
�

�

“imvol2” — 2005/6/14 — 14:27 — page 21 — #1
�

�

�

�

�

�

Internet Mathematics Vol. 2, No. 1: 21-30

Guessing More Secrets via
List Decoding
Alexander A. Razborov

Abstract. We consider the following game introduced by Chung, Graham, and Leighton
in [Chung et al. 01]. One player, A, picks k > 1 secrets from a universe of N possible
secrets, and another player, B, tries to gain as much information about this set as
possible by asking binary questions f : [N] −→ {0, 1}. Upon receiving a question f , A
adversarially chooses one of her k secrets, and answers f according to it.

In this paper we present an explicit set of 2O(k)(log N) questions, along with a

2O(k2)(log2 N)

recovery algorithm that achieves B’s goal in this game. This, in particular, completely
solves the problem for any constant number of secrets k.

Our strategy is based on the list decoding of Reed-Solomon codes, and it extends
and generalizes ideas introduced by Alon, Guruswami, Kaufman, and Sudan in [Alon
et al. 02].

1. Introduction

Motivated in part by certain Internet traffic routing applications (see [Peterson
02] for a popular account), Chung, Graham, and Leighton introduced in [Chung
et al. 01] the following neat combinatorial problem. Two players, A and B, play
the game defined as follows. A picks a k-element subset S of an N -element
universe [N] representing “secrets” (k is typically to be thought of as a con-
stant, and [N] as of the set of binary strings of length log2 N). Then B tries to
get as much information about this set as possible by asking binary questions
f : [N] −→ {0, 1}. If f |S ≡ 0 or f |S ≡ 1, then A must give this unique answer,

© A K Peters, Ltd.
1542-7951/05 $0.50 per page 21

�

�

“imvol2” — 2005/6/14 — 14:27 — page 22 — #2
�

�

�

�

�

�

22 Internet Mathematics

otherwise she may choose to answer 0 or 1 arbitrarily. What is the best strategy
for B in this situation?

Obviously, we still need to make several important clarifications in this loose
description of the game to make a rigorous mathematical problem out of it. The
first question is how much information about S can the player B hope to get in
principle, say, after he asks all possible questions whatsoever?

The answer to this question was given already in the original paper [Chung
et al. 01]. Recall that a family S ⊆ [N]k of k-element subsets of [N] is inter-
secting if S ∩ S′ �= ∅ for every S, S′ ∈ S. Then, it turns out that for every
intersecting family S, A always has a strategy that allows her to “protect” every
potential set of secrets S ∈ S, so that B can not hope to learn anything more
than the fact that S ∈ S. On the other hand, B can always end up with
an intersecting family S that includes all sets of secrets S consistent with A’s
answers. For these reasons, B’s goal in this game is defined as finding any such
intersecting family S.

Next, B’s strategy can be oblivious (the set of his questions is presented to A
at once) or adaptive (questions may depend on A’s previous answers).

Finally, there are three levels of efficiency requirements that “good” strate-
gies for B may be asked to satisfy. The weakest of them simply asks that the
overall number of questions is bounded by a polynomial in log N (for the time
being we assume that k is a constant). On the second level (“constructive strate-
gies” in the terminology of [Chung et al. 01]), we also demand that the queries
f : [N] −→ {0, 1} should themselves be computable in time (log N)O(1). Finally,
invertible strategies must in addition be able to recover, within the same time
(log N)O(1), the actual answer S.1

A number of good strategies for B based on quite different ideas were presented
in [Chung et al. 01] and in the subsequent papers [Chung et al. 02, Alon et
al. 02, Micciancio and Segerlind 04]. For the most well-studied case k = 2, an
oblivious constructive strategy was given in the original paper [Chung et al. 01].
The first (oblivious) invertible strategy for k = 2 was also sketched in that paper,
and it later appeared, with a complete proof, in [Chung et al. 02]. [Alon et al. 02]
presented another invertible strategy with slightly better performance: it asks
O(log N) questions and recovers S within time O(log3 N).

