
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

5-1985

GUIDE: Graphical User Interfaced Development Environment GUIDE: Graphical User Interfaced Development Environment

Tamar E. Granor

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Tamar E. Granor and Norman I. Badler, "GUIDE: Graphical User Interfaced Development Environment",
Proceedings of Trends and Applications 1985: Utilizing Computer Graphics , 37-41. May 1985.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-85-19.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1010
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/1010
mailto:repository@pobox.upenn.edu

GUIDE: Graphical User Interfaced Development Environment GUIDE: Graphical User Interfaced Development Environment

Abstract Abstract
GUIDE is an interactive graphical system for designing and generating graphical user interfaces. It
provides flexibility to the system designer while minimizing the amount of code which the designer must
write. The GUIDE methodology includes the notions of "tool," "task," and "context." GUIDE encourages
designers to tailor their systems to individual users by inclusion of "user profiles," allowing different
control paths based on the user's characteristics. GUIDE also provides a method for invoking application
routines with parameters. Parameters may be based on user inputs and are computed at invocation time.
Help messages are created along with the objects to which they refer. GUIDE handles the overhead
required to display help messages.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-85-19.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/1010

https://repository.upenn.edu/cis_reports/1010

GUIDE: Graphical User
Interface Development Environment

Tamar E. Granor
Norman I. Badler

MS-CIS-85-19

Department of Computer and Information Science
Moore School/D2

University of Pennsylvania
Philadelphia, PA 19104

May 1985

.-Acknowledgem-;nt:-ThiS reseuch ~._;;supported in part by NSF grants
MCS82HH96-CER, MCS-82-07294, 1 R01-HL-29985-01, U.S. Army grants
DAAt>-29-84-K-0061, U.S. Air Force grant 82-NM-299,
AI Center grants NSF-MCS-83-05221, US Army Research orrice grant
ARO-DAA29-84-9-0027, Lord Corporation, RCA, and Digital
Equipment Corporation.

GUIDE:
GRAPillCAL USER INTERFACE
DEVELOPMENTE~ONMENT

Tamar E. Granor
Norman I. Badler

Department of Computer and Information Science
Moore School of Electrical Engineering

University or Pennsylvania
Philadelphia, PA 19104

Appeared in Trends and Applications 1985, IEEE Computer Sociey, Washington Chapter and

National Bureau or Standards, Silver Spring, Md., May, 1985.

1

A.bstraet

GUIDE is an interactive graphical system for designing and generating graphical user interfaces. It

provides flexibility to the system designer while minimizing the amount or code which the designer must

write. The GUIDE methodology includes t,he notions of •tool,• •task,• and •context. • GUIDE

encourages designers to tailor their systems to individual users by inclusion of •user profile:>, !I :illowing

different control paths based en the user's characteristics. GUIDE also provides a method for invoking

application routines with pat::71.rr:~te!·s. Pa.ra.meters may be based on user inputs and are computed at

invocation time. Help messages are created along with the objects to which they refer. GUIDE handles

the overhead required to dispb.y help mest~a.ges.

1. Introduction
For many system designers, the most difficult part of building a system is the user interface. \Vhile

the designer is familiar with the application and its operations, the tools or interrace design may be

unfamiliar, especi:tHy when the system uses graphics. GUIDE, the Graphical User Interface Development

Environment, facilitates the generation or interactive systems by allowing a designer only to know how

the system should look and behave externally.

GUIDE is an interactive sy11tem which can be used by an application designer to generate the user

interrace for a wide class of program. A number of goals have been set for GUIDE.

1. The designer need not write any interface code.

2. The designer provides •action routines• whkh implement the actions of the application
system. Action routines may have parameters.

3. The designer is able to specify multiple control paths based on the state of the syst.em and a
pwfile or the user.

4. Inclusion or help messages is as easy as possible.

5. GUIDE's own interface may be generated with GUIDE.

To achieve the first goal, the designer uses GUIDE to describe the physical appearance and control

path for the system. GUIDE generates Pascal code which, together with the designer-supplied action

routines, mahs up the application system. The generated interface can be edited directly or tbe designer

may modify t,be design using GUIDE and re-generate the interface.

In the second case, the d·~si.gner provides •adion routines• which are invoked by the GUIDE

generated interface. Actual parameters for these routines are computed in a manner specified by the

designer. The parameters may be based on user inputs.

The third goal is that designers be able to provide multiple control paths. The choice of path can be

based on a profile or the user, the contents or which is specified by the designer. The profile may contain

such items as the user's •skill level. • Conditions involving fields or the user prorlle, as well as other

variables, may be included in the control path.

