GUC-Secure Set-Intersection Computation

Yuan Tian¹ Ying Wang²

Software School of Dalian University of Technology, Dalian, Liaoning, 116620

¹ tianyuan ca@sina.com ² wangying@dlut.edu.cn

Abstract Secure set-intersection computation is one of important problems in secure multiparty computation with various applications. We propose a general construction for secure 2-party set-intersection computation based-on anonymous IBE (identity-based encryption) scheme and its user private-keys blind generation techniques. Compared with related works, this construction is provably GUC(generalized universally composable) secure in standard model with acceptable efficiency. In addition, an efficient instantiation based-on the anonymous Boyen-Waters IBE scheme is presented which user private-key's blind generation protocol may be of independent values.

Keywords: Secure Multiparty Computation; Secure Set-Intersection Computation; Anonymous Identity-based Encryption; Generalized Universally Composable Security.

1 INTRODUCTION

Secure set-intersection computation is one of important problems in the field of secure multiparty computation with valuable applications in, e.g., secure keyword searching, pattern matching, private database processing, etc. In secure set-intersection computation, participants with their own private datasets get the intersection of all their private sets and nothing more(except for each private set's cardinality). In this paper, like most recent works, we focus on the 2-party case and make an efficient GUC-secure, standard model protocol for it.

Much work has been done in designing solutions to secure computation for different cryptographic functions, but only few are about this special problem among which [8,11-12] are most relevant to this paper. They are heuristic and valuable works on secure set-intersection computation published most recently, each using different techniques and security concepts and most of them(except [12]) mainly dealing with the 2-party case. However, none reaches Canetti's UC/GUC security[4-6]. In [8] Freedman et al present provably-secure and efficient protocols for this problem against semi-honest and malicious adversaries respectively based-on polynomial interpolation and homomorphic encryption schemes. The solution against malicious adversaries assumes the random oracle model. [12] solves this problem (and more, e.g., union and element reduction operations) via smartly exploiting mathematical properties of polynomials and has fully-simulatable security [10] so that their solution is securely composable(but the concept of fully-simulatable security is strictly weaker than Canetti's UC/GUC security proposed in [4-5]). In addition, as indicated by [11], [12] executes lots of zero-knowledge proofs of knowledge most of which are known how to efficiently realize but not all. Most recently [11] proposes solutions to this problem via oblivious pseudorandom function evaluation techniques. They work in two relaxed adversary models to achieve security of "half-simulatability" and "full-simulatability against covert adversaries"[1]. At the price of relaxation in security, the protocols in [11] are highly efficient, so these solutions can be considered as practical and reasonable compromise between security and efficiency.

In this paper we construct a protocol for secure set-intersection computation in standard model which is efficient and GUC-secure. Like most previous works, we focus on the 2-party case, however, there are substantial differences between our solution and the others. Technically, our construction is based-on the anonymous IBE scheme and it's user private-key's blind generation techniques(i.e., to generate the correct user private-key usk(a)=UKG(msk,a) for a user without leaking the user-id a to the key-generator). The protocol's high-level description is simple: let Π =(Setup,UKG,E,D) be an IBE scheme, M_0 be a publicly-known plaintext, P_1 owns (for example) $X_1 = \{x_1, x_2, x_3, x_4\}$ and P_2 owns $X_2 = \{x_1, x_2, x_5, x_6\}$. Let P_1 generate IBE's master public/secret-key (mpk,msk), send mpk and all $y_i = E(mpk, x_i, M_0)$ (i=1,2,3,4) to P_2 . When P_2 tries to decipher each y_i by private-keys $usk(x_1)$, $usk(x_2)$, $usk(x_5)$ and $usk(x_6)$ (obtained via Π 's user private-keys blind generation protocol), only $usk(x_1)$ and $usk(x_2)$ can succeed in obtaining M_0 . As a result, $X_1 \cap X_2 = \{x_1, x_2\}$. In addition, Π 's anonymity prevents P_2 from knowing anything about $X_1 \setminus X_2 = \{x_3, x_4\}$ through y_3, y_4 . (Interestingly, this approach doesn't require IBE's (IND CPA) data-privacy so its efficiency may be further improved if we can get some "anonymous(key-private) but not data-private" IBE scheme). The same approach can be even further used to solve the conditional intersection computation problem via ABE(attribute-based encryption) scheme recently proposed by Waters et al.

To be GUC-secure, the formal construction is more involved and presented in section 3. It is constant-round in communications and linear-size in message-complexity(close to [8,11]). In computation-complexity, one party is $O(N_1+N_2)$ (close to [8,11]) and the other is $O(N_1N_2)$ (close to [12]) where N_1 , N_2 are each party's private set's cardinality. It is well-modularized, only executing few zero-knowledge proofs of knowledge which can be efficiently instantiated. Most importantly and distinctively, our construction reaches Canetti's GUC-security: it is GUC-secure against malicious adversaries assuming static corruptions in the ACRS(augmented common reference string) model [5]. For this goal we introduce a notion of identity-augmented non-malleable zero-knowledge proofs of knowledge which may be of independent values. In addition, our construction can be also enhanced to be GUC-secure against malicious adversaries assuming adaptive corruptions in erasure model.

2 NOTATIONS, DEFINITIONS AND TOOLS

P.P.T. means "probabilistic polynomial-time", x|y means string x and y in concatenation, |x| means string x's size(in bits) and |X|(X) is a set) means X's cardinality, $x \leftarrow X$ means randomly selecting x from the domain X. x denotes the complexity parameter. x stands for computational indistinguishability and x for perfect indistinguishability.

2.1 Secure Set-Intersection Computation and Its GUC Security

Briefly speaking, GUC-security means that any adversary attacking the real-world protocol can be efficiently simulated by an adversary attacking the ideal-world functionality, both have the outputs indistinguishable by the (malicious) environment. For space limitations, we assume the reader's

familiarity with the whole theory in [4-6] and only provide necessary descriptions with respect to the secure set-intersection computation problem here.

Similar to most previous works, we only focus on the unidirectional 2-party scenario. Such ideal cryptographic functionality for set-intersection computation is defined as

$$F_{\text{INT}}: (X_1, X_2) \to (|X_2|, |X_1|||(X_1 \cap X_2))$$

The bi-directional functionality is defined as

$$F_{\text{INT}}: (X_1, X_2) \to (|X_2|||(X_1 \cap X_2), |X_1|||(X_1 \cap X_2))$$

It's not hard to implement F^*_{INT} as a F_{INT} -hybrid protocol. However, unidirectional set-intersection computation per se is independently useful in practice.

Let P_1^* , P_2^* be parties in ideal model with private sets X_1 and X_2 respectively, $N_1=|X_1|$, $N_2=|X_2|$, S be the adversary in ideal model. The ideal model works as follows:

On receiving message (sid, "input", P_1* , X_1) from P_1* , F_{INT} records X_1 and sends message (sid, "input", N_1) to P_2* and S; On receiving message (sid, "input", P_2* , X_2) from P_2* , F_{INT} records X_2 and sends (sid, "input", N_2) to P_1* and S.

On receiving message (sid, "intersection", P_2 *) from P_2 , F_{INT} responses P_2 * with message (sid, "intersection", $X_1 \cap X_2$).

At last P_1^* outputs N_2 , P_2^* outputs $N_1 || (X_1 \cap X_2)$.

Let ψ be the real-world protocol, each party P_i of ψ corresponds to an ideal-world party P_i^* . A is the real-world adversary attacking ψ , Z is the environment in which the real protocol/ideal functionality executes. According to [4-5], Z is a P.P.T. machine modeling all malicious behaviors against the protocol's execution. Z is empowered to provide inputs to parties and interacts with A and S, e.g., Z gives special inputs or instructions to A/S, collects outputs from A/S to make some analysis, etc. In UC theory[4], Z cannot access parties' shared functionality(such shared functionality is specified in specific protocol) while in the improved GUC theory[5] Z is enhanced to do this, i.e., to provide inputs to and get outputs from the shared functionality. As a result, in GUC theory Z is strictly stronger and more realistic than in UC theory.

Let output_Z(ψ ,A) denote the outputs (as a joint stochastic variable)from ψ 's parties P₁, P₂ under Z and A, output_Z(F_{INT} ,S) denote the similar thing under Z and S. During the real/ideal protocol's execution, Z (as an active distinguisher) interacts with A/S and raises its final output, w.l.o.g., 0 or 1. Such output is denoted as Z(output_Z(ψ ,A),u) and Z(output_Z(F_{INT} ,S),u) respectively, where u is the auxiliary information.

Definition 2.1(GUC security[5]) If for any P.P.T. adversary A in real-world, there exists a P.P.T. adversary S(called A's simulator) in ideal-world, both corrupt the same set of parties, such that for any environment Z the function $|P[Z(\text{output}_Z(\psi,A),u)=1]-P[Z(\text{output}_Z(F_{INT},S),u)=1]|$ is negligible in complexity parameter k (hereafter denote this fact as $\text{output}_Z(\psi,A) \approx^{PPT} \text{output}_Z(F_{INT},S)$), then we define that ψ GUC-emulates F_{INT} or say ψ is GUC-secure, denoted as $\psi \rightarrow^{GUC} F_{INT}$.

The most significant property of GUC-security is the universal composition theorem. Briefly speaking, given protocols φ_2 , φ_1 and $\psi(\varphi_1)$ where $\psi(\varphi_1)$ is the so-called φ_1 -hybrid protocol, if $\varphi_2 \rightarrow^{GUC} \varphi_1$ then (under some technical conditions, e.g., subroutine-respecting) $\psi(\varphi_2/\varphi_1) \rightarrow^{GUC} \psi(\varphi_1)$ where $\psi(\varphi_2/\varphi_1)$ is a protocol in which every call to the subprotocol φ_1 is replaced with a call to φ_2 . This guarantees that a GUC-secure protocol can be composed in any execution context while still

preserving its proved security. A similar consequence is also ture in UC theory but with some serious constraints. All details are presented in [4-5](ACRS model is defined in [5]'s sec.4, or see Appendix A in our paper).

2.2 IBE Scheme, Its Anonymity and Blind User-Private Key Generation Protocol

In addition to data-privacy, anonymity(key-privacy) is another valuable property for public-key encryption schemes^[2]. An IBE scheme Π =(Setup, UKG, E, D) is a group of P.P.T. algorithms, where Setup takes as input the complexity parameter k to generate master public/secret-key pair (mpk, msk), UKG takes as input msk and user's id a to generate a's user private-key usk(a); E takes (mpk, a, M) as input where M is the message plaintext to generate ciphertext y, D takes (mpk, usk(a), y) as input to do decryption. Altogether these algorithms satisfy the consistency property: for any k, a and M

P[(mpk,msk) \leftarrow Setup(k); $usk(a) \leftarrow$ UKG(msk,a); $y \leftarrow$ E(mpk,a,M): D(mpk,usk(a),y)=M]=1 **Definition 2.2**(IBE Scheme's chosen plaintext anonymity[2]) Given an IBE scheme Π =(Setup, UKG,E,D), for any P.P.T. attacker A=(A_1,A_2) consider the following experiment $Exp_{\Pi,A}^{ANO}$ CPA (k):

```
(mpk, msk) \leftarrow \text{Setup}(k);

(M^*, a_0^*, a_1^*, St) \leftarrow A_1^{\text{UKG}(msk, \cdot)}(mpk), a_0^* \neq a_1^*;

b \leftarrow^{\$} \{0, 1\};

y^* \leftarrow \text{E}(mpk, a_b^*, M^*);

d \leftarrow A_2^{\text{UKG}(msk, \cdot)}(St, y^*);

output(d \oplus b);
```

A is contrained not to query its oracle UKG(msk,.) with a_0^* and a_1^* . Define $Adv_{\Pi,A}^{ANO_CPA}$ as $|2P[Exp_{\Pi,A}^{ANO_CPA}(k)=1]-1|$. If $Adv_{\Pi,A}^{ANO_CPA}$ is negligible in k for any P.P.T. A then Π is defined as anonymous against chosen plaintext attack or ANO_CPA for short. In the above, if M^* , a_0^* , a_1^* are generated independent of mpk then Π is called selective ANO_CPA.

