
����������
�������

Citation: Dash, S.; Verma, S.; Kavita;

Bevinakoppa, S.; Wozniak, M.; Shafi,

J.; Ijaz, M.F. Guidance Image-Based

Enhanced Matched Filter with

Modified Thresholding for Blood

Vessel Extraction. Symmetry 2022, 14,

194. https://doi.org/10.3390/

sym14020194

Academic Editors: Zhixun Su and

Dumitru Baleanu

Received: 13 November 2021

Accepted: 9 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Guidance Image-Based Enhanced Matched Filter with Modified
Thresholding for Blood Vessel Extraction
Sonali Dash 1 , Sahil Verma 2,3 , Kavita 2,4 , Savitri Bevinakoppa 5, Marcin Wozniak 6,* , Jana Shafi 7

and Muhammad Fazal Ijaz 8,*

1 Department of Electronics and Communication Engineering, Raghu Institute of Technology (A),
Visakhapatnam 531162, India; sonali.isan@gmail.com

2 Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, India;
sahilverma@ieee.org (S.V.); kavita@ieee.org (K.)

3 Bio and Health Informatics Research Lab, Chandigarh University, Mohali 140413, India
4 Machine Learning and Data Science Research Lab, Chandigarh University, Mohali 140413, India
5 School of IT and Engineering, Melbourne Institute of Technology, Melbourne 3000, Australia;

sbevinakoppa@mit.edu.au
6 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
7 Department of Computer Science, College of Arts and Science, Prince Sattam Bin Abdul Aziz University,

Wadi Ad-Dwasir 11991, Saudi Arabia; j.jana@psau.edu.sa
8 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
* Correspondence: marcin.wozniak@polsl.pl (M.W.); fazal@sejong.ac.kr (M.F.I.)

Abstract: Fundus images have been established as an important factor in analyzing and recognizing
many cardiovascular and ophthalmological diseases. Consequently, precise segmentation of blood
using computer vision is vital in the recognition of ailments. Although clinicians have adopted
computer-aided diagnostics (CAD) in day-to-day diagnosis, it is still quite difficult to conduct
fully automated analysis based exclusively on information contained in fundus images. In fundus
image applications, one of the methods for conducting an automatic analysis is to ascertain symme-
try/asymmetry details from corresponding areas of the retina and investigate their association with
positive clinical findings. In the field of diabetic retinopathy, matched filters have been shown to be an
established technique for vessel extraction. However, there is reduced efficiency in matched filters due
to noisy images. In this work, a joint model of a fast guided filter and a matched filter is suggested for
enhancing abnormal retinal images containing low vessel contrasts. Extracting all information from
an image correctly is one of the important factors in the process of image enhancement. A guided
filter has an excellent property in edge-preserving, but still tends to suffer from halo artifacts near the
edges. Fast guided filtering is a technique that subsamples the filtering input image and the guidance
image and calculates the local linear coefficients for upsampling. In short, the proposed technique
applies a fast guided filter and a matched filter for attaining improved performance measures for
vessel extraction. The recommended technique was assessed on DRIVE and CHASE_DB1 datasets
and achieved accuracies of 0.9613 and 0.960, respectively, both of which are higher than the accuracy
of the original matched filter and other suggested vessel segmentation algorithms.

Keywords: fast guided filter; matched filter; modified thresholding; vessel segmentation

1. Introduction

As the retina is an extended version of the brain, it shares an embryological origin
with the central nervous system. Therefore, automatic analysis of retinal images helps in
understanding retinal and cardiovascular diseases and, in many cases, has significantly
improved their clinical management. For the correct quantification of asymmetric or
irregular patterns of vessel structures in retinal images, the symmetry or evenness of the
vessel must be correctly recognized, either manually or automatically.
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The automatic analysis and study of fundus images can identify important features
related to alterations in blood vessel networks. The analysis of fundus images can be
broadly categorized into two types of segmentation: OD segmentation and vessel seg-
mentation. This analysis will help in detecting and dealing with several diseases, such as
cardiovascular diseases [1], vessel occlusion [2], diabetic retinopathy [3], glaucoma [4,5],
retinal disorders [6] and hypertension [7].

Therefore, vessel segmentation is a vital stage in the algorithms for detecting retinal
structures such as the fovea and the optic disc and provides support in registering images
clicked at various positions of the retina. These recorded images are used in the automatic
observation of the progression of certain ailments. Understanding the structure of retinal
vasculature will decrease false positive identifications in lesions. The identification of
vasculature divergence and crossover points assists ophthalmologists in carrying out
improved analysis.

Fundus images are mainly derived from one of two methods: use of a color fundus
camera or fluorescein angiography (FA) [8–10]. The edges of the vessels are distinctly
visible in FA images, compared to images taken via a color fundus camera. However,
FA is more complicated, and most available algorithms presume that a fundus image is
noise- and lesion-free. FA displays unsatisfactory performance, is subject to anomalous
fundus images, and relies on various parameter configurations. Segmenting manually is
a complicated and uneconomic. Therefore, an automatic algorithm that does not rely on
parameter configuration, with less expense, is required for screening greater numbers of
vessel anomalies.

