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Abstract: Propagation of light in a square-lattice hollow-core photonic

crystal fibre is analysed as a model of guidance in a class of photonic

crystal fibres that exhibit broad-band guidance without photonic bandgaps.

A scalar governing equation is used and analytic solutions based on

transfer matrices are developed for the full set of modes. It is found that

an exponentially localised fundamental mode exists for a wide range of

frequencies. These analytic solutions of an idealised structure will form

the basis for analysis of guidance in a realistic structure in a following paper.
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1. Introduction

Hollow-core photonic crystal fibres (PCFs) consist of a low-index air hole surrounded by a

periodic cladding structure [1]. This periodic dielectric constant generates photonic bandgaps

to prevent light spreading outside the central defect. The air-guided light has many applications

owing to its low attenuation [2] and nonlinear effects [3, 4].

Recently, a novel class of PCFs has been reported, attracting intense interest. These are

hollow-core, with a Kagome or square-lattice cladding [5–7]. The cladding configuration

known as the ‘Kagome’ structure is formed by three parallel groups of glass struts at an an-

gle of 4π/3 to each other, as shown in Fig. 1(a). Figure 1(b) shows a square-lattice hollow-core

PCF, whose cladding structure has two sets of orthogonal glass strips. These PCFs have a large

pitch, where Λ is typically 12 µm for Kagome PCFs [5] and 15–17 µm for square-lattice

PCFs [6]. This makes light guidance possible in the visible optical spectrum. Moreover, they

exhibit very wide high-transmission windows, several times broader than for bandgap-guiding

hollow-core PCFs [5, 6]. These advantages make them excellent candidates for nonlinear opti-

cal effects in gases. For instance, up to 45 coherent Stokes and anti-Stokes lines can be observed

with wavelengths spanning from 325 nm to 2300 nm in hydrogen-filled Kagome PCFs [7].

A striking fact of this class of PCFs is that the cladding geometry in both Kagome and

square-lattice hollow-core PCFs does not support photonic bandgaps [5–7]. The coexistence

of the fundamental mode and cladding modes at the same frequency and propagation constant

implies that this guidance cannot be explained by bandgap guidance but is governed by a novel

physical mechanism. Previous studies have found that light is confined because of the low den-

sity of the cladding modes and the weak interaction between them and the fundamental guided

mode [5–7]. Further analysis through a comparison between a typical bandgap-guiding hollow-

core PCF and Kagome PCF found that, although the distance between the propagation constants

of the strut modes and fundamental mode in bandgap-guiding PCFs is several times larger than

that in Kagome PCFs, the overlap of the wavefunctions between these modes in Kagome PCFs

is one order of magnitude lower [8]. However, these studies are largely descriptive and qualita-

tive concerning the guidance mechanism; they do not really explain why well-localised modes

can exist in the absence of a bandgap and they do not provide a quantitative analysis of the

attenuation. A comparison between Kagome PCFs and Bragg fibres consisting of concentric

rings of glass indicates that the existence of additional glass struts in the former greatly in-

creases the leakage [9, 10]. However, this still does not fully explain the guidance in Kagome
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Fig. 1. Schematic of transverse planes of hollow-core PCFs. The cladding structure in (a) is

a Kagome lattice, (b) is a square-lattice hollow-core PCF. Corresponding scanning electron

micrographs can be found in Refs. [6] and [7]. Rectangular model PCFs are shown in (c)

and (d). (c) is a realistic model PCF in which the dielectric constant of the intersections is

equal to that of the glass strips, as indicated in the inset. (d) is an ideal model structure for

the application of the scalar governing equation; the inset shows that the intersections have

a higher dielectric constant than the strips.

PCFs because the guidance mechanisms in these two types of fibres are different.

For a fuller understanding of this novel guidance mechanism, the central question about the

origin and magnitude of the leakage should be physically answered. This will help to improve

our understanding of the unique features of the guidance and provide a foundation for sim-

plification and optimisation in simulations and fabrication. Analysis of PCFs is made difficult

by the relatively complex geometry and the vector nature of the governing equations. In the

transverse plane of PCFs, the transverse component of the magnetic field satisfies [11]

(∇ 2
t +n2k2

0 −β2)ht = (∇ t ×ht)× ∇ t lnn2, (1)

where k0 = 2π/λ and λ is the vacuum wavevector, β is the propagation constant, n2 is the

dielectric function which describes the transverse structure of the PCF, and ∇ t is the transverse

gradient operator. The vector character of Eq. (1) is contained in the right-hand side. Although

numerical tools, such as the finite element method [12] or boundary element method [13], can

be used to obtain essentially exact solutions, this does not provide a physical understanding of

the nature of the guidance.