Denote $\max_{A \in P.P.T.} Adv_{\Pi,A}^{ANO-CPA}(k)$ as $Adv_{\Pi}^{ANO-CPA}(k)$ or $Adv_{\Pi}^{ANO-CPA}(t,q)$ where t is the adversary's maximum time-complexity and q is the maximum number of queries for the UKG-oracle.

Now we present the ideal functionality $F^{\Pi}_{Blind\text{-}UKG}$ for an IBE scheme Π 's user private-key blind generation(note: even IBE scheme is not anonymous such functionality still makes sense. However, in this paper only anonymous IBE's such protocol is needed). In the ideal model, one party generates(just one time) Π 's master public/secret-key pair (mpk,msk) and submits it to $F^{\Pi}_{Blind\text{-}UKG}$; $F^{\Pi}_{Blind\text{-}UKG}$ generates usk(a)=UKG(msk,a) for another party who submits its private input a(this computation can take place any times and each time for a new a), revealing nothing about a to the party who provides (mpk,msk) except how many private-keys are generated. Formally, let S be the ideal adversary, P_1 *, P_2 * the ideal party, sid and ssid the session-id and subsession-id respectively, the ideal model works as follows:

 P_1^* selects randomness ρ and computes $(mpk,msk) \leftarrow \text{Setup}(\rho)$, sends the message (sid, $mpk||msk||\rho$) to $F_{\text{Blind-UKG}}^{\Pi}$; $F_{\text{Blind-UKG}}^{\Pi}$ sends message (sid, mpk) to P_2^* and S;

On receiving a message (sid||ssid,a) from P_2^* (ssid and a are fresh everytime), in response $F^{\Pi}_{Blind\text{-}UKG}$ computes $usk(a) \leftarrow UKG(msk,a)$, sends the message (sid||ssid, usk(a)) to P_2^* and the message (sid||ssid, n) to P_1^* and S, where n is initialized to be 0 and

2.3 (Identity-Augmented) Non-Malleable Zero-Knowledge Proofs of Knowledge

This subsection presents the concept of zero-knowledge proofs of knowledge following [9,13] with slight symbolic modifications. Let L be a NP language, R is its associated P-class binary relation. i.e., $x \in L$ iff there exists w such that R(x,w)=1. Let A, B be two machines, then $A(x;B)_{[\sigma]}$ represents A's output due to its interactions with B under a public common input x and common reference string (c.r.s.) σ , $\operatorname{tr}_{A,B}(x)_{[\sigma]}$ represents the transcripts due to interactions between A and B under a common input x and c.r.s. σ . When we emphasize A's private input, say y, we also use the expression $A_y(x;B)_{[\sigma]}$ and $\operatorname{tr}_{A(y),B}(x)_{[\sigma]}$ respectively. Let $A=(A_1,A_2)$, B and C be machines where A_1 can coordinate with A_2 by transferring status information to it, then $(\langle B,A_1\rangle,\langle A_2,C\rangle)$ represents the interaction between A_1 and B, (maybe concurrently) A_2 and C. Due to such interactions, let tr be the transcripts between A_2 and C, u be the final output from A_2 and v be the final output form C, then $(\langle B,A_1\rangle,\langle A_2,C\rangle)$'s output is denoted as (u,tr,v).

Two transcripts tr_1 and tr_2 are matched each other, if tr_1 and tr_2 are the same message sequence(consisted of the same messages in the same order) and the only difference is that any corresponding messages are in the opposite directions.

Let A be a machine, the symbol \boxed{A} represents such a machine which accepts two kinds of instructions: the first one is in the form of ("start", i,x,w) and \boxed{A} in response starts a new instance of A, associates it with a unique name i and provides it with public input x and private input w; the second is in form of ("message",i,m) and \boxed{A} in response sends message m to instance A_i and then returns A_i 's response to m.

Definition 2.3(Zero-Knowldeg Proof and Non-Malleable Zero-Knowledge Proof Protocol[9,13]) $ZPoK_R=(D_{crs},P,V,Sim)$ where $Sim=(Sim_1,Sim_2)$ is a group of P.P.T. algorithms, k is complexity parameter, D_{crs} takes k as input and generates c.r.s. σ ; P is called *prover*, takes (σ,x,w) as input where R(x,w)=1 and generates a proof π ; V is called *verifier*, takes (σ,x) as input and generates 0 or 1; $Sim_1(k)$ generates (σ,s) , Sim_2 takes $x \in L$ and (σ,s) as input and generates the simulation. All algorithms except D_{crs} and Sim_1 take the c.r.s. σ as one of their inputs, so σ is no longer explicitly included in all the following expressions unless for emphasis. Now $ZPoK_R$ is defined as a zero-knowledge proof protocol for relation R, if the following properties are all satisfied:

- (1) For any $x \in L$ and $\sigma \leftarrow D_{crs}$, it's always true that $P[V(x;P)_{[\sigma]}=1]=1$;
- (2) For any P.P.T. algorithm $A, x \notin L$ and $\sigma \leftarrow D_{crs}$, it's always true that $P[V(x;A)_{[\sigma]}=1]=0^1$;
- (3) For any P.P.T. algorithm A which outputs 0 or 1, let ε be empty string, the function

$$|P[\sigma \leftarrow D_{crs}; b \leftarrow A(\varepsilon; P)_{[\sigma]}: b=1] - P[(\sigma,s) \leftarrow Sim_1(k); b \leftarrow A(\varepsilon; Sim_2(s))_{[\sigma]}: b=1]|$$

is always negligible in k, where we emphasize the fact by symbol $Sim_2(s)$ that all Sim_2 instances have the same s as one of their inputs.

The non-malleable zero-knowledge proof protocol for relation R is defined as NMZPoK_R= (D_{crs},P,V,Sim,Ext) where $Sim=(Sim_1,Sim_2)$, $Ext=(Ext_1,Ext_2)$ and (D_{crs},P,V,Sim) is a zero-knowledge

¹ Strictly this protocol should be called "zero-knowledge argument", however, such difference is not essential in this paper so we harmlessly abuse the terminology.

proof protocol for relation R as above, P.P.T. algorithm $\operatorname{Ext}_1(k)$ generates (σ, s, τ) and the interactive P.P.T. machine $\operatorname{Ext}_2(\text{named as witness extractor})$ takes (σ, τ) and protocol's transcripts as its input and extracts w, and all the following properties hold:

- (4) The distribution of the first output of Sim₁ is identical to that of Ext₁;
- (5) For any τ , the distribution of the output of V is identical to that of Ext₂'s restricted output which does not include the extracted value (w);
- (6) There exists a negligible function $\eta(k)$ (named as knowledge-error function) such that for any P.P.T. algorithm $A=(A_1,A_2)$ it's true that

 $P[(\sigma,s,\tau)\leftarrow Ext_1(k); (x,tr,(b,w))\leftarrow (\sqrt{Sim_2(s)},A_1>, < A_2,Ext_2(\tau)>)_{[\sigma]}: b=1 \land R(x,w)=1 \land tr \text{ doesn't match any transcript generated by } Sim_2(s)]$

 $P[(\sigma,s)\leftarrow \text{Sim}_1(k); (x,tr,b)\leftarrow (\sqrt{\text{Sim}_2(s)},A_1>,< A_2,V>)_{[\sigma]}: b=1 \land tr \text{ doesn't match any transcript generated by } [sim_2(s)] - \eta(k)$.

It's easy to see that $NMZPoK_R$ is a zero-knowledge proof of knowledge. [9,13] developed an efficient method to derive non-malleable zero-knowledge proof protocols based-on simulation-sound tag-based commitment schemes and the so-called Ω -protocols(proposed in [13]). In order to achieve GUC-security in our construction, we need to further enhance NMZPoK to the concept of identity-augmented non-malleable zero-knowledge proof protocol(IA-NMZPoK) as follows.

Definition 2.4(IA-NMZPoK Protocol for Relation R) The IA-NMZPoK Protocol for relation R, IA-NMZPoK_R=(D,Setup,UKG,P,V,Sim,Ext) where Sim=(Sim₁,Sim₂) and Ext=(Ext₁,Ext₂), is a group of P.P.T. algorithms. Setup(k) generates master public/secret-key pair (mpk,msk), UKG(msk,id) generates id's private-key usk(id) where $id \in \{P,V\}$ (the prover's and verifier's identity). Sim₁ takes usk(V) as input, Ext₁ takes usk(P) as input. All algorithms except Setup take (mpk,σ) as one of its inputs(so it no longer explicitly appears). The protocol has the same properties as R's NMZPoK protocol in definition 2.3.

Note that by this definition an IA-NMZPoK protocol works in ACRS model[5] which ACRS is its mpk. In addition, only the corrupt verifier can run $Sim(Sim_1 taking usk(V) as input)$ and only the corrupt prover can run $Ext(Ext_1 taking usk(P) as input)$. This is exactly what is required in the ACRS model. Given a relation R, a general and efficient construction of IA-NMZPoK protocol for R is presented in Appendix D.

2.4 Commitment Scheme

We need the non-interactive identity-based trapdoor commitment sheme [5](IBTC for short) as another important tool in our construction.

Definition 2.5(IBTC scheme[5]) Let k be complexity parameter, the non-interactive identity-based trapdoor commitment sheme IBTC=(D, Setup, UKG, Cmt, Vf, FakeCmt, FakeDmt) is a group of P.P.T. algorithms, where D(k) generates id, Setup(k) generates master public/secret-key pair (mpk, msk), UKG(msk,id) generates id's user private-key usk(id), Cmt(mpk,id,M) generates message M's commitment/decommitment pair (cmt,dmt), Vf(mpk,id,M,cmt,dmt) outputs 0 or 1, verifying whether cmt is M's commitment with respect to id. These algorithms are consistant, i.e., for any M:

 $P[(mpk, msk) \leftarrow Setup(k); (cmt, dmt) \leftarrow Cmt(mpk, id, M): Vf(mpk, id, M, cmt, dmt)=1]=1$

FakeCmt(mpk, id, usk(id)) generates (\overline{cmt} , λ), FakeDmt(mpk, M, λ , \overline{cmt}) generates \overline{d} (w.l.o.g. λ contains id||usk(id)| as one of its components so FakeDmt doesn't explicitly take id and usk(id) as its input). A secure IBTC scheme has the following properties:

- (1) Hiding: for any id and M_0 , M_1 , $(cmt_i,dmt_i) \leftarrow \text{Cmt}(mpk,id, M_i)$, i=0,1, then $cmt_0 \approx \text{P.P.T.} \text{cmt}_1$;
- (2)Binding: for any P.P.T. algorithm A, the function $Adv_{IBTC,A}^{binding}(k) \equiv P[(mpk, msk) \leftarrow Setup(k); (id^*, cmt^*, M_0^*, d_0^*, M_1^*, d_1^*) \leftarrow A^{UKG(msk,.)}(mpk)$: A doesn't query oracle-U(msk,.) with $id^* \wedge M_0^* \neq M_1^* \wedge Vf(mpk, id^*, M_0^*, cmt^*, d_0^*) = Vf(mpk, id^*, M_1^*, cmt^*, d_1^*) = 1$] is always negligible in k.
- (3) Equivocability: For any P.P.T. algorithm $A=(A_1,A_2)$ the following experiment always has $|P[b^*=b]-1/2|$ upper-bounded by a negligible function in k:

```
(mpk, msk) \leftarrow \text{Setup}(k);

(St, id^*, M^*) \leftarrow A_1(mpk, msk);

usk(id^*) \leftarrow \text{UKG}(msk, id^*); (\underbrace{cmt}, \lambda) \leftarrow \text{FakeCmt}(mpk, id^*, usk(id^*));

d_1 \leftarrow \text{FakeDmt}(mpk, M^*, \lambda, \underbrace{cmt}); d_0 \leftarrow^{\$} \{0,1\}^{|d_1|};

b \leftarrow^{\$} \{0,1\};

b^* \leftarrow A_2(St, d_b);
```

Note that equivocability implies $P[Vf(mpk, id^*, M^*, cmt, d_1^*)=1]>1-\gamma(k)$ where $\gamma(k)$ is a negligible function in k. [5] presented an efficient IBTC construction and proved its security.

