
Proceedings on Privacy Enhancing Technologies 2015

Jamie Hayes and George Danezis

Guard Sets for Onion Routing

Abstract: “Entry” guards protect the Tor onion rout-

ing system from variants of the “predecessor” attack,

that would allow an adversary with control of a frac-

tion of routers to eventually de-anonymize some users.

Research has however shown the three guard scheme

has drawbacks and Dingledine et al. proposed in 2014

for each user to have a single long-term guard. We first

show that such a guard selection strategy would be opti-

mal if the Tor network was failure-free and static. How-

ever under realistic failure conditions the one guard pro-

posal still suffers from the classic fingerprinting attacks,

uniquely identifying users. Furthermore, under dynamic

network conditions using single guards offer smaller

anonymity sets to users of fresh guards. We propose

and analyze an alternative guard selection scheme by

way of grouping guards together to form shared guard

sets. We compare the security and performance of guard

sets with the three guard scheme and the one guard

proposal. We show guard sets do provide increased re-

sistance to a number of attacks, while foreseeing no sig-

nificant degradation in performance or bandwidth uti-

lization.

DOI 10.1515/popets-2015-0017

Received 2015-02-15; revised 2015-05-13; accepted 2015-05-15.

Introduction

Tor [DMS04] is one of the most popular low-latency

distributed anonymity networks [Cha81]. Volunteer re-

lays route encrypted network traffic to a desired desti-

nation, providing users with anonymity. Tor employs

three layers of relays – guards, middle, and exit re-

lays – to provide anonymity to user circuits by obscur-

ing the correspondence between initiators of an internet

connection and the services they access. A body of re-

search [Din14, DS08, ØS06, WALS04] studies how these

relays should be selected in order to minimize user ex-

posure to de-anonymization risks. The choice of the cir-

cuit guard is crucial both for security and performance.

Tor’s (pre-2015) design saw each user choose a small set

of guards and use three of them for extended periods of

Jamie Hayes: UCL, E-mail: j.hayes@cs.ucl.ac.uk

George Danezis: UCL, E-mail: g.danezis@ucl.ac.uk

time; post-2015 Tor’s default behaviour is for each user

to choose a single guard from a set of high-availability

high-bandwidth relays and use it for every circuit for up

to nine months.

Security. Both Tor’s three guard design [Pro15] and the

proposed single guard [DKMH14] designs are not with-

out controversy. The choice of guard selection strategy

impacts on the susceptibility of an onion routing system

to three attacks:

Direct Observation. A corrupt guard node can, with

the help of a small set of corrupt exit relays, com-

promise the anonymity of a user. A compromise,

in the context of this attack, means that the guard

will be able to directly observe at least one circuit

from a particular user. The use of relatively stable

guards therefore aims to limit the number of users

that may fall foul of such an attack over time, by

limiting the users exposed to the direct observation

of corrupt relays.

Guard Fingerprinting. A number of at-

tacks [WALS04, BDMT07, DS04] aim to identify

the set of guards used by a user. The set of such

guards acts as a fingerprint for the user and in

case it is unique it may be used to track and de-

anonymize a user’s action within the Tor network.

The three guard design was susceptible to this

attack, since each user chooses a different set of

guards, the combination is likely to be unique. The

single guard design is less susceptible to this attack

(but not entirely, as we discuss in Section 5.1).

Statistical Disclosure Attacks. Even if the identity

of the guards does not in itself uniquely determine

the user, a bigger possible set of users is preferable

to a smaller set of users [DS04, DKMH14], as those

act as an anonymity set. In case a guard, or set of

guards, are only used by a small number of users, it

is possible to link their patterns of actions to long

term identifiers, and degrade the anonymity they

enjoy through disclosure attacks. We examine in

Section 5.1 how both the three guard, and the newer

single guard proposals exhibit variants of this flaw.

The current three guard selection policy has been

shown to provide less security than was originally

thought [Din13, EBA+12], and with that in mind the

proposal of moving from three to one guard has been



Guard Sets for Onion Routing 2

formulated, which solves some but not all security prob-

lems [DKMH14]. In terms of direct observation a single

guard leads to a user having all their circuits potentially

compromised. Given the very conservative definition of

compromise this is not significantly worse than in the

case of using three guards, where some circuit would be

quickly compromised even by a single corrupt guard in

the set. In terms of fingerprinting, a single guard should

no more identify a user to the same extent as three

guards. However, users of smaller or newer guards en-

joy a smaller “anonymity set” than users of larger or

older guards. In this context the main contributions of

this work are:

1. To present a design for “guard sets”, sets of relays

providing a certain amount of bandwidth, that are

used – as a group – by multiple users. We show the

scheme provides near optimal spread of load while

protecting against attacks that the current entry

guard schemes are susceptible to.

2. We design an algorithm based on a binary tree

structure to automate the assignment of guards to

guard sets and to users, while taking into account

the dynamic conditions of the real Tor network

where routers join and leave continuously.

This is work intended as a first examination of guard

sets, and the security and performance analyses we

provide leave important questions whose answers may

require fundamentally different algorithms. Similarly

many practical questions will need to be answered in

order for any guard set approach to be deployable.

The remainder of this paper is organised as follows: In

section 2 we introduce guard sets and explain the threat

model we will work under. In section 3 we develop the

guard set scheme and introduce a binary tree based al-

gorithm for matching users to guard sets. Section 4 in-

troduces the security metric by which we will measure

the success of our proposal against other schemes. We

evaluate the performance and security properties of our

proposal in section 5. Finally, we conclude and discuss

open issues in section 6.

Tor Guards & Guard Sets

Guards are relays that are fast and stable compared to

other relays in the Tor network. More precisely, a relay

has traditionally (pre-2014) been assigned a guard flag

if the following requirements are met:

1. The relay must have been online longer than 12.5%

of relays, or for 8 days.

2. The relay must advertise at least the median band-

width in the network, or 250KB/s.

3. The relay needs to have at least the median

weighted fractional uptime (WFU) of relays in the

network, or 98% WFU. The WFU metric measures

the fraction of uptime of a relay in the past. WFU

values are discounted by factor 0.95 every 12 hours

including the current uptime session.

The one guard proposal (post-2014) imposes similar

requirements but increases the bandwidth threshold

250KB/s to 2MB/s.

Performance. Under the three guard selection policy

clients rotate their guard every 30 days - 60 days. This

serves both security and performance purposes. If clients

never rotate guards then these relays accumulate more

and more users and are under a heavier load compared

with guards that are new to the network and have not

had the opportunity to accumulate users. Conversely,

new guard relays, that have only recently been assigned

a guard flag, are under-utilized; the bandwidth weights

allocate a large fraction of the relay’s bandwidth for

use as a guard, but only few clients have rotated to

this new guard. Increasing the guard rotation period

makes this worse: clients rotate guards less frequently,

and new guards acquire users at a slower rate. Rotating

guard relays frequently spreads the load on bandwidth

efficiently, but also leads to a faster rate of compromise

as [DKMH14, EBA+12] note – leading to a decision to

favor guard stability over load balancing.