In this paper and a following paper [14] we take a new approach to analyse guidance in

Kagome-like PCFs. Our aim is first to develop a simplified structure for which analytic so-

lutions can be found. We then use perturbation theory to analyse the difference between our

ideal structure and a realistic fibre, which enables us to develop methods for calculating the
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attenuation. The first simplification is to consider a scalar governing equation [11]:

(∇ 2
t +n2k2

0 −β2)ht = 0, (2)

where the magnetic field ht is either x or y polarised in the transverse plane. Although this

approximation has a limited quantitative accuracy, it provides a useful insight into a wide range

of PCFs [15]. It also makes calculations more efficient. In our case we will solve Eq. (2) for a

model structure and include vector terms as a perturbation.

Both Kagome and square-lattice PCFs have sufficiently complicated fibre structures to pre-

vent the governing equation, even in the scalar approximation, from being easily solved. We

therefore use a modified square-lattice structure, as shown in Figs. 1(c) and 1(d). The cladding

in these structures consists of square air holes surrounded by thin glass strips of uniform thick-

ness, which is similar to the experimentally reported square-lattice PCFs. The main difference

is that the central air defect in our models is created by moving the four glass strips enclosing

the central air hole by a small distance; the positions of the other glass strips are unchanged.

The defect in our model therefore not only covers the central air hole, but also extends along the

x and y axes. The two model structures differ only at the intersections of the glass strips. Figure

1(c) shows a structure which, in principle, can be fabricated. However, it still does not allow for

a simple solution. We therefore use the structure shown in Fig. 1(d) as our ideal model struc-

ture. It differs from Fig. 1(c) in having a higher refractive index at the intersections of the glass

strips. The key point is that this design makes the total dielectric function separable into iden-

tical sets of parallel glass slabs along the two axes and allows us to obtain analytical solutions.

A similar approach has been used in previous work on waveguides [16, 17]. The difference in

the structures shown in Figs. 1(c) and 1(d) will also be treated using perturbation theory.

In this paper, guidance in the ideal model structure will be analysed using the scalar gov-

erning equation. We derive analytical solutions for the full set of modes. It will be shown that

an exponentially localised fundamental mode exists within the central defect even without the

existence of photonic bandgaps. This property forms the basis of our analysis of guidance in

more realistic Kaogme-like PCF structures. The existence of localised in-plane modes in our

model structure has been found in previous work [16]. In this paper, we extend this work to in-

clude the full set of out-of-plane modes and to demonstrate that the localised fundamental mode

exists over a broad range of frequencies. Importantly, the analytic results also allows us to use

perturbation theory to analyse attenuation in a realistic fibre structure, as will be discussed in a

following paper [14].

This paper is organised as follows. In Section 2, the application of a transfer matrix method

is demonstrated for calculating the cladding and guided modes within a supercell geometry for

the idealised model structure. Section 3 presents results based on the analytic method derived in

Section 2 and discusses the nature of the modes close to the air-line in terms of being air-guided

or glass-guided. The conclusion is given in Section 4.

2. Solution for scalar model structure

2.1. Separation of variables

The model structure presented in Fig. 1(d) has an identical variation of the dielectric constant

along both x and y directions in the transverse plane. This feature makes the two-dimensional

dielectric function separable as

n2(x,y) = n2
a +△n2(x)+△n2(y), (3)

where n2
a is the dielectric constant for the air holes, and the function △n2 gives the difference of

the dielectric constant between the glass strips and air holes in each direction. Thus, △n2 takes
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the value n2
g − n2

a for the glass regions and zero for the air regions, where n2
g is the dielectric

constant of glass. The value of the high dielectric constant at the intersections of the glass strips

is therefore 2n2
g −n2

a. Because of this decomposition of the dielectric function, the field h(x,y)
in the scalar governing equation can be separated as h(x,y) = X(x)Y (y). Substituting this into

Eq. (2) leads to the dimensionless equations

d2X(x)

dx2
+[px(x)Λ]2X(x) = 0, with [px(x)Λ]2 = (k0Λ)2[n2

a +△n2(x)]− (βΛ)2 − ξ (4)

and
d2Y (y)

dy2
+[py(y)Λ]2Y (y) = 0, with [py(y)Λ]2 = (k0Λ)2△n2(y)+ ξ , (5)

where a constant pitch Λ is introduced and ξ acts as a separation constant. The position

variables, x and y, are now dimensionless through division by Λ. At the high-index inter-

sections, the magnitude of the normalised transverse wavevector Kg takes the value: K2
g =

