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Abstract
The present study is to investigate the Gudermannian neural networks (GNNs) using the optimization procedures of genetic 
algorithm and active-set approach (GA-ASA) to solve the three-species food chain nonlinear model. The three-species food 
chain nonlinear model is dependent upon the prey populations, top-predator, and specialist predator. The design of an error-
based fitness function is presented using the sense of the three-species food chain nonlinear model and its initial conditions. 
The numerical results of the model have been obtained by exploiting the GNN-GA-ASA. The obtained results through the 
GNN-GA-ASA have been compared with the Runge–Kutta method to substantiate the correctness of the designed approach. 
The reliability, efficacy and authenticity of the proposed GNN-GA-ASA are examined through different statistical measures 
based on single and multiple neurons for solving the three-species food chain nonlinear model.

Keywords Gudermannian neural network · Three-dimensional food chain nonlinear model · Nonlinear differential system · 
Runge–Kutta scheme · Active-set algorithm · Statistical studies

1 Introduction

The study of two and three trophic-level based on food chain 
systems using the structure of logistic prey X, specialist 
Lotka–Volterra predator Y and top-predator Z (Freedman 
and Waltman 1977; Freedman and So 1985; Muratori and 
Rinaldi 1992; Kuznetsov and Rinaldi 1996; Rinaldi et al. 
1996; El-Owaidy et al. 2001; Umar et al. 2019). The general 

form of the state system based on the three species food 
chain nonlinear model is written as (Aziz-Alaoui 2002):

The above system represents the three-dimensional food 
chain nonlinear model that has been investigated analytically/
numerically with the prey population X, which implemented 
as a single food predator Y together with prey of a top-predator 
Z. The features of prey X along with the species Y present the 
modeling of Volterra scheme, which indicates the predator 
population reduces exponentially in the absence of prey. The 
association of species Z together with its prey Y is formed 
based on the Leslie–Gower scheme (Leslie and Gower 1960), 
which indicates the predator population reduces to the recipro-
cal of per capita availability of its most special food (Upad-
hyay et al. 1998). l1 , l2 and l3 are the positive initial conditions 
(Ics). The model parameter’s detail of the three-dimensional 
food chain nonlinear model is expressed in the Table 1.
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The stochastic computing processes have been executed 
to solve a large variety of nonlinear systems, few of them 
are fractional singular systems (Sabir et al. 2021c, d, e), 
like higher order singular systems (Ayub et al. 2021; Sabir 
et al. 2021a), dengue fever system (Umar et al. 2020b, c, d, 
e), SITR based COVID-19 models (Umar et al. 2020b, c, 
d, e, 2021a, b), delay singular function system (Khan et al. 
2021; Sabir et al. 2021b), SIR system for spreading infection 
and treatment (Umar et al. 2021a, b), mosquito release sys-
tem in the heterogeneous environment (Umar et al. 2020a), 
doubly singular nonlinear models (Raja et al. 2019; Sabir 
et al. 2020a, b, c), rank-constrained spectral clustering (Li 
et al. 2018a, b), zero-shot event detection system (Li et al. 
2019), fuzzy K-means clustering associated discriminative 
embedding scheme (Li et al. 2018a, b), multiclass classi-
fication systems (Yan et al. 2020). dynamic affinity graph 
construction strategy for spectral clustering (Nie et al. 2020), 
enhanced multilayer piezoelectric transducer design (Naz 
et al. 2021), performance investigation of the heat sink of 
functionally graded material of the porous fin (Ahmad et al. 
2021), impact of heat transfer in a Bodewadt flow model 

(Awais et al. 2021), thin film flow model over a stretched 
surface (Uddin et al. 2021) and state estimation problems 
arising in underwater Markov chain maneuvering targets 
(Ali et al. 2021). All these utmost applications inspired the 
authors to explore/exploit/investigate artificial intelligence-
based computational solver to solve the governing model 
of three-species food chain nonlinear model as presented 

in a set of Eq. (1). A brief summary of innovative insights 
and contributions of the presented study is listed in terms of 
salient features as follows:

• A novel application of artificial intelligent knacks via 
Gudermannian neural networks (GNNs) models opti-
mized with genetic algorithm and active-set approach 
(GA-ASA), i.e., GNNs-GA-ASA is introduced to solve 
a mathematical model of the three-species food chain 
nonlinear systems (TS-FCNS).