The one guard solution relies on using new guards as

“fractional” guards where their available bandwidth is

used as middle and exit nodes when it is under-utilized

initially. This ensures efficient use of bandwidth but

does not increase the anonymity set behind a newer

guard. Ideally we would like new guards to be well popu-

lated and used as soon as they are assigned a guard flag

– a key feature of the proposed “guard set” mechanism.

Threat Model. Like the Tor system itself, we consider

an adversary that may control directly, or observe, a

fixed fraction of the Tor routing infrastructure.

Due to the time and bandwidth costs for becoming a

guard relay we do not consider the attack where an ad-

versary can leave and re-join the network whenever they

wish – as this will lead to their guard status being lost.



Guard Sets for Onion Routing 3

g1

gs2

us2

u4, u5, u6

gs1

us1

u1, u2, u3

g2

gs3

us3

u7, u8, u9

g3, g4

gs4

us4

u10, u11, u12

g5, g6, g7

gs5

us5

u13, u14, u15

Fig. 1. An example of guard sets consisting of seven guards and fifteen users. The first guard has enough bandwidth to create

two guard sets, which serve two user sets each with three users. The second guard has enough bandwidth to create one guard

set. The third and fourth guards have enough combined bandwidth to create one guard set and similarly the fifth, sixth and

seventh guard create one guard set.

Thus those attacks may be neutralized through setting

appropriate periods before a relay may become a guard.

We consider that end-to-end correlation attacks are pos-

sible if an adversary controls a proportion of the the to-

tal available guard bandwidth and a malicious exit node

(under new Tor specifications a relay can now simulta-

neously be a guard and exit node, though not on the

same circuit). We make the assumption that a compro-

mised guard leads quickly to a full compromise of the

user. Those attacks are the reason to favor stable assign-

ments of users to guards – but we do not aim to protect

against those in any additional way (through padding,

etc).

The proposal for “guard sets” is therefore primarily con-

cerned with guard selection to safeguard against end-to-

end correlation through direct observation, fingerprint-

ing and statistical disclosure attacks.

Guard Sets. To alleviate those problems, the concept

of “guard sets” was proposed [MD13, DKMH14], but

never extensively pursued or developed, due to intrica-

cies of accommodating guards joining and leaving.

The core idea behind “guard sets” is that many users

are assigned the same guard set, out of a small selection.

When it comes to building a Tor circuit clients chose a

first relay out of their assigned guard set – uniformly at

random. Thus users at the same guard set are indistin-

guishable when it comes to fingerprinting, since multi-

ple users will be using the same set of guards. Subject

to carefully crafting rules to assign users to new guard

sets, the population of users served by any guard set are

plentiful, foiling statistical disclosure attacks. Added to

this most guard sets consist of multiple guards, so if one

guard fails users will not need to switch to a new guard

set.

To summarize, “guard sets”, instead of either the three

guard proposals, or the single guard proposals, promise

the following advantages:

– Better protection against the three identified at-

tacks.

– Improved reliability and security when single guards

are temporarily offline.

– The provision of more, and more uniform, band-

width to each client as compared with the single

guard proposal.

The remainder of this paper examines a possible con-

struction for such “guard sets”, dynamic allocation of

users and guards to “guard sets” and compares the se-

curity of the new proposals with previous approaches.
1

A Guard Sets Proposal

Our proposal consists of arranging guards and users in

three layers, each being a bipartite graph:

1. Guards to guard sets.

2. Guard sets to user sets.

3. User sets to users.

We propose algorithms to determine and maintain

guard sets, and show that the security of any guard

selection scheme may be analysed on the basis of the

quadripartite graphs linking guards to guard sets, to

users sets and ultimately to users. An example of such a

1 Unless stated otherwise, data used in experiments use con-

sensuses beginning January 2013 in order to allow for a direct

comparison with the one guard proposal [DKMH14].



Guard Sets for Onion Routing 4

graph is shown in Figure 1: it demonstrates how clients

connect to their guards via user sets – notionally the

set of all users attached to a guard set – and guard sets.

When a client initially joins Tor the assignment algo-

rithm randomly chooses a guard set to use, which is

used by possibly many user sets. The client is then ran-

domly assigned to a user set via means of an identifier

shared among all clients in that set.

Guard sets are initially created by grouping together

guards with similar bandwidth via the current consen-

sus report. Users are split into groups and uniformly

distributed among these guard sets. The main premise

of our proposal is that the relation between guard sets

and user sets is stable, unless there is a need to add in

extra bandwidth or to delete the guard set. This main-

tains a grouping of users with the same guard history

leading to a robust anonymity set, resistant to finger-

printing, and statistical disclosure attacks. Each client

assigned to a guard set then randomly selects a guard

within the set when they wish to build a Tor circuit.

Guards and Guard Sets. Guard sets are initialized

as follows. We split guards into available bandwidth

quanta, the maximum bandwidth a guard can provide

before the threshold for guard sets is reached. A single

guard therefore may split into multiple quanta. We sort

quanta in descending order of their guard bandwidth,

and we then cycle through each quantum appending

them to a set. Once the sum of quantum bandwidths

in the set exceeds a threshold we define it as a guard

set. We then proceed to define another guard set from

the remaining quanta. If available quanta run out be-

fore exceeding the threshold, the quanta are discarded

– and the bandwidth is wasted by not being allocated

to a guard set.

We consistently use a threshold for becoming a guard

set of 40 MB/s, and set a threshold for deleting and

replenishing guard sets at half the creation threshold.

Through experiments we observe this threshold creates

a large number of guard sets and is large enough to

ensure guard sets are deleted infrequently. We do not

claim this threshold to be optimal, and will need to be

adapted according to the Tor network conditions.

The benefits of allocating quanta to guard sets by order

of guard bandwidth are:

1. If a guard has enough bandwidth it can serve mul-

tiple guard sets and therefore serve many user sets.

This helps spread the load of bandwidth efficiently

and facilitates adding new guards.

2. No guard with bandwidth smaller than the thresh-

old can belong to more than one guard set, this

limits the number of guard sets an adversary with

control of a modest fraction of the total guard band-

width can corrupt.

3. Alternative formation strategies see an adversary

with control of a small fraction of total available

bandwidth, through small guards, corrupt a larger

number of guard sets. Assigning quanta to guard

sets from guards with similar bandwidth prevents

smaller adversaries infiltrating a large number of

guard sets.

Client and Guard Set Dynamics. The dynamic na-

ture of Tor requires our proposal to manage the leav-

ing and joining of both guard sets and users in an effi-

cient manner. We do this by considering guard sets and

user sets as nodes on a finite binary tree. This (full) fi-

nite binary tree, also referred to as a finite Cantor tree,

has nodes consisting of all binary sequences up to some

length, as show in Figure 2.

0

00

.

.

.

00...00 00...01

.

.

.

01

.

.

.

.

.

.

1

10

.

.

.

.

.

.

11

.

.

.

.

.

.