(pxgΛ)2 + (pygΛ)2 = (k0Λ)2(2n2
g − n2

a)− (βΛ)2, where the subscript g represents the values

of px and py in the glass regions. A trigonometric function can thus be introduced to replace ξ
and we write separable transverse wavevectors as

(pxgΛ)2 = K2
g cos2 θ and (pygΛ)2 = K2

g sin2 θ, (6)

where θ represents the angle relative to the x axis of the transverse wavevector in the high-

index intersections. For simplicity a variable C = cos(2θ) is used to replace θ . The wavevector

components can then be written as

(pxgΛ)2 = K2
g (1+C)/2, (pygΛ)2 = K2

g (1−C)/2. (7)

The equivalent expressions in the air regions become

(pxaΛ)2 = K2
g (1+C)/2− (k0Λ)2

�

n2
g −n2

a

�

(8)

and

(pyaΛ)2 = K2
g (1−C)/2− (k0Λ)2

�

n2
g −n2

a

�

. (9)

The scalar governing equation has been separated along two orthogonal directions and the so-

lutions can be parameterised by the variables β and C. By looking at Eq. (7) or Eqs. (8) and (9),

the solutions can be sorted into two types: ‘symmetric modes’ with C = 0 and ‘non-symmetric

modes’ with C 6= 0. These have the same or different transverse wavevector components in the

x and y directions, respectively. The symmetric modes are important because, as we will show

later, all the modes of the model structure can be derived from solutions with C = 0.

2.2. Matrix expressions for the fields

The separated Eqs. (4) and (5) can be solved analytically. In Ref. [18] field expressions for a

one-dimensional periodic dielectric stack have been derived. We now extend this method to a

general arrangement of air and glass layers suitable for our model structure.

A schematic of the structure is shown in Fig. 2(a) (see the caption for detail). The solution of

Eq. (4) in the Nth layer of this structure can be expressed as [18]

XN
j (x) = aN

j cos
�

�

px jΛ
��

x− xN
j

�

�

+bN
j sin

�

�

px jΛ
��

x− xN
j

�

�

/
�

px jΛ
�

, (10)

where aN
j and bN

j are coefficients which determine the field, j = a,g represents air or glass

respectively, and px jΛ is the normalised wavevector component referring to material j. xN
j de-

notes a reference point in the Nth segment and Λ is chosen as the pitch of the cladding structure.
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Fig. 2. (a) Sketch of a general one-dimensional arrangement of air and glass regions. The

light and dark colours represent air and glass, respectively. The widths of the Nth air and

(N +1)th glass regions are hN
a and hN+1

g . Here, xN
a and xN+1

g are two arbitrary points within

the air and glass. All the quantities are made dimensionless through division by Λ. (b) and

(c) Examples of even and odd solutions in one dimension of an 8×8 supercell of the model

structure.

The expression in Eq. (10) has the advantage of algebraic convenience. The field coefficients,

aN
j and bN

j , are always real even if β2 is negative or px j becomes zero. Moreover, waves in a

stop band can also be expressed via real values of aN
j and bN

j [18].

At the interface between the Nth and (N + 1)th layers (shown by the red line in Fig. 2 (a)),

both the fields and their derivatives are continuous, leading to the matrix equation

�

cos
�

(pxaΛ)hN
aR

�

sin
�

(pxaΛ)hN
aR

�

/(pxaΛ)
−(pxaΛ)sin

�

(pxaΛ)hN
aR

�

cos
�

(pxaΛ)hN
aR

�

��

aN
a

bN
a

�

=

�

cos
�

(pxgΛ)hN+1
gL

�

−sin
�

(pxgΛ)hN+1
gL

�

/(pxgΛ)

(pxgΛ)sin
�

(pxgΛ)hN+1
gL

�

cos
�

(pxgΛ)hN+1
gL

�

�

�

aN+1
g

bN+1
g

�

, (11)

where the dimensionless parameters hN
aL, hN

aR, hN+1
gL and hN+1

gR are defined in Fig. 2(a). For

simplicity we choose the centre of each layer as the reference point and set hN
aL = hN

aR = hN
j /2.

