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Abstract 26 

Prokaryotic Argonaute proteins acquire guide strands derived from invading or 27 

mobile genetic elements via an unknown pathway to direct guide-dependent 28 

cleavage of foreign DNA. Here, we report that Argonaute from the archaeal 29 

organism Methanocaldococcus jannaschii (MjAgo) possesses two modes of action: 30 

the canonical guide-dependent endonuclease activity and a non-guided DNA 31 

endonuclease activity. The latter allows MjAgo to process long double stranded 32 

DNAs, including circular plasmid DNAs and genomic DNAs. Degradation of substrates 33 

in a guide-independent fashion primes MjAgo for subsequent rounds of DNA 34 

cleavage. Chromatinised genomic DNA is resistant to MjAgo degradation and 35 

recombinant histones protect DNA from cleavage in vitro. Mutational analysis shows 36 

that key residues important for guide-dependent target processing are also involved 37 

in guide-independent MjAgo function. This is the first-time characterisation of a 38 

guide-independent cleavage activity for an Argonaute protein potentially serving as 39 

guide biogenesis pathway in a prokaryotic system. 40 

  41 
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Introduction 42 

Argonaute (Ago) proteins are crucially involved in RNA-guided or DNA-guided 43 

degradation of target nucleic acids.
1-3

 Present in all three domains of life, they bind 44 

guide strands in vivo to target complementary nucleic acids. Eukaryotic Agos interact 45 

with cytoplasmic RNA substrates 18–23 bp in length 
4-6

 while prokaryotic Agos 46 

(pAgos) bind and process a variety of DNA and RNA substrates.
7-11

 Among them, 47 

Agos from the archaeal organisms Methanocaldococcus jannaschii (MjAgo), 48 

Pyrococcus furiosus (PfAgo) and Natronobacterium gregoryi (NgAgo) are the only 49 

Ago variants that exclusively cleave DNA substrates using a DNA guide in vitro.
7,11-13

 50 

Guide recognition is mediated by a phosphate group at the guide’s 5’-end, which is 51 

coordinated in the Mid domain by conserved amino-acid side chain interactions.
14-18

 52 

One exception are the recently characterized bacterial Agos from Marinitoga 53 

piezophila (MpAgo) and Thermotoga profunda (TpAgo), which recognise RNA guides 54 

with a 5’-hydroxyl group.
19

 Loaded with the guide, Ago binds partially or fully 55 

complementary target nucleic acids via Watson-Crick base pairing. Only fully 56 

complementary target strands are cleaved by Ago. The catalytic site resides in the 57 

PIWI domain. Notably, numerous pAgos, especially short Argonaute variants, have 58 

an incomplete catalytic site rendering them inactive.
2
 59 

While the structural organization of pAgos is well understood, their biological role is 60 

still not fully revealed. In vivo studies have only been reported for the bacterial 61 

organisms Thermus thermophilus (Tt) and Rhodobacter sphaeroides (Rs). In both 62 

cases, Ago appears to play a role in host defence.
8,20

 TtAgo acquires guide DNAs 13-63 

25 nt in length that carry the canonical 5’-phosphate. Overexpression of TtAgo in 64 

T.thermophilus leads to its association with DNA sequences mainly derived from the 65 

TtAgo expression plasmid.
8
 TtAgo, MpAgo and NgAgo cleave plasmids 66 

complementary to their guide DNA by nicking both strands of the plasmid DNA.
8,19,21

 67 

In contrast, RsAgo is most probably involved in RNA-guided DNA silencing.
20

 The 68 

majority of sequences acquired by RsAgo map to genome-encoded foreign nucleic 69 

acids like transposons and phage genes.
20

  It was suggested that the catalytically 70 

inactive RsAgo acts in concert with a nuclease, which is encoded in the same operon, 71 

thereby mediating RNA-guided silencing in R. sphaeroides.  72 
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In this study, we describe the guide-independent endonuclease activity of the 73 

archaeal MjAgo. We show that MjAgo can process long dsDNAs including plasmids 74 

and genomic DNA in a guide-independent manner, which leads to the generation of 75 

cleavage products potentially suitable as guides. Using these cleavage products in a 76 

second cleavage round accelerates processing of the original substrate DNA 77 

suggesting a priming mechanism. Only the chromatinised state of M.jannaschii’s 78 

genomic DNA is protected against MjAgo-mediated degradation, and histone 79 

proteins are likely to confer this protection. Additionally, our structure-based 80 

mutational analysis reveals amino acids and structural elements of crucial 81 

importance for the guide-independent cleavage activity of MjAgo. Taken together, 82 

our findings support a scenario in which the non-guided endonuclease activity of 83 

MjAgo represents a mechanism to protect a prokaryotic organism against foreign 84 

genetic elements. 85 

  86 



5 

RESULTS  87 

MjAgo can utilize non-canonical DNA guides for cleavage of DNA targets 88 

First, we analysed the guide length tolerance of MjAgo. We tested 5’-phosphorylated 89 

DNA guides 13–23 nt in length in a guide-dependent target cleavage assay (Figure 90 

1a). Starting from a minimal guide length of 15 nt, MjAgo accepted all guide lengths 91 

up to 23 nt (Figure 1b). We also found efficient cleavage of a non-canonical 92 

substrate (41 nt guide / 41 nt target) even without a 5’-phosphate (Figure 1c,d and 93 