11...10 11...11 Ln

.

.

.

L2

L1

L0

· · ·

· · ·

Fig. 2. An example of a finite Cantor tree with n layers.

Guard sets sit on some intermediate layer of the tree

covering all leaves (the exact layer determined by how

many guard sets are created upon initialization), with

clients occupying leaves. Each client is assigned a stable

identifier, the binary sequence assigned to that node.

Note that the prefix of the clients identifier is also the

identifier for the guard set to which it belongs.

Guard sets dynamics are based on the following rules:

1. On initialization we assign guard sets random iden-

tifiers of some fixed length.

2. Any path from the root to a leaf must pass through

exactly one node occupied by a guard set.

3. When a new guard set is created we flip a fair coin

at each branch until we get to a guard set node. We

then force this node down a level creating room for

the new guard set on the layer below. By convention

the new guard set branches to the right, or in other



Guard Sets for Onion Routing 5

words, all new guard set identifier sequences will end

with 1.

4. If a guard set is deleted and the sibling node in the

tree is also a guard set we elevate one layer, letting

the sibling guard set occupy the parent node.

5. If a guard set is deleted and the sibling node is not

a guard set we find the lowest layer guard set with a

common ancestor and use the guard set which was

created most recently to replace the deleted guard

set.

Ideally clients should be split equally among all guard

sets, with a uniform occupied / unoccupied leaf spac-

ing. To accomplish this we simply assign each new user

a random identifier which creates an even expected dis-

tribution of users among leaves. Initially this may be

bad for load distribution between guard sets; ideally we

would like to direct more users to a guard set handling

500 users than to a guard set handling 8000, but we

assign users to guard sets in this fashion because (a) in-

sertion attacks become easier when there is a large user

assignment bias to certain guard sets (b) biasing could

create swells of users among areas of leaves, if a guard

set is deleted this would create a large disparity between

user numbers for guard sets at different layers.

The benefits of using this tree structure to manage

guard set and user set assignments can be summarised

as:

– Clients with similar identifier prefixes will have sim-

ilar guard histories, therefore constituting stable

anonymity sets foiling fingerprinting and statistical

attacks.

– It provides an automatic method for guard set dele-

tion and creation, with back-ups selected. Because

guard sets are assigned positions in the tree based

on fair coin flips there is no deterministic way to

forecast where a new guard set will be placed. In

the event that a guard set is deleted, users in the

same user set will use the same back-up guard set.

Unlike other schemes, it is not possible for an ad-

versary to uniquely identify users through back-up

guard histories.

– Compromising a specific target client is made more

difficult due to the random guard set placement in

the tree. Fingerprinting attacks are made more diffi-

cult due to users with similar identifiers have similar

guard histories, while not compromising fair distri-

bution of load on guard sets.

Joining / Leaving Guards. In 2013 total guard band-

width increased from 5283.52 MB/s to 14471.923 MB/s,

illustrating the importance of an effective method for

adding new guards to guard sets. Algorithm 1 outlines

how we introduce guards to existing guard sets that

have dropped below a bandwidth threshold at each con-

sensus. In a nutshell, we detect guard sets with band-

width below a threshold, and attempt to assign to them

available bandwidth quanta from guards with similar

bandwidth. The algorithm previously listed all avail-

able quanta in descending order of bandwidth and cy-

cled through them appending them to guard sets until

a threshold has been reached, and so each guard set will

consist of quanta that have similar bandwidth capacity

to one another. Then for each quantum the algorithm

finds the most suitable guard set - in terms of similar

quanta bandwidths. If enough bandwidth quanta are

found to increase the bandwidth above the threshold

the guard set is considered fine, otherwise it is deleted

and all its quanta made available to build new guard

sets. We consider a guard set broken if it has bandwidth

capacity half of the creation threshold.

Data: consensus, guard sets, fix threshold,

Result: updated guard sets

1 broken guard sets ← guard sets with

bandwidth < fix threshold;

2 fixed guard sets ← guard sets;

3 for broken guard sets do

4 compute candidate guards from available

guards based on bandwidth similarity to

broken guard sets;

5 insert candidate guards in to broken

guard sets;

6 if broken guard set bandwidth > fix

threshold then

7 add to fixed guard sets;

8 else

9 return

10 end

11 fixed guard sets

12 end
Algorithm 1: How to add in guards to depleted

guard sets

Algorithm 2 describes the process of creating, fixing and

deleting guard sets. At each consensus we remove guard

sets that have dropped below a bandwidth threshold,

which we set as half the threshold for guard set cre-



Guard Sets for Onion Routing 6

ation. We redistribute the unused and new guards to

existing guard sets, and create new guard sets with the

remaining unused guards. With every consensus, or at

fixed intervals, current guard sets are fixed or deleted,

and the remaining available quanta are used (in the or-

der of their guards’ bandwidth) to build new guard sets.

Those guard sets are then inserted into the tree to take

charge of a branch of users.

Data: consensus, guard sets, kill threshold,

Result: updated guard sets

1 for every consensus do

2 retrieve guard sets positions in tree;

3 guard sets ← Algorithm 1(guard sets);

4 killed guard sets ← guard sets below kill

threshold;

5 remove killed guard sets from tree;

6 new guard sets ← guard sets created

from leftover quanta;

7 guard sets + = new guard sets;

8 add new guard sets to tree;

9 return guard sets

10 end
Algorithm 2: How to compute guard sets given a

consensus document

Remove Guard Rotation. Johnson et al. [JWJ+13]

showed one of the driving forces behind end-to-end

correlation attacks was guard rotation, where a client

would eventually rotate to a corrupt guard. We therefore

propose to never rotate guards as this would change the

entire guard set graph (displayed in Figure 1) leading to

a faster compromise rate. Therefore guard rotation only

occurs when new guards are added to existing guard sets

to replenish bandwidth that has fallen below a certain

bandwidth (Algorithm 1), or to insert new guard sets

(Algorithm 2) in case a critical mass of bandwidth has

become available.

Analysis

The guard set proposal arranges guards and user in

three bipartite graphs illustrated in Figure 1: The first

layer consists of edges between guards and guard sets.

The second layer maps guard sets to user sets. Initially

this is an injective assignment and as time goes by we

allow the creation of new edges. We only delete an edge

if a user set starts using a new guard set and we re-

quire a user set to have exactly one edge leading to a

guard set at any time. The third layer maps user sets

to users. For each user set this is a many users to one

user set assignment. Note we never move an edge from

an existing user to a new user set, we only delete (in the

case of a user leaving Tor) or add in a new edge (in the

case of a user joining Tor). Clearly moving edges in the

third layer from existing users to user sets other than

the group they were originally assigned to will eventu-

ally create users with unique guard histories.

Security Metric. We consider a Tor user compromised

by an adversary if the user ever uses a guard set contain-

ing a guard under the adversary’s control. Meaning once

a user has been compromised we considering all future

uses of Tor compromised. In terms of the graph repre-

sentation a user is compromised if there exists or has

ever existed an edge path from a corrupt guard to the

user. Under this security metric any path from a guard

to a user is a route for potential compromise, adding a

new edge anywhere can only create the same number

of potential paths or more. We therefore wish to keep

the number of edges in our graph to a minimum while

maintaining the load balance across guard sets.

