Guard Placement For Wireless Localization

David Eppstein

Michael T. Goodrich

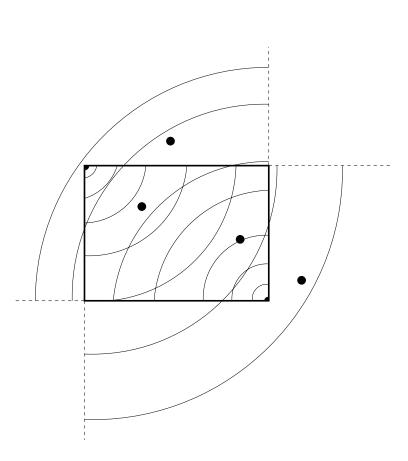
Nodari Sitchinava

Computer Science Dept., UC Irvine

Motivating example: Cyber-Café

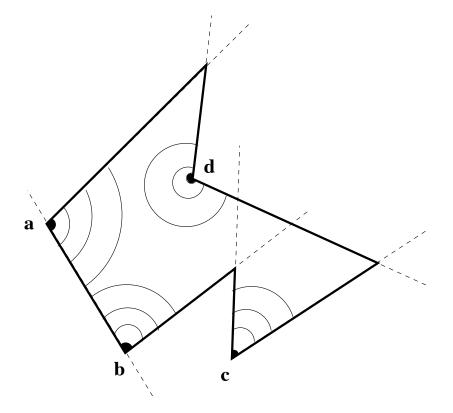
- Supply wireless internet to paying customers inside
- Prevent access to non-paying customers outside
- But how to tell which customers are which?

Proposed Solution

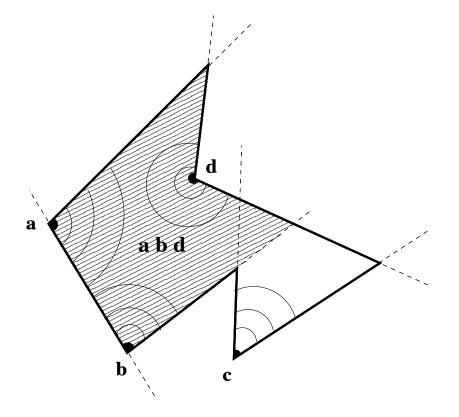


- Use multiple directional transmitters
- Customers in range of both transmitters are inside

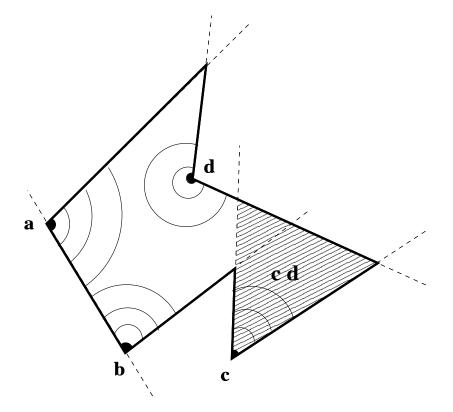
<u>Sculpture Garden Problem</u> – the problem of placing angle guards to define a given polygon



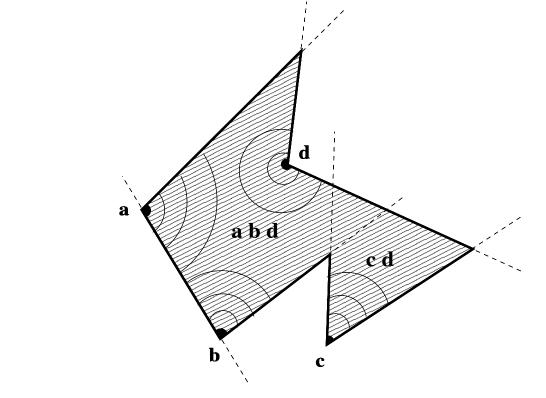
<u>Sculpture Garden Problem</u> – the problem of placing angle guards to define a given polygon



<u>Sculpture Garden Problem</u> – the problem of placing angle guards to define a given polygon



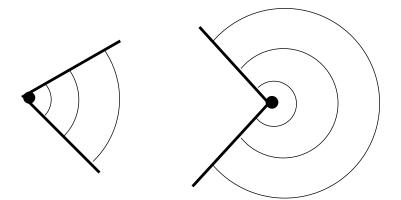
<u>Sculpture Garden Problem</u> – the problem of placing angle guards to define a given polygon



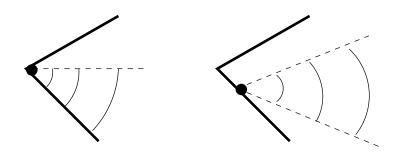
F = abd + cd = (ab + c)d

Natural Angle Guards

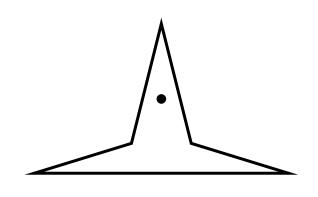
<u>Natural</u> angle guards are placed at vertices of the polygon with angle of vertex = angle of guard