3 GENERAL CONSTRUCTION

Now we present the formal consctrution of the real-world private set-intersection computation protocol Ψ . P_1 and P_2 denote two real-world parties with private set $X_1 = \{x_1, ..., x_{N1}\}$ and $X_2 = \{y_1, ..., y_{N2}\}$ respectively. $\Pi = (ESetup, UKG, E, D)$ is a selective ANO_CPA anonymous IBE scheme, $\Delta^{\Pi}_{Blind-UKG}$ is the real-world protocol for Π 's user private-keys blind generation. IA-NMZPoK(w:R(x,w)=1) denotes an IA-NMZPoK protocol for relation R where w is x's witness. TC = (D, TSetup, UKG, Cmt, Vf, FakeCmt, FakeDmt) is an IBTC scheme. M_0 is a (fixed) public common plaintext. Ψ 's ACRS is $mpk_{TC} ||mpk_{\Delta}||$ $mpk_{ZK} ||M_0|$ where mpk_{TC} , mpk_{Δ} , mpk_{ZK} are respectively TC's, $\Delta^{\Pi}_{Blind-UKG}$'s and an IA-NMZPoK protocol(see below)'s master public key. Ψ works as follows:

- (1) P_1 computes Π 's master public/secret-key $(mpk,msk) \leftarrow ESetup(k)$, for each $x_i \in X_1(i=1,...,N_1)$ computes ciphertext $\xi_i \leftarrow E(mpk,x_i, M_0; r_i)$ where r_i is the independent randomness in each encryption, then computes $(cmt,dmt) \leftarrow Cmt(mpk_{TC}, P_2, \xi_1 || ... || \xi_{N1})$ and sends mpk || cmt to P_2 .
- (2) P_1 and P_2 run the protocol $\Delta^{\Pi}_{Blind\text{-}UKG}$ where P_1 (as the key-generater) inputs (mpk,msk) and P_2 (as the key-receiver) inputs $y_1,...,y_{N2}$ to $\Delta^{\Pi}_{Blind\text{-}UKG}$. On $\Delta^{\Pi}_{Blind\text{-}UKG}$'s completion, P_1 obtains N_2 and P_2 obtains $usk(y_1),...,usk(y_{N2})$ as the output.
- (3) P_1 sends $\xi_1 || ... || \xi_{N_1} || dmt$ to P_2 .
- (4) P_2 verifies $Vf(mpk_{TC}, P_2, \xi_1 || ... || \xi_{N1}, cmt, dmt) = 1$.
- (5) P_1 runs the protocol IA-NMZPoK((x_i, r_i): $\xi_i = E(mpk, x_i, M_0; r_i)$, $i = 1, ..., N_1$) as a prover with P_2 as a verifier. On this IA-NMZPoK 's completion, P_2 tries to decrypt each ξ_i by $usk(y_i)$'s it obtained in step 2 and generates the set $X_0 \leftarrow \{y_i \in X_2: \text{ there exists } \xi_i \text{ s.t. } D(mpk, usk(y_i), \xi_i) = M_0\}$.
- (6) P_1 outputs N_2 and P_2 outputs X_0 .

This general construction of Ψ is a $\Delta^{\Pi}_{Blind-UKG}$ -hybrid protocol and we require

 $\Delta^{\Pi}_{\text{Blind-UKG}} \to {}^{\text{GUC}}F^{\Pi}_{\text{Blind-UKG}}$ (definition 2.1). Since for each ξ_i =E(mpk, x_i , M_0 ; r_i), D(mpk,usk(y_j), ξ_i)= M_0 if and only if x_i = y_j so X_0 = $X_1 \cap X_2$, i.e., P_2 outputs the correct intersection. Regarding security, because the IBE scheme Π is (selective) anonymous, i.e., ciphertext ξ_i hides x_i unless P_2 has the correct user private-key $usk(x_i)$, P_2 knows nothing about X_1 beyond $X_1 \cap X_2$. On the other hand, $\Delta^{\Pi}_{\text{Blind-UKG}}$'s (GUC) security prevents P_1 from knowing anything about P_2 's private set X_2 .

However, merely requiring $\Delta^{\Pi}_{Blind\text{-}UKG} \rightarrow^{GUC} F^{\Pi}_{Blind\text{-}UKG}$ cannot guarantee Ψ 's GUC-security but only "half GUC-security" instead(i.e., the real adversary A corrupting P_1 can be completely simulated by an ideal adversary S but this is not true when A corrupts P_2 . Only data-privacy can be proved in the latter case). In order to make the real adversary always completely simulatable in ideal-world, some additional property is required for $\Delta^{\Pi}_{Blind\text{-}UKG}$. This leads to definition 3.1 and it is not hard to verify that our concrete construction of $\Delta^{\Pi}_{Blind\text{-}UKG}$ in next section really satisfies it.

Definition 3.1(IBE's User Private-keys Blind Generation Protocol with Extractor) Given IBE scheme Π =(ESetup,UKG,E,D) and $\Delta^{\Pi}_{Blind-UKG} \rightarrow^{GUC} F^{\Pi}_{Blind-UKG}$, let P_1 , P_2 be $\Delta^{\Pi}_{Blind-UKG}$'s parties where P_2 provides user-id a and obtains usk(a), P_1 owns msk and (blindly) gernates usk(a) for P_2 . This $\Delta^{\Pi}_{Blind-UKG}$ is defined as extractable, if there exists P.P.T. algorithm Setup_Δ, UKG_Δ, Ext_Δ=(Ext₁,Ext₂) and a negligible function $\delta(k)$, called the $error\ function$, such that

- (1) Setup_{Δ}(k) generates the master public/secret-key pair (mpk_{Δ} , msk_{Δ}).
- (2) UKG $_{\Delta}(msk_{\Delta},id)$ outputs a trapdoor $usk_{\Delta}(P_2)$ when $id=P_2$ (key-receiver's identity) and outputs nothing otherwise.
- (3) for any user-id a, honest P_1 and any P.P.T. algorithm A, it is true that(via notations in subsection 2.3) $\operatorname{Ext}_1(usk(P_2))$ outputs (σ,τ) such that

P[Ext₂(mpk|| τ ; A(a))_[σ]=a]>P[$A_a(mpk, P_1(mpk, msk))$] $_{[\sigma]}$ =UKG(msk, a)]- $\delta(k)$ where (mpk, msk) is Π 's master public/secret-key owned by $P_1(mpk)$ is published).

We stress that all extractors in definition 2.3 and definition 3.1 are non-rewinding.

Combining all the instantiations of subprotocols in this general construction(some presented in next section and Appendix D), it's easy to see that we can get a O(1) and $O(N_1+N_2)$ message-complexity solution. Furthermore P_1 , P_2 has computation-complexity of $O(N_1+N_2)$ and $O(N_1N_2)$ encryptions/decryptions repectively. The exact efficiency analysis can only be done for specific instantiation (e.g., that presented in next section) which is provided in the full version paper. The formal security consequence is the following theorem which proof is in Appendix B.

Theorem 3.1 Suppose that Π =(ESetup,UKG,E,D) is a selective ANO_CPA anonymous IBE scheme, $\Delta^{\Pi}_{Blind\text{-}UKG} \to^{GUC} F^{\Pi}_{Blind\text{-}UKG}$ with extractor Ext_{Π} =(Ext $_{\Pi,1}$,Ext $_{\Pi,2}$) and error function δ as in def.3.1, IA-NMZPoK((x_i,r_i): ξ_i =E(mpk, x_i , M_0 ; r_i),i=1,..., N_1) is an IA-NMZPoK protocol, TC=(D,TSetup,UKG, Cmt,Vf,FakeCmt,FakeDmt) is an IBTC scheme, then $\Psi \to^{GUC} F_{INT}$ assuming static corruptions.

4 AN INSTANTIATION VIA BOYEN-WATERS IBE SCHEME

Theorem 3.1 presents security conditions for the general construction Ψ , among which some are available in existing works, e.g., the commitment scheme can be directly borrowed from [5]. The subprotocols which require new efficient constructions are only IBE scheme's user private-keys generation protocol and the protocol IA-NMZPoK((a,r): $\xi=E(mpk,a,M_0;r)$). In this section we present an efficient instantiation of Ψ via *Boyen-Waters* IBE scheme. All related zero-knowledge protocols'

constructions are presented in Appendix D.

4.1 Boyen-Waters IBE^[3]

Given an bilinear group pairing ensemble $J=\{(p,G_1,G_2,e)\}_k$ where $|G_1|=|G_2|=p$, p is k-bit prime number, $P \in G_1$, $e:G_1 \times G_1 \to G_2$ is a non-degenerate pairing, Boyen-Waters IBE consists of

ESetup(*k*):

```
\begin{split} g, g_0, g_1 &\leftarrow^{\$} G_1; \ \omega, \ t_1, \ t_2, t_3, \ t_4 \leftarrow^{\$} Z_p; \ \varOmega \leftarrow e(g,g)^{t_1 t_2 \omega}; \\ v_1 \leftarrow g^{t_1}; \ v_2 \leftarrow g^{t_2}; \ v_3 \leftarrow g^{t_3}; \ v_4 \leftarrow g^{t_4}; \\ mpk \leftarrow (G_1, G_2, p, e, \ \varOmega, g, g_0, g_1, v_1, v_2, v_3, v_4); \\ msk \leftarrow (\omega, t_1, t_2, t_3, t_4); \\ \text{return}(mpk, msk); \\ \text{UKG}(msk, a), \ a \in Z_p: \\ r_1, \ r_2 \leftarrow^{\$} Z_p; \\ usk(a) \leftarrow (\ g^{r_1 t_1 t_2 + r_2 t_3 t_4}, \ g^{-\varpi t_2}(g_0 g_1^{\ a})^{-r_1 t_2}, \ g^{-\varpi t_1}(g_0 g_1^{\ a})^{-r_1 t_1}, (g_0 g_1^{\ a})^{-r_2 t_4}, (g_0 g_1^{\ a})^{-r_2 t_3}); \\ \text{return}(usk(a)); \end{split}
```

The encryption/decryption algorithm is omitted here and completely presented in Appendix D..

[3] has proven that assuming the decisional bilinear Diffie-Hellman problem(D-BDHP)'s hardness on J, this scheme is IND_CPA secure (data-private); assuming the decisional linear problem(D-LP)'s hardness, this scheme is selective ANO_CPA anonymous. Notice that D-BDHP hardness implies D-LP's hardness, all the above consequences can be also obtained only under D-BDHP's hardness.

4.2 User Private-Keys Blind Generation Protocol $\Delta^{Boyen-Waters}_{Blind-UKG}$ and Its GUC-Security

For simplicity we only present how to blindly generate usk(a) for a single user-id a. The generalization to blindly generating $usk(a_1)||...||usk(a_N)$ for multiple user-id's $a_1||...||a_N$ is trival and still constant-round, though the total message-complexity is linearly increased.

The two parties are P_1 (with private input msk) and P_2 (with private input a). Both parties have the common input mpk where (mpk,msk) are generated by IBE scheme's ESetup(k) (usually msk per se is the randomness in ESetup so we use a simplified notation $mpk \leftarrow$ ESetup(msk) hereafter). $\Delta_{Blind-UKG}^{Boyen-Waters}$ has two IA-NMZPoK subprotocols (see below) which ACRS's are denoted as $mpk_{ZK,II}$ and $mpk_{ZK,III}$. $\Delta_{Blind-UKG}^{Boyen-Waters}$ is in ACRS model which ACRS is $mpk_{ZK,II}||mpk_{ZK,III}$. $\Delta_{Blind-UKG}^{Boyen-Waters}$ works as follows:

- (1) P_1 runs a protocol IA-NMZPoK(msk: mpk=ESetup(msk)) as a prover with P_2 as a verifier, where the meaning of the notation IA-NMZPoK(msk: mpk=ESetup(msk)) follows section 3. Denote this protocol as IA-NMZPoK_{II}.
- (2) P₂ selects r_1 , r_2 , y_1 , y_2 , y_3 , y_4 at random, computes $U_i \leftarrow g^{r_i}$, $V_i \leftarrow (g_0 g_1^a)^{-r_i}$ for i=1,2 and $h_j \leftarrow g^{y_j} g_1^a$ for j=1,2,3,4, sends $U_1 ||U_2||V_1 ||V_2||h_1 ||h_2||h_3||h_4$ to P₁. Then P₂ runs the protocol

IA-NMZPoK(($a, r_1, r_2, y_1, y_2, y_3, y_4$): $\bigwedge_{i=1,2} U_i = g^{r_i} \bigwedge_{i=1,2} V_i = (g_0 g_1^a)^{-r_i} \bigwedge_{j=1,2,3,4} h_j = g^{y_j} g_1^a$) as a prover with P_1 as a verifier. Denote this protocol as IA-NMZPoK_{III}.

