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For decades, the field of computer vision has used gen-
erative models for both recognition and synthesis tasks.
For example, seminal work adopted probabilistic genera-
tive models for image classification (Weber et al. 2000;
Fergus et al. 2003; Fei-Fei and Perona 2005), shape per-
ception (Freeman 1994) and digit recognition (Revow et al.
1996; Learned-Miller 2005). Meantime, classic generative
models, such as GaussianMixtureModel and principal com-
ponents, have long been used to learn prior models for image
restoration (Olshausen and Field 1996; Portilla and Simon-
celli 2000; Zoran and Weiss 2011), segmentation (Rother
et al. 2004), and face modeling (Blanz and Vetter 1999;
Cootes et al. 2001). Unfortunately, due to the limited capac-
ity, these models either learn local image statistics of pixel
values, gradients, and feature descriptors, or only work well
on aligned objects such as digits and faces. None of the
above models are able to learn the distribution of in-the-wild
natural images and capture long-range dependence beyond
local regions. As a result, the above work mostly focused
on low-level vision and graphics applications. For recogni-
tion tasks, classic generative models seldom outperformed
discriminative classifiers. For synthesis tasks, these methods
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struggled to synthesize natural images with the same expres-
siveness and fidelity as 3D graphics rendering pipelines,
with the notable exception of photorealistic face synthesis
with Morphable Models (Blanz and Vetter 1999) and Active
Appearance Models (Cootes et al. 2001).

Recently, a wide range of deep generative models (Hinton
and Salakhutdinov 2006; Goodfellow et al. 2014; Kingma
and Welling 2014; Dinh et al. 2016; Van den Oord et al.
2016) have been developed for modeling the distribution
of full images. Among them, Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014) have been at the
forefront of research in the past few years, producing high-
quality images while enabling efficient inference. GANs can
approximate real data distributions and synthesize realistic
data samples. The learning algorithm is carried through a
two-player game between a generator that synthesizes an
image, and a discriminator that distinguishes real images
from synthetic ones. Compared to prior work (Tu 2007),
the success of GANs partly comes from high-capacity CNN
classifiers (Krizhevsky e al. 2012) that can easily detect fake
samples and expressive upsampling networks (Dosovitskiy
et al. 2015) that can output high-dimensional images from
low-dimensional vectors. For the first time ever, computer
vision and graphics community is given a generative model
capable of modeling the complexity and realism of natu-
ral images by learning hierarchical feature representations
from high-level object concepts to low-level visual cues (Bau
et al. 2019). Moreover, for certain object categories, recent
GANs (Karras et al. 2020) can achieve similar or sometimes
better image quality, compared to traditional 3D rendering
pipelines.

What could we do with this powerful new computational
tool? It turns out that its application is not limited to gen-
erating samples from certain data distributions but also has
inspired many other research trends, including image gener-
ation and editing, feature learning, visual domain adaptation,
data generation, and augmentation for visual recognition,
often leading to state-of-the-art results. While GANs have
achieved substantial progress for various computer vision
applications, many issues remain to be solved, and new
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research problems emerge. For example, what are the effec-
tive network structures and objective functions for generating
different visual data (e.g., images, videos, 3D)?What are the
proper metrics for evaluating deep generative models? How
can we improve the photorealism and resolution of the syn-
thesized data samples?Howcan the generated data help solve
downstream computer vision tasks?

The goal of this special issue is to solicit original work
at the intersection of computer vision and deep generative
models such as GANs. This special issue received 58 ini-
tial submissions. Five submissions were either withdrawn
or were rejected after abstract review, 53 manuscripts went
through the IJCV review cycle, out of which 21 papers were
accepted to this special issue. These papers spanned the fol-
lowing topics:

– Image-to-Image Translation: Several works explore new
directions in Conditional GANs, including composition-
ality, disentanglement, and robustness. Compositional
GAN (s11263-020-01336-9) presents a generativemodel
that can composite a pair of objects with consistent rel-
ative scaling, spatial layout, occlusion, and viewpoint.
DRIT++ (s11263-019-01284-z) propose a cross-cycle
consistency loss to enable the disentanglement of content
and domain during image-to-image translation. RoC-
GAN (s11263-020-01348-5) improves the robustness
of the conditional GANs by encouraging the genera-
tor’s outputs to stay on the image manifold of target
domain. Layout2Image (s11263-020-01300-7) learns to
synthesize realistic images givenobject labels andbound-
ing boxes, by disentangling an object into the seman-
tic category and appearance representation. DRPAN
(s11263-019-01273-2) enables high-quality image-to-
image translation by revising unrealistic regions, given
the feedback from the discriminator. Finally, a new
type of conditional generative model, Implicit Maximum
Likelihood Estimation (s11263-020-01325-y), is pro-
posed and compared against several conditional GANs
baselines.

– Video Synthesis: This special issue also include two
image-to-video generation methods. pix2vid
(s11263-020-01334-x) synthesizes a short video given a
single structure annotation, while Zhao et al.
(s11263-020-01328-9) propose generating an output
video given a reference video’s motion and input images’
appearance. Several applications have been explored,
including facial expression retargeting, human pose fore-
casting, and video prediction.

– 3D-AwareGANs:A fewpapers go beyond 2D image syn-
thesis and incorporate 3D structure into the generative
models. Ververas and Zafeiriou (s11263-020-01338-7)
propose an image-to-image translation model that trans-
forms face images conditioned on continuous 3D blend-

shape models. Gadelha et al. (s11263-020-01335-w)
learn a GAN model of 3D shapes in a voxel represen-
tation, purely from 2D image observations. Pix2Shape
(s11263-020-01322-1) tackles the same problem set-
ting as above, but with a different 3D representation
– a view-dependent explicit surfel representation. This
allows themodel to efficiently sample scene information.
To create facial image manipulation effects, Geng et al.
(s11263-020-01361-8) disentangle a face image into tex-
ture, shape, and identity, using a 3D face fitting model,
while 3DFaceGAN (s11263-020-01329-8) learns a GAN
model of 3D facial shapes, with applications on 3D face
translation and synthesis.

– Visual Recognition with GANs: Several works pro-
pose improving recognition systems through adver-
sarial data augmentation and domain adaptation. For
examples, Dutta and Akata (s11263-020-01350-x) use
semantically aligned paired cycle-consistent adversar-
ial networks for any-shot image retrieval. Nie and
Shen (s11263-020-01321-2) propose using confidence
information provided by the adversarial network to
enhance the design of a supervised segmentation net-
work. To improve fine-grained recognition systems,
where annotated data is scarce, Yu and Grauman
(s11263-020-01344-9) use attribute-conditional gener-
ative models to densify the space of training images.
Wu et al. (s11263-020-01291-5) use adversarial learning
to improve the robustness of handwritten mathemati-
cal expression systems with respect to different writing
styles.

– Inverting GANs: To edit a real image using unconditional
GANs, one needs to first project the image into the latent
space ofGANs (Zhu et al. 2016). Despite recent efforts, it
still remains challenging and computationally-expensive
for deep generators and images in the wild. To tackle
these issues, Band et al. (s11263-020-01311-4) propose
to reuse the discriminator’s feature representation as part
of the encoder. This improves projection with minimal
training overhead. MimicGAN (s11263-020-01310-5)
proposes modeling common image corruptions, such as
cropping rotation, missing pixels, during the projection,
expanding the scope of images that can be possibly
embedded.

– Theory and Training Method: Abbasnejad et al.
(s11263-020-01360-9) propose a Generative Adversar-
ial Density Estimator aiming to bridge the gap between
maximum likelihood approaches and likelihood-free
approaches on density estimation. Saito et al.
(s11263-020-01333-y) present a memory-efficient
method for unsupervised learning of high-resolution
video generation. The computational cost scales only lin-
early with the resolution.
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Finally, we would like to thank all the reviewers for their
helpful and constructive comments. We are excited by the
outcome and hope that readers enjoy the insights in the arti-
cles.
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