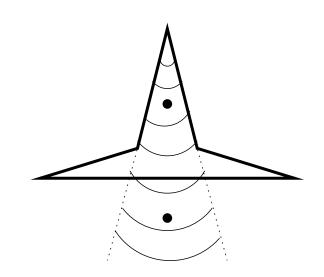
Non-natural guards:



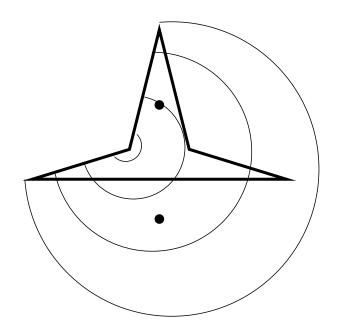
Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.



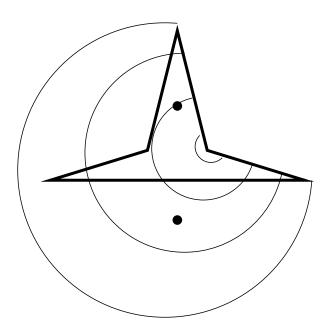
Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.



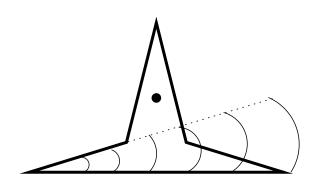
Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.



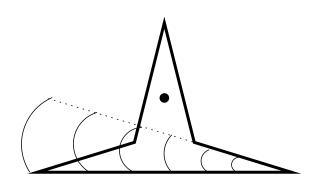
Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.



Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

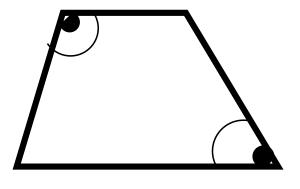


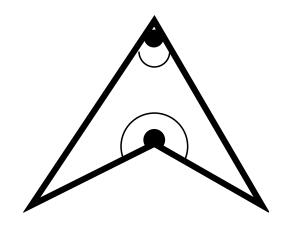
Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.



Quadrilaterals

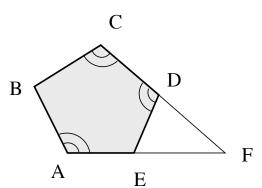
Theorem. Any quadrilateral can be guarded with 2 natural angle guards.

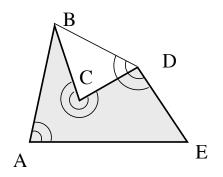


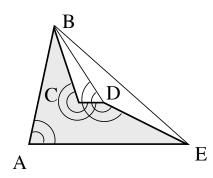


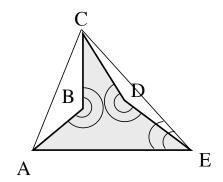
Pentagons

Theorem. Any pentagon can be guarded with 3 angle guards.

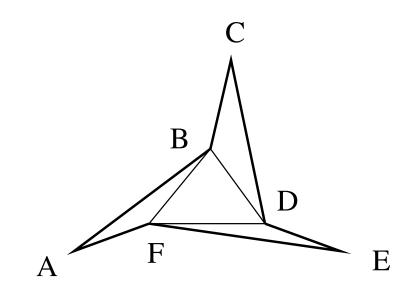








Theorem. Any hexagon can be guarded with 4 angle guards.



General Upper Bound

Theorem. n + 2(h - 1) guards are sufficient to define any *n*-vertex polygon with *h* holes.

Proof.

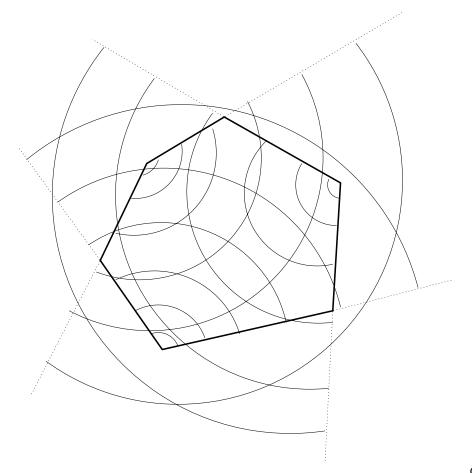
- Triangulate into n + 2(h 1) triangles
- Partition triangulation into quadrilaterals, pentagons, and hexagons
- In each piece, # guards = # triangles

Definition is concise: each region is defined by O(1) guards

Lower Bounds

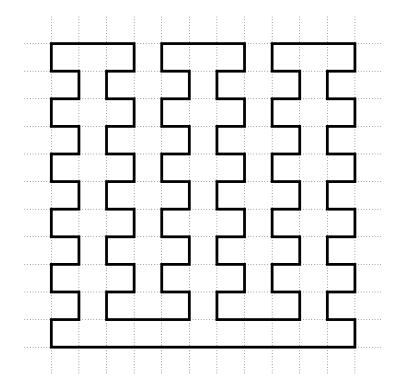
Theorem. At least $\lceil \frac{n}{2} \rceil$ guards are required to solve the SGP for any polygon with no two edges lying on the same line.