(3)
$$P_1$$
 selects σ , r_1 ', r_2 ' at random, computes $d_0 \leftarrow (g^{r_1}U_1^{\sigma})^{t_1t_2} (g^{r_2}U_2^{\sigma})^{t_3t_4}$; $d_1 \leftarrow g^{-\varpi t_2} (h_1g_0)^{-r_1t_2}V_1^{\sigma t_2}$; $d_1 \leftarrow g^{r_1t_2}$; $d_2 \leftarrow g^{r_1t_2}$; $d_3 \leftarrow g^{r_1t_2}$; $d_3 \leftarrow g^{r_2t_4}V_2^{\sigma t_4}$; $d_3 \leftarrow g^{r_2t_4}$;

 $d_4' \leftarrow (h_4 g_0)^{-r'_2 t_3} V_2^{\sigma t_3}$; $d_4'' \leftarrow g^{r_2' t_3}$ and sends $d_0 ||d_1'||d_1''||d_2'||d_2''||d_3'||d_3''||d_4'||d_4''$ to P₂.

(4) P₂ computes $d_j \leftarrow d'_j d''_j$, j=1,2,3,4 and outputs $(d_0, d_1, d_2, d_3, d_4)$.

It's easy to show by direct calculation that P_2 outputs the correct $usk(a)=(d_0,d_1,d_2,d_3,d_4)$ where $d_0=g^{(r_1'+r_1\sigma)t_1t_2+(r_2'+r_2\sigma)t_3t_4}$, $d_1=g^{-\varpi t_2}(g_0g_1^a)^{-(r_1'+r_1\sigma)t_2}$, $d_2=g^{-\varpi t_1}(g_0g_1^a)^{-(r_1'+r_1\sigma)t_1}$, $d_3=(g_0g_1^a)^{-(r_2'+r_2\sigma)t_4}$, $d_4=(g_0g_1^a)^{-(r_2'+r_2\sigma)t_3}$. Regarding security, we have

Theorem 4.1 Suppose the bilinear group pairing J has D-BDHP hardness, both IA-NMZPoK_{II} and IA-NMZPoK_{III} are identity-augmented non-malleable zero-knowledge proof protocols for specific relations described in the above, then $\Delta_{Blind-UKG}^{Boyen-Waters} \rightarrow^{GUC} F_{Blind-UKG}^{Boyen-Waters}$ assuming static corruptions and $\Delta_{Blind-UKG}^{Boyen-Waters}$ satisfies def. 3.1.

Appendix C includes detailed proof and Appendix D contains all related IA-NMZPoK protocols' constructions.

REFERENCES

- [1] Y. Aumann, Y.Lindell, Security against Covert Adversaries: Efficient Protocols for Realistic Adversaries, TCC'07, LNCS Vol.4392, 137-156, 2007.
- [2] M.Abdalla, M.Bellare, D.Catalano et al. Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE and Extensions. In Crypto'05, LNCS Vol. 3621, 205-222, 2005.
- [3] X.Boyen, B.Waters, Anonymous Hierarchical Identity-based Encryption without Random Oracles, Crypto'06, LNCS Vol.4117, 290-307, 2006.
- [4] R.Canetti, Universally Composable Security: a New Paradgim for Cryptographic Protocols, 42nd Annual Symposium on foundations of computer Science, IEEE Computer Society, 136-145, 2001.Updated in 2005, eArchive Cryptology 2001/067.
- [5] R.Canetti, Y.Dodis, R.Pass et al Universally Composable Security with Global-Setup, TCC'07, LCNS Vol.4392, 61-85, 2007. Full version available at eArchive Cryptology 2007.
- [6] Y.Dodis, V.Shoup, S.Walfish Efficient Construction of Composable Commitment and Zero-Knowledge Proofs, Proc. Crypt'08, 2008.
- [7] M.Freedman, Y.Ishai, B.Pinkas et al Keyword Search and Oblivious Pseudorandom Functions, TCC'05, LNCS Vol.3378, 303-324, 2005.
- [8] M.Freedman, K.Nissim, B.Pinkas Efficient Private Matching and Set Intersection, Eurocryp'04, LNCS Vol.3027, 1-19, 2004.
- [9] J.Garay, P.MacKenzie, K.Yang Strengthening Zero-Knowledge Protocols using Signatures, Proc. Eurocrypt, LNCS Vol.2656, 177-194, 2003.
- [10] O.Goldreich Foundations of Cryptography, Vol 1&-Vol 2, Cambridge University Press, 2004.
- [11] C.Hazay, Y.Lindell Efficient Protocols for Set Intersection and Pattern Matching with Security against Malicious and Covert Adversaries, Proc. CT-RSA'08, 2008.
- [12] L.Kissner, D.Song Private-Preserving Set Operations, Crypto'05, LNCS Vol.3621, 241-257, 2005.
- [13] P..MacKenzie, K.Yang On Simulation-Sound Trapdoor Commitments, Proc. Eurocrypt'04, LNCS Vol.3027, 382-400, 2004.

APPENDIX.A ACRS MODEL

Recently [5] improves and generalizes the early UC-theory proposed in [4] to make a more general, realistic and strictly stronger security notion. The universal composition theorem is still true in this paradigm, however, the pre-setup needs to be strictly enhanced. In GUC paradigm the CRS model is insufficient to implement general cryptographic functionalities, instead we need a new pre-setup model called ACRS(augmented common reference string) model. This pre-setup can be performed via a shared functionality $\overline{G}_{acrs}^{Setup,UKG}$ with two parameter functions Setup and UKG similar to IBE scheme's master public/secret-key generator and its user private-key generator. $\overline{G}_{acrs}^{Setup,UKG}$'s program is [5]:

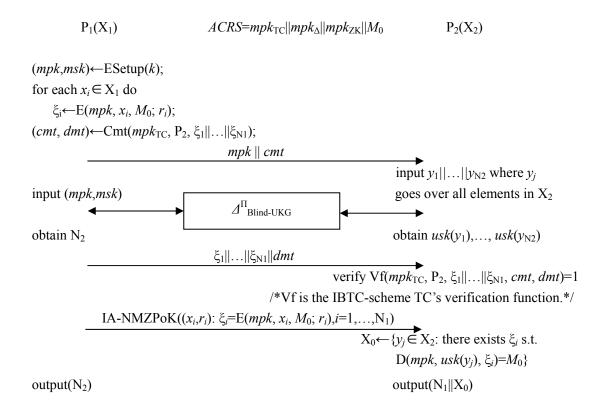
Initialization Phase: $compute\ (mpk, msk) \leftarrow Setup(k)\ and\ store\ (mpk, msk);$

Running Phase: on receiving message ("CRS request", P_i) from any party P_i , response ("ACRS", mpk) to P_i and the adversary S;

On receiving message ("Retrieve", sid, P_i) from a corrupt party P_i , compute $usk(P_i)\leftarrow UKG(msk,P_i)$ and return the message ("Private-key", sid, $usk(P_i)$) to P_i ; if P_i is not a corrupt party, response nothing.

APPENDIX.B PROOF OF THEOREM 3.1

For intuition the protocol Ψ is presented in a figure below. The IA-NMZPoK protocol's arrow points from the zero-knowledge proof's prover to its verifier.



Now we present the proof sketch. At first it's easy to verify that Ψ produces the correct intersection $X_1 \cap X_2$ at P_2 . Now we prove its GUC-security in two cases that the real-world adversary A corrupts P_1 or P_2 respectively. Below P_1^* and P_2^* stand for P_1 and P_2 's respective counterparts in ideal-world.

All parties are assumed to be initialized with a copy of the common reference string ACRS, i.e., the concatenation of TC's master public-key mpk_{TC} , $\Delta^{\Pi}_{Blind-UKG}$'s mpk_{Δ} , the IA-NMZPoK protocol's mpk_{ZK} and M_0 , generated by the pre-setup G_{ACRS} . For this ACRS, its $msk=msk_{TC}||msk_{\Delta}||msk_{ZK}|$ and UKG(msk,id) responses with $usk(id)=usk_{TC}(id)||usk_{\Delta}(id)||usk_{ZK}(id)|$ where $usk_{TC}(id)$, $usk_{\Delta}(id)$ and $usk_{ZK}(id)$ are respectively TC's, $\Delta^{\Pi}_{Blind-UKG}$'s and the IA-NMZPoK protocol's user private-keys corresponding to $id \in \{P_1, P_2\}$.

(1) A corrupts P_1 : for simplicity we first make the proof in $F^{\Pi}_{Blind-UKG}$ —hybrid model and then complete the proof by generalized universal composition theorem. Let $X_1 = \{x_1 *, ..., x_{N1} * \}$ be A's(i.e., P_1 's) own set, $X_2 = \{y_1 *, ..., y_{N2} * \}$ be P_2 *'s own set. We need to construct an ideal adversary S_1 who corrupts P_1 *, runs A as a black-box and simulates the real-world honest party P_2 to interact with A:

On receiving the message (sid, "input", N_2) from F_{INT} , S_1 gets $usk(P_1)$ by querying the shared functionality G_{ACRS} with ("retrieve", sid, P_1) where $usk(P_1) = usk_{TC}(P_1) || usk_{\Delta}(P_1) || usk_{ZK}(P_1)$), computes $(\sigma, s, \tau) \leftarrow IA-NMZPoK$:: $Ext_1(usk_{ZK}(P_1))$ (to avoid ambiguity, we use Γ :: f to represent a protocol Γ 's algorithm f), generates N_2 data-items y_1, \ldots, y_{N_2} at random and then starts A;

After A sends the first message (mpk||cmt), S_1 interacts with A as an honest key-receiver in model of $F_{Blind-UKG}^{\Pi}$ and obtains $usk(y_1),...,usk(y_{N2})$;

 S_1 intercepts the message $\xi_1 || ... || \xi_{N1} || dmt$ sent from A, verifys whether $Vf(mpk_{TC}, P_2, \xi_1 || ... || \xi_{N1}, cmt, dmt) = 1$ and then participates in protocol IA-NMZPoK((x^*_{i}, r_i) : $\xi_i = E(mpk, x_i^*, M_0; r_i)$, $i = 1, ..., N_1$ as a verifier calling the knowledge extractor IA-NMZPoK::Ext₂(τ) to extract the witness (x_i^*, r_i) , $i = 1, ..., N_1$ (in fact only x_i^* 's are needed in this proof);

 S_1 sends the message (sid, "input", $\{x_1^*, ..., x_{N_1}^*\}$) to F_{INT} , then outputs whatever A outputs to the environment.

