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Abstract. A software product line (SPL) is a family of related program variants in
a well-defined domain, generated from a set of features. A fundamental difference
from classical application development is that engineers develop not a single
program but a whole family with hundreds to millions of variants. This makes
it infeasible to separately check every distinct variant for errors. Still engineers
want guarantees on the entire SPL. A further challenge is that an SPL may contain
artifacts in different languages (code, documentation, models, etc.) that should be
checked. In this paper, we present CIDE, an SPL development tool that guarantees
syntactic correctness for all variants of an SPL. We show how CIDE’s underlying
mechanism abstracts from textual representation and we generalize it to arbitrary
languages. Furthermore, we automate the generation of plug-ins for additional
languages from annotated grammars. To demonstrate the language-independent
capabilities, we applied CIDE to a series of case studies with artifacts written in
Java, C++, C, Haskell, ANTLR, HTML, and XML.

1 Introduction

A Software Product Line (SPL) is a set of software-intensive systems that shares a
common, managed set of features, satisfying the specific needs of a domain [7]. A
feature is an end-user visible requirement that is used to describe commonalities or
differences in this domain [20, 27]. Different programs of the SPL, called variants, can
be generated from a common code base by combining features. Already with a few
features, a high number of distinct variants can be generated [27].

The ability to generate many variants is beneficial because variants can be tailored to
specific scenarios according to customer requirements. At the same time, this raises new
challenges: Traditional application development focuses on the design, implementation,
and testing of a single program; detecting errors in an SPL is difficult as an error may
appear only in some variants with specific features or feature combinations [28, 9].
Because of the sheer number of variants (already with 33 independent optional features,
there is a distinct variant for every person on the planet), generating, separately compiling
every variant in isolation is usually infeasible. Thus, novel techniques for checking the
entire SPL instead of checking each variant separately are needed [9, 35].

Approaches for checking SPLs are especially challenging considering the fact that
an SPL typically contains artifacts written in different languages. Beyond source code,
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an SPL can also contain non-code artifacts as build scripts, models, and documentation.
SPL tools should handle different artifact types in a uniform way (a.k.a. principle of
uniformity) [3]. While some SPL implementation mechanisms (preprocessors [27],
XVCL [18], Gears [26], pure::variants [4], etc.) are so general that they work on plain
text files, even simple errors can go undetected. Even syntax errors in the target language
– like missing a closing bracket – can be difficult to detect if the error occurs only in
few variants. On the other hand, more sophisticated tools and languages that can detect
certain errors in SPLs [3, 9, 24, 8, 16, 21] are usually available only for a single language.

In this paper, we present a tool called Colored Integrated Development Environ-
ment (CIDE) for SPL development that guarantees syntactical correctness for all variants
and multiple languages. CIDE is similar to #ifdef -preprocessors, but by abstracting from
plain text files and considering internal structure, simple rules can prevent syntax errors
in a language-independent way. However, while a previous version of CIDE presented
in [22] (with focus on expressiveness of language constructs) supported only Java, in
this work, we generalize CIDE to a wide variety of languages. We extract underlying
principles necessary for correctness in Java and propose a language-independent model
that can be used for other languages as well. Finally, to minimize human effort for using
this model with a new language, we automate the generation of language plug-ins for
CIDE based on a grammar file of the target language.

Detecting syntax errors is only a first step in our endeavor to ensure a language-
independent safe implementation of SPLs, which detects errors as early as possible in
the development process. With this paper, we contribute a foundation for this endeavor:
simple mechanisms can prevent common and difficult to find syntax errors, independent
of the used language. On this foundation, further mechanisms to detect type errors [21,
25] or for verification [36] and model-checking [30] (which all require syntactically
correct code and so far exist for single specific languages only) can be added for more
detailed checks and multiple languages in future steps.

In order to demonstrate the practicality of our approach, we generated a number
of plug-ins for (among others) the following code and non-code languages: Java, C,
C++, C#, Haskell, JavaScript, ANTLR, HTML, XML. Subsequently, we used CIDE in
seven small to medium-sized SPL projects written with these languages. In all projects,
CIDE guarantees syntactical correctness of all generated variants in all languages. CIDE
together with all languages and case studies presented in this paper can be downloaded
from the project’s web site: http://fosd.de/cide/.

2 Taxonomy of Errors in Software Product Lines & Related Work

There are many possible errors that can occur in an SPL’s implementation. We provide
a taxonomy to explain the problems we are addressing and to distinguish our approach
from related work. In Figure 1, we give an overview and set the focus of this paper
(highlighted boxes).

First, we classify three kinds of errors: syntactic errors, type errors and semantic
errors (first line in Fig. 1). Syntax errors occur when a variant is ill-formed regarding the
language’s syntax, for example when an opened bracket is not closed. Type errors occur
when the variant is ill-formed regarding the language’s type system, e.g., a statement
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Fig. 1. Taxonomy of errors and corresponding checks in SPLs (morphological box)

invoking a method that is not defined in that variant. Finally, semantic errors occur when
the variant behaves incorrectly according to some (formal or informal) specification, and
are the most difficult to detect. In this paper, we begin with syntax errors but give an
outlook on detecting typing and semantic errors.

Second, we distinguish two error detection approaches: check variants or check
the SPL itself (second line in Fig. 1). In the first case, not the SPL itself but (some
or all) generated variants are checked [28]. A brute force strategy of generating and
checking all variants is usually infeasible, because already with few features the number
of variants that can be generated from an SPL explodes (for n independent optional
features, there are 2n distinct variants). This typically means that only some sampled
variants are checked. In contrast, some approaches check the entire SPL itself [9, 35, 21]
and guarantee correctness for all variants when this check passes. In our work, we want
to check the SPL, not each variant separately.

Third, we classify checks by their coverage of different programming languages:
single language, multiple languages, and inter-language errors. Some checks are specific
to a single language. For example, different languages require different type checks.
Next, there are errors that can occur in different languages and can be addressed by the
same tool. Finally, there are errors that occur only at the interaction of multiple languages,
e.g., the interface specification of a web service in a WSDL file and its implementation
might not match. In our work, we focus on a mechanism that is language-independent.