2

To achieve the goal that inclusion of helps be as simple as possible, help messages for any ; · · ·· ::t are

specified at the same time as the object iB created and may be edited any time the object i_~ edited.

GUIDE handles the overhead required to display helps.

Insuring that GUIDE's interface may be gene1ated using GUIDE has affected the design of the

system in several areas, most notably in the structure of menus.

Throughout this paper, examples will be dr2.wn from the furniture layout system described by Foley

and van Dam (Foley 82), which consists of manipulating a pre-defmed set of symbols representing

furniture (desk, chair, etc.) until a satisfactory layout is achieved. The user may add symbols to or delete

symbols from the layout, may title or re-draw the current layout and may change the window into the

layout world.

2. Background
In recent years, much attention has been given to user interfaces. Researchers have studied what

kinds or commands are most easily learned and remembered (Barnard 82, Black 82J, what kinds or

interfaces are easiest to use [Card 82, Savage 82] and how to make it easier to provide a good

interface !Buxton 83, Kasik 821.

One approach for simplifying interface implementation that has been studied recently is the use of a

User Interface Management System (UIMS). A UIM:S mediates between the application and the user in

much the same way that a data base management system mediates between the application and the

data !Kasik 82, Thomas 83j. UIMS implementations have been reported by several groups (Buxton

83, Kasik 82, Bloom 83, Kamran 83, Olsen 83a, Olsen 83b, Roach 82, Rubel82, Wong 82J.

GUIDE is a UIMS generator, meaning that it allows the system designer to specify the relationship

between the inputs, outputs and control paths or his application. The designer does not write the control

code; GUIDE generates it.

GUIDE is also similar to a compiler-compiler (e.g., Y ACC (Johnson 75!). The user of a compiler

compiler provides a grammar which is processed. The compiler-compiler then produces as output the

tables needed to compile programs. The output is used by an end-user (to compile programs). With

GUIDE, the designer provides a description of the desired interface which is processed to produce the

interface itself. The description or the interface is d3Yeloped interactively, however, rather than specified

as a grammar. This interface, together with other code provided by the designer, is presented to the

end-user.

The Graphical Input Interaction Techniques Workshop !Thomas 83J characterized UIMS's along

three scales: internal vs. external control, single- va. multi-thread control and simple vs. hierarchical

dialogues.

GUIDE generates an external control UIMS, meaning that the UIMS is in control and invokes the

3

application as a slave. It permits multiple threads of control, allowinx the user to have several commands

under construction at the same time. GUIDE provides hierarchical tools, thereby allowing hierarchical

dialogues.

The control hierarchy for a system with a GUIDE-generated interface is shown in Figure 2-1. The

user is in control of the system. When he does something (i.e., causes an event}, the GUIDE-generated

interface is activated. It invokes the toolkit to determine what the user did. The toolkit, in turn, invokes

the window manager and so forth until the appropriate hardware driver is queried. The interface can also

invoke the application package, which has access to the window manager.

lTser

1
GUIDE-generated

~il,lS

Toolkit ~achge
~~·

Window :rvf:mager

t
Virtual Terminal

(if P!'"')
co~~E

Figure 2-1: Contr.::.l Flow using GUIDE

The flow o(data in a system using GUIDE is s~wwn in Figure 2-2. Data flows from the user to an

input device, triggering a CORE event. CORE, in turn, informs the virtual terminal, which passes the

information to the window manager and so forth tmtil the GUIDE-generated interface is reached. For

output, the interface invokes either the toolkit or the application package, which pass the data down the

hierarchy until it is displayed.

3. Building Blocks
The basic building blocks of GUIDE are •tools," •tasks• and •contexts.• A •tool• is a teeh::ique

for graphical input and/or output. A •task- is a transformation or data which can be achieved by t::A~ ot
one or a set of tools. A •context• describes the appearance of the screen at some time, along wit': the

possible actions. A context consists or tasks, user-defined pictures and decisions. The relatic:::chip

between contexts, tasks, tools, user-dermed pictures and dasses, and decisions is shown in figure 3-1.

4

~se~
Input Devices ?'Devices

~ORE
J

Virtual Terminal

(il Pf"')
Window Manager

/'"'"d~)
Too~ 7" paok03e

GUIDE-generated
UIMS

Figure 2-2: Data Flow in a GUIDE-generated Interface

~nt~"-----._

~ ~----
task-decision . .. t&sk-decision user-de!ine~er-defined
~ /\ A ...

