtDescr ∈ CDvalid do

CalcOptions := /0

// check validity of context rules for all defined options O

for each Option ∈ O do

Fig. 7: Blocks of context descriptions and respective options

if contextRuleValid(Option,CtxtDescr) = true then

CalcOptions := CalcOptions ∪ {Option}

// check if set of options has already been created

if hasOptSet(VariantCandidates,CalcOptions) = true then

// insert new block of context descriptions together with

one common option set

insCtxtBlock(VariantCandidates,CtxtDescr,CalcOptions)

else

// extend existing block with current context description

extCtxtBlock(VariantCandidates,CtxtDescr,CalcOptions)

Example 2: For the context model from Fig. 2, we obtain

the following variant candidates (i.e., <CtxtBlock,OptionSet>):

<{12, 15}, {Option 1}>, <{7, 8},{Option 1, Option 2}>,

<{1, 2, 4, 5},{Option 2}>, <{3, 6, 9},{Option 1, Option 2,

Option 3}>, <{10, 11, 13, 14},{}>. The option set of the

latter candidate is empty; i.e., its model corresponds to the

base process.



For each variant candidate, Step 3 checks semantic compati-

bility of its option set with the defined option constraints. This

could be based, for example, on Linear Temporal Logic (LTL)

or some other model checking technique. Here, we simply

assume that there is a function checkOptionConstraints,

which returns true if the corresponding option set complies

with all defined option constraints (cf. Section 2). Otherwise,

the respective <CtxtBlock,OptionSet> pair is deleted from the

set of variant candidates, and corresponding information is

added to an error report (i.e., ErrorList).

// Step 3: Check whether options comply with constraints

for each <CtxtBlock,OptionSet> ∈ VariantCandidates do

if checkOptionConstraints(OptionSet) = false then

// remove candidates that are not compliant

removeCandidate(VariantCandidates,<CtxtBlock,OptionsSet>)

writeErrorList(...)

Example 3: The hierarchy constraint (cf. Section 3.2)

requires that all ancestors of an option are also applied to

the base process. As example consider the constraints defined

for the options from Fig. 3. OptionSet 4, which contains

Options 1 and 3 (cf. Fig. 7), does not comply with the

hierarchy constraint. Reason is that ancestor of Option 3 (i.e.,

Option 2) is not contained in the option set. Consequently,

the context block associated with OptionSet 4 is removed

from the list of variant candidates. Generally, in addition to

context dependencies, option constraints ensure semantical

soundness of option sets and further reduce efforts for

checking soundness.

After completing Step 3, we have obtained relevant variant

candidates. Following this, in Step 4, for each candidate the

elements from its option set have to be ordered, i.e. the

sequence in which the options shall be applied to the base

process has to be fixed. Provop provides different concepts

for ordering options (e.g., based on timestamps or user-defined

orders). Due to lack of space we omit details here, but assume

that there is a function sortOptionSet that defines a partial

order for options (see [16] for details). If an error occurs (e.g.,

cyclic ordering constraints), the procedure will stop. It further

adds an entry to the report list, which specifies that the current

variant candidate is invalid. Otherwise, the checking procedure

continues with Step 5.

// Steps 4+5: Apply option set to base process and check

soundness of variant models

for each <CtxtBlock,OptionSet> ∈ VariantCandidates do

// create partial order of OptionSet

in sortedOptionSet

if sortOptionSet(OptionSet,sortedOptionSet) = true then

// calculate resulting model by applying an option set

to the base process

if calculateVariant(BaseProcess,sortedOptionSet,ResultModel)

= true then

if checkSoundness(ResultModel) = true then

// result model is sound

storeResult(OptionSet,true,..)

else

// result model is not sound

storeResult(OptionSet,false,..)

At the end of Step 4, for each variant candidate we have

obtained its option set and the order in which the options

shall be applied to the base process when configuring the

corresponding variant. Step 5 then calculates the candidate

models, if possible, by using function calculateVariant.

If an option and its associated change operations are not

applicable (e.g., due to missing object references) Provop does

not calculate a candidate model for the corresponding option

set, but adds an entry to the error report. Otherwise, structural

and behavioral soundness of the resulting variant model are

checked, considering the specifics and verification techniques

of the underlying meta model (function checkSoundness).

Finally, the variant candidate, together with the respective con-

sistency check result (i.e., either “consistent” or “inconsistent”)

are stored in the report list.

After completing Steps 1-5 of the Provop soundness check-

ing procedure, the error and result list created during Steps 3

to 5 will be evaluated. Obviously, the process family is

sound, if for all valid context descriptions a structurally and

semantically sound model can be created. Otherwise, users are

supported by precise suggestions when correcting modeling

errors.

5. Related Work

Process variants are relevant for reference process modeling.

Such a reference process has recommending character, covers

a family of process models, and can be customized to meet

specific needs. Configurable event process chains (C-EPCs),

for example, provide support for both the specification and

customization of reference process models [4], [5]. When

modeling a reference process, EPC functions (and decision

nodes) can be annotated to indicate whether or not they are

mandatory or optional. This information is considered when

configuring C-EPCs.

