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A bsts-uct—A class of open dielectric wavegnides is discnssed which is of

direct importance to the areas of integrated optics and millimeter-wave

integrated circuits. An accurate analysis of the properties of these wave-

gnides reveals tfmt interesting new physical phenomena, snch as leakage

and sharp cancellation or resonance effects, may occur under appropriate

circumstances. The resulting leaky modes form a new class of snch modes

since the leakage, in the form of an exiting surface wave, has a polarization

opposite to that wtrich dominatesin the bound portion of the leaky mode.
These new effects are caused by TE-TM mode coupling, which was

neglected in earlier approximate treatments. Part I presents the mathemati-

cal formulation based on a rigorous mode-matching procedure.

I. INTRODUCTION

A. General Remarks

o PEN dielectric waveguides have become increasingly

important in the past few years, particularly in con-

nection with the areas of integrated optics and rnillimeter-

wave integrated circuits [1– 3]. Optical fiber waveguides of

circular cross section are, of course, central to the rapidly

expanding area of fiber optics, but we shall not consider

that class of structures because it has been rather exhaus-

tively treated elsewhere. Furthermore, we restrict our con-

cern here to those waveguides which are naturally suited

for use in an integrated circuit context. One feature com-

mon to most such waveguides is the presence of a dielectric

strip of rectangular cross section in conjunction with a

uniform dielectric layered structure, so that the electromag-

netic energy can be confined to the vicinity of the strip and

be guided by it. For this class of waveguides a suitable

generic name could be “dielectric strip waveguide.”

The propagation characteristics of these open dielectric

waveguides constitute a rich variety of phenomena, includ-

ing the leakage of guided energy and leakage-related reso-

nance effects under appropriate circumstances. The present

authors were the first to predict these physical effects and

to present an approximate theory describing them [4];

recent measurements [5] have confirmed their existence on

a specific waveguiding structure. With respect to the
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leakage, it is not generally known that most modes on most

of these waveguides can be leaky, instead of being purely

bound, as is customarily assumed. On a lesser note, the

hybrid guided modes on these waveguides possess six field

components, and not five, as many believe. The basic

reason for this incomplete understanding is that most of

the published theoretical propagation characteristics have

been obtained from approximate analyses [2], [6]-[11] that

neglect those features which lead to the aforementioned

effects. A more accurate analysis [12] is alio incomplete in

the sense that it furnishes the six field components but

neglects any mention of the important leakage feature. It is

intended in this two-part paper to offer a rigorous mathe-

matical foundation and a clear physical picture for the

explanation of these new phenomena.

This Part I of a two-part paper contains a mathematical

formulation based on a rigorous mode-matching procedure

that automatically takes into account all the features men-

tioned above. The key point that is neglected in the

customary approximate treatments is the coupling pro-

duced between TE and TM waves at geometrical dis-

continuities. The new physical effects that result when the

TE– TM coupling is taken, correctly into account are de-

scribed in Part II, together with various numerical results

for typical waveguides which illustrate these effects

quantitatively.

The new physical effects, namely, the presence of leakage

and the appearance of sharp resonance, or cancellation,

effects, are discussed in detail in Section HI of Part II. The

leakage, when it is present, occurs in the form of a surface

wave which propagates away from the waveguide at some

angle to it. The leakage effect can sometimes be used to

advantage in the design of novel devices [13]. On the other

hand, when this waveguide is part of an optical or millime-

ter-wave integrated circuit, such leakage can cause cross-

talk between neighboring portions of the circuit, and de-

teriorate system performance. For these reasons, it is im-

portant to know in any specific case whether or not the

waveguide will leak; this question is treated in detail in

Section III of Part 11.

The leakage to which we refer changes the guided mode

from being purely bound to a leaky mode. There is also a

point of fundamental interest here, since these leaky modes

constitute a new class of leaky modes, in that the leakage
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portion of the leaky mode has a polarization opposite to

that which dominates in the bound portion of the leaky

mode. For example, if the electric field of the guided mode

is predominantly vertically polarized, the leaking surface-

wave portion will have its electric field horizontally

polarized. This novel feature distinguishes these leaky

modes from the usual types of leaky mode.

The modes which we discuss here are all above cutoff, in

contrast to certain high-loss below-cutoff leaky-wave solu-

tions appearing in some treatments of optical fibers (open

dielectric waveguides) of circular cross section. Further-

more, we do not consider the mechanisms which give rise

to certain above-cutoff “tunneling” modes which occur on

such optical fibers. The class of leaky modes we treat here

do not occur in open dielectric waveguides of circular cross

section, and they involve a coupling mechanism which is

not applicable there.

Not all dielectric strip waveguides permit leakage, and,

on those which can leak, some guided modes do leak and

some do not. Such questions are treated in detail in Section

III of Part H, which also presents physical explanations for

the leakage effect, and for the resonance, or cancellation,

effect, where sharp nulls in the leakage occur for specific

values of strip width. In Section IV of Part II, many

numerical results are given which illustrate the new physi-

cal effects. Included are measured results which verify the

theoretical predictions in a specific case. The Introduction

(Section I) of Part II provides guidance for further details.

B. The Approach and the Mathematical Procedures

In Part I, the aim is to provide a rigorous mathematical

foundation for the analysis of this class of open dielectric

waveguides. Stress is placed on network representations to

establish physical pictures of the wave processes and to

yield insight; in addition, a systematic microwave network

approach is employed. This building-block approach first

breaks the cross-sectional geometry into constituent parts,

analyzes each part rigorously, and then combines them into

a transverse resonance analysis of the complete waveguide.

Some typical open dielectric waveguides are shown in

Fig. 1. The waveguides in Figs. l(a), (b), and (c) employ

dielectric substrates and are intended for application to

integrated optics, whereas those in Figs. l(d), (e), and (f)

are placed on metallic ground planes for use in millimeter-

wave integrated circuits. It may be noted that when the

dielectric constants of the strip and the film are the same,

the waveguide is customarily termed a “rib waveguide” in

optics (Fig. l(b)), and a “dielectric ridge waveguide” in the

millimeter-wave context (Fig. l(e)).