7\
k decision ~ decision user-defined user-defined

J' "' picture picturo

tool . . . tool tool . . . tool

Figure 3-lt Structure of Entities in GUIDE

3.1. Tools

picture class

I
user-defined

picture

The set of tools available in GUIDE is predefined. Some of the tools available in GUIDE are menus,

lists, forms and potentiometel'8. Each tool bas zero or more methods (routines) for drawing itself, echoing

itselC and processing input. Some tools may have no drawing routines because they have no physical

appearance. For example, a button corresponding to a physical button device would not need to be drawl!

on the screen. A tool may also have a number of options controlling its appearance and performance.

For example, a menu may be vertical or horizontal or it may be laid out by the designer. Such options

mean that there is no one physical appearance for a given tool type.

The designer may instantiate as many tools as desired. The designer chooses the characteristics for

each instance which, in turn, <letermine which routines are used for drawing and echoing the tool and

processing input to the tool. The designer may, if desired, provide alternative routines for the processes.

5

In the layout system, a menu tool might be provided for choosin~ commands, while a list tool could

be used for choosing an item of furniture upon which to operate.

3.2. Tub

Tasks allow a designer to provide the user with options while reducing the difficulty of doing so. A

task contains several tools Cor achieving the same goal plus optional actions to be executed when the task

is used. For example, the •choose command• task may include both a menu tool and a keyboard tool.

The user may use either tool to achieve the same end. However, the designer need specify the associated

control flow only once.

A small set of tasks is predefined, corresponding to frequently used real world tasks (e.g., •choose

command •). In addition, a designer may define as many tasks as desired. Each task contai.ns one or

more tools, and Cor each tool, routines which convert the output of the tool to the type desired by the

task and convert from the task type to the tool type.

Any instance or a predefined task may be edited to change the set or tools available either by adding

or removing tools.

The layout system would include a •choose command• task and a •choose object• task. The

•choose command • task would contain the menu tool mentioned above plus any other command selection

tools desired (e.g., a keyboard tool). The •choose object• task wou)d contain, at least, the above

mentioned list tool. Other tasks would be provided for picking points within the room, changing the

window into the room and getting help.

3.3. User-Defined Pictures

User-defined pictures are items which the designer wants to display. Generally, they are graphical

representations of the application's data structures. The designer specifies a name, a drawing routine and

a (starting) viewport for each picture, and the GUIDE-generated interface displays the picture in the

specified location.

User-defined pictures are organized into classes. A class is a set of different graphical instantiations

of the same data type. Classes may be modified dynamically, when the application system is running.

The designer may provide routines which operate on members ot a class; the particular picture upon which

to operate is passed as a parameter.

In the layout system, the display of the current layout would be a user-defined picture. IC multiple

views or the layout were t.o be provided, all or the views wol!ld be contained in one class.

6

3.4. Context.

A context describes the state of the system at some time. It indudes all of the objects (tasks and

user-defined pictures) which may be displayed or used. When changing contexts, a context may be pushed

onto or popped from a stack of contexts.

The presence of a window manager is assumed; it is expected to handle the details of placing the

viewports (•windows•) on the screen and identifying viewports when a •pick• is made.

Each context also contains •decisions• which determine the new state of the system after an input

from the end-user. A decision contains conditions plus instructions on the change in control if the

conditions are met. Decisions are organized in a priority order (like a LISP cond) so that the first decision

to have its conditions fulfilled will be chosen. A null condition may be expressed, forcing the change in

control to occur. The default, if an conditions fail, is to remain in the same context.

Conditions are boolean expressions involving task values, system variables and user profile fields.

For simplicity in generating code, the syntax used is that of expressions in Pascal with modifications to

handle task values and user profile fields.

Expressions are also used for specifying parameters, defaults and initial values and to indicate which

values to restore when popping a context orr the stack. Expressions may refer to task values, application

variables and user profile fields. They may contain arithmetic, boolean and logical operators as well as

function references. GUIDE generates code to evaluate expressions when they are used.

The layout system would contain one main context in which most interaction would occur. The

context would contain the •choose command, • •change window• and •help• tasks, along with the current

display or the room.

4. Actions
The actual work of the application system is done in •action routines• supplied by the system

designer. GUIDE provides a method for specifying what routine is to be executed when, and for specifying

the parameters Cor an action routine. Parameters may be based on end-user inputs. The designer may

provide several ways of entering the necessary inputs, ditrerentiated by conditions based, among other

things, on the end-user's profile.

Each task may have one or more action routines associated with it. The action to be executed when

a task is used depends on conditions specified by the designer. For example, a •choose command• task

would have a separate action for each possible command.