Fourth, we distinguish checks by the general implementation mechanism of the SPL,
which is usually put on top of a programming language. Although there are many dif-
ferent mechanisms, for brevity, our taxonomy considers only three groups. In annotative
approaches – common in industry – code is annotated and removed for variant genera-
tion; typical examples include ‘#ifdef’ preprocessor directives, Frames/XVCL [18], and
commercial SPL tools like Gears [26] and pure::variants [4]. In contrast, compositional
approaches – favored in academia – implement features in physically separated modules
and compose them to generate variants; examples include frameworks [19] and different
forms of components, aspects or feature modules [27, 3, 24, 2, 1]. Furthermore, several
other implementation mechanisms like generators [8, 16] or version control systems [33]
exist. All approaches have different advantages and disadvantages, e.g., regarding SPL
adoption or expressiveness as discussed in [6] and [22], which justifies research on error
detection for all of them. In this work, we focus on annotative approaches.

Related Work by Kind of Error. There is a large body of research on checking SPLs for
errors. A first group of approaches focus on SPL testing, i.e. detecting semantic errors
by running test cases [34, 28, 27]. Testing can be applied to different implementation
mechanisms and different languages and can detect even inter-language defects, but only
variants are tested, not the entire SPL. Another approach to detect semantic errors is
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to apply formal methods. Earlier work suggested specific languages to verify SPLs for
compositional approaches [36, 29] or to check an SPL with annotations using model
checking [30], but both have yet to show how they scale for real world SPLs.

Also for type errors, there has been effort to switch from type-checking individual
variants to type-checking the entire SPL. Approaches exist for individual languages with
annotative [21, 9, 25], compositional [35, 10] and generative [16, 17] implementations.
Although suggested as a future extension in [9] and [35], to the best of our knowledge,
approaches that cover multiple languages or inter-language typing have not been applied
to SPL checking.

Finally, regarding syntax errors, compositional approaches separate feature modules
physically so that the SPL can be checked by checking all features in isolation. Recent
composition tools that support multiple languages in a uniform way [3, 1] can even
check the SPL’s syntax for multiple languages. For (language-specific) generators there
have been approaches to check the generator, to ensure syntactical correct output for any
input [16]. In contrast, annotative approaches (all features located in the same annotated
code base) are typically so general that they work only on plain text, and detecting syntax
errors is largely unexplored.

Syntactic Correctness in Annotative Approaches. Consider the code fragment in Figure 2
that shows a fragment of C code from Oracle’s Berkeley DB1 that uses C’s preproces-
sor with multiple (partly nested) ‘#ifdef’ annotations to generate different variants.

1 s t a t i c i n t __rep_queue_filedone(
dbenv, rep, rfp)

2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 # i f n d e f HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 re turn (__db_no_queue_am(dbenv));
9 # e l s e

10 db_pgno_t first, last;
11 u_int32_t flags;
12 i n t empty, ret, t_ret;
13 # i f d e f DIAGNOSTIC
14 DB_MSGBUF mb;
15 # e n d i f
16 // over 100 lines of additional code
17 }
18 # e n d i f

Fig. 2. Code excerpt of Berkeley DB, with syn-
tax error in variants without HAVE_QUEUE.

Already, this short code fragment illustrates
the complexity that may occur when imple-
menting variability in SPLs, but more impor-
tantly, it illustrates a subtle error, which we
deliberately introduced. Note that the open-
ing curly bracket in Line 4 is only closed in
Line 17 when the feature HAVE_QUEUE is
selected, while other variants contain a syn-
tax error. Although this example may appear
trivial, it is a matter of scale. In our projects
(see Sec. 5), we experienced such problems
frequently and it was often not obvious to
find their cause. In large SPLs with many
features, syntax errors can easily occur in
some variants and can be difficult to detect,
especially when located in nested annota-
tions and thus only in very few variants [32].

Interestingly, there are some annotative
tools that can guarantee syntactic correctness

for some languages by transforming and annotating software artifacts on a higher level
of abstraction. One example is Czarnecki’s tool fmp2rsm [9] to generate variants of
annotated UML models. Using this tool, syntax errors (e.g., a class without a name)
cannot occur because annotations and variant generation is not performed on the textual
1 http://www.oracle.com/database/berkeley-db
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representation of the model, but on an abstract level with the Rational Software Modeler
engine, which does not allow transformations that would invalidate UML syntax. In
other fields of software engineering, this abstraction principle is also frequently applied.
For example, refactorings in IDEs such as Eclipse are usually not performed directly on
the textual source code, but on an abstract representation like an abstract syntax tree [12].
In CIDE, we used this principle of abstraction for removing annotated code safely.

To summarize, although there are approaches to address syntax, typing, and semantic
errors in SPLs for single languages, there are no language-independent solutions. In the
remainder of this paper, we explore language-independent checks for SPLs implemented
with annotated source code. We begin by describing CIDE’s guarantee for syntactic
correctness in Java and subsequently generalize it for other languages.

3 Checking Syntactic Correctness of Java SPLs

In this section, we revisit CIDE, a tool for developing Java SPLs using annotations on
source code, which we presented in prior work [22]. With simple design principles,
CIDE guarantees that all variants are syntactically correct Java programs. To provide
context, we first give an overview of the origins of CIDE and the motivation behind it.

CIDE was originally designed to analyze and discuss how code fragments that imple-
ment a feature are scattered and interact inside legacy applications. In our discussions,
we originally highlighted those code fragments on printouts with text markers using
a different color for each feature. This turned out to be useful, so that the motivation
for CIDE was to convey this color metaphor to a Java IDE based on Eclipse. In CIDE,
developers assign code fragments to features. These annotations are then represented
with a background color in the editor (one color per feature), just as with the text marker
on paper.2 When creating a variant, code annotated with unwanted features is removed
like when using ‘#ifdef’ directives in C. The main visual difference lies in the fact that
CIDE uses background colors instead of ‘#ifdef’ directives for annotations.

Besides the visual representation, another key difference between CIDE and tradi-
tional preprocessors (a difference we later use to guarantee syntactic correctness) is that,
in CIDE, features are assigned to elements of the underlying structure of the Java code,
instead of assigning them to a sequence of characters (possibly determined by offset and
length). As underlying structure, we use the abstract syntax tree (AST) that represents a
Java artifact at a fine granularity. The AST provides flexibility to annotate even small code
fragments in the middle of a method, which we often needed in our projects. In CIDE, we
assign features to AST nodes that represent the selected code fragment, other annotations
are not possible. Nevertheless, for users, the underlying structure is transparent, they
simply annotate code fragments, which are then mapped to AST nodes internally.

