Guard Placement For Wireless Localization

David Eppstein

Michael T. Goodrich
Nodari Sitchinava

Computer Science Dept., UC Irvine

Motivating example: Cyber-Café

- Supply wireless internet to paying customers inside
- Prevent access to non-paying customers outside
- But how to tell which customers are which?

Proposed Solution

- Use multiple directional transmitters
- Customers in range of both transmitters are inside

Sculpture Garden Problem

Sculpture Garden Problem - the problem of placing angle guards to define a given polygon

Sculpture Garden Problem

Sculpture Garden Problem - the problem of placing angle guards to define a given polygon

Sculpture Garden Problem

Sculpture Garden Problem - the problem of placing angle guards to define a given polygon

Sculpture Garden Problem

Sculpture Garden Problem - the problem of placing angle guards to define a given polygon

$$
F=a b d+c d=(a b+c) d
$$

Natural Angle Guards

Natural angle guards are placed at vertices of the polygon with angle of vertex = angle of guard

Non-natural guards:

Natural Guards Aren't Enough

Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

Proof.

Natural Guards Aren't Enough

Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

Proof.

Natural Guards Aren't Enough

Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

Proof.

Natural Guards Aren't Enough

Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

Proof.

Natural Guards Aren't Enough

Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

Proof.

Natural Guards Aren't Enough

Theorem. There exists a polygon P such that it is impossible to solve SGP for P using a natural angle-guard vertex placement.

Proof.

Quadrilaterals

Theorem. Any quadrilateral can be guarded with 2 natural angle guards.

Pentagons

Theorem. Any pentagon can be guarded with 3 angle guards.

Hexagons

Theorem. Any hexagon can be guarded with 4 angle guards.

General Upper Bound

Theorem. $n+2(h-1)$ guards are sufficient to define any n-vertex polygon with h holes.

Proof.

- Triangulate into $n+2(h-1)$ triangles
- Partition triangulation into quadrilaterals, pentagons, and hexagons
- In each piece, \# guards = \# triangles

Definition is concise: each region is defined by $O(1)$ guards

Lower Bounds

Theorem. At least $\left\lceil\frac{n}{2}\right\rceil$ guards are required to solve the SGP for any polygon with no two edges lying on the same line.
Theorem. $\left\lceil\frac{n}{2}\right\rceil$ guards are always sufficient to solve SGP for any convex polygon.

Lower Bounds

Theorem. Any n-sided polygon requires $\Omega(\sqrt{n})$ guards.
Theorem. There exist n-sided simple polygons that can be guarded concisely by $O(\sqrt{n})$ guards.

Orthogonal Polygons

Definition. $x y$-monotone polygon is an orthogonal polygon which is monotone with respect to the $x=y$ line.
extreme vertex
left edge

Orthogonal Polygons

Theorem. $\frac{n}{2}$ natural guards are sufficient to solve SGP for any orthogonal polygons, by placing natural angle guards in every other vertex starting with a left vertex of some top edge.

Proof. By induction on unguarded reflex vertices.

Base Case

Orthogonal Polygons

Theorem. $\frac{n}{2}$ natural guards are sufficient to solve SGP for any orthogonal polygons, by placing natural angle guards in every other vertex starting with a left vertex of some top edge.

Proof. By induction on unguarded reflex vertices.
Inductive Hypothesis

Minimizing Number of Guards

Open Problem: How hard is it to find the minimum number of guards for a particular polygon?

Theorem (Approximation). For any polygon P, we can find a collection of guards for P, using a number of guards that is within a factor of two of optimal.

Proof.

- Place an edge guard on the line bounding each edge of P
- Use a Peterson-style constructive-solid-geometry formula
- In optimal solution, each line must be guarded and each guard can cover at most two lines so optimal \# guards is at least half the guards used

Summary

	Sometimes required	Always Sufficient
Arbitrary	$\Omega(\sqrt{n})$	$n+2(h-1)$
General position	$\left\lceil\frac{n}{2}\right\rceil$	$n+2(h-1)$
Orthogonal general position	$\frac{n}{2}$	$\frac{n}{2}$
Convex	$\left\lceil\frac{n}{2}\right\rceil$	$\left\lceil\frac{n}{2}\right\rceil$

Obvious open question:
close factor-of-two gap for non-orthogonal general position