Many action routines require parameters. While it is possible to require that all parameters be

specified (by means or •current• values) before an action is chosen, this enforces a particular style of

programming and interaction. GUIDE, therefore, allows the designer to provide an expression for each

parameter. The expression may include system variables and task values. The designer may also specify

7

any number of contexts to be visited prior to executing the action routine. These •parameter contexts•

contain special tasks for the purpose or providing any inputs necessary to compute the parameters or the

action routine.

More than one sequence of parameter contexts may be proYided along with several ways of

computing the parameters. In both cases, conditions are used to determine which option to select.

In the layout system, a parameter context for the •add_symboi• routine (associated with •add

symbol• command) would include the •choose object" task for selecting the symbol and the 5 choose

location • task for positioning it. This context might also contain all of the tasks in the main context, if

commands may be interrupted and stacked.

5. User Profiles
At many points in GUIDE, the designer may provide several alternatives differentiated by

conditions. One of the major motivations for this capability is to allow each system to be tailored for

each user. The essential feature in doing so is the •user profile. •

The designer constructs the user profile to contain any desired information about the user. Some

items which might be included are the user's •skill level• (skill with the system) and •access levele (rigM

to access information in the system). Other contents depend on the nature of the system bein:_.;

implemented, but will generaliy include the user's preferences in dealing with the application system, for

example, level of error messages to be displayed.

User profile fields may he used in expressions. It is expected that the primary use will be in

conditions affecting the control now of the application.

The designer specifies the method whereby user profile fields receive initial values and are updated.

A number of simple methods will be provided Cor the designer to choose from. The designer may provide

and specify more complex methods, if desired. Any user can access, at most, only his own profile. Access

to each field in the profile may be controlled by conditions based on the profile. In systems where security

is an issue, access to some fields may be prohibited. For such systems, a separate system or sulrsystem

must be provided to maintain the user profile data base.

8. Helps and Prompts
The 8 help 11 and •prompt" messages associated with an object are created when the object itself is

created. As with all other items, they may be edited freely. For each object, the designer may specify

both a brief help message and tbe name of a file containing a longer help message. In addition, e.:tch

object may have several pairs of helps and several prompts distinguished by conditions, allowing messages

to be geared to individual users.

A •help t:.tSk• is provided containing several possible ways or triuering the help system. The

designet may edit this task to eliminate any methods that are felt to be inappropriate tor the system.

8

Prompts are displayed at a location specified by the designer when the corresponding object i&

displayed.

7. Output
The output from GUIDE consists of several files. The designer may request that the prototype be

stored in a file for later examination or modification. The contents of this file can be read into GUIDE

and edited during another session. A journal file containing a complete record of each session using

GUIDE is also created. Various errors may occur in the interface design; error messages will be stored in

a third file. Lastly, the major output of GUIDE consists of Pascal code which can be linked with the

application code and the toolkit to form the complete interactive application system.

8. Interface
Since one of the stated goals of GUIDE is that its interface may be generated using GUIDE, there is

no one pre-determined interface to GUIDE. This section describes an initial version of an interface, built

by calling GUIDE's application routinea from a non-graphical bootstrap program. It is expected that later

versions will be generated using this initial version both as an interface and as a base upon which to bui!d.

Later versions may be adjusted to user preferences and experiences.

The initial interface is primarily menu-driven with extensive use or forms, especially for instantiation

of tools and tasks. Whenever possible, information may be entered by picking items from the display.

The methods for creating GlJIDE entities and editing them are virtually identical. In eac;h case, the

appropriate command is selected. Then, the entity to be modified is specified. Last, the values of

individual fields are entered using a form. In general, only those fields which are being changed need to be

entered.

In this initial version the display is fairly static. In later versions the user will be able to look at any

part or the interface being designed. Both the graphical representation and the underlying data structure;

of the objects being created may be viewed. The user of GUIDE wiH have control over most of th<·

contents o(the screen.

The initial version also assumes that routines already exist for drawing the user-defined pictures.

However, there is no reason why a later version cannot provide links to pre-existing systems such as a

graphic editor and a palette program for color selection.

9. Current Status
GUIDE is currently being implemented on a V AX/11-785 running VMS. Graphics are handled by lJ.

local implementation of CORE [Stluka 82).

The initial implementation is expected to be completed in mid-1985. It will contain a 5mall toolkit

of those tools most commonly used. Several features will be omitted from the implementation, includin~~

9

journal files and an •undo• task. It is expected that these features could be added with little ditriculty.

Early testing has shown that the action routines for GUIDE can be used as a subroutine package.