Equation (11) then becomes

aN+1
g = m

�

−
hN+1

g

2
, pxgΛ

�−1

m
�hN

a

2
, pxaΛ

�

aN
a , (12)

where

m(h, p) =

�

cos(hp) sin(hp)/p

−psin(hp) cos(hp)

�

(13)

and

aN
j = (aN

j ,bN
j )T , aN+1

j = (aN+1
j ,bN+1

j )T . (14)

By using Eq. (12), the field in an arbitrary layer can be expressed in terms of the field in the

adjacent layer.
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2.3. Modes in a supercell geometry

The conversion of the two-dimensional problem into a one-dimensional one makes calculation

of the modes in our rectangular model structure very efficient. The transfer matrix method is

suitable for a number of geometries, including a perfect cladding, a defect in a cladding or a

defect in a supercell geometry. The concept of the ‘supercell’ is often used in computational

solutions [19,20]; each supercell can be viewed as a large unit cell and contains N×N primitive

cells in the transverse plane. In our analysis, we will use a supercell geometry because this leads

to a finite number of calculated modes and, most importantly, the modes can be normalised,

whether or not they are localised. This will be important in the perturbation analysis in the

following paper. We focus only on the modes at the Γ point of the supercell Brillouin zone,

which implies that the field coefficients in the centres of neighbouring supercells are the same

for each mode. It is expected that the modes at the Γ point can effectively represent all the

solutions within a supercell. With an increase of the supercell size, the area of the first Brillouin

zone correspondingly decreases. The accuracy of Γ point sampling can be examined through

tests of the convergence of solutions with respect to the size of the supercell.

We first restrict our analysis to the symmetric modes with the same transverse wavevector

in the x and y directions, i.e. C = 0. By choosing the centre of the central defect of a supercell

as the origin, the arrangement of the glass layers is symmetric along both axes. Owing to this

structural symmetry, the permitted one-dimensional fields have either even or odd symmetry

with respect to the centre of the central defect; two examples are shown in Figs. 2(b) and 2(c).

To find these two types of modes, a particular value of normalised frequency k0Λ is first chosen.

For the symmetric solutions we begin at the origin with the field coefficients a = (1,0)T . A trial

value of βΛ is chosen and transfer matrices are used to determine the field at the origin of the

next supercell. The βΛ value is then scanned to determine values for which the field returns to

(1,0)T . Similarly, odd modes are found by starting with a = (0,1)T . We note that the search

for allowed βΛ values is the only numerical part of the calculation. Once the βΛ value is

determined, the field coefficients are given by analytical expressions. It is also straightforward

to normalise the modes, again by using analytical expressions [13].

By using these symmetric modes, the non-symmetric modes with C 6= 0 can also be derived.

We note that the variables pxgΛ and pygΛ serve as the only arguments in Eqs. (4) and (5),

respectively. Owing to the identical one-dimensional arrangements of the air and glass regions

in both directions, the solutions of these two equations point to the same set of (pgΛ)m values,

where m is a label. If we consider the symmetric modes with C = 0, these (pgΛ)m values are

determined only by a set of Km
g0, where Kg0 is Kg at C = 0 and the label m relates to that in pgΛ.

For a non-symmetric mode with C 6= 0, we assume that pxgΛ = (pgΛ)v and pygΛ = (pgΛ)u,

where v 6=u because pxgΛ and pygΛ are not equal. By using Eq. (7), this non-symmetric mode

is related to the symmetric modes v and u by

(1+C)K2
g = Kv

g0
2 (15)

and

(1−C)K2
g = Ku

g0
2. (16)

Eqs. (15) and (16) are combined to give

K2
g = (Kv

g0
2 +Ku

g0
2)/2. (17)

By substituting expressions for Kg, Ku
g0 and Kv

g0 into Eq. (17), the (βΛ)2 value of this non-

symmetric mode is given by

(βΛ)2 = [(βv
0 Λ)2 +(βu

0 Λ)2]/2 (18)
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where βv
0 and βu

0 are propagation constants for the two symmetric modes. After obtaining the

propagation constant, the factor C is given by Eq. (15) or (16). This connection indicates that the

full set of non-symmetric modes can be obtained from the set of symmetric modes. In practice,

we are interested in modes with β close to the air-line. This requires a large range of (βΛ)2

values for the symmetric modes to be calculated, including those with (βΛ)2 less than zero.

Although solutions when (βΛ)2 is negative do not exist as propagating modes, they are needed

to determine the full set of non-symmetric modes with positive (βΛ)2.