One guard is optimal in a static environment.

Due to the dynamic nature of Tor we will be forced to

add and remove edges due to bandwidth and user fluc-

tuations. If Tor were a static environment in which we

knew that present and future bandwidth requirements

were equal our security metric implies that the opti-

mal set up of the graph would be an injective assign-

ment in the guard to guard set layer, as it can be rep-

resented with the minimum possible number of edges.

Keeping the requirement of optimal bandwidth load on

guards and allowing for non-uniform sized user sets im-

plies that, in the static case, the one guard proposal

[DKMH14] is optimal. Since if a corrupt guard belongs

to multiple guard sets it compromises them all, it is op-

timal to have each guard be it’s own guard set. This is

true in a static network where all users and guards are

assigned initially to guard sets and user sets and never

join or leave. In a dynamic case, it is no longer true: new

guards are used by fewer users opening the way for sta-

tistical attacks; failing guards force users to fall back on

others, leading to a unique fingerprint per user, and the

need to rotate single failing guards increasing the like-

lihood of direct observation by an adversary. Therefore

it is imperative to measure the quality of anonymity in

a dynamic setting, where guards join and leave.



Guard Sets for Onion Routing 7

Evaluation

Tree algorithm experiment results. Our tree based

algorithm is only applicable if layers on which guard

set nodes sit do not diverge over time, and so each

maintain a similar load. To evaluate the efficacy of the

proposed tree structure scheme we evaluated how map-

pings between guard sets and user sets change under

creations and deletions of guard sets throughout 2013.

Our Python scripts return the difference in layers of

guard sets per day throughout 2013.

Over a year period beginning 1 January 2013 we calcu-

lated, using a daily consensus document, that the lowest

difference in guard set layers is three and the highest

difference in guard set layers is six. This means in the

lowest difference scenario we have at least one guard

set hosting 2
3 times as many users as at least one other

guard set, and in the highest difference scenario we have

at least one guard set hosting 2
6 times as many users

as at least one other guard set. The difference in guard

set layers does not grow with time and so there will

not be large differences between number of clients on

guard sets. At any point in time user sets will therefore

be plentiful and there will not be a large disparity of

load on guard sets. Unlike guard sets, in the one guard

scheme there is large disparity of number of users on

large bandwidth guards and new smaller guards.

The introduction of a new guard set splits an existing

user set in half. As a result the size of user sets is variable

and depends on the depth of the corresponding guard

set in the binary tree. This is preferred to user sets of a

fixed size since this strategy can accommodate the dy-

namic nature of Tor. Since we cannot make guarantees

about the number of Tor users at any one time, or make

confident predictions about numbers of future users the

scheme must adapt and enforce the similarity of user

guard histories for any cardinality of global users.

5.1 Anonymity

Security. Elahi et al. [EBA+12] propose a security mea-

sure of “time to first compromise”. Given an initial set

of guards, an adversary adds in one corrupted guard.

Under a no rotation policy in the current three guards

scheme, 10% of clients will use the corrupted guard after

8 months. Under the three guard rotation policy (every

30 - 60 days) 14% of clients will be compromised after

three months.

Under the guard set proposal, we assume that if a guard

is corrupt in a guard set then all clients using that guard

set are compromised. For comparison we ran our ex-

periment with a random single guard chosen as an ad-

versary guard from a random guard set and repeated

100 times. Figure 3 shows the fraction of users compro-

mised. We see that on average we can expect less than

2% of users to be compromised through injecting one

corrupted guard in to a guard set. At worst an adver-

sary will compromise less than 6% of Tor users.

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
0.00

0.01

0.02

0.03

0.04

0.05

0.06

F
ra

ct
io

n
 o

f 
co

m
p

ro
m

is
e
d

 u
se

rs

Average fraction of compromised clients

Maximum fraction of compromised clients

Minimum fraction of compromised clients

Fig. 3. Fraction of compromised users given an adversary

controlling one guard. With 1 million users and 100 repeats.

We amend this metric by considering an adversary that

controls a fixed fraction of total guard bandwidth in-

stead of one guard. Initializing guard set creation on

1 January 2013 we chose at random adversary guards

whose bandwidth would sum to 1%, 5% and 10% per-

cent of total guard bandwidth. We then observe the frac-

tion of the user base compromised over the course of one

year. We repeat the experiment one hundred times for

each of the scenarios to also estimate the variability of

anonymity provided.

Experimentally, we observe that the probability of an

adversary guard serving only in a single guard set, un-

til it goes offline, is 0.95. The probability an adversary

guard serves two guard sets, before going offline, is 0.03

and three guard sets is 0.02. We did not observe any

guards observing more than two guard sets.

The average number of controlled adversary guards for

1%, 5% and 10% was calculated to be 4, 14 and 25,

respectively. Assuming an adversary will maximize the

number of guard sets under control, the probability that

the adversary controls the same initial number of guard

sets throughout 2013 is 0.8145, 0.4877 and 0.2773 when



Guard Sets for Onion Routing 8

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
0.00

0.05

0.10

0.15

0.20

0.25

F
ra

ct
io

n
 o

f 
co

m
p

ro
m

is
e
d

 u
se

rs

Average fraction of compromised clients

Maximum fraction of compromised clients

Minimum fraction of compromised clients

(a) Adversary controls 1%

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
ra

ct
io

n
 o

f 
co

m
p

ro
m

is
e
d

 u
se

rs

Average fraction of compromised clients

Maximum fraction of compromised clients

Minimum fraction of compromised clients

(b) Adversary controls 5%

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

F
ra

ct
io

n
 o

f 
co

m
p

ro
m

is
e
d

 u
se

rs

Average fraction of compromised clients

Maximum fraction of compromised clients

Minimum fraction of compromised clients

(c) Adversary controls 10%

Fig. 4. Fraction of compromised users given an adversary controlling a fixed fraction of guard bandwidth. With 1 million users

and 100 repeats.

in control of 1%, 5% and 10% of bandwidth, respec-

tively. We can therefore be confident that a corrupt

guard will remain in its initial guard sets when an adver-

sary controls 1% of guard bandwidth, and will control

more than its initial guard sets when an adversary con-

trols 10% of guard bandwidth.

Figure 4 shows for each adversary, the compromised

fraction of users at any point in time during 2013 (note

the different y-scales). For each controlling fraction the

highest line shows, after 100 repeats, the maximum ob-

served fraction of the Tor user base that is compromised.

The quantized structure of lines is due to whole user

sets being served by corrupt guard sets as adversary

guards’ assignments change. We observe the final frac-

tion of compromised users at the end of the year is sta-

ble throughout the year, after an initial period of 2 to

3 months.