To solve the disadvantages and shortcomings of manual segmentation, a novel tech-
nical approach to segmenting blood vessels is suggested, which can efficiently decrease
doctors’ obligations and mitigate the negative effects of segmenting manually. Simultane-
ously, in comparison with other existing algorithms, the suggested technique is superior in
segmentation accuracy and in determining connectivity in the extraction of blood vessels.

Recently, a convolutional neural network has been applied increasingly in the use of
computer vision for biomedical image analysis [11–24]. However, the precise segmentation
of images is difficult for low-contrast blood vessels in the retina and requires access to a
huge database for training, while an unsupervised learning technique may be available in
which such extensive training is not required.

In the literature, many image enhancement techniques are available. Among them
is the guided filter used for image enhancement and edge-preserving. Many research
studies have successfully implemented extensions of guided filter. Rajput and Gaul recom-
mended a guided filter technique based on a local linear model [25]. He et al. suggested a
novel explicit-image guided filter that is used for edge-preserving via a smoothing oper-
ator [26]. He and Sun then extended the original guided filter to a fast guided filter [27].
Hasegawa et al. suggested a reflected IR image that can be used as a guide image derived
from a reflected image [28].

Chierchia et al. used the guided filter to improve resolution in cases of small forg-
eries [29]. Zhu and Yu extended the guided filter to a self-guided filter, designed as an
effective and simple method for denoising a single noisy image without introducing an
additional guidance image [30]. Lu et al. extended the guided filter to effective guided
image-filtering by incorporating local variances for all pixels, and then computing an
amplification factor for the detail layer [31]. Cheng et al. suggested a novel technique for
optic disc (OD) analysis by computing the cup-to-disc ratio (CDR) values, reporting that
the guided filter is capable of improving fundus images [32].

Various techniques have been suggested in the literature for the segmentation of
blood vessels. These techniques can mostly be categorized according to mathematical
morphology, machine learning, tracing, edging, and filtering.

A prior knowledge of vessel shape is required for morphological approaches; a filtering
process must be performed to separate the vessel from its background segment. Zana and
Klein integrated morphological filters with curvature assessments to detach vessels from



Symmetry 2022, 14, 194 3 of 19

retinal images [33]. Fraz et al. utilized bit planes and central lines in the extraction of
vessels requiring a high processing time [34].

There are two types of machine learning-based approaches: supervised and unsu-
pervised [35–37]. Supervised approaches use certain previous labeling information to
determine the association of pixels with a vessel or a non-vessel. Vessel segmentation in
unsupervised approaches is carried out without any awareness of previous labeling.

After the detection of an edge, trace-based approaches map out the global network of
the blood vessels by outlining the center lines of vessels. These approaches depend on the
detection result for an edge, and on overhead timing [38].

Detectors such as the Prewit, Canny, and Sobel operators are edge-based approaches.
Tchindaa et al. proposed a classical edge-detection filter based on classical operators
combined with artificial neural networks; however, the results obtained were not promising
compared to other algorithms [39].

Many different types of filters, such as matched filters, Gabor filters, homomorphic
filters, jJerman filters, and Coye filters, are used for vessel segmentation. Chaudhuri et al.
recommended matched filters for segmenting blood vessels [40]. Dash et al. suggested
an enhancement filter, using the Gabor filter to extract a blood vessel [41]. Dash et al.
recommended illumination normalization, using a homomorphic filter for the extraction of
blood vessels [42]. Cui et al. recommended an enhancement method using a Jerman filter
to extract retinal vessels [43]. Ooi et al. recommended a vessel extraction approach, using a
Canny edge detector [44]. Jiang et al. suggested a bilateral network with scale attention for
the segmentation of vessels [45]. Dash et al. suggested a hybrid technique for the extraction
of thin and thick vessels [46]. Kovacs and Fazekas recommended a new baseline for blood
vessel segmentation [47]. Dash and Senapati improved the performance of the Coye filter
by integrating it with discrete wavelet transform (DWT) for vessel extraction [48].

There have been many proposed extensions of matched filters. For example, Mudassar
and Butt suggested four different techniques, one of which is blood vessel extraction using
a modified matched filter [49]. Subudhi et al. improved the matched filter by combining it
with a first-order derivative of Gaussian and particle swarm optimization (PSO) for vessel
extraction [50]. Memari et al. reduced the noise of retinal images by using a morphological
concept that combined a matched filter, a Gabor filter, and a Frangi filter, and used fuzzy
C-means clustering and a level set method for segmenting the vessels [51]. AlSaeed et al.
extended a matched filter to a multiscale matched filter by combining it with local features
for the extraction of retinal vasculature [52]. Sreejini and Govindan implemented particle
swarm optimization to determine optimal filter parameters for a multiscale Gaussian
matched filter, to attain enhanced vessel segmentation [53]. Chakraborti et al. suggested a
self-adaptive matched filter that combines a vesselness filter with high sensitivity and a
matched filter with high specificity, designed via an orientation histogram [54]. Mohammad
et al. suggested a matched filter with better filter parameters, using optimization to detect
blood vessels [55]. L-Rawi and Karajeh suggested a genetic algorithm-based matched
filter to optimize the parameters of the matched filter [56]. Hoover et al. recommended
threshold probing by using the local and global vessel features of a matched filter for
vessel segmentation [57]. Cinsdikici and Aydin considered an ant colony algorithm for the
improvement of matched filter parameters for the extraction of the vessels [58]. Zhang et al.
suggested a modified matched filter that employs local vessel cross-section analysis, using
double-sided thresholding for vessel extraction [59].