3. Results in the scalar approximation

3.1. Guidance properties of rectangular hollow-core PCFs

In our simulations, we model a hollow-core PCF using glass strips with a thickness of 0.05Λ,

where Λ is the pitch of the perfectly periodic cladding. The refractive indices are 1.0 for the air

holes and 1.5 for the glass strips. The central defect is created by moving outward the four glass

strips enclosing the central air hole by a distance of 0.125Λ. The arrangement of glass strips in

one dimension of an 8×8 supercell is shown in Figs. 2(b) and 2(c).

When considering guidance in PCFs it is useful first to analyse the properties of the perfect

periodic cladding structure. This is conveniently done by calculating the photonic density of

states (PDOS) [21–23]. The PDOS, as a function of normalised frequency, clearly shows the

location of photonic bands and bandgaps. With our rectangular model structure, the method

of Section 2 can be extended to calculate the PDOS of the perfect, infinite cladding by using

Bloch’s theorem. Details of these calculations are given in Ref. [13].

The PDOS is shown in Fig. 3(a), as a function of the normalised frequency k0Λ and the

range of normalised propagation constants close to the air-line, i.e. (β − k0)Λ. The yellow and

white regions represent photonic bands and bandgaps, respectively. It is observed that there is

a sequence of bandgaps that cross the air-line.

Fig. 3. (a) PDOS and fundamental guided mode for the ideal model PCF structure of Fig.

1(d) and the scalar governing equation. The red line shows the propagation constant of

the fundamental mode. The green and black lines are two frequencies for which the field

of the modes are plotted in (b) and (c,d), respectively. (b) The fundamental mode with

βΛ = 16.031 at k0Λ = 16.5. (c) and (d) The fundamental and selected cladding mode with

equivalent βΛ = 13.941 at k0Λ = 14.5.

We now consider guided modes in the model structure with a central defect. The funda-
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mental guided mode is shown by the red line in Fig. 3(a). This has been calculated by using

the methodology of Section 2 with a 28×28 supercell. It is not surprising that a guided mode

should exist within the bandgaps of the perfect cladding structure; an example of the fundamen-

tal mode at k0Λ = 16.5 is given in Fig. 3(b). More surprisingly, we find that an exponentially

localised mode exists for all normalised frequencies within the given range, whether or not there

is a bandgap. An example is given in Fig. 3(c), and Fig. 3(d) shows a cladding state with the

same frequency and propagation constant (to within 6 d.p.) as the guided mode in Fig. 3(c). As

discussed in the introduction, this coexistence of localised and delocalised modes has been pre-

viously noted for our model structure in Ref. [16]. In this paper, a leakage-free mode was found

within a continuum of states at a given frequency when investigating photonic waveguides. For

our application to PCFs, we note that the exponentially localised fundamental guided mode ap-

pears over a wide range of frequencies. There exists a resonant region (which starts in our case

at k0Λ = 56) where there is no guided mode; this occurs when a new one-dimensional mode

is just trapped in the transverse direction across the glass strips [24]. This will be discussed in

more detail in a following paper [14] .

Both the coexistence of the fundamental and cladding modes at the same frequency and

propagation constant, and the ultra-broad range of guided frequencies have been experimentally

observed in Kagome [5,7] and square-lattice hollow-core [6] PCFs. It is for this reason that we

believe that our model PCF structure can provide a useful basis for understanding the guidance

mechanism in Kagome and square-lattice hollow-core PCFs.

3.2. Guided modes in the supercell geometry

In order to obtain a set of normalised modes, it is necessary to use a supercell geometry. To

demonstrate the nature of the modes we choose an example normalised frequency of k0Λ = 40,

which lies within a band of cladding states. For convenience, in discussing the modes, we begin

with a relatively small 8×8 supercell.

Fig. 4. Field plots in the transverse plane for symmetric modes (i.e. C = 0) close to the

air-line. The normalised frequency is k0Λ = 40, and the (βΛ)2 values of these modes vary

from 1572.73 to 1587.12. The fundamental mode is shown in (a).