When k > 2, constructive oblivious strategies with O(log N) queries were
presented in [Alon et al. 02]. Much less, though, has been known about invertible
strategies. The case k = 3 has been recently solved in [Micciancio and Segerlind

1At first sight, this requirement may look somewhat confusing since even the bit length of
any description of S may a priori be super-polynomial in log N . We will see, however, that
succinct answers S are in fact always possible, and an invertible strategy must necessarily
produce one.

�

�

“imvol2” — 2005/6/14 — 14:27 — page 23 — #3
�

�

�

�

�

�

Razborov: Guessing More Secrets via List Decoding 23

04] (an oblivious strategy with O(log5 N) queries, O(log5 N) recovery time, and
an adaptive one with O(log N) queries, O(log3 N) recovery time). What about
k > 3? It seems that the only known partial result was a constructive (oblivious)
strategy, equipped with a polynomial time randomized algorithm to produce a
short list of candidates L ⊆ [N] that is guaranteed to contain at least one of the
k secrets [Alon et al. 02].

In this paper we present an oblivious invertible strategy with O(log N) queries
and O(log2 N) recovery time allowing B to guess any constant number of secrets
k. The multiplicative constants assumed in the last sentence are 2O(k) and 2O(k2),
respectively, so our strategy in fact stays invertible up to k ≤ √

log log N (and
stays constructive up to k ≤ O(log log N)).

Our techniques are based on the list-decoding algorithm for Reed-Solomon
codes [Guruswami and Sudan 99] and extend those from [Alon et al. 02]. Per-
haps the main technical contribution of this paper consists of revealing the full
potential of that powerful algorithm for secret guessing.

2. Preliminaries and the Main Result

Throughout the paper, [N] def= {1, 2, . . . , N}, and for a finite set U ,

[U]≤k def= {S ⊆ U | |S| ≤ k } .

We will abbreviate [[n]]≤k to [n]≤k. The universe [U]≤k is partially ordered with
respect to inclusion, and for S ⊆ [U]≤k we let

S� def=
{

S ∈ [U]≤k | ∃S′ ∈ S(S′ ⊆ S)
}

denote its upward closure with respect to this ordering (k will always be clear
from the context). A family S ⊆ [U]≤k is intersecting if S ∩ S′ �= ∅ for every
S, S′ ∈ S. Clearly, S is intersecting if and only if
S� is so. For S ⊆ [U]≤k,
let S� ⊆ S denote the family of all minimal elements in S, and let its support
Sup(S) ⊆ U be defined as the union of all sets in S�. Clearly, S� uniquely
defines
S� (and vice versa), and every individual fact S ∈
S� depends only
on the intersection of S with the support Sup(S). An intersecting family S is
critical if for every S ∈ S� and every proper subset S′ ⊂ S, S ∪{S′} is no longer
intersecting.

Proposition 2.1. ([Tuza 85]) Let S ⊆ [U]≤k be any critical intersecting family. Then
|Sup(S)| ≤ (2k

k

) ≤ 4k, which, in turn, implies |S�| ≤ exp(O(k2)).

�

�

“imvol2” — 2005/6/14 — 14:27 — page 24 — #4
�

�

�

�

�

�

24 Internet Mathematics

We now proceed to the description of the secret guessing game. Our main
result holds in its slightly more general (and much more natural) version when
A is allowed to hold a set of ≤ k (rather than exactly k) secrets, and we modify
the definition accordingly.

Definition 2.2. An oblivious strategy for B in the secret guessing game is simply
a sequence of Boolean functions (queries) f1, . . . , ft : [N] −→ {0, 1}. Given an
integer k, this strategy is k-separating if for every sequence a1, . . . , at ∈ {0, 1} of
answers, the family

Sa1,...,at

def=
{

S ∈ [N]≤k | ∀i ∈ [t](ai ∈ fi(S))
}

(made of all sets of secrets consistent with A’s answers) is intersecting.