Let $tr(A,S_1)$ denote the transcripts due to the interaction between S_1 and A, $tr^{\psi}(A, P_2(X_2))$ denote the transcripts due to the interaction between A and $P_2(X_2)$ in the real-world protocol $\Psi(P_2(X_2))$ means the real-world party possessing the same private set X_2 as P_2 *). From A's perspective, the difference between $tr(A,S_1)$ and $tr^{\psi}(A, P_2(X_2))$ is that the former provides $F^{\Pi}_{Blind-UKG}$ with $\{y_1, \dots, y_{N_2}\}$ as the input, the latter provides $F^{\Pi}_{Blind-UKG}$ with $\{y^*_{1},...,y^*_{N2}\}$, but according to $F^{\Pi}_{Blind-UKG}$'s specification A knows nothing about what data-items are provided to $F^{\Pi}_{Blind-UKG}$ by the other party except the number N_2 , as a result, $tr(A,S_1) \approx tr^{\psi}(A,P_2(X_2))$ (perfectly indistinguishable) from A's perspective. In particular, the distribution of A's output due to interactions with S_1 is the same as that (in real-world protocol Ψ) due to interactions with $P_2(X_2)$. Let η be IA-NMZPoK protocol's error function, $Adv_{TC}^{binding}$ be attacker's advantage against TC's binding property, all are negligible functions in k. It's not hard to show(by contradiction) that the probability with which S_1 correctly extracts all A's data-items $x^*_1, \dots, x^*_{N_1}$ is greater than $P[P_2(mpk||\xi_1||...||\xi_{N1};A)=1]-N_1(\eta + Adv_{TC}^{binding}) \ge P[X_0=X_1\cap X_2]-N_1(\eta + Adv_{TC}^{binding})$, therefore, the difference between the probability with which $P_2*(X_2)$ outputs $X_1 \cap X_2$ under the ideal-world adversary S_1 's attacks and the probability with which $P_2(X_2)$ outputs $X_1 \cap X_2$ under the real-world adversay A's attacks against Ψ is upper-bounded by $N_1(\eta + Adv_{TC}^{binding})$, also a negligible function in k. Combining all the above facts, for any P.P.T. environment Z we have output_Z(ψ , A) \approx ^{PPT} output_Z (F_{INT} ,

 S_1), i.e., $\Psi \rightarrow^{GUC} F_{INT}$ in $F_{Blind\text{-}UKG}^{\Pi}$ -hybrid model.

Now replace the ideal functionality $F^{\Pi}_{Blind\text{-}UKG}$ with $\Delta^{\Pi}_{Blind\text{-}UKG}$ in Ψ . By what is just proved, the assumption $\Delta^{\Pi}_{Blind\text{-}UKG} \to G^{GUC}$ $F^{\Pi}_{Blind\text{-}UKG}$ and the GUC-theorem, we still have the GUC-emulation consequence. In addition, it's not hard to estimate S_1 's time complexity $T_{S1} = T_A + O(N_2 + N_1 T_e)$ where T_A and T_e are A's and the knowledge extractor's computation time.

(2) A corrupts P_2 : Denote A's(i.e., P_2 's) own set as $X_2 = \{y^*_1, ..., y^*_{N2}\}$, P_1 *'s own set as $X_1 = \{x^*_1, ..., x^*_{N1}\}$, we need to construct an ideal adversary S_2 . S_2 corrupts P_2 *, gets $usk(P_2)$ by querying the pre-setup G_{ACRS} with ("retrieve",sid, P_2) where $usk(P_2) = usk_{TC}(P_2) ||usk_{\Delta}(P_2)||usk_{ZK}(P_2)$, generates $(\sigma,s) \leftarrow IA-NMZPoK::Sim_1(usk_{ZK}(P_2))$, runs A as a black-box and simulates the real-world honest party P_1 to interact with A:

On receiving message (sid, "input", N_1) from F_{INT} , S_2 generates $x_1, ..., x_{N1}$ at random, computes $(mpk, msk) \leftarrow \text{Setup}(k)$ and $\xi_i \leftarrow \text{E}(mpk, x_i, M_0; r_i)$ for each x_i where r_i is the independent randomness in each encryption, computes $(cmt^0, \lambda) \leftarrow \text{FakeCmt}(mpk_{TC}, P_2, usk_{TC}(P_2))$, starts A and sends the message $mpk || cmt^0$ to A;

 S_2 interacts with A as the user private-key generator in $\Delta^{\Pi}_{Blind\text{-UKG}}$ and calls the extractor $\Delta^{\Pi}_{Blind\text{-UKG}}$::Ext_{\(\delta\)}(usk_{\(\Delta\)}(P₂)) to extract $y^*_{1},...,y^*_{N2}$, sends the message (sid, "input", P₂*, { $y^*_{1},...,y^*_{N2}$ }) to F_{INT} ;

 S_2 sends the message (sid, "intersection", P_2 *) to F_{INT} and gets the response $\{y^*_{j1}, \dots, y^*_{jt}\}$ (i.e., the set-intersection). To simplify the symbol, denote this response set as $\{y^*_1, \dots, y^*_t\}$.

S₂ computes $\xi^*_i \leftarrow E(mpk, y^*_i, M_0; r^*_i)(r^*_i)$'s are selected at random)for i=1,...,t, replaces arbitrary $t \xi_i$'s with ξ_i *'s and keeps other N₁-t ξ_i 's unchanged, making a new sequence denoted as $\xi^*_1 \parallel ... \parallel \xi^*_{N_1}$, computes $dmt^0 \leftarrow FakeDmt(mpk_{TC}, \xi^*_1 \parallel ... \parallel \xi^*_{N_1}, \lambda, cmt^0)$. S₂ sends the message $\xi^*_1 \parallel ... \parallel \xi^*_{N_1} \parallel dmt^0$ to A, interacts with A by calling IA-NMZPoK::Sim₂($\xi^*_1 \parallel ... \parallel \xi^*_{N_1}$, s) where $\xi^*_i = E(mpk, x^0_i, M_0; r^*_i)$, $i=1,...,N_1$), $x^0_i = y^*_i$ for t of N₁ i's and $x^0_i = x_i$ for other i's.

Finally S_2 outputs whatever A outputs to the environment.

Let $tr(S_2,A)$ denote the transcripts due to the interaction between A and S_2 , $tr^{\Psi}(P_1(X_1),A)$ denote the transcripts due to the interaction between A and the real-world party $P_1(X_1)$ (possessing the same set $X_1 = \{x_1 *, ..., x *_{N1}\}$ as the ideal-world party $P_1 *$). From A's perspective, the differences between these two transcripts are: a)cmt in these two transcripts are respectively cmt^0 output by FakeCmt and cmt output by $Cmt(mpk_{TC}, P_2, E(mpk_x_1 *, M_0; r_1)||...||E(mpk_x *_{N1}, M_0; r_{N1})|$; b) dmt in these two transcripts are dmt^0 output by FakeDmt and dmt output by $Cmt(mpk_{TC}, P_2, E(mpk_x_1 *, M_0; r_1)||...||E(mpk_x *_{N1}, M_0; r_{N1})|$) respectively c)Among the ciphertext sequence $\xi_1 ||...|| \xi_{N1}$ in these two transcripts, there are t ciphertexts ξ_i having the same identity public-key(i.e., $x *_i$) but the remaining N_1 -t ciphertexts having different identity public-keys; d)there are t IA-NMZPoK-witness' with the same x^0 _i.

By TC's equivocation property, (cmt,dmt)'s are P.P.T.-indistinguishable in both cases; because of IBE scheme's selective ANO_CPA anonymity, $\xi_1\|...\|\xi_{N1}\|dmt$ in both cases are P.P.T.-indistinguishable (otherwise suppose they are P.P.T.-distinguishable with the difference $\delta \ge 1/poly(k)$, it's easy to construct a selective ANO_CPA attacker against Π with an advantage at least δ/N_1 , contradicting with Π 's selective ANO_CPA anonymity). Now denote the ciphertext sequence $\xi_1\|...\|\xi_{N1}$ in two cases as $\xi_1^{(1)}\|...\|\xi_{N1}^{(1)}$ and $\xi_1^{(2)}\|...\|\xi_{N1}^{(2)}$ respectively, denote the transcripts in session of IA-NMZPoK as

IA-NMZPoK⁽¹⁾(=tr_{S2(x1,...,xN1),A}($mpk \| M_0 \| \xi_1^{(1)} \| ... \| \xi_{N1}^{(1)})$) and IA-NMZPoK⁽²⁾(=tr_{P1(x*1,...,x*N1),A}($mpk \| M_0 \| \xi_1^{(2)} \| ... \| \xi_{N1}^{(2)} \| ... \| \xi_{N1}^{(1)} \approx^{PPT} \xi_1^{(2)} \| ... \| \xi_{N1}^{(2)} ;$ furthermore, by IA-NMZPoK's zero-knowledge property we have

IA-NMZPoK⁽²⁾
$$\approx^{\text{PPT}}$$
 IA-NMZPoK::Sim₂($\xi_1^{(2)} || ... || \xi_{N_1}^{(2)}, s$)

and by S_2 's construction we also have

$$IA-NMZPoK^{(1)} = IA-NMZPoK::Sim_2(\xi_1^{(1)}||...||\xi_{N1}^{(1)},s)$$
 so $IA-NMZPoK^{(1)} \approx^{PPT} IA-NMZPoK^{(2)}$.

As a result, the transcripts received by A in both cases are P.P.T.-indistinguishable.

Let δ be $\Delta^{\Pi}_{\text{Blind-UKG}}$'s extractor's error function(negligible in k), then the probability with which S_2 correctly extracts A's one data-item y^*_i is at least $P[A(mpk; P_1(mpk, msk)) = \text{UKG}(msk, y^*_i)] - \delta$, so the probability with which S_2 correctly extracts A's all data-items y^*_1, \dots, y^*_{N2} is at least $P[A(mpk; P_1(mpk, msk)) = \text{UKG}(msk, y^*_i): i=1,\dots,N_2] - N_2 \delta \geq P[X_0 = X_1 \cap X_2] - N_2 \delta$. As a result, S_2 's output is P.P.T.-indistinguishable from A's output in Ψ with respect to the GUC-environment Z with an error upper-bounded by $N_1(k) A dv_{\Pi}^{ANO} - (k) + N_2 \delta$, which is also negligible in k. Note that in both cases the other party $P_1^*(X_1)$ and $P_1(X_1)$ always output the same N_2 , so we have the consequence that output $P_1^*(X_1) = P^*_1(N_1 + N_2)$ and it's easy to estimate $P_1^*(X_1) = P^*_1(N_1 + N_2)$ where $P_1^*(X_1) = P^*_1(N_1 + N_2)$ and it's easy to estimate $P_2^*(X_1) = P^*_1(N_1 + N_2)$ where $P_1^*(X_1) = P^*_1(N_1 + N_2)$ and it's easy to estimate $P_2^*(X_1) = P^*_1(N_1 + N_2)$ output $P_1^*(X_1) = P^*_1(N_1 + N_2)$ and it's easy to estimate $P_1^*(X_1) = P^*_1(N_1 + N_2)$ output $P_1^*(X_1) = P^*_1(N_1 + N_2)$ and it's easy to estimate $P_1^*(X_1) = P^*_1(N_1 + N_2)$ output $P_1^*(X_1) = P^*_1(N$

By all the facts, we have $\Psi \rightarrow^{GUC} F_{INT}$.

APPENDIX.C PROOF OF THEOREM 4.1

For intuition the protocol $\Delta^{Boyen-Waters}_{Blind-UKG}$ is presented in the figure below, in which IA-NMZPoK's arrows point from zero-knowledge's prover to its verifier.

P₁(mpk, msk) ACRS=mpk_{ZK,II}||mpk_{ZK,II}| P₂(mpk, a)

IA-NMZPoK_{II}(msk: mpk=Setup(msk)) select
$$r_1, r_2, y_1, y_2, y_3, y_4$$
 at random;

 $U_i \leftarrow g^{r_i}, V_i \leftarrow (g_0g_1^a)^{-r_i}, i=1, 2$
 $h_j \leftarrow g^{y_j}g_1^a \quad j=1, 2, 3, 4$

U₁||U₂||V₁||V₂||h₁||h₂||h₃||h₄

IA-NMZPoK_{III}((a, $r_1, r_2, y_1, y_2, y_3, y_4$): $\wedge_{i=1,2}U_i = g^{r_i} \wedge_{i=1,2}V_i = (g_0g_1^a)^{-r_i} \wedge_{j=1,2,3,4}h_j = g^{y_j}g_1^a$)

select σ, r_1', r_2' at random;

 $d_0 \leftarrow (g^{r_i}U_1^\sigma)^{t_it_2} (g^{r_2}U_2^\sigma)^{t_3t_4};$
 $d_1' \leftarrow g^{-\sigma t_2} (h_1g_0)^{-r_it_2} y_1^{-\sigma t_2}; d_1'' \leftarrow g^{-r_it_2};$
 $d_2' \leftarrow g^{-\sigma t_1} (h_2g_0)^{-r_it_2} Y_1^{-\sigma t_1}; d_2'' \leftarrow g^{r_it_1};$
 $d_3' \leftarrow (h_3g_0)^{-r_2t_4} Y_2^{-\sigma t_4}; d_3'' \leftarrow g^{r_2t_3};$
 $d_4' \leftarrow (h_4g_0)^{-r_2t_3} Y_2^{-\sigma t_3}; d_4'' \leftarrow g^{r_2t_3};$

$$d_0||d_1'||d_1''||d_2''||d_2''||d_3'||d_3''||d_4''|$$

$$d_j \leftarrow d_j' d_j^{r_j}, j=1,2,3,4$$
output(d_0, d_1, d_2, d_3, d_4)

By direct calculation it's easy to show the protocol's output's correctness. Now we present the GUC-security proof sketch. All parties are assumed to be initialized with a copy of the common reference string ACRS, i.e., the concatenation of the two IA-NMZPoK protocol's $mpk_{ZK,II}$ and $mpk_{ZK,III}$. For this ACRS, $msk=msk_{ZK,II}||msk_{ZK,III}|$ and UKG(msk,id) outputs $usk(id)=usk_{ZK,II}(id)||usk_{ZK,III}(id)|$ where $usk_{ZK,II}(id)$ and $usk_{ZK,III}(id)$ are respectively two IA-NMZPoK protocol's user private-keys corresponding to $id \in \{P_1, P_2\}$.