It is customary in this class of waveguides to view the

cross sections as consisting of a central, or inside, region

sandwiched between two identical outside regions. This

decomposition is to be viewed in the horizontal direction,

where the inside region consists, in Fig. l(a), for example,

of the strip placed on the film on the substrate, and the

outside regions have only the film on the substrate. Except

for the optical slot waveguide (Fig. l(c)). the presence of a

dielectric strip in all the other structures makes the net, or

effective, dielectric constant of the inside region higher

guiding strip

(a)

(b)

metal air

(c)

guiding strip

film

~ ground plane

(d)

film

~ ground plane

(e)

/////( ●f//////
/“ % %. %

guiding strip ~ground plane

(f)

Fig. 1. TWical open dielectric waveguides for integrated optics and

millimeter-wave integrated circuits c,, c~> ~, > c.. (a) Optical dielec-

tric strip waveguide. (b) Optical rib waveguide. (c) OpticaJ slot wave-

guide. (d) Millimeter-wave dielectric strip waveguide. (e) Millimeter-

wave ridge waveguide. (f) Millimeter-wave inverted strip waveguide,

than that of the outside regions. In the case of the optical

slot guide, the metallic plates in the outside regions behave

like an overdense plasma that possesses a predominantly

negative-real dielectric constant in the optical frequency

range. Thus the effective dielectric constant of the central

region of the optical slot guide is higher than that of the

outside regions, as in all the other structures in Fig. 1.

Therefore, the electromagnetic energy is confined mostly to

the inside region, with its higher effective dielectric con-

stant. Further remarks about these waveguides are made in

Section HI-A of Part II.

Our approach here follows that of microwave network

theory; the cross section of the waveguide is first viewed in

terms of constituent parts, or building blocks, then each

constituent is analyzed separately in its own simpler con-

text, and finally all parts are put together to comprise the

final structure of interest. In that way. the simpler parts are

handled quickly, and the more difficult portions are paid

the special attention required of them, and in a less cluttered

context. Approximations, if they need to be made, can then

be more systematically treated. When the parts are finally
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put together, the last step is easily handled.

The guiding of waves along the axis of these waveguides

is customarily viewed in terms of surface waves which

bounce back and forth inside the central region at an angle

to the sidewalls, undergoing total reflection at each bounce;

in the outside regions, the electromagnetic fields are trans-

versely evanescent. For the structures under consideration,

the waveguide side walls appear in the form of a step

; discontinuity, either in dielectric constant or in thickness,

between two uniform dielectric-layered structures. The

building blocks of the cross section are thus seen to be the

inside and outside regions, which are simply portions of

uniform dielectric-layered structures which support planar

surface waves, and dielectric step discontinuities, or junc-

tions, at the planes where the inside and outside regions

meet.

In our building-block treatment, we first treat rigorously

the separate uniform planar regions. The modes on such

planar dielectric structures are well known, but we review

them here both because we need them for the waveguiding

problem and to explain our notation and procedure in a

simpler context. The complete modal spectrum, comprising

the surface waves and the non-surface waves, is discussed

in Section II. In our analysis of these open structures, we

follow the customary procedure of discretizing the continu-

ous spectrum [12], [14], [15] by placing perfectly-conducting

walls above and below (if necessary) the planar dielectric

waveguide, thus replacing the open region with a partially-

dielectric-filled parallel-plate waveguide, which supports, in

addition to the surface waves [16], an infinite number of

highernon-surface-wave modes, some propagating and the

remainder nonpropagating.

The next constituent of the waveguide cross section to be

analyzed is the dielectric step junction, or discontinuity,

corresponding to the side of the dielectric strip waveguide.

The rigorous mode-matching analysis is presented in Sec-

tion III. Since guidance along the waveguide can be viewed

in terms of surface waves bouncing back and forth at an

angle to the sides of the waveguide and encountering “total

reflection” at each bounce, the dielectric step junction

problem involves the scattering by the step of a surface

wave obliquely incident on it.

When the surface wave is incident normally on the step

junction, the boundary-value problem is two-dimensional,

and an incident TE surface wave produces reflected and

transmitted waves of TE polarization only. For oblique

incidence, on the other hand, the boundary-value problem

becomes three-dimensional, and TE–TM coupling is pro-

duced at the step discontinuity. That means that an inci-

dent wave of a given polarization now also produces re-

flected and transmitted waves of the opposite polarization.

This scattering problem is therefore of interest in its own

right.

The rigorous analysis begins in Section III-A with a

coordinate transformation which translates a TE or a TM

surf ace wave propagating at an angle to the step discon-

tinuity into an LSE or an LSM mode (or alternatively an

H-type or an E-type mode) propagating normally to the

step discontinuity, so that the step can be viewed as a

845

transverse discontinuity. The mode-matching procedure for

the boundary-value problem, which is the heart of the

method, is described in Section III-B. The amplitudes of

the scattered waves are determined by four infinite systems

of equations, corresponding to the satisfaction of the

boundary conditions. These equations, which are phrased

in matrix form, mu-st of course be truncated in practice to

permit numerical results to be obtained.

The basic mode-matching procedure described in Sec-

tion III-B is well known, and has been employed by others

in determining the propagation characteristics of some

waveguides. By utilizing certain matrix identities, however,

an alternative matrix formulation is obtained. Both formu-

lations yield numerically identical results when the matrices

are of infinite order, but not when they are truncated.

However, the alternative formulation always satisfies the

conservation of power, and it is therefore useful for the

development of equivalent networks for the dielectric step

junction. The first formulation in truncated form does not

satisfy the power conservation condition, so that its devia-

tion from it can be used as a measure of the numerical

accuracy of the scattering results.

It is then shown in Section III-C that one can readily

develop an input-admittance formulation in terms of the

matrix quantities involved in the mode-matching process.

An equivalent network resulting from this formulation is

employed in Section IV as a constituent of the general

transverse equivalent network for the cross section of di-

electric strip waveguides.