The average rate of compromise after a year for the 1%,

5% and 10% of the bandwidth is 9.83%, 21.42%, 32.69%

of users respectively. However, those rates of compro-

mise are contingent on the specific guards being cor-

rupt and their movements across guard sets. Thus for

1%, 5% and 10% corrupt bandwidth we observe scenar-

ios with rates of compromise as high as 21.31%, 35.91%

and 46.80%, respectively.

We note the rate of compromise increases sharply in

the first quarter of the 2013 year. Figure 5 explains the

proliferation in number of compromised users at the be-

ginning of year.

We see a dramatic decrease in the number of guard sets

in March 2013, leading to a larger fraction of clients who

use each guard set compared to previous months. We see

a small increment in user compromise in September as

the number of guard sets once again decreases. By this

time there are a large number of established guard sets

in the Tor network. Due to the diversity in guard sets,

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
50

100

150

200

250

300

N
u

m
b

e
r 

o
f 

g
u

a
rd

 s
e
ts

total

Fig. 5. Number of guard sets.

the fraction of users using each guard set is less than

in the first few months of the year. We hypothesize this

increment is not as drastic as in previous months due

to the large number of guard sets.

By March a large proportion of adversary guards will

still be online and so the fraction of users it can com-

promise will increase. Figure 5 shows that in following

months the number of guard sets increase, thereby de-

creasing the fraction of users using each guard set, and

adversary guards will also start to go offline. Hence we

see a gradual decrease in the rate at which users are

compromised.

Our metric assumes that once a user has been com-

promised we may consider future uses of Tor compro-

mised. We have demonstrated that in the examined pe-

riod guard and user sets are relatively stable, and that

the number of daily deleted guard sets is a small frac-

tion of the number of total guard sets. Guards with high

likelihood, stay within the guard set they were origi-

nally assigned to. Our policy of not purposefully rotat-



Guard Sets for Onion Routing 9

ing guards limits the strategy an adversary controlling a

small fraction of bandwidth can employ to corrupt Tor

users. We expect an adversary to maximize the amount

of guard sets under initial control. Our scheme therefore

offer Tor clients greater anonymity than current schemes

providing an adversary does not control a large fraction

of guard bandwidth.

Susceptibility to Fingerprint Attacks. In the one

guard proposal clients using new low bandwidth guards

have a guard that is almost unique to them (in the three

guard proposal things are much worse, virtually all users

have a unique set of three guards). As of April 2014,

Tor metrics estimates there to be 2.75 million global

users of Tor, and the most likely set of three guards is

1.7× 10
−6 [DKMH14]. Therefore we can expect this set

of guards to have 4.7 users, implying most users guards

will uniquely identify them. Furthermore, every user has

a guard fall back list, and using those leads to a unique

guard history and fingerprint for the user.

Our proposal of keeping users in a group removes the

chance that an attacker could identify a client based on

the guards they used at different periods of time. Ini-

tialising on 1 January 2013 produces 108 guard sets,

given 2.75 million users this creates 108 user sets of

size 25463. Our experiment on tree dynamics showed

that guard sets won’t lie deeper than four or five lay-

ers from initialisation. So at worst there may exist some

user sets of size 795, meaning there will always be at

least 795 clients with the same guard history. All user

sets will have sibling user sets that have the same guard

histories prior to the last tree structure change that ef-

fected them, creating a hierarchy of user sets with simi-

lar guard histories. Guard sets provide a pool of guards

to use and so provide resistance against unique guard

histories through guard failure.

Therefore the guard sets scheme performs better than

current schemes at protecting clients from being iden-

tified via their guard history, and provides a large

anonymity set for all users to avoid disclosure attacks.

5.2 Diversity and Performance

In both the three and new one guard schemes guards are

heavily under-utilized. This is due to bandwidth weights

allocating a large fraction of bandwidth for use as a

guard but few clients initially using newer guards. In

the guard set design new guards are incorporated into

an existing or new guard set and immediately used by

a large number of users. Figure 6 shows the amount of

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

5000

10000

15000

20000

25000

30000

35000

40000

B
a
n

d
w

id
th

 (
K

B
/s

)

Fig. 6. Spare guard bandwidth

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Bandwidth cutoff for guard sets in kB/s

0

100

200

300

400

500

600

700

E
x
p

e
ct

e
d

 n
u

m
b

e
r 

o
f 

g
u

a
rd

 s
e
ts

guard threshold 500kB/s

guard threshold 1000kB/s

guard threshold 2000kB/s

guard threshold 4000kB/s

Fig. 7. Number of guard sets for varying cutoffs

guard bandwidth that will left over2 . As expected there

is never more spare bandwidth than the threshold used

to make guard sets, otherwise a new guard set would be

created.

At the beginning of 2013 spare bandwidth accounts for

0.46% percent of the total guard bandwidth, and is as

low as 0.031% by the end of the year. Since guards may

also serve as middle and exit relays, this wastage is low

enough to be of no concern. Due to the prioritization

of bandwidth quanta from larger guards in construct-

ing guard sets, spare bandwidth is also biased towards

smaller bandwidth relays, which do not make a large

contribution to total bandwidth on the network.

2 We redistribute available guards to new and existing guard

sets at the end of each day instead of at each new consensus

document (hourly).



Guard Sets for Onion Routing 10

102 103 104 105 106

Guard bandwidth (kB/s) - average bandwidth for 3 guards

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D

F
 o

f 
g

u
a
rd

 s
e
le

ct
io

n

guard sets (250 kB/s cut off)

one guard

three guards

one guard (guard bw cutoff at 2000 kB/s)

(a) CDF of probabilities of guard bandwidth (consensus band-

width)

0 50000 100000 150000 200000 250000 300000 350000
Guard set bandwidth (KB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f 
g

u
a
rd

 s
e
t 

se
le

ct
io

n

2013-01-01
2013-03-01
2013-06-01
2013-09-01
2013-12-01

(b) CDF of probabilities of guard set bandwidth (consensus band-

width)

Fig. 8. CDF plots for guards and guard sets

Figure 7 shows the number of guard sets that would

be created for various thresholds (guard and guard set

thresholds). We observe that after a cutoff of around 25

MB/s the number of guard sets (and hence the spread of

load) is roughly the same for guards pruned at different

values. Indicating that raising the limit for becoming

a guard has little impact on the number of guard sets

created.

Figure 8a shows the fraction of clients using guards of

various bandwidths (i.e. performance a client can expect

on Tor) against both the one and three guard selection

scheme. It was created upon initialisation of guard sets

at which point all guard sets have an equal load of users.

As we can see, 80% of clients have the same performance

in the guard set and one guard proposal. The guard

set solution is worse for a small fraction of clients; ap-

proximately 90% of clients have performance less than

75 MB/s whereas in the one guard proposal 85% of

clients have performance less than 75 MB/s. Note that

both proposals are worse than the three guards elec-

tion scheme; only 10%, 20% of clients have better per-

formance under the guard set proposal and one guard

proposal, respectively. Upon initialisation our proposal

performs slightly worse than the one guard proposal.