• The design of an error-based fitness function is effec-
tively portrayed for TS-FCNS for the dynamics of the 
prey populations, top-predator and specialist predator.

• The numerical results of the TS-FCNS have been 
obtained by exploiting computation heuristics of GNNs-
GA-ASA and comparison with the outcomes of the 
Runge–Kutta method substantiated the correctness of 
the designed approach.

• The reliability, efficacy and authenticity of the proposed 
GNNs-GA-ASA are further scrutinized through different 
statistical measures based on single and multiple execu-
tions for solving the three-species food chain nonlinear 
model.

The paper is organized as: Sect. 2 defines the computa-
tional procedures based on GNNs-GA-ASA along with the 
statistical measures are provided in the next section. The 
result and discussion are provided in Sect. 3. The conclud-
ing remarks and future research directions are provided in 
Sect. 4.

2  Designed procedures: GNNs‑GA‑ASA

The mathematical formulations of the three-dimensional 
food chain nonlinear model together with derivatives are 
derived as:

where, W indicates an unidentified weight vector, given as:
W = [W

X
,W

Y
,W

Z
] , for WX = [rX ,�X , nX] , WY = [rY ,�Y , nY ] , 

and WZ = [rZ ,�Z , nZ] , where
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Table 1  Illustrations of the three-dimensional food chain nonlinear 
model

Parameters Specification

a0 Prey growth rate X
b0 Competition power among individuals-based species X
d2 Elimination rate of Y per capita is �2

2

d0, d1 Environment produce conservation to prey X
a1 Rate at Y will decrease in the omission of X
d3 Surplus loss in the species of Z due to severe insuffi-

ciency of its selected food Y
c3 Development rate of Z
�0, �1, �2, �3 Obtained maximum values per capita by reducing the X
l1, l2, l3 Positive ICs



8915Gudermannian neural networks using the optimization procedures of genetic algorithm and active…

1 3

A merit function, i.e., Gudermannian function 
M(Ψ) = 2tan−1[���(Ψ)] −

1

2
� (Sabir et al. 2021c, d, e) is 

used as

The merit function is provided as:

where X̂ji
= X

(
Tj
)
, Ŷj = Y

(
Tj
)
, Ẑj = Z(TJ),Nh = 1, and 

Tj = hJ . X̂j , Ŷj and Ẑj indicate the proposed results of the 
system (1). Likewise, the Eqs. (5)–(7) represent an error 
function of the three-dimensional food chain nonlinear 
model and its ICs.

2.1  Optimization: GNN‑GA‑ASA

This section indicates the optimization procedures to solve 
the three-dimensional food chain nonlinear model using the 
stochastic procedures based on GNN-GA-ASA.

rX = [rX ,1, rXT ,2, rX ,3,… , rX ,s], rY = [rY ,1, rY ,2, rY ,3,… , rY ,s]rZ = [rZ ,1, rZ ,2, rZ ,3,… , rZ ,s]

wX = [wX ,1,wXT ,2,wX ,3,… ,wX ,s],wY = [wY ,1,wY ,2,wY ,3,… ,wY ,s]wZ = [wZ ,1,wZ ,2,wZ ,3,… ,wZ ,s]

nX = [nX ,1, nX ,2, nX ,3,… , nX ,s], nY = [nY ,1, nY ,2, nY ,3,… , nY ,s]nZ = [nZ ,1, nZ ,2, nZ ,3,… , nZ ,s]
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Ẑ
�

j
− C3Ẑj +
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Genetic algorithm is known as a famous, optimization 
global search scheme implemented to solve the linear/non-
linear models. It is performed to tackle both constrained/
unconstrained systems using the typical selection processes. 