In Figure 3, we illustrate this concept of using the underlying structure with a simple
example. It shows a code fragment and its AST. When assigning a feature to a code
2 In case multiple features are assigned to the code fragment, the corresponding background

colors are blended. Though this does not allow to recognize feature code solely from the
background colors, it indicates where feature code starts and ends, so that the user can lookup
the actual features in a tool tip or even infer them from the context.
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1 c l a s s C {
2 void m( i n t p){
3 s1();
4 s2(p,true);
5 }
6 }

ClassDeclaration

Name=C

MethodDeclaration

Name=m

ReturnType

Type=void

MethodCall

Name=s2

Parameter

Value=true

Parameter

Name=p

Parameter

Value=p

MethodCall

Name=s1

Block

Fig. 3. Source code fragment and according AST.
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Fig. 4. CIDE’s process for implementing an SPL and creating a variant

fragment (in this example, Line 4, underlined), the code fragment is internally mapped
to the corresponding AST nodes (grayed). Code fragments that cannot be mapped to
AST nodes cannot be annotated. In the user front-end, the code fragments belonging to
annotated AST nodes are shown with a background color according to their assigned
features (of course other visual representations would be possible as well, e.g., using
additional keywords like #ifdef instead of colors).

The overall process to develop an SPL with CIDE is depicted in Figure 4. Developers
begin with a syntactically correct base implementation (possibly a legacy application),
which is parsed into an AST (Step 1). Then, they assign features to AST nodes inside
the development environment (Step 2). The feature-annotated AST can be saved and
loaded again (Step 3), so that it is still possible to edit the source code. To generate a
variant, developers select a set of features and CIDE removes all AST nodes that are
annotated with features that are not selected (Step 4). Note, this step is a transformation
from one AST to another. The generated AST is then serialized (‘unparsed’) as source
code (Step 5), which finally can be compiled into a program (Step 6).

Enforcing Syntactic Correctness. Representing source code as ASTs instead of plain
text and the AST transformation in Step 4 are the key to CIDE’s guarantee for syntactic
correctness. With only two rules, we can ensure that every transformation in Step 4
transforms the annotated AST into another AST that also adheres to Java’s syntax
specification. Thus, we can prevent by construction the generation of code with incorrect
syntax. The rules are:
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– Optional-Only Rule: Only AST nodes that are optional according to the Java syn-
tax specification (as described in [14]) can be removed. For example, we cannot
remove a class’s name without invalidating the AST, but we can remove a method.
Incidentally, the AST provided by the Eclipse Java framework already enforces this
rule; it only removes optional elements and throws exceptions otherwise.

– Subtree Rule: When an AST node is removed, all its child nodes must be removed
as well. For example, when method m is removed in Figure 3 also its parameter and
statements must be removed; when class C is removed all content therein must be
removed as well. For CIDE that means, when a user annotates an AST node, CIDE
automatically propagates this annotation to all subnodes.

In CIDE, these two rules provide a foundational mechanism for syntactic correctness.
Even without consulting a feature model, this mechanism guarantees that no transforma-
tion can invalidate the AST. At the same time, it provides a fine granularity so that even
individual statements or parameters can be annotated, as discussed in [22]. Nevertheless,
we found some situations in Java in which these rules are too restrictive and more
flexibility is needed. For those situations, we manually implemented an exception.

Due to the Subtree Rule, we were not able to independently annotate code fragments
that wrap other code. A typical example is a try-catch statement as in Figure 5, which
could belong to an exception handling feature. The try-catch statement wraps a code
block “s1();”. When deselecting the exception handling feature in a variant, the Subtree
Rule would automatically remove all child elements including the wrapped code block.
The same effect occurs with several other Java statements like try-finally, synchronize, if,
for, while, and do, which wrap other statements and which we therefore call wrapping
elements. To offer more flexibility, we allow an exception to the Subtree Rule in Java:
When a user annotates a wrapping element, specific child elements can be excluded
despite the Subtree Rule. When removing this wrapper in a variant, it is replaced with
the wrapped element.

1 c l a s s C {
2 void m(){
3 try {
4 s1();
5 } catch(Exception e) {
6 handleException(e);
7 }
8 }
9 }

ClassDeclaration

Name=C

MethodDeclaration

Name=m

TryStatement

MethodCall

Name=s1

Block

Block
Catch

Exception=e

Block

MethodCall

Name=...

…

…

Fig. 5. Wrapper for try-catch Statement as Exception to the Subtree Rule.
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4 Generalizing CIDE beyond Java

CIDE was created for Java and builds directly on Eclipse’s Java framework, which made
implementing the two rules simple because Eclipse already encodes the Java language
specification. Nonetheless, SPLs usually consist of code and non-code artifacts written
in different languages, e.g., source code, scripts, make files, documentation, models, or
grammar files. All these artifacts should be handled uniformly by product line tools,
as stated by the principle of uniformity [3, 1]. Therefore, our goal is to provide CIDE –
including its guarantee for syntactic correctness – for multiple languages of different
kinds of code and non-code artifacts.

In this section, we generalize CIDE beyond Java and proceed in two steps. First, we
analyze the underlying principles behind the rules and exceptions we found for Java
in order to derive a general model. Second, we describe our approach to automate the
process of extending CIDE for new languages to minimize human effort.

4.1 Generalizing Correctness Rules: The gCIDE Model

CIDE’s key mechanism for Java was abstracting from plain text, using the underlying
structure, and allowing only operations on that structure which do not invalidate Java’s
syntax. To generalize these concepts, we need an underlying structure for other languages
as well. This structure can be an AST as common in programming languages, a document
object model as in XML, or another structure that represents the artifact.

In order not to implement distinct mechanisms for every language, we develop a
generalized model for CIDE (gCIDE model) that language-independently represents a
common underlying structure on which rules for syntactic correctness are defined. Thus,
instead of statements, classes, AST nodes, XML elements, or others, we just generally
speak of structural elements. For concrete languages, the language structure is mapped
to this language-independent model. The full gCIDE model (which we explain next in
several steps) is depicted in Figure 6.