A matched filter uses previous knowledge regarding vessel features, which can be
approximated by a Gaussian function. However, the main drawback of a matched filter is
that it responds to both vessel edges and non-vessel edges, such as the bright blob edges
and lesions in fundus images.

There are two types of edge-preserving filters: a bilateral filter and a guided filter.
Although both types of filters perform similar tasks, the bilateral filter has higher compu-
tational complexity. In contrast, the guided image filter does not use computations that
have linear computational complexities. However, the original guided filter depends on a
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guidance image that slows the denoising process. Therefore, in this work, a fast guided
filter is used to speed up the denoising process, without any visible degradation.

In analyzing the superiority and drawbacks of recent techniques in improving low-
contrast and small retinal vasculature, this work proposes a new algorithm for segmentation
based on a combined model of a fast guided filter and a matched filter, with C-means
thresholding. This algorithm combines the two filters, using the superiority of each for
performance improvement of retinal vasculature. Sizeable computations and comparisons
demonstrate that the suggested approach for segmentation of retinal vasculature is better
and more robust, in comparison to many existing approaches.

The important contributions of this study are the following:

a. Initially, an edge-preserving guided filter was employed on the fundus image to
enhance and preserve the blood vessels.

b. One of the special properties of a retinal image is that the vessels generally have
small curvatures that can be approached by piecewise linear segments. The matched
filter concept identifies the piecewise linear segments of blood vessels. Therefore, in
subsequent stages, a matched filter was employed on the guided enhanced images to
detect small curvatures.

c. Mean-C thresholding was used in segmentation.
d. The experiment showed that the suggested method is simultaneously able to enhance

and identify the curvatures of retinal images by properly preserving the edges,
thereby achieving better results than those of the original matched filter.

Section 2 describes the materials and methodology. Section 3 provides and discusses
the experimental results. Section 4 provides the conclusions based on the work.

2. Materials and Methods
2.1. Materials
2.1.1. Dataset

Publicly accessible datasets, digital retinal images of vessel extraction (DRIVE) and
the Child Heart and Health Study in England (CHASE_DB1), were used for the verification
of the suggested segmentation approach [60,61].

These datasets also provided information on equivalent vessel segmentations that were
carried out manually by various professionals; in this paper, such manual segmentation
information is regarded as the ground truth.

Forty color fundus images are available in the DRIVE (DRV) database, arranged in two
sets: a training set and a testing set. As the proposed approach is an unsupervised method,
the training set was not considered here. The testing set contains 20 color fundus images,
corresponding FOV masks, and a manually segmented vessel structure (the ground truth).
The resolutions of the retinal images were 768 × 584 pixels in size.

The CHASE_DB1 (CDB) dataset contains 28 color fundus images. Each image in the
database was manually segmented to its equivalent vessel tree by two professionals. The
resolutions of the retinal images were 1280 × 960 pixels.

2.2. Methods

Generally, thin vessels are unclear in grayscale retinal images. The major limitation
in vessel segmentation is the low contrast in local intensity. Vessel width intensity varies
significantly for different images and covers the boundaries of a vessel. Similarly, tiny ves-
sels are mixed with Gaussian noise. Therefore, most of the previous suggested techniques
in the literature have failed to identify vessels accurately. This shortcoming makes vessel
segmentation a challenging task.

From the description of the fast guided filter and the sets of equations, it can be
observed that a pixel from a high variance region will preserve its values, whereas a pixel
from an even space will be smoothed by neighboring pixels. Thus, few fine structures
in the areas that are nearly flat are smoothed away, with a frequency determined by an
averaging method.
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A matched filter is an effective and simple technique for vessel extraction. A matched
filter will respond to both vessel and non-vessel edges. Conversely, a guided filter is an
operator with smoothing and preserving qualities that acts better when closer to the edges.
These qualities suggest that an integrated model of a fast guided filter and a matched filter
will provide vessel enhancement and extract vessels with precision by using the advantages
of each filter. Figure 1 displays the three stages of the recommended approach.

Figure 1. Block diagram of the recommended approach.

2.2.1. Matched Filter

To identify the blood vessels, a Gaussian matched filter can be used as the gray level
profile of the vasculature as approached by a Gaussian shaped curve. The particulars of
the matched filter can be found in [45]; a short explanation is set out below. The matched
filter based on the Gaussian kernel function is described as follows:

P(m, n) = exp
(
−m2

/2σ2

)
∀|n| ≤ L

2
, |m| ≤ t.3, (1)

where the matched filter is defined as

Q(m, n) =
[
−1√
2πσ

]
× exp

(
−m2

2σ2

)
−m ∀|n| ≤ L

2
, |m| ≤ t.3, (2)

B =

∫ ts
−ts

[
−1√
2πσ

]
× exp

(
−m2

2σ2

)
dm

2ts
(3)

For smooth noise, L is the length of the vessel segment, σ describes the spreading of
the intensity outline, and t is a constant fixed as 3.