The analysis for the dielectric strip waveguides proceeds

in Section IV by employing the building-block approach

fundamental to microwave network theory. Since the cross

Section of this class of waveguides is seen to consist of two

dielectric step junctions of the type just discussed con-

nected by a length of uniform waveguide, the equivalent

network for the step junction is employed in a rigorous

overall transverse equivalent network from which one de-

rives the dispersion relation for the waveguide propagation

characteristics. In particular, the input admittance formula-

tion mentioned earlier is used to obtain a rigorous gener-

alized transverse-resonance relation for the determination of

the waveguide properties. This transverse-resonance rela-

tion is expressed in terms of the admittance matrices

looking both ways from a reference plane located at the

step discontinuity. It is important to note that the proce-

dure employed in deriving the transverse-resonance rela-

tion is general, and is independent of the detailed nature of

the waveguiding structure; even the relation itself is general

if one recognizes that the actual input admittance matrices

will become altered when one changes from one waveguide

type to another. The relation derived is in fact a generaliza-

tion of the scalar transverse-resonance relation, valid when

only a single mode is involved, to the matrix form for a

multimode situation in which all mode-coupling effects are

accounted for rigorously.

We conclude these introductory remarks by summarizing

some of the principal features of our analyses. We employ

the classic building-block approach of microwave network

theory by viewing the cross sections of the dielectric strip
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Fig. 2. Multilayer planar dielectric structure and its equivalent network representation. The phvsical

dimensions shown are not in proportion; the perfectly-conducting plates are actually far removed from

the central layers.

waveguides in terms of their constituent parts, namely,

portions of planar dielectric waveguides and dielectric step

junctions where they meet. The planar waveguides are well

known, but the step junctions offer a major new challenge.

In connection with the step junction, the oblique incidence

angle transforms the scalar two-dimensional boundary-

value problem that arises for normal incidence into a

vector three-dimensional one. A mathematical consequence

is TE– TM mode coupling at the discontinuity y, and the

physical consequence is that an incident wave of one

polarization creates reflected and transmitted waves of the

opposite polarization. The waveguide problem, which com-

bines the constituent parts, is solved in terms of a gener-

alized transverse-resonance relation, which represents a

powerful and general approach, yielding accurate results or

permitting in a systematic way various degrees of ap-

proximation. The mode-matching general procedure is

phrased in admittance terms useful to those familiar with

microwave net works, and equivalent networks are devel-

oped which summarize the wave processes pictorially and

furnish insight into them. The TE–TM mode coupling at

the step junctions corresponding to the sides of the wave-

guide results mathematically in complex eigenvalues under

appropriate circumstances,

effects, principally leakage

cussed in detail in Part II,

results which illustrate the

tively.

and physically in several new

and resonance, which are dis-

together with many numerical

new physical effects quantita-

11. SURFACE WAVES AND NON-SURFACE WAVES ON

PLANAR DIELECTRIC STRUCTURES

As discussed in Section I-B, we adopt the building-block

approach of microwave networks, and we recognize that

the uniform regions present in the cross sections of the

class of waveguides shown in Fig. 1 correspond to portions

of planar dielectric layers. We therefore need to know the

normalized mode functions of both the surface-wave modes

and the non-surface-wave modes on these planar layered

structures. These modes are well known, but they are

reviewed and summarized here because they are needed

later. The only new material in this section is relationship

(9) involving mode functions of different types.

On these open dielectric structures, the non-surface-wave

modes comprise a continuous spectrum. It is customary,

however, in this class of problems [12], [14], [15] to dis-

cretize the continuous spectrum by placing perfectly-

conducting walls above and below the planar dielectric

waveguides constituting the uniform regions. The open

region is thus replaced by a parallel-plate waveguide that is

partially dielectric filled, which supports, in addition to a

finite (small) number of surface waves, an infinite number

of discrete higher modes, some of which are propagating

but the remainder of which are below cutoff. These per-

fectly-conducting bounding walls are placed far above and

below the guiding dielectric region so as to negligibly

influence the properties of the surface waves. For the

millimeter-wave structures (Figs. l(d), (e), and (f)), which

employ a ground plane, only an upper bounding plane is

needed, of course.

It should also be appreciated that although the presence

of these bounding planes may alter the fields far from the

step discontinuity, as compared with the truly open en-

vironment, the essential physics of the scattering process is

not affected. Furthermore, for the waveguide applications

of concern here, the higher modes (and in fact the continu-

ous spectrum in a truly open context) will all be below

cutoff, so that all of the higher mode power excited at the

step discontinuity, in the waveguide application, is com-

pletely stored and none of it is radiated.

Consistent with the method described in the preceding

for discretizing the higher mode spectrum, a uniform multi-

layer planar dielectric structure enclosed by an oversize

parallel-plate waveguide is shown in Fig. 2(a). Dimensions

t.and h are not in proportion, of course, since the per-

fectly-conducting plates are located far away. The guiding

structure consists of four different dielectric media. For

convenience, the media are designated as: air(~a ), guiding

strip (cg), film ( ~f ), and substrate (c,). Such a structure is

sufficiently general as a basis for the analysis of most
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TABLE I

FIELD COMPONENTSOFA BASICMODE

TE Mode TM Mode

E;= –~’(y)exp(–jk~u) H{ =+’’(~~exp(–jk~u)

Hj=--&@(y)exp(--ik@)
~; = —~’’(y)exp(-j,k~u)

ucoc~y)

H:= **@ ’(y)exp(–jkiu) E;=
jti~~(y] &J’’(Y) exp(–jk:u)

847

practical dielectric-waveguide problems. For example, the

outside region of a waveguide corresponds to the special

case for which the thickness of the guiding strip vanishes,

e.g., tg =0. For millimeter-wave applications, the lower

perfectly-conducting plate may be regarded as a ground

plane and, if no dielectric substrate is present, the thickness

of the substrate becomes zero.

The basic modes, comprised of both surface waves and

non-surface waves, of the partially-filled parallel-plate

waveguide are well known in the literature [16]; some

important properties of the basic modes that are relevant

to the ensuing analysis are listed here.

For the rectangular coordinate system (u, y, o ) indicated

in Fig. 2(a), we assume that the basic modes are invariant

along the o direction and propagate along the u direction.

In this two-dimensional boundary-value problem, the

structure supports independent TE and TM basic modes.

The field components of the TE and TM modes are given

in Table L Here, we use a single prime to denote quantities

for TE modes and a double prime for TM modes. It is also

noted that an unprimed quantity will stand for either TE

or TM modes. Such notation will be followed throughout

this paper. In Table I, @is the transverse mode function

and kU is the longitudinal propagation wavenumber of the

basic mode. Evidently, a mode is completely determined by

these two quantities.