+children

+parent

0..*

0..1

WrappingElement

+wrappee

+wrapper

1

0..1

StructuralElement

+type
+mappingToArtifact

+isOptional()
+remove()

ParentChildRelation

+isOptional
+childType

Fig. 6. gCIDE Model

Basics. The Subtree Rule can be applied directly to arbitrary tree structures: whenever
a structural element is annotated, its children are annotated as well. In the gCIDE model,
this tree structure is represented such that structural elements have exactly one parent each
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(except for the root that represents the entire file) and may have child elements which are
again structural elements. For technical reasons, to be able to make the mapping between
code fragments and structural elements transparent in CIDE, each structural element must
store a mapping to the actual location in the artifact (modeled as mappingToArtifact).

To transfer the Optional-Only Rule from Java to other artifacts, there must be a
description which elements in the tree structure are optional. In Java this can be derived
from the Java Language Specification [14], in XML the allowed structure is specified by
a W3C recommendation [5], for other languages such specification either exists or must
be formulated to determine which (removal) transformations on the structure are safe. In
the gCIDE model, independent of any specific language, the isOptional attribute of an
element’s relationship to its parent specifies whether the element can be removed safely.
The values of the isOptional attribute must be assigned individually to every element for
each language.

Wrappers and Types. For the wrapper exception to the Subtree Rule (removing a try-
catch statement in Java without removing the inner statements), we introduce the notion
of a wrapping element in our model (cf. Fig. 6). In the gCIDE model, a wrapping element
is a special case of a structural element and specifies exactly one child element it wraps
(implications of allowing to wrap multiple child elements are discussed below). When
removed, it is replaced by this child element.

Wrapping elements cannot be placed at arbitrary places or wrap arbitrary elements.
For example, a Java class cannot wrap a method such that the class is replaced by this
method if removed, as this would invalidate the AST. In the original implementation
of CIDE, we manually defined specific exceptions for selected Java elements and im-
plemented them individually. For a general solution in gCIDE, we use a type-based
mechanism instead.3 Each structural element belongs to a type and there is a subtype
relation on those types. Parent-child relations between structural types state the type
of elements they expect. For example, Java classes expect members as child elements,
blocks expect statements. The subtype relation describes which structural types represent
a member or a statement and can be used as child element. For example, ‘method’ and
‘field’ are subtypes of ‘member’ and can be child elements of classes, while ‘method
invocation’ and ‘try-catch’ are subtypes of ‘statement’ and can be used as a child element
for blocks. Types, subtype relations, and accepted types are modeled in the gCIDE model
and must be provided for each language.

With types, a straightforward algorithm can determine where wrappers are allowed.
For this, it needs to consider three elements: the wrapper, its parent, and the wrapped
child. The wrapped child is allowed if it is accepted as a child of the parent. For example,
in Figure 5 the try-catch statement can wrap a block but not the CatchBlock element,
because only the block is acceptable as child to the parent.4

3 For clarification: the types used in this mechanism represent syntactical categories of the host
language as statements, parameters, or blocks. They are not to be confused with types of terms
in the host language.

4 Note, it is conceptually possible to model structural elements that wrap multiple elements under
some conditions, but it would require a more complex model and reasoning. Required conditions
are: (1) all wrapped elements must be of the correct type and (2) it must be allowed to replace
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4.2 Automating Language Plug-in Creation

Using the gCIDE model, we can now extend CIDE to support multiple languages.
We evolved CIDE and removed all Java specific code and replaced it by an abstract
framework following the gCIDE model. Concrete target languages can now be added as
extensions – so called language plug-ins – which implement this framework. Thus, a
language plug-in creates structural elements for a specific target language and fills values
like types and isOptional. This way, we can separate the infrastructure that is common
for all languages (user frontend, feature management, tree transformation, cf. Step 2
and 4 in Figure 4) from the implementation of specific target languages.

However, the effort to create language plug-ins for CIDE is still high. First, we need
a parser for each language that transforms the artifact into the tree structure (Step 1
in Figure 4). Second, we need to serialize (‘unparse’) transformed structures in each
language to write them back to an artifact (Step 5 in Figure 4). Finally, and most
importantly, we need to define the rules and exceptions for each specific language: we
need to define which structural elements are optional or wrappers, so that transformations
always transform valid trees into other valid trees.

A straightforward way to develop language plug-ins is to bridge the internal structures
of an existing open compiler or graphical editor to the gCIDE model. For example, we
could bridge the AST from Eclipse’s Java framework or the internal structure of an UML
editor and thus reuse this infrastructure. However, for many languages, industrial-strength
compilers that can be accessed and reused are not available. Furthermore, implementing
the bridge might still require considerable effort. Instead, we pursue an approach, in
which we can uniformly generate language plug-ins.5

Fortunately, creating language plug-ins (parser generation, serializer implementation,
rule definition) can be automated to a high degree from the grammar of the target lan-
guage, as we will show in the remainder of this section. First, existing parser generators
can generate a parser from a grammar. Second, some parser generators can also create a
‘pretty printer’ that can be used for serialization (‘unparsing’). Finally, even information
for the Subtree Rule and the Optional-Only Rule can be derived from the target lan-
guage’s grammar, because a grammar specifies (1) the child-parent relationship between
structural elements, (2) which elements are optional, and (3) subtyping information.
That is, we can use the grammar of a target language as the single source to generate
a language plug-in.

To generate language plug-ins for CIDE from grammar specifications, we built our
own tool chain, because common parser generators (e.g., JavaCC, yacc, or ANTLR) do
not propagate sufficient information from the grammar to the created tree structure. For
example, from the parse tree that JavaCC generates, we cannot determine which elements
are optional. Therefore, we defined our own grammar specification language called

one wrapper with multiple elements. Alternatively, more complex custom transformations could
be specified. To keep the model simple, we disallow wrappers around a multiple elements.

5 Note, our generation approach targets artifacts which are usually edited with a textual editor
like source code or textual modeling and specification languages such as Alloy. For artifacts
that are usually edited in a graphical editor such as UML, often a tailored approach of mapping
the gCIDE model to the representation of a specific editor is more suitable.
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FeatureBNF and built a tool called astgen which generates LL(k) parsers, serializers, and
trees with all information required by the gCIDE model.6

FeatureBNF Basics. FeatureBNF uses an extended Backus-Naur notation and supports
some additional annotations for astgen. From a given grammar, elements are recognized
as optional when followed by a question mark, or when they are part of a list (expressed
with an asterisk symbol).