Figure 8b shows we can expect fluctuations in guard set

selection statistics as guard sets move up and down the

tree, but since guard sets never deviate from one another

by more than a few layers these fluctuations will be

small and temporary. Upon initialisation 80% of clients

use guard sets with bandwidth 50 MB/s or less, and

100% of clients use guard sets with bandwidth 75 MB/s

or less. At any time throughout the year 80% of clients

use guard sets with bandwidth 75 MB/s or less, and 95%

of clients will use guard sets with bandwidth 100 MB/s

or less. Figure 8b implies that our guard set scheme is

stable and does not create swells of users that can expect

a degradation in performance as time progresses.

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
40000

42000

44000

46000

48000

50000

52000

B
a
n

d
w

id
th

 (
K

B
/s

)

Median guard set bandwidth

Fig. 9. Median bandwidth per guard set

Figures 8 and 9 imply that any Tor user can expect

the same level of performance as any other Tor user.

There is no hierarchy of performance level depending

on which guard a client begins to use as there are with

other schemes.



Guard Sets for Onion Routing 11

1st Jan 1st Feb 1st Mar1st April1st May1st June 1st July 1st Aug 1st Sep 1st Oct
Month

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

F
ra

ct
io

n

Fraction of total bandwidth from guards in original guardset available on 01/01/13 after x months (with no replacement)

Total guard bandwidth as fraction of original guard bandwidth

(a) Guard bandwidth as a fraction of the original guard band-

width

1st Jan 1st Feb 1st Mar1st April1st May1st June 1st July 1st Aug 1st Sep 1st Oct
Month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b

ili
ty

average
99th percentile
90th percentile
75th percentile
10th percentile

(b) Probability that guard a client picked on 01/01/13 is still in

the network

Fig. 10. Guard bandwidth and availability statistics

Figure 9 shows the median bandwidth per guard set

throughout 2013. As expected nearly all guard sets

throughout this period are between 40 and 50 MB/s.

Cross referencing with Figure 11, we see that as the

total guard bandwidth decreases during March so does

the median bandwidth per guard set. The fluctuations

in median bandwidth per guard set are directly mirrored

by the fluctuations in total guard set bandwidth.

Ideally we would like to never change the initial edge

structure between guards and guard sets leading to

guard rotation and increasing the rate of compromise of

clients [JWJ+13]. So the question becomes, how often

do we need to change the edge structure between guards

and guard sets? Figure 10a shows what would happen

to our total guard bandwidth if we decided to only use

the guards from the initial creation and not use any new

eligible guard relays. After 3 months the total available

guard bandwidth has increased by 10% but only 68% of

the initial guard bandwidth is still available. The trend

continues: after 10 months the total guard bandwidth

increases by over 40% but only 40% of the initial guard

bandwidth is still available.

We conclude it is necessary for guards to be added in to

guard sets to replace bandwidth lost over time. This is

again highlighted in Figure 10b which shows the proba-

bility that a guard selected at the creation of guard sets

is still available over a period of 10 months (for various

percentiles). We see that even for Tor guards with band-

width in the top 10% there is less than a 40% chance

they are still available after 10 months

Although there is a need to replace dropped guards in

guard sets regularly, permanent deletion of guard sets is

an infrequent event for a guard set threshold of 40MB/s.

Figure 5 and appendix B shows the daily number of to-

tal, deleted and added guard sets throughout 2013. The

number of daily new and deleted guard sets remains

small despite the number of total guard sets increasing.

By the end of 2013 we have over double the initial num-

ber of guard sets. Experimentally we calculated that at

40 MB/s threshold roughly < 10% of guard sets will be

deleted at the end of every day, with this dropping to <

3% near the end of 2013. We also found that with a 50

MB/s threshold the number of guard sets that warrant

deletion at the end of each day is much higher than at

40 MB/s. This provided experimental support for our

threshold. If we were to set a low threshold we create

many guard sets, which limits the number of guard sets

an adversary can corrupt, but we can expect a higher

rate of churn contributing to an increase in compromise

rate and possibly allowing for attacks via strategic injec-

tions of corrupt guards to guard sets. A higher thresh-

old will provide faster guard sets but will create fewer

in number, making it easier for an adversary to control

a larger fraction of the total number of guard sets.

As shown by Figures 5 and 11, as total guard set band-

width increases so does the number of guard sets, mak-

ing it increasingly difficult to predict which back up

guard sets a particular guard set may use. This increase

in diversity of guard sets will simultaneously decrease

the compromise rate of clients while increasing expected

performance.



Guard Sets for Onion Routing 12

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

B
a
n

d
w

id
th

 (
K

B
/s

)

1e7

Fig. 11. Total guard set bandwidth

Guard Set Creation & Deletion due to Tempo-

rary Bandwidth Changes. To understand the dy-

namics and stability of guard sets we must know how

often guards go offline temporarily and reappear online.

Consensuses are issued every hour so it may be that

guard sets are affected by higher frequency guard churn

that is not being accurately captured. If guards were

reported as online and offline frequently we may have

to swap guards in and out of guard sets regularly which

would increase the rate of compromise. Using a consen-

sus from 25/11/143 we recorded how many guards are

online and offline every 10 minutes over a 24 hour pe-

riod. Every 10 minutes we sent an ICMP echo request

to all guards and for all guards that timed out we sent

a TCP scan to check if the relay was down or if they

were not accepting echo requests.

Figure 12 shows the total number of relays that were

reported as down every 10 minutes over the 24 hour

period. The number of guards that are down during this

period is small and remains nearly constant. During this

period the lowest number of reported online guards was

1509 out of 1524, and the highest was 1515. Hence we

can conclude that the ratio of offline to online guards

remains stable.

Figure 13 shows the number of relays that were reported

as offline. Over 70 relays out of 1524 we were reported

as offline once over the 24 hour period. Following this

3 Using an older consensus would result in the identification of

many guards being offline for the entire request period due to

them having dropped out of the network before the request was

started.

0

5

10

15

N
u

m
b

e
r 

o
f 

g
u

a
rd

 r
e
la

y
s

0 20 40 60 80 100 120 140
Request number

Fig. 12. Number of relays that were reported as down for

each request. The request was made every 10 minutes over a

24 hour period. Using the 2014-10-25-11-00-00-consensus, the

requests were made on 2014-10-25/26 from 11pm - 11pm.

10-1 100 101 102 103

Number of times a request has timed out -
 1 reports relays that are seen offline once, 145 reports relays that are never online

−10

0

10

20

30

40

50

60

70

80

N
u

m
b

e
r 

o
f 

g
u

a
rd

 r
e
la

y
s

Fig. 13. Number of times requests have timed out over 24

hour period.

the number of relays reported as offline for more than

one request drops off; the number of relays reported as

being offline for two requests (out of 145 requests) was

below 20. The number of relays being seen as offline for

more requests steadily decreases until 145 where there

is a sharp increase due to some guards being offline for

the entire 24 hour period. This implies that time outs

are commonly due to an isolated incident or relays per-

manently going offline, with almost no middle ground.