At first it's easy to show there exists an identity extractor for $\Delta_{Blind-UKG}^{Boyen-Waters}$ to satisfy definition 3.1. In fact it is IA-NMZPoK_{III}($(a, r_1, r_2, y_1, y_2, y_3, y_4)$: $\wedge_{i=1,2}U_i=g^{r_i} \wedge_{i=1,2}V_i=(g_0g_1^a)^{-r_i} \wedge_{j=1,2,3,4}h_j=g^{y_j}g_1^a$)'s knowledge extractor for which the to-be-extracted witness is a.

Now we prove $\Delta_{Blind-UKG}^{Boyen-Waters}$'s GUC-security in two cases that the real-world adversary A corrupts P_1 or P_2 respectively. Below P_1^* and P_2^* stand for P_1 and P_2^* s respective counterparts in ideal-world. (1) A corrupts P_1 : Suppose A's(i.e., P_1 's) private input is (mpk, msk), P_2^* 's private input is a^* . we need to construct an ideal adversary S_1 . S_1 corrupts the ideal-world party P_1^* , gets $usk(P_1)$ by querying G_{ACRS} with the message ("retrieve",sid, P_1) where $usk(P_1)=usk_{ZK,II}(P_1)||usk_{ZK,III}(P_1)$, computes $(\sigma_{II},s_{II},\tau)\leftarrow IA-NMZPoK_{II}$::Ext₁($usk_{ZK,II}(P_1)$)(notice that P_1 is the prover in protocol IA-NMZPoK_{II}), runs A as a black-box. S_1 simulates the real-world honest party P_2 to interact with A:

In session of IA-NMZPoK_{II}(msk: mpk=ESetup(msk)), S_1 interacts with A as a verifier extracting msk via running IA-NMZPoK_{II}::Ext₂(τ), sends message (sid, mpk||msk) to $F_{Blind-UKG}^{Boyen-Waters}$;

 S_1 generates an user-id a at random, follows P_2 's specification in section 4.2 to compute U_1, U_2, V_1 , V_2, h_1, h_2, h_3, h_4 , sends $U_1 ||U_2||V_1 ||V_2||h_1||h_2||h_3||h_4$ to A, computes $(\sigma_{III}, s_{III}) \leftarrow IA-NMZPoK_{III}$:: $Sim_1(usk_{ZK,III}(P_1))$ (notice that P_1 is the verifier in protocol IA-NMZPoK_{III}) and sends IA-NMZPoK_{III}:: $Sim_2(U_1 ||U_2 ||V_1 ||V_2 ||h_1 ||h_2 ||h_3 ||h_4, s_{III})$ to A.

 S_1 outputs whatever A outputs to the environment.

Denote the second-round message in $\Delta_{Blind-UKG}^{Boyen-Waters}$'s specification (i.e., $U_1||U_2||V_1||V_2||h_1||h_2||h_3||h_4$) as W. From A's perspective, the transcripts due to its interactions with S_1 and the transcripts due to its interactions with the real-world party $P_2(a^*)(P_2(a^*))$ stands for party P_2 possessing a^* , the same private input as the ideal-world party P_2^* differs in: a)W depends on a in the former case, denoted as W(a), while it depends on a^* in the latter case and denoted as $W(a^*)$; b IA-NMZPoK_{III}'s witness depends on a in the former case while it depends on a^* in the latter. The messages of subprotocol IA-NMZPoK_{III} in these two cases are respectively denoted as IA-NMZPoK_{III}(a) and IA-NMZPoK_{III}(a^*).

Let $g_0 \equiv g^{\alpha}$, $g_1 \equiv g^{\alpha^*}$. Explicitly expand W(a)'s expression to $g^{r_1} \parallel g^{r_2} \parallel g^{-(\alpha+a\beta)r_1} \parallel g^{-(\alpha+a\beta)r_2} \parallel g^{y_1+a\beta} \parallel ... \parallel g^{y_1+a\beta}$ and $W(a^*)$ to a similar expression where $a, r_1, r_2, y_1, y_2, y_3, y_4, \alpha$ and $a^*, r_1^*, r_2^*, y_1^*, y_2^*, y_3^*, y_4^*, \alpha^*$ are probabilistically independent and all are unknown to A, so $W(a) \approx W(a^*)$ (perfectly indistinguishable). Furtheremore, by IA-NMZPoK_{III}'s zero-knowledge property we have

IA-NMZPoK_{III}::Sim₂(
$$W(a^*)$$
, s_{III}) \approx^{PPT} IA-NMZPoK_{III}(a^*)

and by S_1 's construction we also have

$$\begin{split} & \text{IA-NMZPoK}_{\text{III}}::\text{Sim}_2(W(a), s_{\text{III}}) = \text{IA-NMZPoK}_{\text{III}}(a) \\ & \text{so} \quad \text{IA-NMZPoK}_{\text{III}}(a) = \quad \text{IA-NMZPoK}_{\text{III}}::\text{Sim}_2(W(a), s_{\text{III}}) \approx \quad \text{IA-NMZPoK}_{\text{III}}::\text{Sim}_2(W(a^*), s_{\text{III}}) \approx \\ & \text{PPT} \end{split}$$

IA-NMZPoK_{III}(a^*). As a result, from A's perspective the transcripts due to its interactions with S_1 is P.P.T.-indistinguishable from that due to its interactions with $P_2(a^*)$, in particular, the output of A due to its interactions with S_1 is P.P.T.-indistinguishable from its output due to its interactions with $P_2(a^*)$ in $\Delta^{Boyen-Waters}_{Blind-UKG}$.

Let η_{II} denote IA-NMZPoK_{II}'s knowledge extractor's error function(a negligible function in k), then the probability with which P*₂(a*) outputs Π ::UKG(msk,a*) under S_1 's attacks is at least $P[P_2$ accepts mpk as a valid master public-key]- η_{II} , i.e., except for an probability upper-bounded by η_{II} , P*₂(a*)'s output under S_1 's attacks is the same as $P_2(a$ *)'s output under A's attacks, in other words, for any P.P.T. environment Z we have output_Z($\Delta_{Blind-UKG}^{Boyen-Waters}$, A_1) \approx^{PPT} output_Z($F_{Blind-UKG}^{Boyen-Waters}$, S_1) and it's easy to estimate S_1 's time-complexity T_{S1} = T_A + T_{eII} +O(1) where T_A and T_{eII} are A's and $Ext_{II,2}$'s computation-time.

(2) A corrupts P₂: Let a denote A's (i.e., P₂'s) private input, (mpk*,msk*) denote the ideal-world party P₁*'s input where $mpk*=(G_1,G_2,p,e,\ \Omega^*,\ g,\ g_0,\ g_1,\ v_1^*,\ v_2^*,\ v_3^*,\ v_4^*)$ and $msk*=(\omega^*,\ t_1^*,\ t_2^*,\ t_3^*,\ t_4^*)$. We need to construct an ideal-world adversary S₂ which corrupts P₂*, gets $usk(P_2)$ by querying G_{ACRS} with the message ("retrieve", sid, P₂) where $usk(P_2)=usk_{ZK,II}(P_2)||usk_{ZK,III}(P_2)$, runs A as a black-box and simulates the honest real-world party P₁ to interact with A:

On receiving the message (sid, mpk^*) from $F_{Blind-UKG}^{Boyen-Waters}$, S_2 generates ω , t_1 , t_2 , t_3 , t_4 at random and computes

```
\Omega \leftarrow e(g,g)^{t_1t_2\omega}; v_1 \leftarrow g^{t_1}; v_2 \leftarrow g^{t_2}; v_3 \leftarrow g^{t_3}; v_4 \leftarrow g^{t_4}; mpk \leftarrow (G_1, G_2, p, e, \Omega, g, g_0, g_1, v_1, v_2, v_3, v_4); msk \leftarrow (\omega, t_1, t_2, t_3, t_4); (\sigma_{II}, s_{II}) \leftarrow IA-NMZPoK_{II}:Sim_1(usk_{ZK,II}(P_2)); (\sigma_{III}, s_{III}, \tau) \leftarrow IA-NMZPoK_{III}::Ext_1(usk_{ZK,III}(P_2));
```

Note that P₂ is the verifier in protocol IA-NMZPoK_{II} and prover in IA-NMZPoK_{III}.

 S_2 starts A and interacts with it by running IA-NMZPoK_{II}::Sim₂(mpk,s_{II});

When A sends $U_1||U_2||V_1||V_2||h_1||h_2||h_3||h_4$ and then launches IA-NMZPoK_{III} ((a, r_1 , r_2 , y_1 , y_2 , y_3 , y_4):...), S_2 participates the session as an verifier by running IA-NMZPoK_{III}::Ext₂(τ) to extract (a, r_1 , r_2 , y_1 , y_2 , y_3 , y_4)(in fact only a is used below);

 S_2 sends the message (sid||1,a) to $F_{Blind-UKG}^{Boyen-Waters}$ and gets the response (sid||1,UKG(msk^* ,a)) where UKG(msk^* ,a) \equiv (d_0^* , d_1^* , d_2^* , d_3^* , d_4^*);

 S_2 generates d_j " at random, computes $d_j \leftarrow d_j^* / d_j^{"y_j}$, j=1,2,3,4, sends $d_0 \parallel d_1 \parallel d_2 \parallel d_2 \parallel d_3 \parallel d_3 \parallel d_4 \parallel d_4$

Now we prove that from A's perspective the transcripts due to its interactions with S_2 and that due to its interactions with $P_1(mpk^*,msk^*)$ (a real-world party possessing the same input as the ideal-world party P_1^*) are P.P.T.-indistinguishable.

At first, consider the transcripts in IA-NMZPoK_{II}'s session. Let IA-NMZPoK_{II}(*) and IA-NMZPoK_{II}() denote the messages generated by $P_1(mpk^*, msk^*)$ and S_2 in this session respectively. By IA-NMZPoK_{II}'s zero-knowledge property we have

IA-NMZPoK_{II}::Sim₂(
$$mpk^*$$
, s_{II}) \approx^{PPT} IA-NM ZPoK_{II}(*)

and by S_2 's construction we have

$$IA-NMZPoK_{II}::Sim_2(mpk, s_{II}) = IA-NMZPoK_{II}()$$

Let Ω_R denote a random element on group G_2 . Since $\omega^*, \omega, t_i^*, t_i$ (i=1,2,3,4) are probabilistically independent and all are unknown to A, from A's perspective we have

So IA-NMZPoK_{II}(*) \approx^{PPT} IA-NMZPoK_{II}::Sim₂(mpk*,s_{II}) \approx^{PPT} IA-NMZPoK_{II}::Sim₂(mpk,s_{II}) = IA-NMZPoK_{II}().