[Alon et al. 02] observed that the minimal number of queries t in a k-separating
strategy is 2θ(k)(log N). Accordingly, we call a k-separating strategy construc-
tive if f1, . . . , ft can be computed within time 2O(k)(log N)O(1), that is, polyno-
mial in this quantity. (If we are interested only in the case when k is a constant,
the factor 2O(k) becomes irrelevant, of course.) Note that the number of queries
in every constructive strategy is also bounded by 2O(k)(log N)O(1). Construc-
tive strategies with the optimal number of queries 2O(k)(log N) do exist [Alon et
al. 02].

The family Sa1,...,at
itself can be extremely complex; therefore, in general (i.e.,

for arbitrary k-separating strategies), we can not hope to output its description
within reasonable time. Proposition 2.1, however, implies that there always
exists a small intersecting S such that
S� ⊇ Sa1,...,at

(in fact, any critical
extension of Sa1,...,at

would do), and we define an invertible strategy as a k-
separating constructive strategy equipped with a polynomial (also in 2k log N)
algorithm that for every a1, . . . , at ∈ {0, 1} outputs some intersecting S ⊆ [N]≤k

such that
S� ⊇ Sa1,...,at
.

Remark 2.3. The existing literature is rather vague on the issue of whether an
invertible strategy must necessarily output the exact family of possible sets of
secrets Sa1,...,at

or an intersecting upper bound S on it. This especially applies
to the main case of interests to us, k > 2, when intersecting families become
extremely complex. At any rate, we think that the definition given above is
more natural and better conforms to the stated goal “output as much information
about Sa1,...,at

as possible.” Our reasoning is this: suppose that the intersecting
family Sa1,...,at

is “far” from being maximal, and our algorithm is able to produce
an intersecting S for which
S� is “much larger” than Sa1,...,at

. As was mentioned

�

�

“imvol2” — 2005/6/14 — 14:27 — page 25 — #5
�

�

�

�

�

�

Razborov: Guessing More Secrets via List Decoding 25

in Section 1, A then has another strategy b1, . . . , bt such that

Sb1,...,bt
⊇
S� ⊃ Sa1,...,at

;

in other words, this strategy allows her to protect “many more” sets of secrets
than the original strategy a1, . . . , at. Thus, the only reason why we were able to
produce some
S� significantly larger than Sa1,...,at

stems from the fact that A
played very badly: for any optimal (that is, when Sa1,...,at

is maximal intersect-
ing) strategy, we necessarily must have
S� = Sa1,...,at

. We feel that requesting
B’s goal family S to capture, among other things, how exactly bad his opponent
A has been should not be a part of this definition.

In this paper we prove the following.

Theorem 2.4. For every parameter k = k(N), there exists a k-separating construc-
tive strategy f1, . . . , ft : [N] −→ {0, 1} with t ≤ 2O(k)(log N), equipped with an
algorithm that has running time 2O(k2)(log2 N) and for every a1, . . . , at ∈ {0, 1}
outputs some intersecting family S ⊆ [N]≤k such that
S� ⊇ Sa1,...,at

.
In particular, this strategy is invertible as long as k ≤ √

log log N .

The main ingredient of our algorithm is borrowed from [Alon et al. 02], and
this is the list decoding of Reed-Solomon codes. More specifically, we need the
following statement that was implicit in [Guruswami and Sudan 99], and was
extracted in an explicit form in [Alon et al. 02]. We formulate it here only
for the “basic” Reed-Solomon codes with n = q, as we do not need it in the
generalized (n < q) case.

Proposition 2.5. ([Guruswami and Sudan 99], [Alon et al. 02, Theorem 4.1]) Let q

be a power of a prime and d, � be arbitrary parameters. Given lists Lx ⊆ Fq

(x ∈ Fq) with each |Lx| ≤ �, there are at most O(
√

q�/d) polynomials p ∈ Fq[x]
of degree ≤ d such that p(x) ∈ Lx for at least αq elements of Fq, provided that
α ≥ C0

√
d�/q (C0 a sufficiently large constant). Moreover, the list of all such

polynomials can be found in O(q2�2 log2 q) time.