For vessel identification, the kernel P(m, n) is rotated in various orientations with the
maximum response of the filter bank. The use of 12 kernels with a rotation of 15◦ intervals
is sufficient to identify the vessels with suitable accuracy. In a Gaussian curve with infinitely
long signals, double-sided trails are truncated at u = ±3σ, with N denoted as

N =
{
(u, v),∨ u∨ ≤ 3σ,∨ v∨ ≤ L/2

}
(4)

The equivalent weights in the kernels i (i = 1 . . . 12, the number of kernels) are
specified by

pi(m, n) = −exp
(
−u2

2σ2

)
∀ Zi ∈ N (5)

The kernel mean value is calculated if A is a number of points in N as follows:

si = ∑Zi∈N
pi(m, n)/A (6)
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Therefore, the convolution mask is as follows:

pi(m, n) = pj(m, n)− si ∀ Zi ∈ N (7)

2.2.2. Fast Guided Filter

A guided filter may be considered as a bilateral filter, but with better performance
near the edges. Theoretically, a guided filter can be linked with the Laplacian matrix. Thus,
a guided filter has an additional advantage of using a structure to generate an improved
image, in contrast to an ordinary smoothing operator. Furthermore, computational com-
plexity is not dependent on the kernel size of the filter, due to the fast and non-approximate
linear-time algorithm of the guided filter.

In the fields of computer, vision, and computer graphics, a guided filter is highly
powerful and effective for numerous types of applications, such as elimination of noise,
compression of HDR, enhancement, removal of haze, and joint upsampling.

A local linear model containing I as the guidance image, P as the filtering input image,
and Q as the filtering output image, provides the main hypotheses of a guided filter. The
linear transform is assumed as Q of P, with window mk centered at pixel k. The definition
of the guided filter and its kernel are set out below.

Qi = ck Ii + dk, ∀i ∈ wk (8)

where (ck, dk) are approximately constant linear coefficients in the wk square window using
radius r with k as the index. With input image P, minimizing the reconstruction error using
Equation (8) among P and Q yields the following result:

ck =

1
|w| ∑i∈wi

IiPi − µkPk

σ2
k + ε

(9)

dk =Pk − ckµk (10)

where µk and σk are the mean and variance of I in the window, and ε is the regularization
parameter controlling the degree of smoothness.

After calculating (ck, dk) for all patches wk in the image, the filter output is calculated
as set out below:

Qi =
1
|w|∑k:i∈wk

(ckPi + dk) (11)

Qi = ci Ii + di (12)

where ci =
1
|w| ∑k∈wi

ck and di =
1
|w| ∑k∈wi

dk are the average coefficients of all windows
centered at i.

Algorithm 1 illustrates the steps followed by guided filter. fmean represents the mean
filter with extensive variability of O(N) time approaches.

However, the traditional guided filter depends heavily on the guidance image and
fails to attain fast computation when performing image denoising. Therefore, a fast guided
filter is recommended. A fast guided filter can accelerate from O(N) time to O

(
N/s2

)
time

for a subsampling ratio s. A fast guided filter is able to achieve a speed >10× without any
visible degradation, in numerous applications.
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Algorithm 1. Algorithm for Guided Filter

Input parameters: A is the input filtering image, P is the guidance image, r is the radius, and ε

is the regularization.
Output parameter: Q is the filtering output.
1. meanP = fmean(P)

meanA = fmean(A)
corrP = fmean(P× P)

corrPA = fmean(P× A)
2. varP = corrP −meanP. ∗meanP

covPA = corrPA −meanP. ∗meanA
3. x = covPA./(varP+ ∈)

y = meanA − x. ∗meanP
4. meanx = fmean(x)

meany = fmean(y)
5. Q = meanx. ∗ P + meany

2.2.3. Preprocessing

To detect automatically the ocular diseases in fundus images, retinal fundus images
was used. However, the most challenging task in analysing a fundus image is that the
image quality is frequently corrupted, due to several reasons. For instance, fundus image
quality is reduced because of the cataract in a human lens, just as a photograph’s quality is
reduced by a cloudy camera lens. Different databases contain fundus images of various
pathological situations; relying on them, the contents and characteristics of the images are
altered. Consequently, the complete image quality must be improved throughout the stages
of pre-processing. Therefore, the recommended technique is a unique mixture of a guided
filter with a matched filter for enhancing the performance measures of the retinal vessels.

Initially, the fast guided filter was employed to improve the overall qualities of the
image. As retinal vessels are more distinguishable in the green component, with good
contrast as compared to the blue and red components [36], in the next step only the green
channel was applied to the matched filter and considered in the overall operation of
extracting a vessel.

2.2.4. Parameters of the Fast Guided Filter

As discussed in Section 2.2.2, parameters such as the radius of the window r, the regu-
larization parameter ε, and the subsampling ratio s, were fixed as follows. The parameters
were chosen empirically:

The regularization parameter was fixed as ε = 0.12.
The subsampling ratio, s, of the fast guided filter was selected as s = r/4. Accordingly,

the values of s and r were selected as follows.
For s = 1, r = 5, 6, 7, 8, 9, and 10; for s = 2, r = 6, 8, 10, 12, 14, and 16; for s = 3, r = 12, 15,

18, 21, 24 and, 27;
for s = 4, r = 12, 16, 20, 24, 28, and 32; and for s = 5, r = 15, 20, 25, 30, 35, and 40.