Supplementary Figure 1). None of the substrates was cleaved by the catalytic 94 

mutant MjAgo
E541A

 (Supplementary Figure 2). Next, we tested whether MjAgo 95 

exhibits orientated loading and cleavage of the 41 nt guide/41 nt target substrate  96 

using target strands that either carry the fluorescent label at the 5’-end or towards 97 

the 3’-end together with guide strands with and without a 5’-phosphate group 98 

(Figure 1e). In case of a 5’-phosphorylated 41nt guide, the production of a canonical 99 

cleavage product was observed with cleavage occurring opposite nucleotide 10/11 100 

of the guide strand. However, the majority of the substrate is preferentially cleaved 101 

from the 5’-end of the target strand in a stepwise manner (Figure 1f). From a 102 

structural perspective, it is not feasible that both ends of a 41 nt long guide are 103 

accommodated in the Mid and PAZ domain indicating that MjAgo employs a non-104 

canonical binding and cleavage mechanism.  105 

 106 

MjAgo cleaves long linear and circular double-stranded DNA in a guide-107 

independent fashion 108 

Next, we tested significantly longer substrates and incubated MjAgo with a 750 bp 109 

dsDNA and circular double-stranded plasmid DNAs. In both cases, we found cleavage 110 

of the substrate in a guide-independent manner (the MjAgo
E541A

 mutant did not 111 

process these DNAs) (Figure 2a,c,d). The DNA is gradually cleaved over time 112 

(Supplementary Figure 3) until final cleavage products smaller than 100 bp 113 

accumulate (Figure 2 and 3). EDTA prevents cleavage of long dsDNA by MjAgo 114 

(Supplementary Figure 4) suggesting that the conserved catalytic tetrad, which 115 

coordinates two metal ions, carries out the cleavage reaction. DNA degradation 116 

occurs quickly at physiological relevant high temperatures of 75°C-85°C (Figure 2d).  117 
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To visualise MjAgo associated with long dsDNA fragments (Figure 2B) we used 118 

transmission electron microscopy (TEM). In the transmission electron micrographs, 119 

the MjAgo protein alone, naked linear dsDNA (750 bp) as well as interactions of 120 

MjAgo with DNA were observed.  121 

Furthermore, we detected low levels of MjAgo protein in M.jannaschii whole cell 122 

lysates using anti MjAgo antibodies (Supplementary Figure 5) indicating a 123 

constitutive expression of MjAgo under normal growth conditions without the 124 

requirement of external factors, e.g. infection by a virus or invasion of foreign 125 

genetic material. Thus, we tested whether the genomic DNA (gDNA) of M. jannaschii 126 

is protected against MjAgo-mediated degradation. MjAgo cleaves highly purified 127 

“naked” gDNA while chromatinised DNA is resistant to degradation (Figure 2e). In 128 

order to investigate whether the abundant A3 histone from M. jannaschii is the 129 

agent that confers Ago resistance, we reconstituted recombinant histone A3 from M. 130 

jannaschii with a short dsDNA (750 bp) template to enable histone-DNA complex 131 

formation. The latter were not significantly degraded by MjAgo (Figure 2f) indicating 132 

that histone-bound DNA is not accessible for MjAgo. Interestingly, when low 133 

amounts of A3 are added, DNA becomes accessible for MjAgo leading to a ladder-134 

like degradation pattern reminiscent of patterns created by digestion of chromatin 135 

with  Micrococcal nuclease (MNase) (Supplementary Figure 6). 136 

Different methylation patterns were described for gDNAs from archaeal species.
22

 137 

Therefore, we tested whether methylation signatures serve as recognition sites for 138 

MjAgo cleavage as some nucleases show reduced or no activity on methylated 139 

substrates. 
23

 Genomic DNAs from M. jannaschii and P. furiosus carry a m4C, m6A, 140 

m5C methylation, whereas gDNA from S. acidocaldarius is only methylated at 141 

position 4C and 5C. Genomic DNAs from P. furiosus and S. acidocaldarius were 142 

degraded by MjAgo (Supplementary Figure 7a). Additionally, we used bacterial-143 

purified plasmids that carried either the dam or the dcm methylation or both. All 144 

plasmids were degraded by MjAgo (Supplementary Figure 7b).  These data indicate 145 

that the bacterial and archaeal methylation patterns do not influence MjAgo activity.  146 

In order to determine the size of the final degradation products produced by MjAgo, 147 

we radiolabelled the cleavage products (Figure 3a) at the 5’-end with or without 148 

prior removal of a 5’-terminal phosphate group and analysed the length distribution 149 
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(Figure 3b). Nucleolytic degradation of dsDNA by MjAgo yielded mainly final 150 

products in the range of 8-13 nt with weak bands visible for longer products (14 to 151 

approximately 17 nt). Radiolabelling was also successful when samples without 5’-152 

phosphate removal were used suggesting that MjAgo creates fragments with or 153 

without a 5’-terminal phosphate group. Cleavage assays showed that 154 

unphosphorylated guides can direct MjAgo-mediated target cleavage 155 

(Supplementary Figure 8). 156 

We tested whether these final degradation products can serve as guides for 157 

sequence-specific degradation in a subsequent round of plasmid cleavage. Plasmid 158 

DNA degradation is significantly accelerated if the reaction is supplemented with the 159 

final products of a previous cleavage reaction using the same plasmid (Figure 3c) 160 

indicating this might be one component of a priming mechanism. However, in case a 161 

plasmid unrelated in sequence is used, the cleavage reaction also appears to be 162 

faster as compared to a reaction without pre-digestion of a prior plasmid but is still 163 

significantly slower as compared to the reaction with pre-digestion of the same 164 

plasmid. This unspecific acceleration might be another component of a priming 165 

mechanism. Possibly, one round of MjAgo-mediated cleavage during the pre-166 

digestion of a plasmid induces a cleavage-competent conformational state that leads 167 

to a fast processing of substrates in general.  168 

Next, we analysed whether 21 nt 5’-phosphorylated guides direct specific nicking 169 

and linearization of a plasmid as it has been demonstrated for other prokaryotic 170 

Agos. 
8,19,21

  However, no specific band indicative for nicking or linearization of the 171 

plasmid was observed (Figure 3d).  172 

 173 

Mutational analysis of MjAgo-mediated non-canonical DNA substrate cleavage 174 

In order to identify the structural elements that are important for the guide-175 

independent activity of MjAgo, we carried out a mutational analysis. MjAgo anchors 176 

the 5’- and 3’-end of a canonical guide strand in dedicated binding pockets in the 177 