In Figure 7, we illustrate an excerpt from a sample programming language. A
compilation unit consists of any number of type declarations. The type declaration
consists of one mandatory identifier, a second optional one, an optional ‘implements’
list, and a class body. The class body contains any number of fields or methods.

1 CompilationUnit : (TypeDeclaration)* <EOF> ;
2 TypeDeclaration : "class" <ID> ( "extends" <ID> )? ( ImplementsList )? ClassBody;
3 ClassBody : "{" (Member)* "}" ;
4 Member : Method | Field ;
5 ImplementsList : "implements" <ID> ("," <ID>)* ;

Fig. 7. FeatureBNF grammar example

From a given grammar for a target language, astgen generates the language plug-in,
consisting of a parser that builds a tree structure for a given artifact in that language, and
a pretty printer that writes it back into a file. The tree structure generated by the parser
not only represents the structure of the source code, but can also reflect its structural
properties derived from the grammar, e.g., each tree node knows whether it is optional as
described in the gCIDE model. So, in the given example in Figure 7, the type declarations
are optional (there can be any number of type declarations in a compilation unit, Line 1)
and thus can be annotated in CIDE. Inside the type declaration the first identifier and
the class body are mandatory and cannot be annotated, but the second identifier and the
‘implements’ list are optional (Line 2). Also members are optional and can be annotated
(Line 3). In a full grammar, typically also statements, parameters, or parts of expressions
are optional and can be annotated in CIDE.

Concrete Syntax vs. Abstract Syntax. A parser generated from a grammar for a target
language with standard parser generator tools creates a Concrete Syntax Tree (CST).
This tree contains those elements that are required for parsing. However, a CST does not
necessarily reflect the abstract syntax of the language, and mapping a CST to the gCIDE
model (instead of an AST) can result in reduced flexibility.

A typical example how the concrete syntax may reduce flexibility is the use of
lists, as exemplified in Figure 7, Line 5. The ‘implements’ list is optional inside the
6 Technically, the FeatureBNF grammar specification language is a meta-grammar. It is a grammar

that specifies how developers can specify and annotate grammars for a specific target language.
For example, we can write a Java grammar in the FeatureBNF format. From this Java grammar,
astgen generates all required parts for a Java language plug-in. For parser generation, we
internally reuse JavaCC. Note, FeatureBNF is reused with some extensions in another line of
research on language-independent software composition [1].
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type declaration, but inside the list the first entry is mandatory due to special parsing
requirements for the separating comma. Using the CST, the first entry cannot be annotated
individually, although in the abstract syntax all entries are optional elements of a list.

To ensure the full flexibility of the abstract syntax, it is necessary to transform the
CST into an AST. In many tools this is a separate step after parsing. For serialization, the
inverse transformation must be performed on the modified AST. To guarantee syntactic
correctness for all variants, both transformations must be performed safely without loss
of information.

To bridge this gap, we follow the lead of Wile, who used an extended grammar
specification language to derive the abstract syntax directly from a grammar file [37].
Wile proposed a series of additional constructs in the grammar specification language, so
that the abstract syntax and its relationship to the concrete syntax are directly specified
in the extended grammar file. This way, we can generate a parser that directly produces
an AST instead of an CST. Wile further proposed a semi-automated process to trans-
form an existing grammar describing a concrete syntax into the extended format. For
example, to solve problems like the ‘implements’ list described above, he proposes a
special ‘list’ construct. In Wile’s notation, the ImplementsList production is expressed as
ImplementsList: ID ^ ",";, in which the ^ symbol is a special construct for
lists followed by the token that separates list entries. Using this construct, the parser can
interpret identifiers directly as lists and build the AST accordingly. We adopted Wile’s
concept and added those extensions that are relevant for our case studies in FeatureBNF.
This way, we can generate a parser that creates structural elements based on the target
language’s abstract syntax from a grammar file. Only a single tree is created, no manual
mapping between CST and AST is required, and all further transformations to remove
annotated fragments can be directly performed on the AST of the artifact.

Wrappers and Other Exceptions. Although technically possible, wrappers are not au-
tomatically recognized from the grammar for a target language, but a language expert
has to decide where wrappers make sense. Wrappers should only be used where the
additional flexibility is needed. Otherwise, it would still enforce syntactic correctness,
but be harder to use.7

FeatureBNF supports additional constructs to specify exceptions like wrappers. Other
exceptions, e.g., making a mandatory production optional by providing a default value,
or marking an optional production mandatory, can also be defined safely. Due to space
restrictions we defer the interested reader to the language description at CIDE’s web site.

5 Experience

After extending CIDE and building the tool infrastructure, we generated 15 language
plug-ins from grammars of various code and non-code languages. Next, we conducted
7 For example, classes could automatically be interpreted as wrappers around inner classes in

Java. While this is syntactically correct and also fulfills the typing rules, annotating a whole
class except an inner class, usually does not make sense. Offering such flexibility is only
confusing to the developer; workarounds by rewriting the code are much easier to use.
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Language Optional structures Wrappers #Prod.

Featherweight Java? methods, fields, parameters - 16
Java 1.5?? members, statements, parameters, ... if, for, try, ... 133
C (plain)?? functions, statements, parameters, ... if, for, ... 80
C (pseudo)? functions, statements, preprocessor, ... if, #ifdef, ... 46
C++ (pseudo)? classes, methods, statements, prepr., ... if, #ifdef, ... 65
C#??? classes, members, statements, parameters, ... if, for, try, ... 215
Haskell (pseudo)?? types, imports, data, classes, ... - 54
Haskell 98? types, imports, data, classes, parameters, ... if 71
JavaScript/ECMAScript?? functions, statements, expressions, ... if, for, ... 111
JavaCC??, Bali??,

ANTLR??? productions, terminals, ... [], ()* 14–166
Property files? lines - 1
HTML?? headings, paragraphs, list items, ... <b></b>, ... 11
XML? nodes, parameters - 13

?handwritten based on external specification, ??adapted from JavaCC grammar, ???adapted from ANTLR grammar

Table 1. CIDE Language plug-ins generated from FeatureBNF grammar

several small case studies applying CIDE to different projects to test its practicality
regarding those languages. Due to space restrictions, we only give an overview of
language plug-ins and SPLs projects. Further information is provided in an accompanying
technical report [23] and on CIDE’s website which contains the source code of all
language plug-ins and SPL projects (except for the water boiler SPL which we cannot
disclose to protect intellectual properties of our partners).