Now consider the last-round message, which are $d^*_0||d_1'||d_1''||d_2''||d_3''||d_3''||d_4''||d_4''$ and $d^*_0||d^*_1''||d^*_1''||d^*_2''||d^*_2''||d^*_3''||d^*_4''||d^*_4''$ in these two cases(interacting with S_2 and with $P_1(mpk^*, msk^*)$) respectively. Both messages have the same component d^*_0 , all other components are denoted as D and D^* respectively. Expanding D we get

$$D \equiv d_1^* / d_1^{"y_1} \| d_1^{"} \| d_2^* / d_2^{"y_2} \| d_2^{"} \| d_3^* / d_3^{"y_3} \| d_3^{"} \| d_4^* / d_4^{"y_4} \| d_4^{"}$$
 where d_1^* , d_2^* , d_3^* , d_3^* come from UKG(msk_3^* , i.e., $d_1^* \equiv g^{-\varpi^*t_2^*} (g_0 g_1^a)^{-\widetilde{r}_1 t_2^*}$, $d_2^* \equiv g^{-\varpi^*t_1^*} (g_0 g_1^a)^{-\widetilde{r}_1 t_1^*}$, $d_3^* \equiv (g_0 g_1^a)^{-\widetilde{r}_2 t_4^*}$, $d_4^* \equiv (g_0 g_1^a)^{-\widetilde{r}_2 t_3^*}$.

Expanding D^* we get

$$D^* \equiv g^{-\sigma^* t_2 *} (h_1 g_0)^{-r'_1 t_2 *} V_1^{\sigma t_2 *} \| g^{r_1 t_2 *} \| g^{-\sigma t_1 *} (h_2 g_0)^{-r'_1 t_1 *} V_1^{\sigma t_1 *} \| g^{r_1 t_1 *} \| (h_3 g_0)^{-r'_2 t_4 *} V_2^{\sigma t_4 *} \| \| g^{r_2 t_4 *} \| (h_4 g_0)^{-r'_2 t_3 *} V_2^{\sigma t_3 *} \| g^{r_2 t_3 *} \| g^{r_2 t_3 *} \| g^{r_2 t_4 *} \| (h_3 g_0)^{-r'_2 t_4 *} V_2^{\sigma t_3 *} \| g^{r_2 t_3 *} \| g^{r_2 t_4 *} \|$$

where σ , $\widetilde{r_i}$, r_i ' and d_j " are probabilistically independent each other and unkown to A, σ , r_i ' are generated by P_1 , d_j " by S_2 , $\widetilde{r_i}$ by $F_{Blind-UKG}^{Boyen-Waters}$.

Since r_1 ' and r_2 ' are probabilistically independent each other, D^* 's 4 leftmost-components are probabilistically independent of those 4 rightmost-ones; note that t^*_1 , t^*_2 , t^*_3 , t^*_4 are also probabilistically independent each other, we finally partition D^* into 4 independent components D_i^* as:

$$D_{1}^{*} \equiv g^{-\sigma^{*}t_{2}^{*}} (h_{1}g_{0})^{-r'_{1}t_{2}^{*}} V_{1}^{\sigma t_{2}^{*}} \parallel g^{r'_{1}t_{2}^{*}}$$

$$D_{2}^{*} \equiv g^{-\sigma t_{1}^{*}} (h_{2}g_{0})^{-r'_{1}t_{1}^{*}} V_{1}^{\sigma t_{1}^{*}} \parallel g^{r'_{1}t_{1}^{*}}$$

$$D_{3}^{*} \equiv (h_{3}g_{0})^{-r'_{2}t_{4}^{*}} V_{2}^{\sigma t_{4}^{*}} \parallel g^{r'_{2}t_{4}^{*}}$$

$$D_{4}^{*} \equiv (h_{4}g_{0})^{-r'_{2}t_{3}^{*}} V_{2}^{\sigma t_{3}^{*}} \parallel g^{r'_{2}t_{3}^{*}}$$

Similarly partition D into 4 independent components D_i as:

$$D_1 \equiv d_1^* / d_1^{"y_1} \parallel d_1^{"} \quad D_2 \equiv d_2^* / d_2^{"y_2} \parallel d_2^{"} \quad D_3 \equiv d_3^* / d_3^{"y_3} \parallel d_3^{"} \quad D_4 \equiv d_4^* / d_4^{"y_4} \parallel d_4^{"}$$

The problem is now reduced to analysis on relationship between D_i and D^*_i . Consider $D_3^* \equiv (h_3 g_0)^{-r_2 t_4^*} V_2^{\sigma t_4^*} \parallel g^{r_2 t_4^*}$ and $D_3 \equiv d_3^* / d_3^{"y_3} \parallel d_3^"$: obviously $D_3 \approx (h_3 g_0)^{-\widetilde{r_2} t_4^*} / g^{y_3 r_2 t_4^*} \parallel g^{r_2 t_4^*}$ so it's adequate to analyze the relationship between $(h_3 g_0)^{-r_2 t_4^*} V_2^{\sigma t_4^*}$ and $(g_0 g_1^a)^{-\widetilde{r_2} t_4^*} / g^{y_3 r_2 t_4^*}$. Further note that $(h_3 g_0)^{-r_2 t_4^*} \approx (h_3 g_0)^{-\widetilde{r_2} t_4^*}$, $V_2^{\sigma t_4^*} \approx g^{-y_3 r_2 t_4^*}$, $(h_3 g_0)^{-\widetilde{r_2} t_4^*}$ are independent each other, so $D_3^* \approx D_3$. For the same reason $D_4^* \approx D_4$.

other, so $D_3*\approx D_3$. For the same reason $D_4*\approx D_4$.

Consider $D_1*\equiv g^{-\varpi^*t_2*}$ $(h_1g_0)^{-r_1't_2*}V_1^{\sigma t_2*}$ $\parallel g^{r_1't_2*}$ and $D_1\equiv d_1^*/d_1^{"y_1}\parallel d_1^{"}$: obviously $D_1\approx g^{-\varpi^*t_2*}(g_0g_1^a)^{-\widetilde{r}_1t_2*}/g^{r_1't_2*y_1}\parallel g^{r_1t_2*}$, by similar analysis as before we have $D_1*\approx D_1$. For the same reason $D_2*\approx D_2$. Therefore:

$$d^*_0||d_1|||d_1|||d_2|||d_2|||d_3|||d_3|||d_4|||d_4|| \approx d^*_0||d^*_1|||d^*_1|||d^*_2|||d^*_2|||d^*_3|||d^*_3|||d^*_4||d^*_4||$$

In consequence, under the assumption of D-BDHP's hardness on J, from A's perspective the

transcripts due to its interactions with S_2 and that due to its interactions with $P_1(mpk^*, msk^*)$ are P.P.T.-indistinguishable. In particular, A's output in the former case is P.P.T.-indistinguishable from its output in the latter, the error is (by some straightforward calculation) upper-bounded by η_{III} +2 $Adv_J^{D-BDHP}(k)$ where η_{III} is IA-NMZPoK_{III}'s knowledge extractor's error function. As a result, for any P.P.T. environment Z we have output_Z($\Delta_{Blind-UKG}^{Boyen-Waters}$, A) \approx^{PPT} output_Z($F_{Blind-UKG}^{Boyen-Waters}$, S_2) and it's easy to estimate S_2 's time-complexity $T_{S2}=T_A+T_{eIII}+O(1)$ where T_A and T_{eIII} are A's and IA-NMZPoK_{III}'s extractor's computation-time.

Combining all consequences in the above, the theorem is finally proved.

APPENDIX.D IA-NMZPoK PROTOCOL'S CONSTRUCTION AND INSTANTIATION

D.1 (Dense) Ω -Protocol^[6,13]

A Ω -protocol for a given relation R is a 3-move protocol in CRS model consisted of P.P.T. algorithms D, A, Z, Φ , Sim and Ext=(Ext₁,Ext₂). D is the CRS generating algorithm. All algorithms except D takes a CRS ω as one of its inputs. For some (x,w) s.t.R(x,w)=1 the common input for both the prover P and the verifier V is x and witness w is P's private input. In the first move P generates a randomness r, computes $a \leftarrow A(\omega,x,w,r)$ and sends a to V; in the second move, V selects a challenge c at random and sends it back to P; then P computes $z \leftarrow Z(\omega,x,w,r,c)$ and sends z to V in the last move; on receiving z, V outputs "accept" or "refuse" depending on whether $\Phi(\omega,x,a,c,z)$ =1 or 0. In addition, a Ω -protocol has the following properties [13]:

- (1) For the honest P which behaves under the above specification, $\Phi(\omega, x, a, c, z) = 1$ is always true.
- (2) Given c and $x \in L_R$ the simulator $Sim(\omega, x, c)$ can generate accepting transcripts with a distribution that is P.P.T.-indistinguishable from those when P and V execute the protocol on common input x while V selects c as the challenge.
- (3) $(\sigma,\tau)\leftarrow \operatorname{Ext}_1(k)$ where σ is P.P.T.-indistinguishable from $\omega\leftarrow \operatorname{D}(k)$; in addition, if there exists two accepting transcripts (a, c, z) and (a, c', z') where $c\neq c'$ for some given $x\in L_R$, then $\operatorname{Ext}_2(x, \tau, (a, c, z))$ outputs w such that $\operatorname{R}(x,w)=1$.

A dense Ω -protocol has the additional property as follows [6]:

(4) The CRS-domain D is a subset of a larger domain, D*(named extended CRS-domain), which is an Abelian group and its group operations are all efficient. Furthermore, the element of D and D* is P.P.T.-indistinguishable from each other.

D.2 A General Construction of IA-NMZPoK Protocol

Now we present a general construction for IA-NMZPoK protocol(definition 2.3-2.4) for given relation R. It uses a secure (strong existential-unforgeable) one-time signature scheme, a secure IBTC sheme(definition 2.5) and a dense Ω -protocol as its components. Note that among these components the secure one-time signature scheme and IBTC scheme can all be efficiently constructed, only the

 Ω -protocol is related with the specific relation R, therefore the construction can be regarded as a general transformation from the (comparatively weak) Ω -protocol to the (strong) IA-NMZPoK protocol.

This construction is similar as that in [13] and borrows the coin-tossing technique used in [5-6]. Given a binary relation R and its dense Ω -protocol Ω_R =(D,A,Z, Φ ,Sim, Ext=(Ext₁,Ext₂)) with its CRS denoted as ω ; SIG=(KGen,Sign,Vf) is a strong existential-unforgeable one-time signature scheme; IBTC=(D_{TC},Setup,UKG,Cmt,Vf,FakeCmt, FakeDmt) is a secure IBTC scheme with its master public/secret-key pair denoted as (mpk_{TC} , msk_{TC}). The constructed protocol IA-NMZPoK_R (see Figure D.1) is in the ACRS model and its ACRS is the IBTC scheme's master public-key mpk_{TC} .

For clearity, we use IBTC::Cmt to stand for IBTC scheme's commitment algorithm Cmt, SIG::Sign to stand for SIG scheme's signing algorithm Sign, etc. P and V denote the prover(P)'s and verifier(V)'s identities respectively. ξ denotes the protocol's transcripts excluding the signature, i.e., $\xi \equiv k_1 ||\omega_2||\omega_1||d_1||sig_vk||cmt||c||a||dmt||z$. Actually the first 3-move session is an IBTC-based coin-tossing [5-6] to generate a CRS ω for the following protocol Ω_R and the second 3-move session is similar as the construction of NMZPoK protocol in [13].

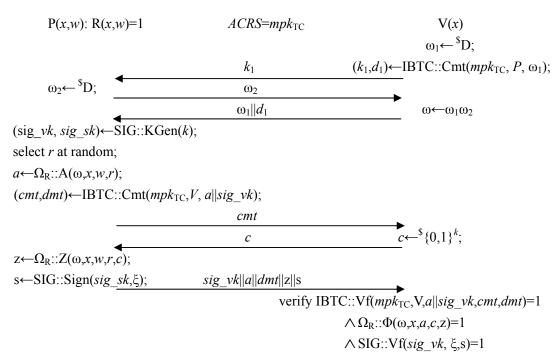


Figure D.1 IA-NMZPoK protocol IA-NMZPoK_R for relation R.

Theorem D.1 IA-NMZPoK_R is an IA-NMZPoK protocol for relation R.

Proof sketch The proof is similar as that of [13]'s theorem 4.1-4.2, the most difference is the simulation algorithm $Sim=(Sim_1,Sim_2)$ and the extraction algorithm $Ext=(Ext_1,Ext_2)$ which are presented here.