2.2.5. Parameters of the Matched Filter

The matched filter was discussed in Section 2.1.1, where it was mentioned that the
important parameters, such as the spread of the intensity profile, represented as σ and L,
indicate the orientation for the segment length for which the vessel is presumed to be fixed.
Experimentally analysing the vessels of both normal and abnormal retinas, the value of L
was determined. In the suggested technique, the values at L = 11 and σ = 3 established the
best parameters that deliver the maximum response.

2.2.6. Mean Global-Based Hysteresis Thresholding

The new thresholding technique proposes combining mean-C thresholding, hysteresis
thresholding, and Otsu thresholding, as discussed below in detail.
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I. Mean-C thresholding

Segmentation of a vessel and the elimination of background are the two stages carried
out by mean-C thresholding. Initially, a mean image was produced to eliminate the
background through a convolution process. For the convolution using a mean filter, the
improved image was used. This average filter smoothed the background for the images
with low illumination. Then, subtraction of the filtered and improved image was carried
out to generate an image of difference. In the next step, the binarization of the image was
achieved by selecting a suitable threshold value c. The value of the parameters w and c
were chosen analytically.

II. Hysteresis thresholding

The global thresholding technique provides limited information about the neighbor-
hood of the vessel; hence, it can result in poor detection of thin vessels, small disconnected
vessels, and other distortions. To address these limitations, a local thresholding method
can be used to consider the influence of neighboring vessel pixels. Heneghan et al. in [50]
applied hysteresis thresholding to extract the vessels from the background. The hysteresis
thresholding segments an image using two threshold values, Tlow and THigh. Pixel values
higher than THigh were assigned as 1 and pixel values lower than Tlow were assigned as
0′; pixel values higher than Tlow, and having at least one neighborhood pixel great than
THigh, were also set 1; other isolated pixels greater than Tlow were set to 0. Unlike mean-C
thresholding, hysteresis thresholding considers the connectedness among neighboring pix-
els. As the vessels are tree-like structures, consideration of the neighborhood relationship
improved the segmentation result. The two threshold values, Tlow and THigh, were selected
experimentally, with the constraints Imin < Tlow < THigh < Imax., where Imin and Imax were
the lowest and highest intensity values, respectively, of the enhanced image.

III. Gray thresholding

The gray or global thresholding, or Otsu thresholding, method is a simple, robust, and
straightforward procedure for finding an optimal threshold value for images that have a
bimodal histogram. As a fundus image contains the vessels and the background, many
researchers have implemented the Otsu threshold value to extract the vessel. That method
finds a suitable threshold value Tglobal by minimizing the inter-class variance (11) between
the foreground (C0) and the background (C1).

Tglobal = argminσB
2 (13)

The inter-class variance σB
2 is defined as

σB
2 = w0(µ0 − µT)

2 + w1(µ1 − µT)
2 (14)

where w0 and w1 are class probabilities, defined as

w0 = ∑
Tglobal
i=1 i p(i) and w1 = ∑L

i=Tglobal+1 i p(i) (15)

where L is the maximum intensity value.
The class variances µ0 and µ1 are defined as follows.

µ0 = ∑
Tglobal
i=1 i p(i), µ1 = ∑L

i=Tglobal+1 i p(i) and µT = ∑L
i=1 i p(i) (16)

IV. Mean Global-based on Hysteresis (MGBH) thresholding

The mean global-based on hysteresis (MGBH) thresholding process binarizes the
image by setting the vessel pixels to 1 and the background pixels to 0. The proposed
method first eliminated the background and then estimated the vessel. Although the gray
values were unevenly distributed in an image, the pixels (which are lying in a uniform
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neighborhood) could still be considered as background. A mean filter of window size “W”
was convolved with the optic disk segmented image and the filtered output was subtracted
from the latter to generate a difference image. Therefore, the background pixels’ intensity
values in the difference image were close to 0 (i.e., the background appeared darker, as
compared to the vessels). Next, to extract the vessel, the two threshold values were denoted
as Tglobal and Tlow. Tglobal is the gray threshold value, which is calculated using the Otsu
method as discussed above; Tlow was chosen imperially. To estimate the vessel, each pixel
intensity of the difference image was compared with Tglobal and Tlow. If the pixels’ intensity
value was higher than Tglobal, it was set to 1; if the pixel intensity was lower than Tlow, it
was replaced by 0. If the pixel intensity was between Tlow and Tglobal, and if there was at
least one pixel in its 8-neighborhood greater than Tglobal, then that pixel was replaced by 1,
or otherwise set to 0.

The algorithm of the proposed thresholding method is described below:

a. An averaging filter of window size w*w was applied on the fast guided and matched
filter transformed image

b. By subtraction of the average filtered image from the enhanced image, the difference
image was generated.

c. Two threshold values, Tglobal and Tlow, were generated.
d. Tglobal was the gray threshold value calculated by the Otsu method and Tlow was

experimentally selected
e. Each pixel value of the difference image was compared with Tglobal and Tlow

• If the pixel gray value was higher than Tglobal, it was replaced as 1;
• If the pixel gray value was lower than Tlow, it was replaced as 0;
• If the pixel value was between Tlow and Tglobal and had at least one pixel in its

8-neighborhood that was greater than Tglobal then it was also replaced by 1;
• Otherwise, the pixel value was replaced by ′.