3. The Strategy

We first describe a k-separating constructive strategy that satisfies the required
bound t ≤ 2O(k)(log N) on the number of queries, but whose recovery algorithm
has slightly worse running time 2O(k2)(log N)O(k). (Note, however, that already
this strategy is invertible for any constant k.) Then we show how to improve

�

�

“imvol2” — 2005/6/14 — 14:27 — page 26 — #6
�

�

�

�

�

�

26 Internet Mathematics

the running time of the recovery algorithm to 2O(k2)(log2 N) by composing our
strategy with itself.

So, let k,N be given. Let

d(q) def= �q/((4C0k)24k)�, (3.1)

where C0 is the constant from Proposition 2.5, and let q be the smallest prime
such that

qd(q)+1 ≥ N. (3.2)

Note that by Chebyshev’s theorem we have the bound

q ≤ 2O(k)(log N/ log log N). (3.3)

Take the Reed-Solomon code C consisting of all polynomials p(x) in Fq[x] of
degree ≤ d(q). Then, by (3.2), |C| ≥ N . We identify secrets s ∈ [N] with
codewords in C via an easily computable embedding, and we assume from now
on that the ≤ k secrets to be guessed are just polynomials from C.

Let gx : C −→ Fq (x ∈ Fq) be the evaluation functions; that is, gx(p) def= p(x).
Consider also any k-separating constructive strategy

h1, . . . , hu : Fq −→ {0, 1}

with the optimal number of queries u ≤ 2O(k)(log q). Our final strategy f1, . . . , ft :
C −→ {0, 1} is obtained simply by concatenating g and h; that is, it will con-
sist of the Boolean queries hi ◦ gx : C −→ {0, 1}, where x ∈ Fq and i ∈ [u].
Note at once that, by (3.3), the number of queries made by this strategy is
uq ≤ 2O(k)(q log q) ≤ 2O(k)(log N), as desired. The queries f1, . . . , ft are ob-
viously computable within polynomial time 2O(k)(log N)O(1). It is also easy to
see that the strategy f1, . . . , ft is in fact k-separating, but since this automati-
cally follows from the existence of the recovery algorithm, we skip the proof and
proceed immediately to that algorithm.

So, assume that we are given a set of answers axi ∈ {0, 1} (x ∈ Fq, i ∈ [u])
to our queries hi ◦ gx. Since the strategy h1, . . . , hu is k-separating, for every
particular x ∈ Fq, the family Sax1,...,axu

⊆ [Fq]≤k defined by the related answers
is intersecting, and we recover it simply by trying out all elements in [Fq]≤k.
Next, we construct critical intersecting families Sx with Sx ⊇ Sax1,...,axu

. This
is done by the straightforward algorithm that first sets Sx := Sax1,...,axu

and
then consecutively tries to append to Sx new sets S ∈ [Fq]k such that ∃S′ ∈
S�

x(S ⊂ S′), while keeping the intersecting property and until no new set can be
added.

�

�

“imvol2” — 2005/6/14 — 14:27 — page 27 — #7
�

�

�

�

�

�

Razborov: Guessing More Secrets via List Decoding 27

It follows from definitions that for every set of original secrets

S ∈ S(axi| x∈Fq,i∈[u]) ⊆ [C]≤k

compatible with all the given answers, and for every x ∈ Fq, we have gx(S) ∈

Sx� (cf., a similar argument in [Alon et al. 02, Section 5.2]). This is the only
property of S that we need, and now our problem can be formulated as the
recovery of an intersecting family S ⊆ [C]≤k such that

∀S ∈ [C]≤k((∀x ∈ Fq(gx(S) ∈
Sx�)) =⇒ S ∈
S�). (3.4)

Let us first try to convey some intuition as to how we are planning to do
this. [Alon et al. 02] called L ⊆ [C] a core if every S ∈ [C]≤k such that
∀x ∈ Fq(gx(S) ∈
Sx�) has a non-empty intersection with L, and they showed
how to recover a small core in a situation very similar to ours. We strengthen
this notion by requiring that for every pair S, S′ ∈ [C]≤k with the above prop-
erty, S ∩ S′ ∩ L �= ∅; call such an L supercore. First, we will show how to
construct a small supercore L. This will almost bring us to the end since the
set

{
S ∩ L

∣∣ S ∈ [C]≤k & ∀x ∈ Fq(gx(S) ∈
Sx�)
}

will have small size and can
be taken as the desired (intersecting) S. One remaining problem is that even if
this S is small, it does not seem to be efficiently recognizable: given S̃ ∈ [L]≤k,
there is no easy way to tell the existence of its extension S ∈ [C]≤k with the
required property ∀x ∈ Fq(gx(S) ∈
Sx�). We will remedy this by designing an
efficient test for S̃ that is passed by all desired S∩L and such that, on the other
hand, the family of all sets passing this test is still intersecting.