Mid and PAZ domain, respectively (PDB: 5G5S and 5G5T).
1,24

 We tested whether 178 

mutations in the functional domains of MjAgo (Figure 4a) affect the plasmid 179 

cleavage activity. PAZ binding pocket mutants (Y194A, H213A, Y217A, E246A) 180 

showed significantly reduced cleavage activity (Figure 4b) suggesting that the 181 
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interaction between DNA and the PAZ domain is important for the guide-182 

independent cleavage activity. The PAZ domain undergoes a conformational 183 

transition upon loading of the guide DNA (Supplementary Figure 9).
24

 In the apo 184 

enzyme, residues N170 (PAZ domain) and D438 (Mid domain) are in close proximity 185 

potentially stabilising the closed conformation of apo MjAgo (Figure 4a, inset). We 186 

mutated position N170 and found that the mutant was active suggesting that an 187 

interruption of the putative N170-D438 interaction does not influence MjAgo’s 188 

guide-independent cleavage activity. Additionally, we tested MjAgo variants with 189 

mutations in helix 8 (L270P and W274V). Helix 8 corresponds to helix 7 in hAgo2, a 190 

mobile element important for efficient formation of the guide/target duplex. 191 

15,18,24,25
 Helix 8 mutations were active albeit with slightly reduced cleavage activity. 192 

Mutations of amino acids lining a putative secondary nucleic acid binding channel 193 

(F572A, Q574A, N575A), a feature we recently identified in the crystal structures of 194 

MjAgo (PDB: 5G5T)
24

 (Supplementary Figure 10), did not significantly reduce 195 

cleavage activity. Only the mutant F572A showed a slightly reduced activity, which 196 

might be due to the close proximity of this residue to the active site. Mutations of 197 

amino acids that are directly involved in the coordination of the 5’-end of a 198 

conventional guide (K435A, D438P, Q457A, N458A, Q479A, K483A) lead only in case 199 

of D438P and K483A to complete inactivation or strongly reduced activity.  200 

Among these mutants, only mutation of residues Y194, E246 and K483 seem to be 201 

critical for both modes of MjAgo activity. K483 is involved in the coordination of a 202 

magnesium ion in the Mid binding pocket and is of crucial importance for MjAgo 203 

activity. Interestingly, residues Q457, N458, L270, F572, Q574 and N575 are only 204 

important for the guide-dependent cleavage activity, as all of these mutants are 205 

catalytically inactive using a canonical substrate. 
24

  206 

 207 

MjAgo associates with small DNA in vivo and impairs growth in a heterologous 208 

archaeal expression system 209 

Having established that MjAgo is able to process genomic DNA from foreign species 210 

in vitro, we next tested whether cleavage of DNA occurs also in vivo and affects the 211 

viability of the organism used for heterologous expression of MjAgo. We 212 
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transformed suitable expression plasmids encoding either wildtype MjAgo or the 213 

catalytically inactive mutant into S. acidocaldarius and E. coli.  214 

We expressed and purified recombinant MjAgo from E. coli lysate via affinity 215 

chromatography and subsequently isolated nucleic acids associated with MjAgo 216 

(nucleic acids remain bound to MjAgo if the extraction and purification is carried out 217 

at 4°C but not if carried out at room temperature). These nucleic acids are smaller 218 

than 100 bases and resistant to RNases but sensitive to DNase treatment (Figure 3e) 219 

suggesting that MjAgo interacts with short DNAs in vivo in E.coli. These DNAs might 220 

represent MjAgo degradation products. However, growth of E.coli was not impaired 221 

by overexpression of MjAgo, most likely because DNA replication is an extremely fast 222 

process in E. coli but the guide-independent cleavage activity of MjAgo is very slow 223 

at 37°C. In order to exclude the possibility that traces of these short nucleic acids 224 

remain bound to MjAgo during protein preparation at room temperature and serve 225 

as guides, we purified MjAgo-associated nucleic acids and added them back to a 226 

reaction containing MjAgo and plasmid DNA at defined concentrations 227 

(Supplementary Figure 11). In case these DNAs serve as unspecific guides for MjAgo, 228 

an acceleration of the cleavage reaction should be observed. However, the presence 229 

of these short DNAs (Supplementary Figure 11a) did neither influence nor stimulate 230 

MjAgo-mediated cleavage of plasmid DNA even at high concentrations 231 

(Supplementary Figure 11b). Consequently, MjAgo activity is genuinely a guide-232 

independent activity.  233 

Since no genetic system is established for M. jannaschii, we were not able to affinity-234 

purify endogeneous MjAgo and to isolate nucleic acids associated with MjAgo in 235 

vivo. However, S. acidocaldarius is a genetically tractable archaeal organism that 236 

does not encode an Argonaute variant but – like M. jannaschii - is a thermophile 237 

with a comparable optimal growth temperature (70-80°C). Thus, using S. 238 

acidocaldarius as heterologous expression host, we were able to study MjAgo 239 

activity in an archaeal organism at near optimal temperatures. We found 240 

approximately 25-fold less transformants when using a plasmid encoding wildtype 241 

MjAgo as compared to the catalytically inactive mutant (wt MjAgo: 13 colonies vs 242 

MjAgo
E541A

: 341 colonies) for transformation. MjAgo immunodetection in whole cell 243 

extracts verified MjAgo expression in S. acidcocaldarius. While we found good 244 
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expression levels of MjAgo in case of the catalytic mutant, almost no MjAgo was 245 

detectable in case of the transformants that expressed wildtype MjAgo 246 

(Supplementary Figure 12a/b). To find out whether the reduced protein level is due 247 

to proteolytic degradation of wt MjAgo or reduced plasmids levels in the cells, we 248 

PCR-amplified the expression plasmid and found reduced levels of the MjAgo wt 249 

expression plasmid as compared to the plasmid levels of the catalytic mutant in the 250 

cell lysate (Supplementary Figure 12c). These results suggest that MjAgo is active 251 

when expressed in the crenarchaeal organism S. acidocaldarius, which negatively 252 

affects the viability of the organism possibly due to MjAgo-mediated degradation of 253 