Algorithm 2 represents the steps followed by suggested MGBH thresholding technique.

Algorithm 2. Algorithm of MGBH thresholding

Input: Optic disc removed image (Iod)
Output: Vessel segmented image (Iseg)
Parameters: H: Horizontal dimension of image (Iod)

V: Vertical dimension of image (Iod)
Tlow: 0.013
Thigh: 0.155

Start
i = 1, j = i
for i < H do
for j < V do
if Iod(i, j) < Tlow

Iseg(i, j)←0;
or else if Iod > Thigh

Iseg(i, j)←1;
or else if Iod > Tlow & &

Thigh ∈ NB8 (Iod (i, j))
Iseg(i, j)←1;

or else
Iseg(i, j)←0;
j←j + 1;

end for
i←i + 1;

end for
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2.2.7. Post-Processing

In the post-processing step, morphological cleaning operations were carried out, such
as the area opening being used to remove the non-vessel. The area opening used the
8-connectivity rule and was independent of the structures. Thus, in this step, structuring el-
ements were not used. Area opening removed all connected components in the background
that had less than the fixed pixel values of the black and white image. All the images were
applied via the same operation.

Figures 2 and 3 illustrate the enhanced images obtained for the DRV and CDB datasets
by using the fast guided filter with different values of the subsampling ratio and radius,
respectively. Figures 4a and 5a represent the green channel images of the DRV and CDB
datasets, respectively. Figures 4b and 5b represent the vessel extracted via the matched
filter for DRV and CDB databases, respectively. Figures 4c–g and 5c–g display the vessel
extracted via the integrated technique of fast guided filter and the matched filter for DRV
and CDB databases, respectively. From the figures, it is clearly observed that the suggested
integrated model delivered better enhanced images than did the traditional matched filter.

Figure 2. Samples of the enhanced images generated for retina 2 from the DRV dataset by applying
the fast guided filter with different values: (a) original image, (b) guided image at s = 1, r = 6,
(c) guided image at s = 2, r = 10, (d) guided image at s = 3, r = 18, (e) guided image at s = 4, r = 28,
(f) guided image at s = 5, r = 25.

Figure 3. Samples of the enhanced images generated for retina 1 from the CDB dataset by applying
the fast guided filter with different values: (a) original image, (b) guided image at s = 1, r = 6,
(c) guided image at s = 2, r = 10, (d) guided image at s = 3, r = 18, (e) guided image at s = 4, r = 28,
(f) guided image at s = 5, r = 25.

Figure 4. Samples of the effect of the integrated model of a fast guided filter and a matched filter for
retina 2 from the DRV dataset with different values: (a) green channel image, (b) vessel extracted
from the traditional matched filter, (c–g) vessel extracted from the fast guided filter at s = 1, r = 6;
s = 2, r = 10; s = 3, r = 18; s = 4, r = 28; and s = 5, r = 25.
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Figure 5. Examples of the effect of the integrated model of a fast guided filter and a matched filter for
retina 1 from the CDB dataset with different values: (a) green channel image, (b) vessel extracted
from the traditional matched filter, (c–g) vessel extracted from the fast guided filter at s = 1, r = 6;
s = 2, r = 10; s = 3, r = 18; s = 4, r = 28; and s = 5, r = 25.

3. Results and Discussion

As in most of the previous studies, in this work the ground truth segmentation images
given by the first observer in the CDB and the test set of the DRV databases were considered
for comparison with the resulting segmented images of the suggested approach. As FOV
masks were unavailable in the CDB dataset, they were generated automatically so that the
suggested technique was well-matched with other databases. The FOV masks provided
in the datasets were not used in the suggested work. The performance of the traditional
matched filter on the DRV dataset is given in Table 1. The performance of the traditional
matched filter on the CDB dataset is displayed in Table 2. Table 3 shows the performance of
the suggested integrated approach on the DRV database. Table 4 displays the achievement
of the suggested integrated scheme on the CDB database.

Table 1. Evaluated results of the performance matrices for the DRV dataset using the original
matched filter.

Retinal Image Sn Ac Spc

1 0.652615 0.935422 0.955843
2 0.648358 0.932319 0.954067
3 0.586325 0.92253 0.952038
4 0.577753 0.932474 0.95722
5 0.540858 0.931416 0.961093
6 0.602628 0.924282 0.960513
7 0.578639 0.927306 0.95283
8 0.564393 0.919887 0.949272
9 0.567892 0.930607 0.960517
10 0.583006 0.93401 0.956754
11 0.572955 0.925894 0.948486
12 0.620253 0.927919 0.949866
13 0.554698 0.925467 0.956691
14 0.662106 0.930816 0.948576
15 0.611671 0.931461 0.942728
16 0.543486 0.930143 0.954699
17 0.592309 0.927191 0.953884
18 0.61276 0.93425 0.950661
19 0.709035 0.94322 0.957427
20 0.668411 0.93571 0.952476

Average 0.60250 0.93011 0.95372
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Table 2. Evaluated results of the performance matrices for the DRV dataset using the
recommended technique.