Let $usk(P) \equiv IBTC::UKG(msk_{TC},P)$, $usk(V) \equiv IBTC::UKG(msk_{TC},V)$. $Sim_1(usk(V))$ normally simulates the coin-tossing (the first 3-move session in IA-NMZPoK_R) as specified in the construction

and its simulated transcript is denoted as $k_1 \|\omega_2\| \|\omega_1\| \|d_1$, then it outputs $k_1 \|\omega_2\| \|\omega_1\| \|d_1\| \|usk(V)$. Sim₂(mpk_{TC} , x, ω , $k_1 \|\omega_2\| \|\omega_1\| \|d_1\| \|usk(V)$) (where $\omega = \omega_1 \omega_2$) computes (cmt, λ) \leftarrow IBTC::FakeCmt(mpk_{TC} , V, usk(V)) and (sig_vk, sig_sk) \leftarrow SIG::KGen(k), selects c at random, computes (a,z) \leftarrow Ω_R ::Sim(ω ,x,c), d \leftarrow FakeDmt(mpk_{TC} , $a\|sig_vk$, a, cmt), s \leftarrow SIG::Sign(sig_sk ,b) where b is the whole transcript (as specified in the construction) excluding the signature s. Finally Sim₂ outputs

$$k_1 \|\omega_2\|\omega_1\|d_1\|cmt\|c\|sigvk\|a\|d\|z\|s$$

For the extractor $\operatorname{Ext}=(\operatorname{Ext}_1,\operatorname{Ext}_2)$, $\operatorname{Ext}_1(usk(P))$ computes $(\omega,\tau)\leftarrow\Omega_R::\operatorname{Ext}_1(k)$ and outputs $(\omega,usk(P)||\tau)$. $\operatorname{Ext}_2(mpk_{TC},\omega,usk(P)||\tau)$ computes $(\overline{k_1},\lambda_1)\leftarrow\operatorname{IBTC}::\operatorname{FakeCmt}(mpk_{TC},P,usk(P))$ and sends $\overline{k_1}$ out; on receiving ω_2 , it computes $\omega_1\leftarrow\omega/\omega_2$, $\overline{d_1}\leftarrow\operatorname{FakeDmt}(mpk_{TC},\omega_1,\lambda_1,\overline{k_1})$ and responses with $\omega_1||\overline{d_1}|$; then it randomly generates a challenge c on receiving cmt. When it gets the last message sig(vk||a||dmt||z||s), it checks all the required conditions and call $\Omega_R::\operatorname{Ext}_2(\omega,x,\tau,a||c||z)$.

Now it can be shown that $Sim=(Sim_1,Sim_2)$ and $Ext=(Ext_1,Ext_2)$ indeed satisfy the properties in definition 2.3-2.4, the analysis is almost the same as in the proof of [13]'s theorem 4.1-4.2.

D.3 An Efficient Instantiation

Now we can present how to efficiently construct all the related IA-NMZPoK protocols in case of Boyen-Waters scheme for our protocol Ψ and $\Delta^{Boyen-Waters}_{Blind-UKG}$. By the construction in last subsection, it's adequate to construct the related dense Ω -protocols for those specific relations deduced from Boyen-Waters IBE scheme [3]. So below we only focus on these Ω -protocols' construction.

For reading convenience let's completely present the Boyen-Waters IBE scheme here which is truncated in sec.4.1 for space limitation: Given an bilinear group pairing ensemble $J=\{(p,G_1,G_2,e)\}_k$ where $|G_1|=|G_2|=p$, p is k-bit prime number, $P \in G_1$, $e:G_1 \times G_1 \to G_2$ is a non-degenerate pairing, Boyen-Waters IBE consists of

ESetup(k):

$$\begin{split} g, g_0, g_1 &\leftarrow^{\$} G_1; \ \omega, \ t_1, \ t_2, t_3, t_4 \leftarrow^{\$} Z_p; \ \Omega \leftarrow e(g,g)^{t_1 t_2 \omega}; \\ v_1 &\leftarrow g^{t_1}; \ v_2 \leftarrow g^{t_2}; \ v_3 \leftarrow g^{t_3}; \ v_4 \leftarrow g^{t_4}; \\ mpk &\leftarrow (G_1, G_2, p, e, \ \Omega, g, g_0, g_1, v_1, v_2, v_3, v_4); \\ msk &\leftarrow (\omega, \ t_1, \ t_2, t_3, t_4); \\ \text{return}(mpk, msk); \\ \text{UKG}(msk, a), \ a &\in Z_p: \\ r_1, \ r_2 &\leftarrow^{\$} Z_p; \\ usk(a) &\leftarrow (g^{r_1 t_1 t_2 + r_2 t_3 t_4}, g^{-\varpi t_2}(g_0 g_1^{\ a})^{-r_1 t_2}, g^{-\varpi t_1}(g_0 g_1^{\ a})^{-r_1 t_1}, (g_0 g_1^{\ a})^{-r_2 t_4}, (g_0 g_1^{\ a})^{-r_2 t_3}); \\ \text{return}(usk(a)); \\ \text{E}(mpk, a, M), \ M &\in G_2: \\ s, \ s_1, \ s_2 &\leftarrow^{\$} Z_p; \ \xi \leftarrow (\Omega^{\$}M, \ (g_0 g_1^{\ a})^s, \ v_1^{\ s-\$ 1}, \ v_2^{\ s1}, \ v_3^{\ s-\$ 2}, \ v_4^{\ s2}); \ \text{return}(\xi); \\ \text{D}(mpk, usk(a), \ (\xi_{00}, \xi_0, \xi_1, \xi_2, \xi_3, \xi_4)) \ \text{where} \ usk(a) &= (d_0, d_1, d_2, d_3, d_4): \\ T &\leftarrow e(d_0, \xi_0) e(d_1, \xi_1) e(d_2, \xi_2) e(d_3, \xi_3) e(d_4, \xi_4); \ \text{return}(\xi_{00}T). \\ \text{At first, we note that the relationship in IA-NMZPoK}_{11}(msk: mpk = \text{Setup}(msk)) \ \text{is} \\ (\omega, t_1, t_2, t_3, t_4): \ \Omega &= e(g, g)^{t_1 t_2 \omega} \wedge v_1 = g^{t_1} \wedge v_2 = g^{t_2} \wedge v_3 = g^{t_3} \wedge v_4 = g^{t_4} \end{split}$$

Note that $\Omega = e(g,g)^{t_1t_2\omega} = e(v_1,v_2)^{\omega}$ so the desired relation is equivalent to

$$(\omega, t_1, t_2, t_3, t_4): \Omega = e(v_1, v_2)^{\omega} \wedge v_1 = g^{t_1} \wedge v_2 = g^{t_2} \wedge v_3 = g^{t_3} \wedge v_4 = g^{t_4}$$
(D.1)

Now we analyze how to construct

IA-NMZPoK III $((a, r_1, r_2, y_1, y_2, y_3, y_4): \land_{i=1,2}U_i = g^{r_i} \land_{i=1,2}V_i = (g_0g_1^a)^{-r_i} \land_{j=1,2,3,4}h_j = g^{y_j}g_1^a)$ Observe that (the pairing e is non-degenerate and G_1 , G_2 are both prime-order) $V_i = (g_0g_1^a)^{-r_i}$ iff $e(g, V_i) = e(g^{r_i}, g_0g_1^a)^{-1} = e(U_i, g_0g_1^a)^{-1} = e(U_i, g_0^a)^{-1} =$

$$e(g,V_i) e(U_i,g_0) = e(U_i,g_1)^{-a}$$
 $i=1,2$

$$h_{j} = g^{y_{j}} g_{1}^{a} \text{ iff } e(U_{1}, g_{0}h_{j}) = e(U_{1}, g_{0}g_{1}^{a}) e(U_{1}, g)^{y_{j}} = e(g, V_{1})^{-1} e(U_{1}, g)^{y_{j}}, \text{ i.e.,}$$

$$e(U_{1}, g_{0}h_{j}) e(g, V_{1}) = e(U_{1}, g)^{y_{j}} \text{ } j = 1,2,3,4$$

The above expression is also true if U_2 replaces U_1 . Denote publicly-computable items $F_i \equiv e(g,V_i) \ e(U_i,g_0)$, $f_i \equiv e(U_i,g_1)^{-1}$, $H_j \equiv e(U_1,g_0h_j) \ e(g,V_1)$, $h \equiv e(U_1,g)$, then IA-NMZPoK_{III} becomes an IA-NMZPoK protocol for the relation

$$(a, r_1, r_2, y_1, y_2, y_3, y_4)$$
: $\bigwedge_{i=1,2} U_i = g^{r_i} \bigwedge_{i=1,2} F_i = f_i^a \bigwedge_{j=1,2,3,4} H_j = h^{y_j}$

A further observation tells that $F_1 = f_1^a$ and $F_2 = f_2^a$ are not independent: in fact, let $F_1 = f_1^{a_1}$ and $F_2 = f_2^{a_2}$ then via bilinear pairing we have $e(f_1, F_2) = e(f_1, f_2)^{a_2}$ and $e(F_1, f_2) = e(f_1, f_2)^{a_1}$, i.e., $e(f_1, F_2) = e(F_1, f_2)$ iff $a_1 = a_2$ so one statement of $F_1 = f_1^a$ or $F_2 = f_2^a$ can imply another one by publicly checking $e(f_1, F_2) = e(F_1, f_2)$. Therefore the desired IA-NMZPoK_{III} is equivalent to an IA-NMZPoK protocol for the relation

$$(a, r_1, r_2, y_1, y_2, y_3, y_4): \wedge_{i=1,2} U_i = g^{r_i} \wedge F_1 = f_1^a \wedge_{j=1,2,3,4} H_j = h^{y_j}$$
(D-2)

Now analyze IA-NMZPoK((a,r): $\xi=E(mpk,a,M_0;r)$). In case of Boyen-Waters scheme, denote the public common plaintext as M_0 and the scheme's ciphertext as $\xi=(\xi_{00},\xi_0,\xi_1,\xi_2,\xi_3,\xi_4)$, then IA-NMZPoK((a,r): $\xi=E(mpk,a,M_0;r)$) becomes IA-NMZPoK((a,s,s_1,s_2) : $\xi_{00}=\Omega^sM_0\wedge\xi_0=(g_0g_1^a)^s$ $\wedge\xi_1=v_1^{s-s_1}\wedge\xi_2=v_2^{s_1}\wedge\xi_3=v_3^{s-s_2}\wedge\xi_4=v_4^{s_2}$). Because in theorem 3.1's proof what is needed is just the witness a, with respect to protocol Ψ it's adequate to construct IA-NMZPoK((a,s): $\xi_{00}=\Omega^sM_0\wedge\xi_0=(g_0g_1^a)^s$).

In general G_1 and G_2 are not the same group, e.g., G_1 is usually a prime-order subgroup on elliptic curve while G_2 is a multiplicative subgroup in some finite field. Denote $\chi_{00} = \xi_{00} M_0^{-1}$, t = as, then $\chi_{00} = \Omega^s$, $\xi_0 = (g_0 g_1^a)^s = g_0^s g_1^t$ and it's easy to see that IA-NMZPoK((a,s): $\xi_{00} = \Omega^s M_0 \wedge \xi_0 = (g_0 g_1^a)^s$) ($a = ts^{-1} \mod q$) is equivalent to an IA-NMZPoK protocol for relation

$$(s,t): \gamma_{00} = \Omega^{s} \wedge \xi_{0} = g_{0}^{s} g_{1}^{t}$$
 (D-3)

So far all desired IA-NMZPoK protocols' relations are explicitly presented and can be unified to a group of linear exponent equations on prime-order group G in (D-4)(more generally each equation in (D-4) can be on a different group, but this case can be processed by a trivial generalization of the uniform case in which all equations are on the same group, so we only deal with the latter):

$$\prod_{j=1}^{n} B_{ij}^{x_j} = h_i \quad i=1,...,m$$
 (D-4)

where B_{ij} and h_i are in G and x_i 's are integer witness. [6](see its Appendix.I) presents an efficient construction for relation (D-4)'s dense Ω -protocol which can be directly applied in our work.