Sulfolobus’ gDNA. In contrast to M. jannaschii, Sulfolobus does not encode histones 254 

but histone-like proteins (e.g. Alba, Cren7 and Sul7) that compact the genome for 255 

example via loop formation. However, the interaction of Alba is less stable than the 256 

tight wrapping of DNA in nucleosomes most likely leaving the gDNA more 257 

susceptible for MjAgo action. 
26

  258 

 259 

  260 
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DISCUSSION  261 

Some prokaryotic Agos use short guides to direct guide-dependent plasmid nicking 262 

or double-strand cleavage of plasmid DNA at a single site. Here, we show that the 263 

archaeal Ago from M. jannaschii works as both, a guided and guide-independent 264 

endonuclease, the latter enabling the processing of non-canonical substrates like 265 

linear and circular dsDNAs potentially driving the silencing of invading and self-266 

replicating genetic elements. 267 

Testing the substrate spectrum of MjAgo revealed that MjAgo requires a minimal 268 

guide length of 15 nt and highest cleavage efficiency was observed with a 19 nt 269 

guide in guide-dependent DNA cleavage reactions. This is in good agreement with 270 

other prokaryotic Agos that utilise guides in the size range of 14-25 nt.
7,8,12,19-21

 Base 271 

pairing of a 14-15 nt guide with a target appears to be the minimally required length 272 

in all characterised pAgos yielding a stable duplex even at high reaction 273 

temperatures typical for thermophiles. The duplex stability must be enhanced 274 

beyond the thermal stability of the dsDNA by the intricate network of interactions in 275 

the Mid binding pocket and the seed region of the guide to ensure that the substrate 276 

remains hybridised during a single round of target cleavage. We additionally 277 

observed that MjAgo employs guides well above the canonical guide lengths (e.g. 278 

using a 41 nt guide), which has also been reported recently for MpAgo.
19

 Structural 279 

studies showed that the 5’- and 3’-end of the guide is anchored in the Mid and PAZ 280 

binding pocket, respectively.
16,19,21

 The 3’-end is released from the PAZ domain upon 281 

target loading.
10,11

 In case of a 41 nt guide, sterical constraints would not allow the 282 

docking of the 5’- and the 3’-end in the binding pockets. We found that the 41 nt 283 

guide is nevertheless associated with the Mid domain pocket when a 5’-phosphate is 284 

present as the canonical cleavage product is observed. This reaction competes with a 285 

cleavage reaction that preferentially starts from the 3’-end of the guide and leads to 286 

a stepwise processing of the target. Cleavage generates a new phosphate group that 287 

could direct the subsequent cleavage reaction resulting in an apparent stepwise 288 

degradation of the labelled target. However, the 3’-end cleavage mode is slower 289 

than the phosphate-guided reaction suggesting that the substrate is not ideally 290 

positioned for efficient cleavage in the Mid domain binding pocket. Interestingly, 291 

hAgo2 is also capable to process non-canonical long dsRNAs. Cheloufi et al showed 292 
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that hAgo2 degrades the 41 nt long pre-miRNA-451 in a Dicer-independent 293 

manner.
27

 hAgo2 cleaves this substrate at the canonical cleavage site suggesting that 294 

the 5’-end of the dsRNA is anchored in the Mid domain and hAgo2 is able to 295 

accommodate this species without an interaction of the 3’-end and the PAZ domain. 296 

A gradual degradation is also observed when MjAgo processes long linear dsDNA, 297 

plasmid DNA or gDNA. EM images revealed that MjAgo associates with dsDNA and 298 

might employ a comparable sliding mechanism as described for hAgo2 to search for 299 

the terminus of the DNA. 
28

 In case of circular DNA, first, cleavage of both strands 300 

has to occur to result in the observed linearized form of the plasmid. This step 301 

appears to be more efficient at elevated temperatures. Here, thermal breathing of 302 

the DNA is enhanced resulting in transiently opened DNA that could serve as entry 303 

point for MjAgo. Nicking of one of the strands creates a free 5’-phosphate group, 304 

which can be positioned in the Mid binding pocket followed by cleavage of the 305 

second strand in close proximity that is detectable as linearized plasmid. Mutational 306 

analysis underscores the importance of the magnesium in the Mid binding pocket as 307 

mutation of K483 involved in the coordination of the magnesium and the terminal 308 

base leads to strongly reduced plasmid degradation activity. Equally important is 309 

D438, which is part of the so-called nucleotide-specificity loop – a conserved feature 310 

for the coordination of the 5’-end terminal nucleotide.
17

 In MjAgo, D438 is part of a 311 

3
10

 helix that forms upon formation of the binary guide-MjAgo complex.
24

 312 

Interruption of this helix reduces the guide-dependent and guide-independent 313 

MjAgo activity. Mutational analysis also revealed that the PAZ domain is critical for 314 

MjAgo-mediated plasmid degradation. Even though the long substrates cannot be 315 

anchored in both, the Mid and PAZ pocket, the PAZ domain has a general affinity for 316 

nucleic acids.
16

 In fact, all pAgos that show guide-dependent plasmid DNA cleavage 317 

have to accommodate at least three nucleic acid strands. So far, no structural or 318 

mechanistic data are available that would answer the question how the substrate is 319 

accommodated when pAgos process plasmids. In MjAgo, a second positively charged 320 

nucleic acid binding channel is important for the efficient guide-dependent DNA 321 

endonuclease activity of MjAgo (Supplementary Figure 10).
24

 This channel might 322 

provide space for one of the DNA strands handled by MjAgo during plasmid 323 

processing. It has been proposed that the channel formed in between the PAZ- and 324 
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N-terminal domain accommodates the target strand.
29