Theorem. $\lceil \frac{n}{2} \rceil$ guards are always sufficient to solve SGP for any convex polygon.



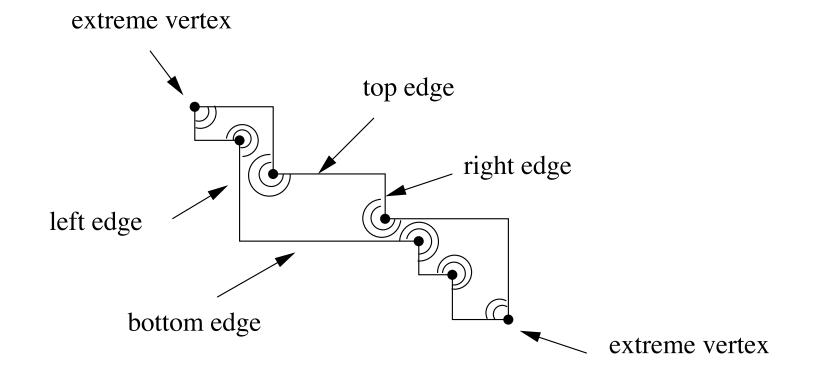
Lower Bounds

Theorem. Any *n*-sided polygon requires $\Omega(\sqrt{n})$ guards. **Theorem.** There exist *n*-sided simple polygons that can be guarded concisely by $O(\sqrt{n})$ guards.



Orthogonal Polygons

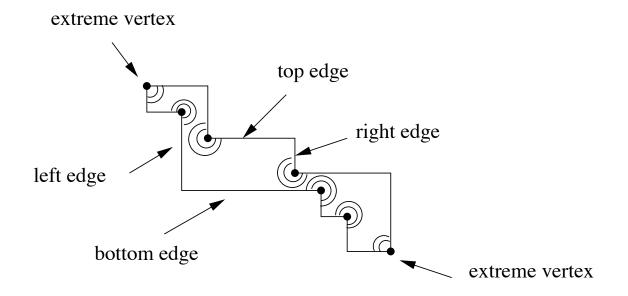
Definition. <u>*xy-monotone*</u> polygon is an orthogonal polygon which is monotone with respect to the x = y line.



Orthogonal Polygons

Theorem. $\frac{n}{2}$ natural guards are sufficient to solve SGP for any orthogonal polygons, by placing natural angle guards in every other vertex starting with a left vertex of some top edge.

Proof. By induction on unguarded reflex vertices.

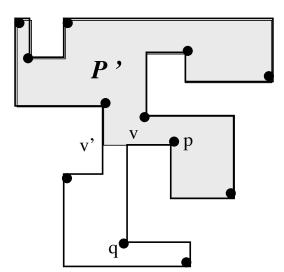


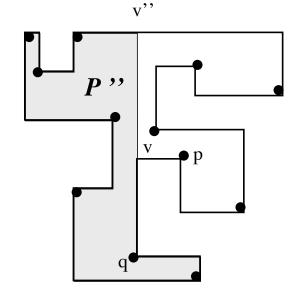
Base Case

Orthogonal Polygons

Theorem. $\frac{n}{2}$ natural guards are sufficient to solve SGP for any orthogonal polygons, by placing natural angle guards in every other vertex starting with a left vertex of some top edge.

Proof. By induction on unguarded reflex vertices.





Inductive Hypothesis

Minimizing Number of Guards

Open Problem: How hard is it to find the minimum number of guards for a particular polygon?

Theorem (APPROXIMATION). For any polygon P, we can find a collection of guards for P, using a number of guards that is within a factor of two of optimal.

- Place an edge guard on the line bounding each edge of P
- Use a Peterson-style constructive-solid-geometry formula
- In optimal solution, each line must be guarded and each guard can cover at most two lines so optimal # guards is at least half the guards used

	Sometimes required	Always Sufficient
Arbitrary	$\Omega(\sqrt{n})$	n+2(h-1)
General position	$\left\lceil \frac{n}{2} \right\rceil$	n+2(h-1)
Orthogonal	$\frac{n}{2}$	$\frac{n}{2}$
general position		
Convex	$\lceil \frac{n}{2} \rceil$	$\lceil \frac{n}{2} \rceil$

Obvious open question:

close factor-of-two gap for non-orthogonal general position