Returning to the formal argument, let Lx
def= Sup(Sx); then, |Lx| ≤ 4k by

Proposition 2.1. We apply Proposition 2.5 with d given by (3.1), � := 4k, and
α := 1

4k , and we get a list L ⊆ C of size |L| ≤ 2O(k) such that

∀p �∈ L
(
| {x ∈ Fq | p(x) ∈ Lx } | ≤ q

4k

)
.

And now let

S def=
{

S ∈ [L]≤k

∣∣∣∣ | {x ∈ Fq | gx(S) ∈
Sx�} | ≥ 3q

4

}
.

We are left to do three more things: check (3.4), show that S is intersecting,
and analyze the running time of the entire algorithm.

Checking (3.4). Assume that S ∈ [C]≤k has the property

∀x ∈ Fq(gx(S) ∈
Sx�).

�

�

“imvol2” — 2005/6/14 — 14:27 — page 28 — #8
�

�

�

�

�

�

28 Internet Mathematics

It suffices to show that this implies S ∩ L ∈ S.

Due to the definition of the list L, for every “irrelevant” secret p ∈ S \ L

there are at most q
4k values x ∈ Fq such that p(x) ∈ Lx. Altogether there

are at most q
4 bad x, and the remaining 3q

4 values x ∈ Fq are good in the
sense that gx(S \ L) ∩ Lx = ∅. For every particular good x,

gx(S) = gx(S ∩ L) ∪ gx(S \ L) ∈
Sx�,
and thus it contains some set in S�

x. Since, however, gx(S\L)∩Sup(Sx) = ∅,
this set must be entirely contained in gx(S ∩ L). This proves that gx(S ∩
L) ∈
Sx� for every good x and, therefore, S ∩ L ∈ S.

S is intersecting. Suppose that S, S′ ∈ S. Then, for at least q/2 values
x, we have gx(S) ∈
Sx� and gx(S′) ∈
Sx�. Assume, for the sake of
contradiction, that S ∩ S′ = ∅. Since all elements in S, S′ are polynomials
of degree at most d(q), the polynomials p(x) − p′(x) (p ∈ S, p′ ∈ S′) have
altogether at most k2d(q) < q/2 roots. For any x that is not a root of one
of these polynomials, gx(S) ∩ gx(S′) = ∅. Picking any such x for which
also gx(S), gx(S′) ∈
Sx�, we get a contradiction with the fact that Sx is
intersecting.

Time analysis. Choosing an efficient encoding [N] −→ C is easy; [Fq]≤k

has cardinality ≤ qk ≤ 2O(k2)(log N)k, and for any particular x ∈ Fq, the
membership in Sax1,...,axu

⊆ [Fq]≤k can be tested in time 2O(k)(log q)O(1).

(Recall that the strategy h is constructive.) Therefore, all q families
Sax1,...,axu

⊆ [Fq]≤k can be constructed within time 2O(k2)(log N)O(k), and
constructing their critical extensions Sx takes additional time, which is also
polynomial in qk.

The bound 2O(k)(log2 N) on the time needed to construct the list L comes
directly from Proposition 2.5 and (3.3). Finally, [L]≤k contains 2O(k2)

elements, and computing every individual value p(x) with p ∈ L and x ∈ Fq

requires time O(d(q) log2 q). This implies that the overall bound

2O(k2)d(q)q log2 q ≤ 2O(k2)(log2 N)

on the time needed to construct the family S from the supercore L.