 It would be conceivable that 325 

in MjAgo, strand separation is achieved by guiding one of the DNA strands through 326 

the primary (PAZ/N-terminal cleft) and secondary DNA binding channel (PIWI/N-327 

terminal tunnel) with strand annealing after both strands have passed the N-328 

terminal domain. However, mutational analysis of residues lining this putative 329 

secondary binding channel did not reveal a role of this channel in guide-independent 330 

cleavage. Recently, the structure of RsAgo in complex with a guide and target strand 331 

has been solved.
21

 Here, base pairing of the guide/target duplex  is maintained up to 332 

nucleotide 18 due to a slightly altered orientation of the N-terminal domain 333 

(‘packing-type’ N-terminal domain). In structures of substrate-associated TtAgo, the 334 

guide and target strands are separated after nucleotide 16 by the action of the N-335 

terminal domain (‘wedge-type’ N-terminal domain).
10,30

 These examples 336 

demonstrate that substrate positioning in pAgo variants does not follow a conserved 337 

pathway and MjAgo might bind nucleic acids in yet another slightly different 338 

configuration. A secondary DNA binding channel has not been identified in other 339 

pAgos yet rendering MjAgo the only characterised Ago variant that possesses 340 

additional structural features that might be involved in non-guided DNA 341 

endonuclease activity (Supplementary Figure 13).  342 

Taken together, a picture of the in vivo function of MjAgo emerges (Figure 5a). 343 

MjAgo might serve as a safeguard system that, upon invasion of foreign nucleic acids 344 

like plasmids or viral DNA, is able to degrade these DNAs in a non-specific fashion via 345 

the guide-independent endonuclease function. The circular 1.7 Mb genome and the 346 

two extrachromosomal elements of M. jannaschii are inert against Ago, likely 347 

because histones intimately interact with the DNA and thus deny Ago access. In 348 

conjunction with the data collected from heterologous expression of MjAgo in S. 349 

acidocaldarius, an organism which does not encode any histones, these results lead 350 

to the hypothesis that the chromatinisation state of the DNA would serve a “self vs 351 

non-self” discrimination marker. This wave of defence is relatively slow but followed 352 

by a faster phase. Potentially, guides are recruited during the first step of guide-353 

independent MjAgo action priming MjAgo for a second round of guide-dependent 354 

cleavage with significantly increased substrate turnover. In contrast to the CRISPR-355 

Cas systems, the postulated MjAgo-mediated defence system does not possess a 356 
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memory. Earlier experiments showed that guide strands dissociate from MjAgo
11

, 357 

which ultimately allows re-priming of the cellular MjAgo pool. Interestingly, PfAgo 358 

does not exhibit complete degradation but only linearization of plasmid DNA in a 359 

guide-independent manner
7
. The genomic context of the MjAgo gene (Figure 5b) 360 

also hints to the possibility that MjAgo is involved in DNA repair and/or 361 

recombination processes and its catalytic activity might be regulated by so far 362 

unknown proteins. 363 

Even though guide sequences derived from exogenous plasmids, transposable 364 

elements and cellular transcripts were found to be associated with TtAgo and RsAgo 365 

in vivo, the biology of guide strand generation remained elusive as no pre-processing 366 

enzyme comparable to the eukaryotic Dicer nuclease could be identified so far that 367 

might fulfil this function. The non-canonical substrate usage of MjAgo provides a first 368 

mechanistic rational how Ago can be primed in prokaryotic organisms. However, in 369 

other prokaryotes different mechanisms seem to be in place. They remain to be 370 

identified, since to date no guide-independent endonucleolytic degradation of 371 

plasmid DNA was demonstrated for other guide-dependent DNA-silencing enzymes 372 

including TtAgo, NgAgo, MpAgo, PfAgo and RsAgo. 373 

 374 

  375 
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Methods 376 

 377 

Protein preparation 378 

Recombinant Argonaute from M. jannaschii was produced as described previously.
11

 379 

In brief, MjAgo was expressed in E.coli Rosetta(DE3)pLysS cells (Novagen). Cells were 380 

grown for 16h at 37°C after induction of expression with 1 mM IPTG. After 381 

harvesting the cells by centrifugation (8000 g, 20 min) the cells were resuspended in 382 

resuspension buffer (50 mM Tris/HCl pH 7.4, 100 mM NaCl, 1 mM MgCl2, 10% 383 

glycerol, 20 mM Imidazol). Cells were lysed by sonification. A heat treatment step 384 

(30 min at 85 °C) followed by centrifugation for 45 min at 15.000 g leads to a pre-385 

purification of the heat stable recombinant MjAgo, which was found in the soluble 386 

fraction and was further purified by affinity chromatography using a HisTrap column 387 

(GE Healthcare). The protein was eluted in a buffer containing 50 mM Tris/HCl pH 388 

7.4, 100 mM NaCl, 1 mM MgCl2, 10% glycerol, 250 mM imidazol. 389 

For the production of the catalytic mutant MjAgo
E541A

, the MjAgo gene was mutated 390 

to introduce an Alanine codon at position E541 using the QuikChange II site-directed 391 

mutagenesis kit (Agilent). The recombinant protein was produced in E. coli 392 

Rosetta(DE3)pLysS cells and extraction of the mutated MjAgo protein was performed 393 

as described for the wild-type protein with the exception that the heat treatment 394 

step was carried out at 75°C for 30 min. All other mutants were generated using the 395 

QuikChange II site-directed mutagenesis kit (Agilent), expressed in E. coli 396 

Rosetta(DE3)pLysS (50 ml expression cultures) as described for the MjAgo wildtype 397 

including a heat treatment step for 30 min at 85°C. MjAgo mutants were purified 398 

using Ni-NTA spin columns (Qiagen) according to manufacturer’s instructions. 399 

Proteins were eluted in the same elution buffer as described for large scale 400 

purification via the HisTrap column. 401 

 402 

Cloning and preparation of histone A3 from Methanocaldococcus jannaschii 403 

The gene encoding M. jannaschii histone A3 was cloned from genomic DNA using 404 

PCR. Following PCR amplification, cloning into pGEM-T (Promega) and sequence 405 

verification, the A3 insert was subcloned into the expression vector pET21a(+) 406 