Language plug-ins. In Table 1, we list all supported languages and some information
describing optional structures, wrappers, and the number of production rules each. The
number of production rules can be used as a rough indicator of the complexity of the
language. For most languages the FeatureBNF grammar was derived from an existing
grammar in the JavaCC or ANTLR format (which required mostly just syntactic changes)
and usually took less than one hour.

The language extensions for C and C++ were the most problematic, due to C’s
preprocessor. Although we could straightforwardly adapt an existing JavaCC grammar
for C, this would only work on C code that was already preprocessed. That is, a C parser
requires source code in which ‘#include’ statements were resolved, ‘#ifdef’ statements
were removed, and macros were evaluated. Without preprocessing (or even just with
ignoring preprocessor directives) C code cannot be parsed. Unfortunately, working on
preprocessed code is only an option for downstream tools, but in CIDE developers work
on unprocessed code that still contains preprocessor directives. This problem was already
faced much earlier, e.g., by intentional programming [31] or refactoring tools [13] and
required complex workarounds. To overcome this problem in CIDE, we wrote a pseudo-
parser, which does not actually parse the code based on the full language specification, but
recognizes only important constructs like functions, variable declarations, or statements.
For example, statements are recognized by the terminating semicolon, functions by the
typical pattern for return type and parameter declarations. Preprocessor directives are
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Project Features LOC Annotated Parts Time

Berkeley DB 38 204 000 Code (Java), Documentation (HTML) 4 days
Graph Product Line 14 2 300 Code (Java), Documentation (XHTML) 3 hours
AHEAD Tool Suite 24 45 000 Doc. (HTML), Build scripts (XML) 2 hours
SQL Parser SPL? 4 60 Grammar (ANTLR) 20 min
Arithmetic SPL? 3 120 Code (Haskell) 1 hour
FAME-DBMS? 14 6 000 Code (C++) 2 days
Water Boiler SPL?? 14 10 000 Code (C) 2 days

?prototype, ??closed-source, industrial

Table 2. SPL projects implemented with CIDE

recognized as part of the language, as long as they are used within certain limitations
(e.g. ‘#include’ may not occur inside functions). With this pseudo-parser, we are able to
use CIDE on C projects, but we weaken the guarantee for syntactic correctness to some
degree (see discussion in Sec. 6). The same pseudo-parser approach was used for C++,
and also for an initial version of Haskell, because of Haskell’s complex syntax.

The XML grammar supports only plain XML files, i.e., all elements or parameters
are optional and can be annotated. This guarantees that every variant is well-formed
in the XML terminology. Guaranteeing that all variants of an XML artifact are valid
based on the given DTD or XML Schema description requires additional information.
Note, DTD is a meta-grammar itself that can be used for XML documents instead of
FeatureBNF. We implemented a prototype transformation tool dtdgen, which converts
a DTD into a FeatureBNF grammar, as a proof of concept. This way, we generated a
parser specifically for XHTML (version ‘1.0 strict’). However, in ongoing work, we
pursue a direct transformation from a DTD or XML Schema to the gCIDE model by
extending an off-the-shelf XML parser [11].

Finally, for the Java language plug-in it is worth emphasizing that it is also generated
from a grammar and not bridged from the Eclipse Java framework. Still, for enforcing
syntactic correctness, the generated version is as flexible as the original one.

All in all our experience shows that creating language plug-ins for new languages is
simple for a variety of different languages, even for complex or less popular languages
like Haskell or JavaScript. If a target language has a well-specified grammar, creating
a language extension is a matter of few hours. All generated languages share CIDE’s
guarantee for syntactical correctness (with some limitations for pseudo-parsers).

SPL projects. In order to demonstrate that CIDE can actually be used for developing
non-trivial SPLs written in different languages, we used CIDE in a series of small to
medium-sized projects, as listed in Table 2. For brevity, we again only give an overview
and refer the interested reader to our accompanying technical report [23]. The given
durations for each project are rough estimates, and it has to be taken into account that in
most projects the features were previously known, so only little code exploration was
necessary. However, the point of these projects is not to discuss the feasibility or effort
of creating SPLs by annotating legacy applications, but we focus on CIDE’s applicability
to different languages.
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The first two projects are interesting, because with the generalized version, we
could not only annotate the Java code of these SPLs, but also the documentation (e.g.,
120 000 lines of HTML in Berkeley DB). This way, the documentation is also tailored
specific for the generated variant, e.g., for a Berkeley DB variant without transactions,
the ‘Transaction Processing Guide’ and all references to it are removed. In the third
project, we additionally annotated the build scripts which are ANT files in XML format.
Despite their small size, the prototypes of SQL Parser SPL for embedded systems and
Arithmetic SPL demonstrate CIDE’s capabilities to languages beyond mainstream object-
oriented languages. Finally, the last two projects are again real projects for embedded
systems written in C and C++ from academia and industry that are actively developed
and maintained. Even though, we provide only a pseudo-parser for C and C++, we could
successfully annotate these projects. In these projects, we experienced tedious syntax
errors quite frequently in earlier implementations before using CIDE.

In all projects, we were able to create different variants and found (using tools, tests,
or manual evaluation) that all generated variants are syntactically correct. For example,
for FAME-DBMS and the Water Boiler SPL we successfully generated, compiled, and
executed different variants.

6 Discussion: Flexibility vs. Safety

During development and testing, we found a trade off between two properties: flexibility
and safety. By imposing a tree structure on a source code artifact, we provide safety
(guaranteeing syntactic correctness for all generated variants). However, at the same time,
we impose restrictions on what developers are allowed to annotate and thus reduce their
flexibility, i.e., they have fewer possibilities to express variability. For example, compared
to an implementation using the C preprocessor that works on token level8, CIDE only
annotates optional elements of the underlying AST. Hence, using such preprocessor,
a method can have two alternative return types, but in CIDE a return type cannot be
annotated independently when it is mandatory in the language’s grammar.

Programming languages already define a certain structure for code artifacts by their
language syntax. For example, the Java syntax defines a top-down structure for Java
code (e.g., Java files contain classes, which contain methods, which contain statements).
By using ASTs to annotate programs, we expose this structure in CIDE and employ it
with the Subtree Rule and the Optional-Only Rule to prevent syntax errors. Different
languages provide a different amount of structure in their syntax. For example, JavaScript
artifacts only contain a list of statements or function declarations, grammar artifacts
only contain a list of production rules with a simple inner structure, and XML nodes are
nested completely arbitrarily.