This capability is being used to generate a. first interactive interface for GUIDE. One or the early tests of

this ven•ion will be to generate a new version of GUIDE.

Acknowledgements

This research has been partially funded by the Department of Computer Science, University of

Pennsylvania and by Army Research Office contract #DAAG-29-84-K-0061 and NSF CER Grant

#MCS-82-HHOO.

!Barnard 82J

!Black 82J

!Bloom 83J

[Buxton 83J

!Card 82J

!foley 82J

[Johnson 75J

P<amran 83J

!Kasik 82J

!Olsen 83aJ

References

Barnard, P., lbrnmond, N., MacLean, A. and J. Morton.
Learning and Remembering Interactive Commands.
In Human Factors in Computer Systems, pages 2-7. Institute for Computer Sciences

and Technology- National Bureau of Standards, U.S. Department of Commerce and
Washington, D.C. ACM Chapter, Gaithersburg, 1-.ID, March, 1982.

Black, J. and T. Moran.
Learning and Remembering Command Names.
Iu Human Factors in Computer Syatems, pages 8-11. Institute for Computer Sciences

and Technology - National Bureau or Standards, U.S. Department or Commerce and
Washington, D.C. ACM Chapter, Gaithersburg, MD, March, 1982.

Bloom, Douglas A.
A User-Oriented Interface Control (of an Interactive Computer Graphics System).
Master's thesis, University of Pennsylvania, May, Hl83.

Buxton, W., Lamb, M. R., Sherman, D. and K. C. Smith.
Towards a Comprehensive User Interface Management System.
Computer Graphics 17(3):35-42, July, 1983.

Card, Stuart K.
User Perceptual Mechanisms in the Search of Computer Command Menus.
In Human Factors in Computer Sy8tema, pages 190-196. Institute for Computer

Sciences and Technology- National Bureau of Standards, U.S. Department of
Commerce and Washington, D.C. ACM Chapter, Gaithersburg, r...ID, March, 1982.

Foley, J.D. and van Dam, A.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley, 1982.

Johnson, S. C.
YACC: Yet another cornpiler··compiler.
Computer Science Technical Report 32, Bell Labt!, 1975.

Kamran, Abid and Feldman, Michael B.
Graphics Programming Independent or Interaction Techniques and Styles.
Cmnputer Graphics 17(1):58-66, January, 1983.

Kasik, David J.
A User Interface Management System.
Computer Graphics 16(3):99-106, July, 1982.

Olsen, Dan R. Jr.
Automatic Generation or Interactive Systems.
Computer Graphics 17{1):53-57, January, 1083.

(Olsen 83bJ

(Roach 82J

(Rubel82J

(Savage 82J

(Stluka 82J

!Thomas 83J

!Wong 82J

10

Ot~n. Dan R. Jr. and Dempsey, Elizabeth P.
SYNGRAPH: A Graphical User Interface Generator.
Computer GraphiC8 17(3):·!3-50, July, 1983.

Roach, J., Hartson, H. R., Ehrich, R., Yunten, T. and D. Johnson.
OMS: A Comprehensive System for Managing Human-Computer Dialogue.
In Human Factor~ in Computer Systems, pages 102-105. Institute for Computer

Sciences and Technology- National Bureau of Standards, U.S. Department of
Commerce and Washington, D.C. ACM Chapter, Gaithersburg, MD, March, 1982.

Rubel, Andrew.
Graphic Based Applications - Tools to Fill the Software Gap.
Digital Design , July, 1982.

Savage, Ricky E., Habinek, James K., and Thomas W. Barhart.
The Design, Simulation and Evaluation of a Menu-Driven User Interface.
In Human Factorll in Computer Syt~tems, pages 36-40. Institute for Computer Sciencf~s

and Technology • National Bureau of Standards, U.S. Department of Commerc~ and
Washington, D.C. ACM Chapter, Gaithersburg, MD, March, 1982.

Stluka, F. P., Saunders, B. F., Slayton, P.M. and Badler, N. I.
Overview of the University of Pennsylvania CORE System.
Computer Graphics 16(2):177-186, June, 1982.

Thomas, James J.
Graphical Input Interaction Techniques Workshop Summary.
Computer Graphics 17(1):5-30, January, 1983.

Wong, Peter C. S. and Reid, Eric R.
Flair - User Interface Dialog Design Tool.
Computer Graphics 16(3}:87-98, July, 1982.

	GUIDE: Graphical User Interfaced Development Environment
	Recommended Citation

	GUIDE: Graphical User Interfaced Development Environment
	Abstract
	Disciplines
	Comments

	tmp.1452025851.pdf.vWU6J