Presented in the following are a summary of the well-

known transverse-resonance technique applied to the struc-

ture of Fig. 2(a) and a brief listing of some relationships

among the mode functions. Included, however, is a new

result involving a mixture of TE and TM modes.

A. Transverse-Resonance Technique

Both the mode function + and the propagation wave-

number kU may be determined by the transverse-resonance

technique. A transverse equivalent network for the dielec-

tric-layer structure in Fig. 2(a) is shown in Fig. 2(b). The

transmission-line parameters are known to be related to the

longitudinal propagation wavenumber kU by

{

Y;= K;/@~o, for the TE mode
(1)

‘~= y; =u60Em/K”, for the TM mode

and

K~=(k;c~-k:)’/2 (2)

for m= a, g, f, ors, designating different media, and where

Y~ is the characteristic admittance and IC~is the propaga-

tion wavenumber of the transmission line representing the

m th medium. It is noted that for lossless structures Km can

be either purely real or purely imaginary. Therefore, the

sign of the square root in (2) must be properly chosen such

that the radiation condition is satisfied in each medium

separately. The condition for resonance of the transmis-

sion-line system can be conveniently written in the general

case as

Ygtan Kgfg – Yacot Kata ~tan Kftf – Y,Cot K,t8

Y
g Yg+ Yacot fcatatan Kgtg

=0
+ ‘f Yf + Y,cot K,t~tan Kf~f

(3)

which determines the surface-wave (or non-surface-wave)

propagation wavenumber kU via (1) and (2). Convention-

ally, such a surface-wave characteristic is expressed in

terms of the normalized quantity

‘eff ‘ku/kO (4a)

or

feff =n:ff = (ku/ko)2” (4b)

Here, n .~~is known as the effective index of refraction and

E~f~ is the effective dielectric constant. Equation (3) is

commonly known as the transverse-resonance relation or

the dispersion relation of the waveguide. For a given set of

structure parameters and a given operating frequency, the

modal propagation constant is thus determined and so are

the transmission-line parameters in Fig. 2(b). For the char-

acteristic admittance defined by (1), the mode function is

then determined by the transmission-line voltage for the

TE mode and the transmission-line current for the TM

mode.

B. Relationships Among Transverse Mode Functions

The transverse mode functions of a’partially-filled paral-

lel-plate waveguide are governed by the Sturm-Liouville

eigenvalue problem

[ 1;P(Y)$+9(Y)%(Y)=K%(Y)%(Y) (5)

subject to the boundary conditions

+H(0)=+n(h)=O, for TE modes (6a)

&n(0) =&(h)=O, for TM modes (6b)

where ~~(y) denotes the derivative of @.(y) with respect to

y, and p, q, and w are known functions defined by

{

for TE modes
p(y)= w(Y)= I;6(Y),

for TM modes
(7a)

{

k:~(y), for TE modes
9(Y)= ~’ (7b)

Q, for TM modes.
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Such an eigenvalue problem will yield an infinite set of

eigenvalues, or longitudinal propagation constants of the

modes, and a corresponding set of eigenfunctions, or trans-

verse mode functions. The explicit solutions of the mode

functions can be written down by inspection from the

transmission-line system in Fig. 2(b) and are therefore

omitted. Instead, we summarize here the general properties

of the eigenvalues and eigenfunctions.

We assume that the dielectric materials forming the

waveguide in Fig. 2(a) are lossless. The Sturm– Liouville

eigenvalue problem defined by (5)– (7) is Hermitian, be-

cause of the perfectly-conducting bounding plates at y = O

and h. Therefore, all eigenvalues IC~are real and all eigen-

functions (mode functions) can be chosen to be real. Fur-

thermore, the mode functions of the same type (TE or TM)

are mutually orthogonal. With proper normalization, they

can be chosen to satisfy the orthonormality relation

(+~(Y)lw(Y)\@.( Y))=~h@~(Y)w(Y) @.(Y)dY=~,, (8)

for every m and n. Here, 8ZJstands for the Kronecker delta.

On the other hand, a relationship between the mode func-

tions of different types may be obtained, by manipulating

(5)-(7) for both TE and TM modes, as

+(k;n)2(@:(y) -& kJY))=o. (9)

Such a relation has not previously appeared in the litera-

ture, possibly because it has not been needed in the past.

For the general case of surface-wave scattering by a step

discontinuity at an oblique incidence angle, however, this

particular relation will ensure that the TE and TM modes

are mutually orthogonal in power, even though the mode

functions of one set may not be orthogonal to those of the

other set. A proof of this new relation is presented elsewhere

[17].

III. SCATTERINGOFA SURFACEWAVE OBLIQUELY

INCIDENT ON A DIELECTRIC STEP DISCONTINUITY

It was explained earlier that a dielectric step junction, or

discontinuity, corresponds to the side of a dielectric strip

waveguide. Following the building-block approach out-

lined in Section I-B, the step discontinuity is analyzed

separately as a constituent in the waveguide cross section.

Furthermore, since the waveguiding process is viewed in

terms of surface waves bouncing back and forth between

the waveguide sides at an angle to the sides, the constituent

step-discontinuity problem must require that the surface

wave be incident obliquely on the step structure. Most

treatments in the literature of the scattering of surface

waves by a step discontinuity involve normally-incident

waves; for this reason, the oblique-incidence case is of

interest in its own right.

When a surface wave is incident normally on a dielectric

step discontinuity, the boundary-value problem is two-

dimensional, and all higher modes excited at the discon-

tinuity possess the same polarization as the incident mode.

When the surface wave is incident at an oblique angle,

however, the resulting three-dimensional boundary-value

problem requires the coupling of TE and TM modes at the

discontinuity, as is shown later. A rigorous phasing of the

oblique-incidence case has recently appeared in the litera-

ture [15], but we also present an input admittance formula-

tion and an equivalent network. Both the equivalent net-

work and the input admittance form are valuable when the

step discontinuity is employed as a constituent of more

complex structures. It should be added that the new physi-

cal effects that emerge when the surface wave is incident

obliquely cac be exhibited when only one surface-wave

mode of each type is included [18]; it is necessary to include

many modes only if accurate numerical results are desired.