(Novagen) using NdeI and XhoI restriction sites. The resulting pET-A3 vector was 407 
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transformed into the Rosetta2 expression strain (Novagen), grown in rich media 408 

supplemented with ampicillin (100 µg/ml) and induced with 1 mM IPTG for 3 hours. 409 

The expression culture was harvested by centrifugation and soluble proteins 410 

extracted in N100 extraction buffer (100 mM NaCl, 25 mM Tris-acetate pH 8.0, 10 411 

mM MgCl2, 1 mM DTT) supplemented with EDTA-free protease inhibitor cocktail 412 

(Roche) by using a cell press in the presence of 20 μl DNaseI (2500 U/ml) and 20 μl 413 

RNase (10 mg/ml). The extract was centrifuged for 30 minutes at 15000 g at 4  ̊C to 414 

remove cell debris. The cleared lysate was heat treated at 70 ̊C for 30 minutes 415 

followed by centrifugation at 13,000 g for 30 minutes at 4  ̊C to remove denatured E. 416 

coli proteins. The supernatant was loaded onto a 1 ml heparin column (HiTrap 417 

Heparin HP, GE Healthcare) equilibrated with N100. The protein was eluted with a 418 

linear gradient from 0-1.0 M NaCl over 10 CV using N1000 buffer (N100-like buffer 419 

containing 1,000 mM NaCl). Fractions containing A3 were pooled and dialyzed (Slide-420 

A-Lyzer Dialysis Cassettes, Life technologies) into N250 buffer (N100-like containing 421 

250 mM NaCl).  422 

 423 

Synthetic oligonucleotides and DNAs 424 

DNA guide and target sequences of the let-7 based 20/21mer substrate are listed in 425 

Figure 1A. The sequences of the 41 nt long DNA substrate is as follows:  426 

41 nt guide: 5’- ACGGACATTACGAGGTAGTAGGTTGTATAGTCTTATCACCT 427 

41 nt target: 5’-AGGTGATAAGACTATACAACCTACTACCTCGTAATGTCCGT. 428 

All oligonucleotides were HPLC-purified and purchased from MWG (Ebersberg, 429 

Germany). 430 

Plasmid DNA used for MjAgo activity assays throughout this work were either 431 

standard pGEX-2TK or pET21(a) based vectors. Plasmid DNA was purified from E. coli 432 

DH5 cells using the HiSpeed Plasmid Midi Kit (Qiagen).  433 

Genomic DNA from M. jannaschii was prepared using the DNeasy Blood and Tissue 434 

Kit (Qiagen) followed by RNase digestion (Thermo Scientific) of remaining tRNA and 435 

rRNA. Genomic DNA from P. furiosus was kindly provided by Winfried Hausner 436 

(Institute for Microbiology and Archaea Centre, University Regensburg). Genomic 437 

DNA from S. acidocaldarius was prepared using the Genelute
TM

 Bacterial genome 438 

DNA kit (Sigma). 439 
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 440 

Purification of chromatin from M. jannaschii biomass 441 

1 g M. jannaschii biomass (~7*109 cells/g) was resuspended in 20 ml PBS (including 442 

protease inhibitor cocktail, Roche) and centrifuged at low speed at 1,500 g for 10 443 

minutes at 4˚C to remove black residue from the culture medium (mostly FeS). The 444 

supernatant was transferred to a new tube and, if necessary, the wash step repeated 445 

2-3 x until the pellet has a white appearance. The supernatant was centrifuged at 446 

high speed at 14,000 g for 10 minutes at 4˚C in order to pellet the cells. After 447 

removal of the supernatant, the cell pellet was carefully resuspended by pipetting in 448 

5 ml chromatin extraction buffer (25 mM HEPES pH 7, 15 mM MgCl2, 100 mM NaCl, 449 

400 mM sorbitol and 0.5 % Triton X-100). The chromatin extract was incubated for 450 

30 minutes at 4˚C and aliquoted into 100 µl portions. Following centrifugation at 451 

14,000 g for 15 minutes at 4 ˚C, the supernatant was removed and the chromatin 452 

pellet resuspended in 50 µl extraction buffer, snapfrozen in liquid Nitrogen and 453 

stored at -80˚ C. 454 

  455 

Activity assays 456 

DNA-guided cleavage assays were performed by combining 3 μM recombinant 457 

MjAgo with 0.33 μM guide DNA and 0.67 μM target DNA in a buffer containing 50 458 

mM Tris/HCl pH 7.4, 100 mM NaCl, 5 mM MgCl2, 2% glycerol, 10 mM DTT, and 67 459 

μg/ml BSA in a total volume of 15 μl. The target DNA and the resulting cleavage 460 

products are detected via the fluorescent signal of the coupled fluorophore (see 461 

Figures for coupling sites). All components were combined at room temperature and 462 

the enzymatic reaction was initiated by incubating the samples at 85 °C. 10 μl of the 463 

reactions were stopped by the addition of 10 μl formamide-loading buffer and the 464 

resulting fragments were separated on a 12% denaturing polyacrylamide gel for 80 465 

min at 70W. The fluorescent signal was visualised using a FLA7000 scanner (GE 466 

Healthcare). 467 

Cleavage assays using a dsDNA PCR fragment, circular plasmid DNA (pGEX-2TK 468 

vector) or genomic DNA was performed in a buffer containing 50 mM Tris/HCl pH 469 

7.4, 100 mM NaCl, 5 mM MgCl2, 2% glycerol, 10 mM DTT, and 67 μg/ml BSA in a 470 

total volume of 10 μl. If not noted otherwise reactions contained 1 µM MjAgo. DNA 471 