Retinal Image Sn Ac Spc

1 0.72697 0.964186 0.988121
2 0.741699 0.959064 0.991171
3 0.656036 0.959321 0.989514
4 0.688212 0.962248 0.996576
5 0.674313 0.959749 0.994222
6 0.688274 0.960888 0.98844
7 0.673521 0.95813 0.991324
8 0.677735 0.95905 0.980273
9 0.691451 0.960676 0.988787
10 0.680402 0.959322 0.991595
11 0.696131 0.963739 0.993439
12 0.695683 0.96474 0.98635
13 0.667311 0.959558 0.992345
14 0.728905 0.968353 0.984411
15 0.785297 0.961192 0.988134
16 0.682723 0.960867 0.991298
17 0.677656 0.959843 0.983896
18 0.743536 0.958771 0.988546
19 0.786161 0.966266 0.989534
20 0.7245 0.960565 0.983755

Average 0.7043 0.9613 0.9890

Table 3. Evaluated results of the performance matrices for the CDB dataset using the original
matched filter.

Retinal Image Sn Ac Spc

1 0.597623 0.934228 0.959463
2 0.603603 0.922594 0.937231
3 0.610407 0.928822 0.952509
4 0.588445 0.915251 0.934539
5 0.616166 0.925796 0.918664
6 0.629086 0.922185 0.944564
7 0.591414 0.937424 0.966651
8 0.621842 0.932651 0.925845
9 0.633895 0.931858 0.941342
10 0.621896 0.938575 0.927733
11 0.668227 0.928021 0.937018
12 0.615647 0.925638 0.948131
13 0.608667 0.934479 0.95321
14 0.61161 0.936905 0.950602

Average 0.6156 0.9296 0.9426

Table 4. Evaluated results of the performance matrices for the CDB dataset using the
recommended technique.

Retinal Image Sn Ac Spc

1 0.698532 0.959214 0.980642
2 0.68785 0.960164 0.976853
3 0.678693 0.962176 0.979854
4 0.68954 0.958357 0.980634
5 0.758635 0.967277 0.978648
6 0.698491 0.960751 0.984740
7 0.695218 0.958514 0.97771
8 0.728492 0.962301 0.976691
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Table 4. Cont.

Retinal Image Sn Ac Spc

9 0.757438 0.958165 0.981965
10 0.686517 0.963421 0.980794
11 0.767439 0.960126 0.985526
12 0.688618 0.957816 0.977582
13 0.724268 0.961421 0.97387
14 0.7547 0.958142 0.976738

Average 0.7153 0.9605 0.9816

The selected parameters for the suggested algorithm of the matched filter have been
discussed in Section 2.2.3. In addition, the fixed parameters for the algorithm of the fast
guided filter have been mentioned in Section 2.2.3. As it was difficult to allocate the best
values to these parameters of the fast guided filter, the values were chosen experimentally
based on knowledge of the types of data. The best parameters of the fast guided filter were
decided according to the highest results achieved for the performance measure.

3.1. Performance Measures

For quantitative evaluation and comparison with other segmentation techniques, the
performance measures of the suggested algorithm included sensitivity (Sn), detection
accuracy (Ac), and specificity (Spc). As most of the previous research considered these
three parameters, the state-of-the-art method could be easily compared by selecting these
three parameters. There were several other performance metrics, such as the Jaccard Index,
the dice coefficient, and the Matthews correlation coefficient. Performance measures were
evaluated on each of the DRV and CDB databases. For each image, the evaluation matrices
were computed and the average of all images was calculated.

For the DRIVE database, the original matched filter had a sensitivity of 0.6025, an
accuracy of 0.9301, and a specificity of 0.9537, as shown in Table 1. The improved perfor-
mance matrices for the suggested technique attained a sensitivity of 0.7043, an accuracy
of 0.9613, and a specificity of 0.9890 on the DRIVE database, as shown in Table 2. These
results demonstrated that the increments in the performance matrices for the proposed
approach are better than those of the traditional matched filter.

For the CDB dataset, the original matched filter achieved a sensitivity of 0.6156,
an accuracy of 0.9296, and a specificity of 0.9426, as shown in Table 3. The improved
performance matrices for the recommended method accomplished a sensitivity of 0.7153,
an accuracy of 0.9605, and a specificity of 0.9816 on the CDB database, as shown in Table 4.
The results for the CDB database established that the rises in the performance matrices
for the proposed method are improved when compared with those of the traditional
matched filter.

Different parameters for the suggested thresholding techniques are discussed below.
The value of THigh was fixed at 0.155 for both datasets. The value of Tlow must be less than
THigh. For the selection of c and w, a series of values varied from 0.02 to 0.04 and window
size varied from 11 to 15. Tlow varied from 0.010 to 0.037, with an increment of 0.003. Thus,
an experiment was conducted to determine the values of Tlow, c, and w. For each value, the
accuracy was computed. Table 5 represents the rough calculated values for the different
parameters. The parameters were fixed at Tlow = 0.013, c = 0.03, and w = 13.
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Table 5. Variations in accuracy with the various values of Tlow, c, and w.