Figure 14 shows the number of times a guard will be

reported as online / offline given that it has been seen

offline for x number of previous requests. We see that

there is a 1.88% chance of a guard being reported as on-



Guard Sets for Onion Routing 13

line once it has been reported as offline for two requests.

As expected the probability of a guard coming back on-

line decreases the longer it is reported offline. This shows

that while the number of guards reported offline is rel-

atively small, for the unfortunate clients using a guard

that drops offline there is little chance the guard will

come back online. In the one guard proposal this leads

to a possible fingerprinting attack, due to clients re-

peatedly using back-up guards, which eventually leads

to unique guard histories for clients. In our proposal

this is not a problem because nearly all clients will have

multiple guards to choose from, and in the event that a

guard set is deleted, users in the same user set will use

the same back-up guard set.

one two three four five six
Number of times a relay times out consecutively

0

200

400

600

800

1000

1200

1400

1600

N
u

m
b

e
r 

o
f 

o
cc

u
re

n
ce

s 
th

ro
u

g
h

o
u

t 
th

e
 e

n
ti

re
 r

e
q

u
e
st

1470
1431 1405 1381 1359 1338

247

27 14 12 10 0

offline
online

Fig. 14. This shows the number of times a relay may be seen

offline and then in the following request is see offline again

or is seen back online. For example we see there is a 14.4%

chance your relay will be back online after timing out of one

request, whereas there are no reported instances of a relay

being down for six consecutive ping request and then coming

back online.

Figure 15 shows the number of guard sets that dropped

below various thresholds during a 24 hour period. We

see that nearly all guard sets keep all their bandwidth,

and there is very little churn. Only a few times does

a guard set drop to 0 MB/s at which point we would

move the user set to a back up guard set. At creation

there were 468 guard sets created indicating guard set

deletion due to bandwidth changes over short periods

of time will happen infrequently.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Hours

0

2

4

6

8

10

12

14

16

18

N
u

m
b

e
r 

o
f 

g
u

a
rd

 s
e
ts

Number of guard sets with bandwidth = 0kB/s

Number of guard sets with bandwidth <= 20MB/s

Number of guard sets with bandwidth <= 30MB/s

Number of guard sets with bandwidth <= 39MB/s

Fig. 15. Number of guard sets below bandwidth thresholds

over a 24 hour period. Each request was made to over 1500

guard relays, creating 468 guard sets.

Future Work & Conclusion

This is a first study of how guard sets could work,

and a number of practicalities need to be fleshed out

before realistically considering deployment, which are

beyond the scope of this work. Further security and

performance analysis may lead to fundamentally differ-

ent algorithms, and so we deliberately did not study in

depth any specific route to deployment in this work.

More specifically, in our security analysis we considered

only adversaries at Tor relays, ignoring the network

between them. This has been an active area of research

[FD04, MZ07, ES09, JWJ+13, WTBS13]; before deploy-

ment IX and AS-level adversaries should be considered.

Seemingly, guard sets may suffer more than other guard

designs; since guard sets are formed based entirely on

bandwidth criteria it is more likely that guard sets with

a larger number of guards, and so compromised of re-

lays from a wide range of Autonomous Systems, would

be more more vulnerable to an AS-level adversary. We

note that Tor attempts to mitigate this to some extent;

in a circuit relays need to be from different /16 subnets,

and families of relays from the same operator can’t be

used in the same circuit.

Other security concerns for which we provide arguments

against but would require formal proofs before deploy-

ment include:

1. Adversarial manipulation of the algorithm.

Specifically, the optimal strategy an adversary will



Guard Sets for Onion Routing 14

use to corrupt guard sets. We show in section 5.1

the scheme provides strong security regardless of

whether an adversary maximizes the number of con-

trolled guard sets.

2. DoS attacks on guard sets - targetting spe-

cific clients.

The tree structure attempts to mitigate these at-

tacks via the random placement of new guard sets

and making it difficult to predict the placement of

back-up guard sets (section 3). These attacks are

hard to totally prevent but expect the scheme to

perform at least equally as well as the current guard

schemes.

We did not attempt to investigate how guard sets

would cope under DoS attacks such as the Sniper

Attack [JTJS14], where the intent is to simply ob-

serve more clients. We expect that guard sets may

suffer more than other entry schemes if the attack

is to maximize the number clients observed by the

adversary.

3. Resistance to fingerprinting attacks.

We currently do not formally prove resistance to

fingerprinting attacks, but it would be possible to

make an indistinguishability argument based on ID

prefixes being clients’ only used state and those be-

ing shared within an anonymity set.

A key question remains open: who manages the assign-

ment of guards into guard sets? Answering this fully

could easily be the subject of a separate work. We how-

ever note that Tor maintains a consensus of the set of all

relays, and our algorithm can be formulated to be de-

terministic on the basis of this consensus document and

a source of public but unpredictable randomness. Such

randomness may be produced through a distributed fair

coin flipping protocol [MNS09] or through centralized

mechanisms such as the NIST Beacon [fST15]. Thus

given a sequence of consensus sets and a public but un-

predictable random seed, any client may re-execute the

algorithm that assigns guards to guard sets. However,

due to the unpredictability of the seed an adversary

may not game their position within guard sets. Thus,

authorities only need to compute a consensus as they

currently do, and execute the publicly verifiable assign-

ment for each epoch. Clients may verify this assignment,

but can also use it without verifying it - considering that

a consensus and assignments signed by all authorities is

trustworthy.

We have outlined the first steps to a new entry guard

scheme for the Tor network. The guard set proposal

addresses many of the security concerns that both the

three and one guard scheme are susceptible to while

performing equally as well. The resulting guard sets are:

Plentiful. The number of guard sets provide enough

diversity to prevent compromise of a large fraction

of the Tor user base.

Stable. Due to relay stability and the way we created

guard sets, guard set deletion is a rare occurrence.

The low natural rotation of guards through guard

sets limits the potential for direct observation of

clients. The shared history, even under failure, elim-

inates fingerprinting attacks.

Fair. Most guard sets have equal bandwidth capacity.

Clients can expect the same performance no matter

their choice of guard set.

Large. All guard sets serve roughly equal sized user

sets, and a large number of users at any time. This

prevents statistical attacks on the basis of discover-

ing a user’s guards.

Guard sets allocate traffic on the Tor network so each

relay is used efficiently. At any scale of network band-

width capacity our proposal will offer every client the

same level of performance as any other client. As net-

work bandwidth increases, the number and stability of

guard sets increase thereby decreasing the rate at which

an adversary can compromise Tor users.

Acknowledgments. Work on this paper was sup-

ported by EPSRC Grant EP/M013286/1 on “Strength-

ening anonymity in messaging systems”. The authors

would like to acknowledge financial support from

the UK Government Communications Headquarters

(GCHQ), as part of University College London’s sta-

tus as a recognised Academic Centre of Excellence in

Cyber Security Research. We thank the anonymous re-

viewers for their comments, particularly with regards to

deployment and security. We thank Steven J. Murdoch

for his helpful early comments and Paul Syverson for

shepherding this work.