In order to simplify the analysis, the step discontinuity is

to be treated as a transverse discontinuity even though the

surface wave is incident at an angle. The TE or TM surface

wave which is obliquely incident is thus to be subject to a

coordinate transformation which establishes a transmission

line formulation for a mode normally incident on the step

structure. The surface-wave modes are then no longer TE

or TM modes, with three field components, but they be-

come modes with five field components, which have been

characterized in the literature as LSE or LSM modes, or

alternatively as H-type or E-type modes.

A. LSE (or H(J’~ -Type) Modes and LSM (or E~~] -Type)

Modes

A dielectric step discontinuity with a surface wave inci-

dent on it at an oblique angle is depicted in Fig. 3. The

structure is characterized by the xyz coordinate system,

with the discontinuity located on the x = O plane. Suppose

the incident surface wave is a TE mode with respect to its

direction of propagation, denoted by u. The electric-field

vector has only one component, in the o direction, per-

pendicular to u and on the xz plane. Since the transverse

mode function of a surface wave is independent of its

direction of propagation, they axis remains unchanged for

any angle of incidence. In the uyo coordinate system, each

TE or TM mode has only three field components whose

spatial variations are well known. In solving the boundary-

value problem of surface-wave scattering by a step discon-

tinuity, it is necessary to deal with the two coordinate

systems: x, y, and z, to be called the structure coordinate

system, and u, y, and u, to be called the eigencoordinate

system; evidently, they are mutually related by a coordi-

nate rotation about the y axis. The transformation of the

electromagnetic fields of a surface wave from the eigen-

coordinate system to the structure coordinate system re-

sults in an increase in the number of field components

from three to five.

When the two coordinate systems are rotated with re-

spect to each other by angle 0 about the y axis, they are

mutually related by

u=xcosf)+~sind (lo)

v= —xsin/3+zcos6J (11)

and the wavenumbers of the field components in the x, y, z
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system become

1
Y

I

(a)
c(y) I z (y)

1

I
Fig. 3. Scattering of a surface wave by a dielectric step discontinuity. (a)

Side view. (b) Top view.

TABLE II

FIELD COMPONENTSOFA SURFACEWAVE MODE IN THE

STRUCTURECOORDINATESYSTEM

LSE or @’)-Type Mode LSM or E(~)-Type Mode

Ej=sinO’exp(–jkjx) @’(y)

E;= –cosr?’exp(-jk: x)+’(y)

~:= CoSo’
— exp(–jkjx)~+’(y)
jup

fl~=~exp(-jkjx)+ ’(y)

Hi = sin O’
— exp(–jk~x)$+’(y)
ju~

kX=kUcos6’ (12)

k= =kUsinfl (13)

where kx and kY are the projections of the surface-wave

propagation vector in the x and y directions. The field

components that result from this simple coordinate trans-

formation are listed in Table II.

The modes whose components are listed in Table II have

five field components instead of the three possessed by TE

and TM modes. These modes are no longer TE or TM, but

they are characterizable by the absence of an electric or a

magnetic field component in the y direction. Such modes

are known in the literature as LSE or LSM modes [19], or

as H-type or E-type modes with respect to they direction

[20], if EY =0 or HY =0, respectively. Thus, since the

surface-wave mode in the first column of Table II possesses

a y component of H but not of E, itmay be designated an

E@) -type mode or an LSE mode; similarly, the mode in

the second column is an E(y) -type mode or an LSM mode.

We recall that these five-component modes enter here

because we wish the transmission-line formulation to corre-

spond to normal incidence on the step discontinuity. The

E:= Cosb’”

jwtoc(y)
exp(–jk~x)~+’’(y)

k,,
E; =

~ exp(–jk~x)+’’(y)

E;= sin 0“
exp(–jk~x)~I#J”( y)

jcdcot(y)

H;= – sind” exp( –jk~x)~”( y)

H; =()

H; =COS8“ exp(–jk~x)+”( y)

849

physical waves are still TE or TM waves incident on the

step junction at an angle.

The x variations of the field components in Table II

represent the propagation of surface waves (and non-surface

waves) in the forward (transmission-line) direction. In the

scattering process, reflection of these modes takes place,

resulting in propagation in the backward direction with the

spatial variation exp ( +jkXx ). Thus, the general field solu-

tion of a rotated mode must consist of both forward and

backward propagating waves in the x direction. Such a

general modal solution for each field component in the

structure coordinate system is listed in Table III. Here,

V(x) and 1(x), with a single prime for an LSE or Z@’) -type

mode and a double prime for an LSM or E(y) -type mode,

can be interpreted as the voltage and current satisfying the

transmission-line equations

(14a): V(X)= –jkXZI(.x)

:~(x)= –jkXYV(x) (14b)

where kx is the propagation wavenumber and Z( = 1/ Y) is

the characteristic impedance in the x direction. Further-
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TABLE III

GENERALMODAL SOLUTIONSFORALL THE FIELD COMPONENTS

LSE or H(-’l-Type Mode LSM or E(-’l-Type Mode

~: – Wo Id,,
~, sind’1’(x)+’(y) E{ =&Z’’(x)—

u c(y) @ (“y)

E;=()
1

E;: ‘j~’’(X)&’(~)-
C(.v)

~;= w-x)ffw)
1 1— +(p)

EV =Zsin8’’V’’(x)c( ~, ~y

H;=J*V(X):$’(Y) H: = –j? sine “V’’(x)@’’(y)

H;=–z’(x)l$’(y) H:; =O u

H; =j~ sind’1’(x)~@’(y) H; ‘JZ’’(X)$’’(Y)
u

more, kx, together with the propagation wavenumber along

the step discontinuity in the z direction, is related to the

propagation wavenumber ku of the basic TE or TM mode

by

k:+k:=k2 u. (15)

The characteristic impedance is defined by [20]

[

wok: _ Upocos (3’
> for LSE or If(Y)-type modes

(kj)2 - k~
z.

(k:)* = k;
~ for LSM or E(’) -type modes 1

wok; Ctxocos e“

(16a)

Invoking (4b), we obtain the alternative form

{

ki /~%f > for LSE or H(’) -type modes
z.

upoe;ff /k;, for LSM or li(~j-type modes.