A similar approach is presented in [8]. Here the concepts

for configuring a reference process model (i.e., to enable,

hide or block a configurable process element) are transferred

to workflow models. Similar to Provop, constraints regarding

adjustments of the reference process can be defined (e.g., two

activities either may have to be deleted together or none of

them). As opposed to Provop, it neither is allowed to move

or add model elements nor to adapt element attributes when

configuring a variant. Finally, [3] shows how to configure

reference process models incrementally and in a way that

ensures the soundness of single process variants, both with

respect to syntax and (behavioral) semantics. As opposed to



Provop, this approach presumes that the original process model

is sound.

Different work exists on how specialization can be applied

to deal with process model variability taking advantage of the

generative nature of a specialization hierarchy [17], [18]. [17]

has shown how specialization can be realized for state and

dataflow diagrams, respectively. For both diagram types a set

of transformation rules is provided resulting in process special-

izations when applying them to a particular model. Similarly,

[18] discusses transformation rules to define specialization for

models based on Petri Nets.

Fundamental characteristics of software variability in soft-

ware engineering are described in [19]. In particular, software

variants exist in software architectures and software product

lines [20], [21]. Often feature diagrams are used for modeling

software systems with varying features; soundness issues are

not considered. Another contribution stems from PESOA [22]

which provides basic concepts for variant modeling based on

UML. Different variability techniques like inheritance, param-

eterization, and extension points are provided. As opposed

to PESOA, Provop provides a more powerful approach for

describing variance in a uniform and easy manner. Finally,

[23] goes beyond control flow and extends business process

configuration to roles and objects.

6. Summary and Outlook

We have described the Provop approach which enables

context- and constraint-based configuration of process variants.

This paper has put emphasis on how to ensure soundness of

the configurable variants of a whole process family, taking

into account semantical as well as structural constraints. We

prototypically implemented Provop on top of the ARIS tool

utilizing its programming interface [24]. In future research, we

will apply Provop in industrial context.

References

[1] Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of
process-oriented information systems: Problem analysis, critical success
factors and implications. IEEE Transactions on Systems, Man, and
Cybernetics (Part C) 38 (2008) 280–291

[2] Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants
in the Process Life Cycle. In: Proc. 10th Int. Conf. on Enterprise
Information Systems. (2008) 154–161

[3] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M.,
la Rosa, M., Mendling, J.: Correctness-preserving configuration of busi-
ness process models. Fundamental Approaches to Software Engineering
(2008) 46–61

[4] Rosemann, M., van der Aalst, W.: A Configurable Reference Modeling
Language. Information Systems 32 (2007) 1–23

[5] Rosa, M.L., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.:
Questionnaire-driven Configuration of Reference Process Models. In:
Proc. CAiSE’07. (2007)

[6] Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of
process variants. In: Proc. TCoB 2008 Workshop. (2008) 31–40

[7] Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for
Release Management Processes in the Automotive Industry. In: Proc.
4th Int. Conf. on Business Process Management. LNCS 4102 (2006)
368–377

[8] Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., la Rosa,
M.: Configurable Workflow Models. In: Int. Journal of Cooperative
Information Systems. (2007)

[9] van der Aalst, W.M.P.: Workflow verification: Finding control-flow
errors using petrinet-based techniques. In: Proc. BPM’00. (2000) 161–
183

[10] Hallerbach, A., Bauer, T., Reichert, M.: Issues in modeling process
variants with provop. In: Proc. BPM’08 Workshops. LNBIP 17 (2009)
54–65

[11] Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in
Business Process Models: The Provop Approach. Software Process:
Improvement and Practice (2009) (to appear).

[12] Hallerbach, A., Bauer, T., Reichert, M.: Configuration and management
of process variants. In Rosemann, M., Brocke, J.V., eds.: Handbook on
Business Process Management, Springer-Verlag (2009) (to appear).

[13] Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic
changes in workflow systems – a survey. Data and Knowledge Engi-
neering 50 (2004) 9–34

[14] Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change
support features - enhancing flexibility in process-aware information
systems. Data and Knowledge Engineering 66 (2008) 438–466

[15] Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of
change patterns in process-aware information systems. In: Proc. ER’08.
LNCS 5231 (2008) 279–293

[16] Hallerbach, A., Bauer, T., Reichert, M.: Correct Configuration of Process
Variants in Provop. Technical Report UIB-2009-03, Uni Ulm (2009)

[17] Malone, T., Crowston, K., Herman, G.: Organizing Business Knowledge
- The MIT Process Handbook. MIT Press (2007)

[18] van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An
Approach to Tackling Problems Related to Change. Technical report,
TU Eindhoven (2002)

[19] Bachmann, F., Bass, L.: Managing Variability in Software Architectures.
In: Proc. of 2001 Symp. on Software Reusability, New York, ACM Press
(2001) 126–132

[20] Becker, M., Geyer, L., Gilbert, A., Becker, K.: Comprehensive Vari-
ability Modeling to Facilitate Efficient Variability Treatment. In: 4th
Workshop on Product Family Eng. (2001)

[21] Halmans, G., Pohl, K.: Communicating the Variability of a Software-
Product Family to Customers. Software and System Modeling 2 (2003)
15–36

[22] Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: PESOA -
Variability Mechanisms for Process Models. Technical Report 17/2005,
Hasso-Plattner-Institut, Potsdam (2005)

[23] La Rosa, M., Dumas, M., ter Hofstede, A., Mendling, J., Gottschalk, F.:
Beyond control-flow: Extending business process configuration to roles
and objects. In: Proc. ER’08. (2008)

[24] IDS Scheer AG: ARIS Platform Method 7.1. (2008) www.ids-
scheer.com.