References

[BDMT07] Nikita Borisov, George Danezis, Prateek Mittal, and

Parisa Tabriz. Denial of service or denial of secu-

rity? In Proceedings of the 2007 ACM Conference on

Computer and Communications Security, CCS 2007,

Alexandria, Virginia, USA, October 28-31, 2007,

pages 92–102, 2007.



Guard Sets for Onion Routing 15

[Cha81] David Chaum. Untraceable Electronic Mail, Return

Addresses, and Digital Pseudonyms. Commun. ACM,

24(2):84–88, 1981.

[Din13] Roger Dingledine. Improving Tor’s

anonymity by changing guard parameters.

https://blog.torproject.org/blog/improving-tors-

anonymity-changing-guard-parameters, October 2013.

[Din14] Roger Dingledine. Tor security advi-

sory: relay early traffic confirmation attack.

https://blog.torproject.org/blog/tor-security-advisory-

relay-early-traffic-confirmation-attack, July 2014.

[DKMH14] Roger Dingledine, George Kadianakis, Nick Math-

ewson, and Nicholas Hopper. One Fast guard for

Life (or 9 months). In 7th Workshop on Hot Topics

in Privacy Enhancing Technologies, HotPETs, 2014,

Amsterdam, The Netherlands, 2014.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F.

Syverson. Tor: The Second-Generation Onion Router.

In Proceedings of the 13th USENIX Security Sympo-

sium, August 9-13, 2004, San Diego, CA, USA, pages

303–320, 2004.

[DS04] George Danezis and Andrei Serjantov. Statistical

Disclosure or Intersection Attacks on Anonymity

Systems. In Information Hiding, 6th International

Workshop, IH 2004, Toronto, Canada, May 23-25,

2004, Revised Selected Papers, pages 293–308, 2004.

[DS08] George Danezis and Paul F. Syverson. Bridging and

Fingerprinting: Epistemic Attacks on Route Selection.

In Privacy Enhancing Technologies, 8th International

Symposium, PETS, 2008, Leuven, Belgium, July 23-

25, 2008, Proceedings, pages 151–166, 2008.

[EBA+12] Tariq Elahi, Kevin S. Bauer, Mashael AlSabah, Roger

Dingledine, and Ian Goldberg. Changing of the

guards: a framework for understanding and improv-

ing entry guard selection in Tor. In Proceedings of

the 11th annual ACM Workshop on Privacy in the

Electronic Society, WPES 2012, Raleigh, NC, USA,

October 15, 2012, pages 43–54, 2012.

[ES09] Matthew Edman and Paul F. Syverson. AS-awareness

in Tor path selection. In Ehab Al-Shaer, Somesh Jha,

and Angelos D. Keromytis, editors, Proceedings of

the 2009 ACM Conference on Computer and Com-

munications Security, CCS 2009, Chicago, Illinois,

USA, November 9-13, 2009, pages 380–389. ACM,

2009.

[FD04] Nick Feamster and Roger Dingledine. Location diver-

sity in anonymity networks. In Vijay Atluri, Paul F.

Syverson, and Sabrina De Capitani di Vimercati, ed-

itors, Proceedings of the 2004 ACM Workshop on

Privacy in the Electronic Society, WPES 2004, Wash-

ington, DC, USA, October 28, 2004, pages 66–76,

2004.

[fST15] National Institute for Stan-

dards and Technology. Beacon,

http://www.nist.gov/itl/csd/ct/nist_beacon.cfm,

2015.

[JTJS14] Rob Jansen, Florian Tschorsch, Aaron Johnson, and

Björn Scheuermann. The Sniper Attack: Anony-

mously Deanonymizing and Disabling the Tor Net-

work. In 21st Annual Network and Distributed Sys-

tem Security Symposium, NDSS 2014, San Diego,

California, USA, February 23-26, 2014. The Internet

Society, 2014.

[JWJ+13] Aaron Johnson, Chris Wacek, Rob Jansen, Micah

Sherr, and Paul F. Syverson. Users get routed: traf-

fic correlation on Tor by realistic adversaries. In

2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, Berlin, Germany,

November 4-8, 2013, pages 337–348, 2013.

[MD13] Nick Mathewson and Roger Dingledine. Brain-

storm tradeoffs from moving to 2 (or even 1) guards.

https://trac.torproject.org/projects/tor/ticket/9273,

July 2013.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. An Optimally

Fair Coin Toss. In Omer Reingold, editor, Theory

of Cryptography, 6th Theory of Cryptography Con-

ference, TCC 2009, San Francisco, CA, USA, March

15-17, 2009. Proceedings, volume 5444 of Lecture

Notes in Computer Science, pages 1–18. Springer,

2009.

[MZ07] Steven J. Murdoch and Piotr Zielinski. Sampled

Traffic Analysis by Internet-Exchange-Level Adver-

saries. In Nikita Borisov and Philippe Golle, editors,

Privacy Enhancing Technologies, 7th International

Symposium, PET 2007 Ottawa, Canada, June 20-

22, 2007, Revised Selected Papers, volume 4776 of

Lecture Notes in Computer Science, pages 167–183.

Springer, 2007.

[ØS06] Lasse Øverlier and Paul F. Syverson. Locating Hid-

den Servers. In 2006 IEEE Symposium on Security

and Privacy (S&P 2006), 21-24 May 2006, Berkeley,

California, USA, pages 100–114, 2006.

[Pro15] The Tor Project. Frequently

Asked Questions – Entry Guards.

https://www.torproject.org/docs/faq#EntryGuards,

2015.

[WALS04] Matthew K. Wright, Micah Adler, Brian Neil Levine,

and Clay Shields. The predecessor attack: An analysis

of a threat to anonymous communications systems.

ACM Trans. Inf. Syst. Secur., 7(4):489–522, 2004.

[WTBS13] Chris Wacek, Henry Tan, Kevin S. Bauer, and Micah

Sherr. An Empirical Evaluation of Relay Selection

in Tor. In 20th Annual Network and Distributed

System Security Symposium, NDSS 2013, San Diego,

California, USA, February 24-27, 2013. The Internet

Society, 2013.

Guard set Layer Differences

The daily difference in tree layers for guard sets in 2013:

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6,

5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,



Guard Sets for Onion Routing 16

4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 3, 3, 3, 4, 5, 4, 4,

4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]

Guard set creation & deletion rate

2013-01-01 2013-04-01 2013-06-30 2013-09-28 2013-12-28
0

5

10

15

20

25

30

35

N
u

m
b

e
r 

o
f 

g
u

a
rd

 s
e
ts

added
removed

Fig. 16. Number of guard sets created and deleted.


	Guard Sets for Onion Routing
	1 Introduction
	2 Tor Guards & Guard Sets
	3 A Guard Sets Proposal
	4 Analysis
	5 Evaluation
	5.1 Anonymity
	5.2 Diversity and Performance

	6 Future Work & Conclusion
	A Guard set Layer Differences
	B Guard set creation & deletion rate