Tlow
c = 0.02, w = 11

Ac
c = 0.03, w = 13

Ac
c = 0.04, w = 15

Ac

0.010 0.9556 0.9533 0.9501
0.013 0.9599 0.9615 0.9565
0.016 0.9598 0.9611 0.9600
0.019 0.9590 0.9601 0.9601
0.022 0.9585 0.9587 0.9532
0.025 0.9576 0.9601 0.9599
0.028 0.9533 0.9600 0.9577
0.031 0.9600 0.9557 0.9585
0.034 0.9547 0.9546 0.9600
0.037 0.9564 0.9564 0.9601

3.2. Comparison with State-of-Theart Methods

Compared with previous approaches, the suggested approach based on a combined
matched filter and fast guided filter was more effective and delivered better outputs. In
the normal gradient vector field, a difference appeared among the vessel pixels and the
pathological tissues. Accordingly, the pixels that gave a brighter impression than that of
their neighbor were treated as non-vessel pixels, and better performance was observed
in specificity but not in sensitivity. Table 6 illustrates the comparison of the suggested
approach with other state-of-art-of-art methods. Because the objective of the recommended
approach was to improve the original matched filter, most of the comparisons were car-
ried out with the available existing matched filters, as indicated in the literature. It is
clear that the recommended approach delivers higher performance matrices than the
state-of-the-art methods.

Table 6. Comparison in performance for the suggested method.

Approach Year
Sn Spc Ac

DRV CDB DRV CDB DRV CDB

Dash et al. [41] 2020 0.7203 0.6454 0.9871 0.9799 0.9581 0.9609
Dash and Senapati [43] 2020 0.7403 – 0.9905 – 0.9661 –
AlSaeed et al. [51] 2020 0.6312 – 0.9817 – 0.9353 —
Memari et al. [50] 2019 0.761 0.738 0.981 0.968 0.961 0.93
Subudhi et al. [49] 2016 0.3451 – 0.9716 – 0.911 –
Sreejini and Govindan [52] 2015 0.7132 – 0.9866 – 0.9633 –
Chakraborti et al. [53] 2014 0.7205 – 0.9579 – 0.9370 –
Cinsdikici and Aydin [57] 2009 – – – – 0.9407 –
Mohammad et al. [54] 2007 – – 0.9513 – – –

Rawi and Karajeh [55] 2007 – – 0.9422/
0.9582 – – –

Original matched filter 0.60250 0.6156 0.95372 0.9426 0.93011 0.9296
Proposed approach 0.7043 0.7153 0.9890 0.9816 0.9613 0.9605

Figures 6a, 7a and 8a represent the original images of retinas 2 and 4 from the DRV
database and retina 1 from the CDB database. Figures 6b, 7b and 8b represent the ground
truth images of retinas 2 and 4 from the DRIVE database and retina 1 from the CHASE_DB1
database. Figures 6c, 7c and 8c show the vessel extracted image using the original matched
filter of retinas 2 and 4 from the DRV database and retina 1 from the CDB database.
Figure 6d–h, Figures 7d–h and 8d–h display the vessel extracted image using the proposed
method for various values of the fast guided filter for retinas 2 and 4 from the DRV database
and retina 1 from the CDB database. From the figures, it is observed that the suggested
technique is capable of identifying more thin vessels, with fewer false detections, when
compared with the performance of the original matched filter.
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Figure 6. Resulting segmented images on retina 2 from the DRV dataset, obtained through the
integrated technique of the fast guided filter and the matched filter for various values: (a) original
image; (b) ground truth image; (c) original matched filter; (d–h) segmented images for various values,
such as at s = 1, r = 6; s = 2, r = 10; s = 3, r = 18; s = 4, r = 28; and s = 5, r = 25.

Figure 7. Resulting segmented images on retina 4 from the DRV dataset, obtained through the
integrated technique of the fast guided filter and the matched filter for various values: (a) original
image; (b) ground truth image; (c) original matched filter; (d–h) segmented images for various values,
such as at s = 1, r = 6; s = 2, r = 10; s = 3, r = 18; s = 4, r = 28; and s = 5, r = 25.
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Figure 8. Resulting segmented images on retina 1 from the CDB dataset, obtained through the
integrated technique of the fast guided filter and the matched filter for various values: (a) original
image; (b) ground truth image, (c) original matched filter, (d–h) segmented images for various values,
such as at s = 1, r = 6; s = 2, r = 10; s = 3, r = 18; s = 4, r = 28; s = 5, r = 25.

4. Conclusions

This paper has proposed a novel extension to the matched filter technique by inte-
grating a fast guided filter and a matched filter for the enhancement of fundus images.
A new thresholding technique is also proposed, which combines hysteresis thresholding,
mean-C thresholding, and Otsu thresholding for vessel extraction, assessed on DRV and
CDB databases. The results are promising and compare favorably when compared with re-
sults achieved using similar existing methods. The results illustrate that the recommended
approach can identify neovascular nets and remove various non-vessel edges produced
by brighter lesions, as required for screening of PDR, as the long-curved edges of brighter
lesions are inclined towards incorrect segmentation as neovascular nets.

In the future, a deep learning technique will be combined with different enhancement
techniques to locate the thin vessels more prominently and to improve the robustness of
the algorithm.
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