This raises two questions. (1) How much structure does an artifact language need to
be usable in CIDE? (2) Is the structure defined by a language’s syntax a limitation when
adding further language plug-ins for other artifact types in the future?
8 To be precise the C preprocessor works on lines of source code. However, due to the code

layout flexibility in many languages, it can usually be used for token-based annotations.
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To answer the second question first, consider a ‘README.txt’ file. It is a valid
artifact in an SPL, but will probably not provide any structure, at least none that is
described by a LL(k) grammar. Fortunately, such artifacts, for which no specific language
grammar is specified, can still be parsed by a dummy grammar that matches any file
as a list of arbitrary optional tokens or even as a list of optional characters. With a
dummy grammar, every character is optional with respect to the document, i.e., every
single character in this document can be annotated independently just as when using
preprocessors. This shows that a required structure is not a limitation of our approach.
Even if no structure is available, as in the ‘README.txt’ file, we can still use the same
tool to annotate this file uniformly next to other artifacts in an SPL.

Nevertheless, structure is beneficial. When using the dummy grammar, the guarantee
of syntactic correctness is lost, because any artifact adheres to this grammar. This shows
that any structure – although it reduces flexibility – is beneficial for safety, because the
grammar defines CIDE’s syntax checks. It restricts the possible parts of the artifact that
can be annotated and enforces ‘reasonable’ annotations.

In this context, the pseudo-parsing approach presented for C, C++, and Haskell
artifacts in Section 5 is interesting. Pseudo-parsing does not use the full structure
as provided by the language grammar (in these particular cases because of technical
limitations caused by the preprocessor in C/C++ and because of Haskell’s complexity).
Instead, it uses a simpler approach that recognizes only certain elements like functions
and statements, but ignores inner fragments like parameters, or expressions. There are two
possibilities to handle those inner fragments which are ignored by the parser. First, we
can regard these fragments as a single mandatory node each, i.e., there is no substructure
inside such fragment (used in Haskell, referred to as alternative A below). Alternatively,
we can parse these fragments with a dummy grammar as a list of optional tokens or
characters (used in C and C++, referred to as alternative B). Pseudo-parsing can be used
to balance between flexibility and safety, as alternative A guarantees syntactic correctness
at a significantly reduced flexibility, while alternative B is more flexible but guarantees
syntactic correctness only for the recognized parts and not for their inner structure.
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CST AST

Pseudo-
parser B

Token-based

Character-based

Pseudo-
parser A

Flexibility

Fig. 8. Safety vs. Flexibility

In Figure 8, we visualize the relative
differences in safety and flexibility of all
approaches. For annotations based on a
concrete syntax tree or an abstract syntax
tree, we can guarantee syntactic correct-
ness, while the AST provides more flex-
ibility (see Sec. 4.2). Pseudo-parsing ap-
proaches in which the internal structure of
recognized elements is opaque (alternative
A) can also guarantee safety, but with a sig-
nificantly reduced flexibility. In contrast, a
character based or token based annotation
– as with the dummy grammar or ‘#ifdef’
preprocessors – provides the highest flexibility (every single character or token can be
annotated) but no safety at all. A pseudo-parser that uses a dummy grammar for inner
elements (alternative B) lies in the middle, it provides high flexibility, but reduced safety.
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This discussion shows that a structure given by a grammar is not necessary for an
artifact to be handled by CIDE. However, as we experienced in our case studies, when
a reasonable grammar is provided, CIDE can ensure syntactic correctness and take ad-
vantage of the artifact’s structure to support the developer toward reasonable annotations.
The ability to use the artifact’s structure (if available) in every language to ensure syn-
tactic correctness distinguishes CIDE from naive ‘#ifdef’-like preprocessor approaches.

7 Perspective: Language-Independent Checks Beyond Syntax

We showed how CIDE guarantees that every variant of an SPL is syntactically correct,
independent of the artifact’s language. This is helpful to prevent errors when developing
SPLs, and in fact it this is more than provided by any current language-independent
SPL technologies and tools like Frames/XVCL [18], C preprocessor, pure::variants [4],
or Gears [26]. Still, many other kinds of errors are possible in CIDE (see Taxonomy
in Sec. 2). In the remainder, we provide an outlook on future work to detect also
typing and semantic errors, while still supporting multiple languages. We addressed
syntactic correctness in this paper first, because it is a necessary precondition for all
these additional checks.

Detecting Type Errors. CIDE, as described so far, covers only the syntax of a language,
not its type system. In a variant that is syntactically correct, there can still be type
errors like dangling method invocations (when only the method declaration but not
the invocation has been removed in this variant). Type errors can be detected in many
(statically typed) languages by static program analysis. Ideally, an SPL tool should
be able to check both syntax and typing in multiple languages in order to detect all
compilation errors without actually compiling all variants.

Based on CIDE, we implemented type checks for SPLs written in Java that can
guarantee that all variants are well-typed once certain checks pass [21, 25, 23]. If there
is a problem like a dangling method reference – even though it might only occur in few
variants – an error is reported in CIDE. For Featherweight Java (a subset of Java), we
have formalized these type-checks and proved them complete [21].

The basic mechanism of these type-checks is simple and can be generalized to other
languages. Type checks are broken down into pairs of code elements that reference each
other. For example, a method invocation references a method declaration; a field access
references a field declaration; in UML an association references two elements; and so on.
For these pairs, CIDE makes sure that in every possible variant in that the referencing
element (e.g., method invocation) is present, also the referenced element (e.g., method
declaration) is reachable. This condition can be expressed based on the elements’ annota-
tions and the SPL’s feature model and evaluated using a SAT solver as described in [21].

The agenda for providing type checks for multiple languages is similar to the path we
took for syntax checks. As first step, we generalized the common parts of type checking
SPLs in a framework in CIDE, similar to the gCIDE model. We successively use this
framework to implement type-checks for language plug-ins, currently Java and Bali [3]
are implemented. Whether these steps can be automated is an open research question.
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Detecting Inter-Language Type Errors. Another interesting question, when dealing with
multiple languages inside an SPL is inter-language typing. It is often not sufficient to
check artifacts from a single language, but annotated artifacts from different languages
may reference each other and must be consistent in all variants – e.g., a web service
description (WSDL file) in XML format references the implementation in a programming
language like C#.