GA is usually applied to regulate the results of the accurate 
population to solve the numerous complex/steep models of 
ideal training. Recently, GA is implemented in the brain 
tumor images (Simi et al. 2020), hospitalization expendi-
ture systems (Tao et al. 2019), Thomas–Fermi model (Sabir 
et al. 2018), feature diversity in cancer microarray (Sayed 
et  al. 2019), radiation protective in the bismuth-borate 
glasses (Wilson 2019), nonlinear electric circuit models 
(Mehmood et al. 2020), heat conduction model (Raja et al. 
2018), HIV infection model (Umar et al. 2020b, c, d, e), wire 
coating with Oldroyd 8-constant fluid model (Munir et al. 
2019), prediction differential system (Sabir et al. 2020a, b, 
c), periodic differential model (Sabir et al. 2020a, b, c) and 
cloud service optimization procedures (Yang et al. 2019). 
ASA is applied in pricing American better-of option on two 
assets (Gao et al. 2020), pressure-dependent models of water 
distribution systems with flow controls (Piller et al. 2020), 
nonlinear optimization with polyhedral constraints (Hager 
and Tarzanagh 2020), numerical solution of the optimal 
control problem governed by partial differential equation 
(Azizi et al. 2020), electrodynamic frictional contact prob-
lems (Abide et al. 2021) and quadratic semidefinite program 
with general constraints (Shen et al. 2021). The optimization 
process-based GA-ASA is applied to control the slowness 
of GA.

2.2  Performance indices

The performance through statistics based on the semi-inter-
quartile range (S.I.R), mean absolute deviation (MAD), vari-
ance account for (VAF) and Theil’s inequality coefficient 
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(TIC) along with the global representation are observed to 
solve the three-dimensional food chain nonlinear model, 
given as:

where X̂ , Ŷ  and Ẑ are the proposed solutions.

(9)
{
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Q1Q3 are the 1st 3rd quartiles,
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3  Results and discussions

The simplified form of the three-dimensional food chain 
nonlinear model using suitable parameter values is given as:

An objective function using the three-dimensional food 
chain nonlinear model is written as:

(13)
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The mathematical results of the stochastic procedures 
based on GNN-GA-ASA:

(15)

X̂(Ψ) = −4.1215(2tan−1e(−1.2073Ψ+2.0489) − 0.5�) − 1.1601(2tan−1e−0.3909Ψ−0.3808) − 0.5�)

− 0.0100(2tan−1e(1.7292Ψ+0.6374) − 0.5�) − 0.6757(2tan−1e(1.0278Ψ−0.1355) − 0.5�)

− 3.7274(2tan−1e(−1.3829Ψ+3.4601) − 0.5�) − 0.6447(2tan−1e(1.3228Ψ+1.3535) − 0.5�)

− 1.6067(2tan−1e(−0.3206Ψ−0.8162) − 0.5�) + 0.3827(2tan−1e(0.4292Ψ+1.0041) − 0.5�)

3.8605(2tan−1e(0.1557Ψ+2.6613) − 0.5�) + 3.8418(2tan−1e(0.1831Ψ+2.4362) − 0.5�),
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Fig. 1  Comparison of the results and best weight vectors for the three-dimensional food chain nonlinear model
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Fig. 2  AE values and the per-
formances based on MAD, TIC 
and EVAF for the three-dimen-
sional food chain nonlinear 
model
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(16)

X̂(Ψ) = 1.0561(2tan−1e(0.3584Ψ+2.3141) − 0.5�) + 1.5786(2tan−1e(−1.0463Ψ−0.6359) − 0.5�)

− 1.8630(2tan−1e(−0.6936Ψ−0.3845) − 0.5�) − 0.0488(2tan−1e(−1.7367Ψ−2.3627) − 0.5�)

1.4624(2tan−1e(0.3281Ψ−0.6821) − 0.5�) + 0.9619(2tan−1e(0.2794Ψ+0.3296) − 0.5�)