We have constructed a constructive k-separating strategy

f1, . . . , ft : [N] −→ {0, 1}
with the optimal number of queries 2O(k)(log N) and a recovery algorithm for
this strategy with running time 2O(k2)(log N)O(k). Now we show how to improve
the latter to 2O(k2)(log2 N).

�

�

“imvol2” — 2005/6/14 — 14:27 — page 29 — #9
�

�

�

�

�

�

Razborov: Guessing More Secrets via List Decoding 29

Examining the time analysis given above, we see that the only step that really
required much time was the construction of the auxiliary intersecting families Sx:
all other steps were done within the prescribed time 2O(k2)(log2 N). We were not
too picky about the choice of our “inner” strategy h1, . . . , hu : Fq −→ {0, 1}, as
long as it was constructive and asked the optimal number of queries 2O(k)(log q).
Now, however, we can do much better and use as h1, . . . , hu the strategy that
we have just constructed, as well as the recovery algorithm for this strategy. In
other words, we iterate our previous construction with itself once. (If we attempt
to iterate, in an obvious way, all the (log∗ N) levels down, this will result in an
2O(k log∗ N) factor in the number of queries, so we have to be careful.) Then,
for every x ∈ Fq, we will construct, in time 2O(k2)(log q)O(k), an intersecting
S̃x ⊆ [Fq]≤k with
S̃x� ⊇ Sax1,...,axu

. In particular, |S̃x| ≤ 2O(k2)(log q)O(k),
and only sets from its downward closure may appear in its critical extension
Sx constructed from S̃x by the same straightforward algorithm as above. Since
every element S ∈ S̃x leads to at most 2|S| ≤ 2k sets in its downward closure,
the size of Sx is still 2O(k2)(log q)O(k). This implies that every individual Sx

can be also constructed within time 2O(k2)(log q)O(k) and, combined with the
above remark, this gives the bound 2O(k2)(q(log q)O(k) +(log2 N)) on the overall
performance of the recovery algorithm. It only remains to note that (3.3) implies
that q(log q)O(k) ≤ 2O(k2)(log2 N), that is, the first additive term in this bound
is subsumed by the second.

Acknowledgments. I am grateful to an anonymous referee for several useful remarks. My
work was supported by the State of New Jersey, The Bell Companies Fellowship, The
James D. Wolfensohn Fund, and The Ellentuck Fund.

References

[Alon et al. 02] N. Alon, V. Guruswami, T. Kaufman, and M. Sudan. “Guessing Se-
crets Efficiently via List-Decoding.” In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 254–262. Philadelphia:
SIAM, 2002.

[Chung et al. 01] F. Chung, R. Graham, and T. Leighton. “Guessing Secrets.” Elec-
tronic Journal of Combinatorics 8:1 (2001), R13.

[Chung et al. 02] F. Chung, R. Graham, and L. Lu. “Guessing Secrets with Inner
Product Questions.” In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 247–253. Philadelphia: SIAM, 2002.

[Guruswami and Sudan 99] V. Guruswami and M. Sudan. “Improved Decoding of
Reed-Solomon Codes and Algebraic-Geometry Codes.” IEEE Transactions
on Information Theory 45:6 (1999), 1757–1767.

�

�

“imvol2” — 2005/6/14 — 14:27 — page 30 — #10
�

�

�

�

�

�

30 Internet Mathematics

[Micciancio and Segerlind 04] D. Micciancio and N. Segerlind. Using Hypergraph Ho-
momorphisms to Guess Three Secrets. Manuscript, 2004.

[Peterson 02] I. Peterson. “Guessing Secrets.” Science News 161:14 (2002), 216.

[Tuza 85] Z. Tuza. “Critical Hypergraphs and Intersecting Set-Pair Systems.” Journal
of Combinatorial Theory, Ser. B 39 (1985), 134–145.

Alexander A. Razborov, Institute for Advanced Study, School of Mathematics,
1 Einstein Drive, Princeton, NJ 08540 (razborov@ias.edu)
on leave from Steklov Mathematical Institute, Gubkina str. 8, 119991, Moscow, Russia

Received April 15, 2004; Accepted August 6, 2004.