As type checks in a single language, checks can be broken down to pairs of elements
that reference each other. However, language plug-ins must be able to detect these
inter-language pairs. The main research questions are finding the right abstractions and
a suitable polylingual type system (e.g., [15]) for these inter-language checks of SPLs.
Advances in inter-language refactorings in Eclipse can be used as starting point [12].

Detecting Semantic Errors. Semantic errors are difficult to detect even without SPL
technologies. While there are several approaches of how to formally specify behavior
of programs and how to automatically check these specifications, they hardly scale for
industrial-size programs and are used only in few scenarios. First steps for verifying SPL
behavior against some formal specifications [36] and for using annotations in an SPL for
model checking [30] were suggested.

To support such verification and model-checking mechanisms in CIDE, we yet again
have to find the right abstractions and extend language plug-in mechanism to map the
according language-specific conditions to a generalized model for CIDE. Still, there
are open research questions how to provide or automate such checks in CIDE and how
to scale them for large SPLs. Nevertheless, this is a promising avenue for future work,
especially for safety critical SPLs in embedded systems.

8 Conclusion

Software product lines (SPLs) usually contain artifacts written in different languages. To
handle different artifacts uniformly, current SPL technologies either (a) use an approach
that is so general that it works for arbitrary artifacts, but can easily introduce subtle
errors for some variants (preprocessors, XVCL, Gears, pure::variants, etc.); or (b) they
provide specialized tools for a low number of languages (frameworks, AHEAD, aspects,
generators, etc.). Errors that only occur in certain variants of the SPL are a serious
problem, as the exploding number of variants makes testing by generating, compiling,
and running each variant infeasible.

We have shown how CIDE, an SPL development tool that can be considered as
disciplined preprocessor, guarantees syntactic correctness for all variants that the SPL
can generate by abstracting from the concrete textual representation in a file and using its
internal structure. We have shown the underlying principles and generalized them from
Java into a language-independent model. In a further step, we have even automated the
process of creating language plug-ins from annotated grammar files, so that extending
CIDE (including its guarantee for syntactical correctness) for new languages requires
minimal human effort.

We have demonstrated CIDE’s applicability by generating plug-ins for a series of
code and non-code languages including Java, C, C#, Haskell, JavaScript, ANTLR, and
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XML. We have further shown CIDE’s usability for concrete problems in several different
case studies that consist of artifacts written in different languages.
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12. R. Fuhrer, M. Keller, and A. Kieżun. Advanced Refactoring in the Eclipse JDT: Past, Present,
and Future. In Proc. ECOOP Workshop on Refactoring Tools (WRT), pages 31–32, 2007.

13. A. Garrido. Program Refactoring in the Presence of Preprocessor Directives. PhD thesis,
University of Illinois at Urbana-Champaign, 2005.

14. J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTMLanguage Specification. The JavaTMSeries.
Addison-Wesley Professional, 3 edition, 2005.

15. M. Grechanik, D. Batory, and D. Perry. Design of Large-Scale Polylingual Systems. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages 357–366. 2004.

16. S. Huang, D. Zook, and Y. Smaragdakis. Statically Safe Program Generation with SafeGen.
In Proc. Int’l Conf. Generative Programming and Component Eng. (GPCE), pages 309–326.
2005.



20 Christian Kästner et al.

17. S. S. Huang and Y. Smaragdakis. Expressive and Safe Static Reflection with MorphJ. In Proc.
Conf. Programming Language Design and Implementation (PLDI), pages 79–89. 2008.

18. S. Jarzabek et al. XVCL: XML-based Variant Configuration Language. In Proc. Int’l Conf.
on Software Engineering (ICSE), pages 810–811. 2003.

19. R. E. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-Oriented
Programming, 1(2):22–35, 1988.

20. K. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, 1990.

21. C. Kästner and S. Apel. Type-checking Software Product Lines - A Formal Approach. In
Proc. Int’l Conf. Automated Software Engineering (ASE), pages 258–267. 2008.

22. C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages 311–320. 2008.

23. C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Language-Independent Safe
Decomposition of Legacy Applications into Features. Technical Report 2/08, School of
Computer Science, University of Magdeburg, Germany, 2008.

24. G. Kiczales et al. Aspect-Oriented Programming. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP), pages 220–242. 1997.

25. C. H. P. Kim, C. Kästner, and D. Batory. On the Modularity of Feature Interactions. In Proc.
Int’l Conf. Generative Programming and Component Eng. (GPCE), pages 23–34. 2008.

26. C. Krueger. Easing the Transition to Software Mass Customization. In Proc. Int’l Workshop
on Software Product-Family Eng., pages 282–293. 2002.

27. K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

28. K. Pohl and A. Metzger. Software Product Line Testing. Commun. ACM, 49(12):78–81, 2006.
29. M. Poppleton, B. Fischer, C. Franklin, A. Gondal, C. Snook, and J. Sorge. Towards Reuse

with “Feature-Oriented Event-B”. In Proc. GPCE Workshop on Modularization, Composition
and Generative Techniques for Product Line Engineering, 2008.

30. H. Post and C. Sinz. Configuration Lifting: Verification meets Software Configuration. In
Proc. Int’l Conf. Automated Software Engineering (ASE), pages 347–350, 2008.

31. C. Simonyi. The Death of Computer Languages, the Birth of Intentional Programming. In
NATO Science Committee Conference, 1995.

32. H. Spencer and G. Collyer. #ifdef Considered Harmful or Portability Experience With C
News. In Proc. USENIX Conf., pages 185–198, 1992.

33. M. Staples and D. Hill. Experiences Adopting Software Product Line Development without a
Product Line Architecture. In Proc. Asia-Pacific Software Engineering Conf. (APSEC), pages
176–183. 2004.

34. A. Tevanlinna, J. Taina, and R. Kauppinen. Product Family Testing: a Survey. SIGSOFT
Softw. Eng. Notes, 29(2):12–12, 2004.

35. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines. In Proc.
Int’l Conf. Generative Programming and Component Eng. (GPCE), pages 95–104. 2007.

36. E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. A Specification-Based Approach to
Testing Software Product Lines. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE), pages 525–528. 2007.

37. D. Wile. Abstract Syntax from Concrete Syntax. In Proc. Int’l Conf. on Software Engineering
(ICSE), pages 472–480. 1997.