1.7775(2tan−1e(−0.1763Ψ+2.3006) − 0.5�) + 2.2604(2tan−1e(−0.5332Ψ+0.0478) − 0.5�)

− 0.9345(2tan−1e(0.0191Ψ−0.0942) − 0.5�) + 1.3007(2tan−1e(−2.8534Ψ−3.4033) − 0.5�),

(17)

X̂(Ψ) = 0.5342(2tan−1e(0.1335Ψ+0.4637) − 0.5�) − 0.8565(2tan−1e(0.5032Ψ+0.1273) − 0.5�)

0.6277(2tan−1e(−2.2469Ψ−0.7075) − 0.5�) − 1.4959(2tan−1e(−1.1810Ψ−3.0498) − 0.5�)

2.5696(2tan−1e(−6.6073Ψ−3.6405) − 0.5�) − 0.1184(2tan−1e(0.1933Ψ+2.3627) − 0.5�)

− 2.2969(2tan−1e(−0.1593Ψ−1.7907) − 0.5�) − 0.2461(2tan−1e(−0.2011Ψ−0.9760) − 0.5�)

0.2974(2tan−1e(−0.0698Ψ−1.1331) − 0.5�) + 0.0016(2tan−1e(3.5979Ψ−1.5463) − 0.5�),

Fig. 3  TIC performances along 
with the boxplots based GNN-
GA-ASA for three-dimensional 
food chain nonlinear model



8920 Z. Sabir et al.

1 3

Figures 1, 2 and 3 illustrates the best weight vectors, 
result comparisons and the values of AE to solve the three-
dimensional food chain nonlinear model using the stochas-
tic procedures based on GNNs-GA-ASA. The best weight 
values are illustrated in the three-dimensional food chain 
nonlinear model in Fig. 1a–c for 30 variables or 10 neu-
rons. These weight vectors are established in Eqs. (15–17). 
The comparative performance of the results for the three-
dimensional food chain nonlinear model is illustrated in 
Fig. 1d–f. The plots of the AE have been established in 
Fig. 2a–c for the three-dimensional food chain nonlinear 
model. The statistical operator plots along with the perfor-
mances of the boxplots are illustrated in Fig. 3 to solve the 
three-dimensional food chain nonlinear model. The conver-
gence measures are plotted using the TIC, MAD and EVAF 
to solve the three-dimensional food chain nonlinear model. 
The complexity of GNNs-GA-ASA in terms of execution 
time consumed for learning of the weights of the networks 
is calculated and it is found in the close vicinity of 30 ± 10 
for the single runs of the algorithm.

4  Conclusions

This study aims to investigate the Gudermannian neural net-
works (GNNs) using the optimization procedures of genetic 
algorithm and active-set approach (GA-ASA) to solve the 
three-species food chain nonlinear model. An error func-
tion is constructed using the three classes of the three-
species food chain nonlinear model names as prey popu-
lations, top-predator and specialist predator and its initial 
conditions. The exactness of the scheme GNN-GA-ASA is 
observed by comparing the proposed results and the ref-
erence Runge–Kutta results to solve the three-dimensional 
food chain nonlinear model. The AE values are found in 
good measures to solve the three-dimensional food chain 
nonlinear model, i.e. around  10–05–10–07. The performances 
of the operators TIC, EVAF and MAD proved the good illus-
trations to solve the three-dimensional food chain nonlinear 
model. The statistical Mean, S.I.R, Min, Max, MED and 
STD performances for 30 independent runs validate the 
correctness of the proposed stochastic procedures based 
on GNN-GA-ASA. Furthermore, the global performances 
through statistical trials of MED and S.I.R have been com-
petently applied to solve the three-dimensional food chain 
nonlinear model.

In the future, the proposed stochastic procedures based on 
GNN-GA-ASA are accomplished to solve the environmen-
tal economic systems (Kiani et al. 2021; Nisar et al. 2021), 
information security models (Masood et al.2019, 2020, 
2021) and fluid dynamic models (Awan et al. 2020, 2021; 
Raja et al. 2020; Umar et al. 2020b, c, d, e).
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