18 

concentrations are given in the figure legends. Samples were incubated at 37°C, 75°C 472 

or 85°C (see figure legends). Reactions including the catalytic mutant were incubated 473 

at 75°C due to the reduced heat stability of the mutated protein. Reactions were 474 

stopped at the given time points (see figure legends) by the addition of 1 volume 6M 475 

urea and incubation for 5 min at 85°C.  476 

1 µl of Green Buffer (Thermo Fisher, Fast Digest Kit) was added prior to analysis of 477 

the sample using agarose gel electrophoresis. For guide-dependent plasmid cleavage 478 

reactions a pET21(a) plasmid was used and two matching standard guide sequences 479 

were designed that target each strand of the T7 promoter sequence encoded in the 480 

pET21 plasmid (T7 fw guide: 5’-PHO-CCCTATAGTGAGTCGTATTA, T7 rev guide: 5’-481 

PHO-CTCACAATTCCCCCATAGTG). Samples were incubated for 5 min at 85°C prior to 482 

separation and analysis via agarose gel electrophoresis (1xTAE running buffer 483 

including 1 M urea in the buffer and gel). 484 

For MjAgo-mediated cleavage assays that included the histone A3, 14.3 µM histone 485 

A3 was pre-incubated with 1.5 µg dsDNA (PCR fragment, 750 bp) in 50 mM Tris/HCl 486 

pH 7.4, 100 mM NaCl, 5 mM MgCl2, 2% glycerol, 10 mM DTT, and 67 μg/ml BSA for 487 

10 min at 65°C. Subsequently, 1 µM MjAgo was added and the sample incubated at 488 

85°C (see figure legends for incubation times). Reaction were stopped by fast cooling 489 

to 4°C followed by purification of the DNA using the PCR purification kit from Qiagen. 490 

Samples were incubated for 5 min at 85°C prior to separation and analysis via 491 

agarose gel electrophoresis (1xTAE running buffer). 492 

 493 

Isolation and radiolabelling of DNA degradation products after MjAgo-mediated 494 

plasmid digestion 495 

Plasmid DNA digest was conducted as described above. One part of the degraded 496 

DNA was 5’-dephosphorylated using Antarctic phosphatase (NEB) and purified via 497 

Sephadex-G50 columns (GE Healthcare) to remove excess phosphate. Subsequently, 498 

dephosphorylated as well as untreated samples of the plasmid DNA fragments were 499 

radioactively labelled with [γ-
32

P] ATP (Perkin Elmer) using T4 PNK (Thermo Fisher 500 

Scientific). Modified DNA fragments were purified from excess [γ-
32

P] ATP using 501 

Sephadex G50 columns (GE Healthcare). Labelling success was controlled using liquid 502 

scintillation counting. A radioactively labelled size marker was created by digesting 503 
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RNA (5’-GCC UCA GCA CGU AAC UCU ATT-3’) carrying a radioactive 5’-phosphate 504 

using RNase T1 (Thermo Fisher Scientific). Samples were adjusted to equal counts 505 

according to liquid scintillation counting, mixed with 1 volume loading buffer (95% 506 

formamide, 0.025 % (w/v) SDS, 0.025 % bromophenolblue, 0.025 % xylene cyanol, 507 

0.5 mM EDTA) and analysed using 20 % denaturing PAGE followed by 508 

autoradiography.  509 

 510 

Heterologous expression of MjAgo in Sulfolobus acidocaldarius 511 

S. acidocaldarius  MW001 
31

 was grown aerobically at 75°C in basal Brock medium
32

, 512 

supplemented with 0.1% NZ amine, 0.2% dextrin and 20 µg/ml uracil and adjusted to 513 

pH 3.5 with sulfuric acid. For solid media the medium was supplemented with 6 mM 514 

CaCl2 and 20 mM MgCl2 and 1.2% gelrite. Plates were incubated for 6 days at 75°C.  515 

To express MjAgo in S. acidocaldarius, expression plasmids were constructed by 516 

cloning the gene encoding MjAgo (MJ_1321) into shuttle vector pSVA1551 (Wagner 517 

and Albers, unpublished). The latter is a modified derivate of pCmalLacS 
33

. To create 518 

a catalytically inactive mutant of MjAgo, pSVA1551-MjAgo was mutated using site-519 

directed mutagenesis, introducing an E541A mutation. The plasmids were 520 

transformed into S. acidocaldarius MW001 as described previously 
34

. Transformants 521 

were grown in 50 ml Brock medium 
32

 supplemented with 0.2% NZ-amine to an 522 

OD600 of around 0.5. Expression was induced by adding 0.4% maltose and incubating 523 

the cells for four more hours at 75°C.  524 

To determine the plasmid-sequences of MJ_1321 in the expression cultures, a PCR 525 

was performed on the lysates using MjAgo specific primers 
34

. The PCR product was 526 

sequenced using the following primers:  527 

MjAgo fw: 5’-CACCATGGTTTTAAATAAAGTTACATATAAAATAAATGC 528 

MJ_1321_internal_1: 5’- CACTGGTTGATGCTCCAAAC 529 

MJ_1321_internal_2: 5’- TGGGACTTGACACTGGATTG 530 

MJ_1321_internal_3: 5’ – TACTCCTCTAATAGTGCTTTATC 531 

MjAgo rev: 5’ - TTATATGAAATATAAGAATCCATGC 532 

 533 

 534 

 535 
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TEM analysis of MjAgo-DNA complexes 536 

A purified and concentrated solution of MjAgo or MjAgo-DNA complexes (5 µl) was 537 

applied to glow-discharged carbon-coated copper grids, washed 2 to 5 times with 538 

double distilled water, shortly blotted onto filter paper after each step and negative-539 

stained with 2 % (w/v) uranyl acetate for 20 s 
35

. Afterwards, the grids were blotted 540 

on filter paper again and air dried for subsequent transmission electron microscopy 541 

(TEM). For this, we used a Zeiss EM 912 in combination with an integrated OMEGA 542 

energy filter and operated at 80 kV in the zero-loss mode. 543 

 544 

Statement about replicates in the experimental work 545 

Listed below is how many times the individual experiment shown in the figures were 546 

replicated (distinguishing biological and technical replicates). 547 

Figure 1a: six replicates (three biological, three technical); Figure 1d: four replicates 548 

(one biological, three technical); Figure 1f: four replicates (one biological, three 549 

technical); Figure 2a: six replicates (three biological, three technical); Figure 2b: two 550 

biological replicates; Figure 2c: seven replicates (three biological, four technical); 551 