(16b)

It is noted that for the scattering problem under considera-

tion here, k, is a known constant and is related to the

parameters of the incident surface wave by

kz =kUsin6 (17)

where O is the incidence angle, as depicted in Fig. 3(b).

Thus, the transmission-line parameters, kx and Z, can

readily be determined from (15) and (16), and the general

modal solution for each field component in Table III can

readily be written down, based on the solutions of the

transmission-line equations in (14). Therefore, we assume

from now on that, for each mode determined in Section

III-A, the general modal solution for every field compo-

nent in the structure coordinate system is known, as given

in Table III.

B. Boundaiy - Value Problem for the Step Discontinuity

The uniform multilayer structure shown in Fig. 2 can

support an infinite number of modes. Let k ~n and k~n be

the propagation wavenumbers of the n th TE and TM

modes, respectively. For each mode, the general solutions

for all the field components in terms of the structure

coordinate system are given in Table III, with k: and k:

replaced by k~n and k~n, respectively. We formulate here

the boundary-value problem of surface-wave scattering by

a step discontinuity for the general case of oblique inci-

dence.

The two uniform multilayer regions on the two sides of

the discontinuity in Fig. 3(a) are characterized by the

distributions of dielectric constant, C(y) and i(y), respec-

tively. As an illustration, let us consider the case for which

the TM fundamental mode is incident from the left at an

oblique angle 0(’. As will be shown, all the modes in the

two constituent regions will generally be excited at the step

discontinuity, some propagating and some decaying away

from the discontinuity. The boundary conditions at the

step discontinuity require that the total tangential field

components be continuous across the step discontinuity,

and a necessary condition for the continuity of the tangen-

tial field components is that every mode in the two con-

stituent regions must have the same propagation wavenum-

ber, k=, in the direction along the step discontinuity. From

(17), we then have the Snell’s law for the various modes at

a step discontinuity:

kz = k~nsin O: = k~nsin 19~’= ~U~sin ~ = ~~~sin ~’

(18a)

or

n&lsinO~’ =n&fasin O~=n&.sinf3~’

= ii~ff. sin ~~= ii~ff. sin 9;’ (18b)

which determines the angles of reflection and transmission

for every TE or TM mode, as indicated in Fig. 3(b). With

the knowledge of kz, the propagation wavenumber in the x

direction can be determined from (15) by replacing ku by

kun for the n th mode (either TE or TM) to yield

kxn = [k;n –k;]l’2. (19)

For the TM surface-wave incidence shown in Fig. 3(b), the

last equation can be written conveniently in terms of the

effective dielectric constants as

k~~ ‘ko[~~ff. -c~f1sin20;]’2e (20)

where d;’ is the given incidence angle. After kxn is de-

termined, the characteristic impedance of the mode is then

specified by (16), with kx replaced by kxn to become

I

k:n
for LSE or I@’) -type modes

Zn – + – %lf:ffn ‘
n wo~[ffn ,

for LSM or E(Y) -type modes.
k;n ,

(21)

Thus, with respect to the x direction, the transmission-line

parameters for every mode are determined, and the general

modal solutions for all the field components in the struc-

ture coordinate system are considered completely de-

termined, as described in the preceding subsection.

Referring to Fig. 3, we observe that the tangential com-

ponents of the fields at the step discontinuity consist of the

y and z components, and we shall therefore consider only

those components explicitly. As stated earlier, the general

field solution in each constituent region may be expressed

in terms of the superposition of the complete set of mode
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functions. For the tangential field components for the C(y)

region (x< O), we have

E,(X> Y)=j i K’(X)%’(Y)* (22a)
~=1

E,(X>y)= – ~ ~(x)+’n(y)– ~ ~’(x)+;’(y)
~=1 ~=1

(22b)

Hy(x, y)=– j I;(x)+;(y) (22C)
~=1

Hz(x, y)=–j ~ q(x)l);(y)–j j I;(x)*;(y)
~=1 ~=1

(22d)

where we employ the simpfif ying notation

(23a)+;(y)=#-sine’-$+;(y)
un

+;’(y) =+sin6’’& $@/(Y). (23b)
Un

It is noted that the z dependence exp ( –jk, z) has been

suppressed in (22) for clarity. A similar set with an overbar

may also be written for the :(y) region (x> O), but is

omitted here for simplicity. At the step discontinuity at

x = O, the tangential field components must be continuous.

From (22) we obtain

“ mM’(Y)=&i’ vwM’(Y)-& =2,
*=1

(24a)

+ ~ ~’(o);;(y)
~=1

(24b)

(24c)

+ ~ I:(o) ij;(y).
~=1

(24d)

These four equations hold for any y at x= O within the

enclosure. Scalar-multiplying these equations with either ~~

or ~~ and making use of the orthogonality relation (8), we

then obtain

J,w=p,, p (25a)

V’+R’’P’’’~+S”~ S”~’ (25b)

R’I’+It’=S’i’+ Q’{f’r , (25d)

where V’ and 1’ are column vectors with the transmission-

line voltage and current of the n th TE mode, V;(O) and

1;(O), at the n th positions; similar definitions hold for V“

and 1“ for TM modes and also for those vectors with a

superbar. The P ‘s, Q ‘s, R ‘s, and S‘s are matrices char-

acterizing the coupling of modes at the step discontinuity;

their general elements aredefined by the scalar products or

overlap integrals of mode functions on the two sides of the

discontinuity as

pin ‘Q’nm ‘(dmli;) (26a)

(26b)

(26c)

(26d)

%.=(441+;’) (26e)

(26f)

S;n = (+;l~’) (26g)

foranym, n=l,2,3, . . . . It is evident from either (25) or

(26) that the matrices P‘s and Q‘s are responsible for the

coupling among modes of the same polarization, whereas

R‘s and S‘s are responsible for the cross-coupling among

modes of opposite polarization.

For a given incident surface wave, the amplitudes of the

scattered modes are determined by the four infinite sys-

tems of equations in (25). In practice, these infinite systems

of equations must be truncated for an approximate analy-

sis, and we shall do this in connection with the waveguide

problem in Section IV.