We first focus on the symmetric modes which have identical one-dimensional wavefunctions

along the x and y directions (i.e. those with C = 0). It is convenient to consider these modes as

being of three distinct types in terms of their propagation constants. The first is the set of air-

guided modes just below the air-line. This set contains eight modes (which is associated with

the size of the supercell chosen). These air-guided modes are well separated from other modes

#141859 - $15.00 USD Received 27 Jan 2011; accepted 9 Mar 2011; published 25 Mar 2011

(C) 2011 OSA 28 March 2011 / Vol. 19, No. 7 / OPTICS EXPRESS   6953



Fig. 5. (a) Schematic diagram of the two regions in which the field is concentrated for high-

index modes in an 8×8 supercell. (b-e) Four modes with fields localised in the blue regions

in (a). Modes (b) and (c) have even waves in both directions; (d) and (e) have odd waves

along the axes. Four other modes have a similar field pattern, but in the green regions of

(a).

with lower values of βΛ. The transverse fields of this group of modes nearest to the air-line

are shown in Fig. 4; among them is the fundamental guided mode, as shown by Fig. 4(a). The

wavefunctions are both even in modes (a) to (e) and both odd in modes (f) to (h) in Fig. 4.

Another group of modes is found with propagation constants well above the air-line. Eight

modes are located at (βΛ)2 = 3611.54, with extremely small differences in the (βΛ)2 values of

less than 10−7. Plots of these modes are shown in Fig. 5, where it can be seen that the fields are

located in the high-index intersections of the glass strips. Owing to this property, these modes

are referred to as ‘high-index modes’.

There are also a large number of solutions with C = 0 with βΛ values much lower than the

air-line. Three examples of these modes are shown in Fig. 6. As mentioned above, solutions

with negative (βΛ)2 values are important in determining the full set of non-symmetric modes

with positive (βΛ)2. This also explains why we are interested in the three modes in Fig. 6: they

can generate non-symmetric modes with βΛ values close to the fundamental mode. Figure

6 shows that, unlike the previous two types, the fields of these ‘delocalised modes’ are no

longer confined in a specific region but instead spread throughout the whole transverse plane.

Moreover, they exhibit rapid transverse oscillation, as indicated by the alternation of the red

and blue colours in these plots.

Fig. 6. Example plots of symmetric solutions with delocalised fields. The (βΛ)2 values are

535.01, 498.25 and −344.78 for (a), (b) and (c), respectively. Note that only the region

close to the central defect is shown.
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To form a complete mode map, the non-symmetric modes must also be considered. In prin-

ciple, every pair of symmetric modes can be combined to give two non-symmetric modes with

identical propagation constants but opposite C values. In practice, we are interested only in

modes with propagation constants close to the fundamental guided mode. Therefore, there are

only two relevant choices of combination of symmetric modes. One is the internal combination

of the air-guided modes shown in Fig. 4; the other involves a high-index mode and a delocalised

mode, as shown in Figs. 5 and 6, respectively.

Fig. 7. Two examples of pairs of non-symmetric modes. (a) and (b) Air-guided modes

generated by the symmetric modes shown in Figs. 4(a) and 4(e). (c) and (d) Glass-guided

modes formed by the combination of the high-index mode of Fig. 5(b) and the delocalised

mode of Fig. 6(a). The (βΛ)2 values are 1579.93 for modes (a) and (b), and 2073.28 for

modes (c) and (d).

Figures 7(a) and 7(b) show an example pair of combined air-guided modes, the field patterns

of which differ by an angle of π/2 in the transverse plane because of the opposite C values. The

field intensity is still mainly confined in the air holes. Figures 7(c) and 7(d) display examples of

the modes formed by a combination of high-index modes and delocalised modes. These modes

are glass-guided, and their fields are concentrated along the glass strips. Because of the large

number of delocalised modes, these glass-guided modes evenly cover a broad region of βΛ
values and are therefore likely to become very close to the fundamental mode. As observed in

Kagome and square-lattice hollow-core PCFs [6, 7], the glass-guided modes are characterised

by dramatic oscillation of the spatial fields. Owing to the obvious mismatch of spatial frequen-

cies between the fundamental mode and the glass-guided modes, it can be supposed that there

is a suppressed coupling between the two. The leakage caused by the glass-guided modes is

therefore expected to be relatively small. This point will be analysed further in a following

paper [14].

4. Conclusion

Transfer matrix methods have been developed for an idealised rectangular hollow-core PCF.

Within the scalar approximation, a complete set of modes can be calculated within a supercell
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geometry. For modes near the air-line there is a clear discrimination into air-guided and glass-

guided modes. The existence of an exponentially localised fundamental mode with the same

propagation constant as cladding states shows that the model hollow-core PCF can be identified

as a prototype of the PCF family that governs light via the weak interaction of modes. This

analysis will be extended in a following paper where perturbation theory is used to consider the

effects of vector terms in the governing equation and the unrealistic high-index intersections of

the idealised model structure.
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