A set of modal relations alternative to that in (25) can be

derived. On use of certain matrix identities, matrices P and

S are eliminated from (25), and a new set obtained which is

equivalent to that in (25) if all matrices are retained to

infinite order. This new set is the following:

(Q,?) TJ/7H=~/ (27a)

~+(R,)~V,, _-Q’[~+(~)’~’] (27b)

(Q/)T~/=~ (27c)

R’I’+l’’= Q’’[~~+]’]. (27d)

When truncations are made in order to obtain numerical

values for the scattering parameters, the two different

formulations in (25) and (27) no longer yield identical

results, and their convergence properties are also not iden-

tical. What is more important, however, is that the alterna-

tive formulation in (27) always satisfies the condition of

power conservation across the junction, regardless of the

number of modes retained after a truncation. A derivation

of the alternative formulation in (27) and a proof that it

always satisfies the condition of power conservation are

presented elsewhere [17].
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The set (27) that always preserves the law of conserva-

tion of power flow forms the basis for the development of

equivalent networks for the dielectric step discontinuity,

whereas the other set (25) is useful for numerical analyses

of the problem. In fact, because the results obtained after

truncation will not satisfy the conservation of power flow,

we can use the deviation from conservation as a measure of

the numerical accuracy obtained. The alternative formula-

tion in (27) is therefore used as the basis for an equivalent

network representation for the dielectric step discontinuity

and for an input admittance formulation, presented under

Section III-C, which is then employed in the development

in Section IV of a generalized transverse-resonance relation

for the dielectric strip waveguides.

C. Inpid Admittance ~atrix for the Step Discontinuity

In many practical situations, it is necessary to determine

only the reflection of a surface wave by a step discontinu-

ityy. Moreover, once the reflected mode amplitudes are

determined, it is straightforward to determine the trans-

mitted mode amplitudes. For the scattering of a surface

wave incident from the left in Fig. 3(a), it is sufficient to

have available an input admittance characterization that

takes into account the effects of the step discontinuity and

the semi-infinite uniform waveguide to the right. We derive

now such an input admittance matrix for the step discon-

tinuity.

Each of the higher mode transmission lines to the right

of the step discontinuity can be simply represented by its

characteristic admittance, and the voltage– current relation

at each terminal is then
——

j-= y;v; (28a)

f; = ~;,~-, (28b)

for every mode index n. In matrix form, the last two

relations may be written as
.—

p= yt~, (28c)

p= jz, pt
(28d)

where ~ and ~ are voltage and current vectors for LSE

(or HcJ’J-type) modes in the outside region, with ~ and~~

as their n th positions, respectively, and similarly for V“

and ~’ for LSM (or E(J’) -type) modes. ~ and ~’ are the

diagonal admittance matrices of the LSE and LSM modes,

respectively, for the :(y) region. Substituting the last two

equations into (27a) and (27b) and then eliminating I and

~’ by invoking (27c) and (27d), we finally obtain

I’=Y,,V’+Y12V” (29a)

1“ = Y2,v’ + Y22V” (29b)

where ~,, for i, ~“= 1 and 2, is an input admittance matrix

that is related to the characteristic admittances, ~~ and ~~’,

and the mode-coupling matrices of the step discontinuity

by

Y,l=Q’~(Q’)~ (30a)

Y12= Y,, [R~– Q’Ry(Q’’)T] (30b)

Y2,= –[R– Q’’E(Q’)~j Y1l (30C)

and

Y,, =Q’’~(Q’’)~- Y21[R~-Q’~(Q’’)~] (30d)

where superscript T signifies “transpose.” In (29), Y,, and

Y22are responsible for the coupling of modes of the same

polarization and Y,z and Y21represent the cross-coupling

between modes of opposite polarization. These input ad-

mittance matrices can be computed in the straightforward

manner described in the preceding, and require only the

knowledge of the modal characteristics of the two con-

stituent uniform planar waveguides. Expressions (30) are

seen to be simple in form and afford with relative ease a

systematic and effective analysis of step discontinuity prob-

lems.

IV. GUIDANCE OFWAVESBY DIELECTRIC STRIP

WAVEGUIDES

In Section III we developed a mode-matching formalism

for a dielectric step discontinuity between two uniform

planar dielectric waveguides. The cross section of a dielec-

tric strip waveguide may be viewed as consisting of two or

more step discontinuities connected by a length of uniform

waveguide, and the equivalent network for a step discon-

tinuity may therefore be utilized in the analysis of wave-

guide characteristics. In this section, we follow such a

building-block approach to the dielectric strip waveguide

problem and we formulate the waveguide problem rigor-

ously in the form of a generalized transverse-resonance

relation.

A dielectric strip waveguide is shown in Fig. 4(a). As a

wave is being guided along the strip, the process may be

viewed in terms of multiple reflections which take place at

the two step discontinuities forming the waveguide side

walls. The basic modes of each constituent region of the

waveguide are presented in Section III-A. If we employ the

concept of input admittance and apply the equivalent

network for the step discontinuities implied by relations

(29), we obtain the transverse equivalent network shown in

Fig. 4(b) for the analysis of transverse resonance in the

lateral direction of the waveguide. The guiding characteris-

tics of the waveguide are completely determined by a single

parameter, i.e., the longitudinal propagation wavenumber

k,. As shown in the preceding sectio~, all the parameters of

the network in Fig. 4(b) are implicit functions of kz, and

the resonance condition of the network determines the

allowable values of k= for a given waveguide structure.

In practice, most dielectric strip waveguides are symmet-

ric in geometry, such as the one shown in Fig. 4(a).

Therefore, the transverse equivalent network in Fig. 4(b) is

also symmetric with respect to the center plane. Such a

network may be analyzed in terms of the two simpler

networks obtained from open-circuit and short-circuit bi-

sections, as shown in Fig. 5 for symmetric and antisymmet-

ric distributions of voltage, or electric field, in the original

waveguide. For simplicity, we shall deal only with symmet-

ric structures in this paper; the generalization for asymmet-

ric structures is almost trivial and is omitted.

Referring to Fig. 5, the relationship between the voltages

and currents at the junctions at x = O may be expressed in
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(b)
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Fig. 4. Equivalent network for the transverse resonance in the lateral

direction of a dielectric strip waveguide. (a) Dielectric strip waveguide.

(b) Transverse equivalent network.
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Fig. 5. Bisected transverse equivalent networks for the waveguide in

Fig. 4. (a) Symmetric or open-circuit bisection. (b) Antisymmetric or

short-circuit bisection.

terms of the transmission-line characteristics as

z’=-f’~’=-mw (31a)

where D( Y. ) stands for a diagonal matrix with Y. as its

e~ement at the n th diagonal position, and therefore P and

Y“ are diagonal matrices with the diagonal elements de-

fined by the in~ut admittances of the transmission-line

sections ~~ and Y;’ for LSE and LSM modes, respectively.

The negative signs in (31) reflect the fact that the currents

in the transmission lines flow in the positive x direction,

while the admittances are defined with respect to the

opposite direction. Explicitly, for the

works, we have

F; =jY~ tan IC~W/2

F;’ =jY~’ tan Ic~W/2

two bisected net-

(32a)

(32b)
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for the open-circuit ~isection, and

~~= ‘jy~ COtK; w/2 (33a)

?;’ = –jYJ’ cot K:w’/2 (33b)

for the short-circuit bisection. More succinctly, the two

equations in (31) may be combined to become

I= – @ (34)

where 1 is a super column vector with the colu+~ vectors

I’ and 1“ as its elements, and similarly for V. Y IS a super

matrix defined by

()~=f’o
o j%, (35)

where the elements at the n th positions in the diagonal

matrices fi+and P’ are given by either (32) or (33). For

simplicity, Y will be called the admittance matrix looking

to the left.

On the other hand, the relationship between the voltages

and currents may also be expressed in terms of the input-

admittance matrices for the step discontinuity y as defined in

(29). More succinctly, (29) may be written as

lZ iv (36)

where ~ will be called the admittance matrix looking to the

right, and the super matrix is defined by

()
Y,*f=Y11

Y2* Y22 “
(37)

Evidently, (34) and (36) are two different equations relat-

ing the same set of voltages to the same set of currents.

Equating (34) and (36), we obtain

(f+i)v=o (38)

which is a system of linear homogeneous equations to

determine the modal voltages at x = O.When the solution is

obtained, the modal currents Z at x= O can be’ simply

determined from either (34) or (36). With the terminal

voltages and currents now known, the voltages and cur-

rents everywhere in the transmission-line system can be

determined by standard techniques and the electromag-

netic fields everywhere within the dielectric waveguide are

completely specified via Table III.

For the linear homogeneous system of equation (38),

the condition for the existence of a nontrivial solution is

that the determinant of the coefficient matrix vanishes,

namely

det(~+~)=O. (39)

In other words, this is” a condition under which nonzero

voltages may exist in the absence of any source excitation

in the network of Fig: 5(a) or (b); alternatively, the net-

works are in resonance. Again, the admittances in (38) are

all functions of the longitudinal propagation wavenurnber

k=. Therefore, (39) is the equation to determine tlie allow-

able values of k=, and it will be simply referred to as the

generalized transverse-resonance relation or dispersion rela-

tion for the dielectric wave~uide.

For a single-mode case, Y and ~ are scalar admittances,
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and (39) becomes the familiar transverse-resonance relation

that states that, for a network system to be in resonance,

the sum of the admittances (or impedances) looking into

the two opposite directions at any point within the network

system must vanish. Clearly, (39) is a generalization of the

scalar transverse-resonance relation for a single-mode case

to the matrix one for a multimode case, in order to account

for the effect of mode coupling. Some important virtues of

transverse-resonance relation (39) are 1) it is exact, 2) it is

simple in form, 3) it is easily adaptable to more complex

waveguide structures, and 4) it is an effective tool for a

systematic numerical analysis. Furthermore, being an exact

transverse-resonance relation, it can be used as a basis for

developing approximation techniques that will exhibit the

effect of mode coupling, and also to identify new physical

phenomena that may take place in the waveguide struc-

tures.
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A bstract— A class of open dielectric waveguides is discussed which is of

direct importance to the areas of integrated optics and millimeter-wave

integrated circuits. An accurate analysis of the properties of these wave-

guides reveals that interesting new physical phenomena, snch as leakage

and sharp cancellation or resonance effects, may occur under appropriate

circumstances. T’he resulting leaky modes form a new class of such modes

since the leakage, in the form of an exiting surface wave, has a polarization

opposite to that which dominates in the bound portion of the leaky mode.

These new effects are cansed by TX-TM mode coupling, which was

neglected in earlier approximate treatments. Part H describes the new

physical effects and inclndes numerical resnlts on various wavegniding

structures to illustrate the new effects quantitatively.

I. INTRODUCTION

I N THIS PART, we first describe and discuss certain

new physical effects that follow from taking into account

the coupling between TE and TM modes that occurs at the

sides of the open dielectric waveguides. Since such coupling

is ignored completely in the customary approximate treat-

ments, those treatments miss these physical effects entirely.

Later in the paper various numerical results are presented

for typical waveguiding structures which illustrate these

new physical effects quantitatively, as well as indicating for

which physical properties the approximate theories are

satisfactory and for which they are not.
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Ptit I of this paper presents in detail the general mode-

matching procedure which results in an accurate analysis

of the propagation behavior of these open dielectric wave-

guides. In that treatment, the approach and the point of

view are developed in detail; we will require them in our

physical discussions below, and we briefly review them in

the context of our summary in Section II of the “effective

dielectric constant” approximation. Following the summary

of that approximate method, we show in Section II-B the

physical consequences of improving that approximation by

including the TE–TM mode coupling at the sides of the

open dielectric waveguide. Most importantly, we thereby

obtain the new physical effects to be described, but we also

show how the hybrid nature of these guided modes is

altered. The mathematical consequences of accounting for

the TE– TM coupling, with the implied inclusion of higher

modes, are examined in detail in Part I.

The new physical effects to which we refer are the

presence of leakage and the appearance of sharp resonance,

or cancellation, effects. As mentioned earlier, the customary

approximate theories neglected the TE–TM coupling and

thus never predicted these physical effects. The effects

themselves are discussed in Section III. We present, in

Sections III-B and -C, physical explanations for the leakage

mechanism and the resonance effect. The leakage occurs in

the form of a surface wave which emerges from the guiding

structure at some angle to it. The exit angle of the leaking

surface wave is discussed in Section III-E.

The leakage to which we refer changes the guided mode
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