Figure 2d: five replicates (two biological, three technical); Figure 2e: three technical 552 

replicates; Figure 2f: three technical replicates; Figure 3a: five replicates (three 553 

biological, two technical); Figure 3b: two three technical replicates; Figure 3c: six 554 

replicates (three biological, three technical); Figure 3d: five replicates (two biological, 555 

three technical); Figure 3e: six replicates (four biological, two technical); Figure 4b: 556 

six replicates (two biological, four technical). 557 

 558 

Data availability 559 

All data that support the findings of this study are available from the corresponding 560 

author upon request. 561 
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FIGURE LEGENDS 579 

 580 

Figure 1: Guide-directed target cleavage activity of MjAgo using canonical and non-581 

canonical substrates. (a) Guide and target strand sequences used are derived from 582 

the human let-7 miRNA and are shown as DNA duplex, which is efficiently cleaved by 583 

MjAgo (the Alexa647 (AF647) modification site in the target strand is highlighted in 584 

red) 
11

. (b) Different guide strand lengths (13-23 nt) were used for cleavage reactions 585 

(3 µM MjAgo, 1.7 µM DNAguide and 0.72 µM DNAtarget at 85°C) and the reactions were 586 

stopped after 0, 7.5 and 15 min. Cleavage products were resolved on a 12% 587 

denaturing polyacrylamide gel. Efficient target strand cleavage requires a minimal 588 

guide length of 15 nt. (c) Canonical and non-canonical substrates (composed of long 589 

guide and long target strands) were used for MjAgo cleavage reactions (fluorophore 590 

coupling site is indicated by a red star). (d) MjAgo cleaves all offered DNA substrates 591 

even when an overlong guide strand of 41 nt is used (0.6 µM MjAgo, 1.7 µM DNAguide 592 

and 0.72 µM DNAtarget at 85°C, time points: 0,15, 20 min). (e) Substrates with a 593 

fluorescent marker dye positioned either at the 5’ or 3’ end of the target of a short 594 

or long ds DNA substrate. (f) MjAgo mediated cleavage pattern of non-canonical 595 

substrates shown in (e) reveal a stepwise processing of the DNA from the 5’-end of 596 

the target.  597 

 598 

Figure 2: MjAgo processes long linear and circular double-stranded DNAs and 599 

genomic DNA in the absence of a guide DNA. (a) MjAgo mediated cleavage of linear 600 

dsDNA (1.1 µM MjAgo, 1 µg PCR product at 85°C, time points: 15, 30, 60, 120 min). 601 

(b) Transmission electron microscopy (TEM) image of a MjAgo-linear dsDNA sample. 602 

Filled arrowheads show proteins (approximately 15-20 nm in diameter) associated 603 

with dsDNA indicates standard arrows point to naked dsDNA. Scale bar: 100 nm. (c) 604 

Time-course of MjAgo-mediated processing of circular plasmid DNA in the absence 605 

of DNA guides at 75°C and 85°C (1 µM MjAgo, 1 µg plasmid DNA; time points for 606 

cleavage at 75°: 0, 1, 2, 4, 6h; time points for cleavage at 85°C: 0, 2.5, 10, 30, 60 min). 607 

(d) Comparison of the wildtype (wt) and a catalytic mutant of MjAgo (E541A) in the 608 

plasmid DNA cleavage assay at 37°C and 75°C (1 µM MjAgo, 1.1 µg plasmid DNA, 609 

time points: 3 and 6 h;  - : untreated plasmid DNA, + EcoRI: EcoRI digested plasmid). 610 

(e) Agarose gel electrophoresis of M. jannaschii chromatin and M.jannaschii genomic 611 

DNA after incubation with MjAgo (7.5 µM MjAgo, 37.7 ng chromatin or 780 ng 612 

genomic DNA at 37°C). Sample containing 0.5% triton is a control reaction as the 613 

chromatinised DNA was prepared in a buffer containing 0.5% triton. (f) Cleavage 614 

reaction using linear dsDNA (750 bp) in the presence and absence of M. jannaschii 615 

histone A3. 1.5 µg dsDNA fragment was incubated with 1 µM MjAgo at 85°C. 616 

Samples were taken after 45 and 90 min of incubation and resolved on a 1% Agarose 617 

gel. MjAgo mediated degradation is clearly visible in the absence of histones. If the 618 

dsDNA is pre-incubated with 14.3 µM M. jannaschii histone A3, the DNA is protected 619 

against MjAgo degradation (time points 0, 45, 90 min).  620 

 621 

 622 

 623 
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Figure 3: Characterisation of DNA degradation products and influence on MjAgo-624 

mediated plasmid degradation. (a) Final degradation products of a MjAgo-mediated 625 

plasmid DNA degradation that has run to completion (1 µM MjAgo, 1 µg plasmid 626 

DNA, 85°C, time points: 0, 2.5, 10, 30, 60, 180 min). (b) Final degradation products 627 

were extracted, radiolabelled and separated on a 20% denaturing sequencing 628 

polyacrylamide gel. (c) 1µg pGEX-2TK plasmid was digested to completion with 629 

MjAgo (2 µM MjAgo, 2h at 85°C). Subsequently, a fresh aliquot of the same plasmid 630 

(1 µg pGEX-2TK) or a plasmid with a different sequence (pET21-derived plasmid) was 631 

added to start a new round of cleavage reaction (2 µM MjAgo, 1 µg plasmid DNA at 632 

85°C, time points: 0, 5, 10, 20 min). (d) Agarose gel electrophoresis analysis of 633 

plasmid DNA incubated with MjAgo in the absence of guide DNA strands (- guide 634 

DNA), with MjAgo in the presence of two matching 5’-phosphorylated guides that 635 

target each strand of the T7 promoter sequence in the pET-vector, respectively (+ 636 

matching guide DNA). In addition, MjAgo in the presence of random non-matching 637 

guide DNA was used. Reactions contained 1 µM MjAgo, 600 ng pET plasmid DNA and 638 

were incubated for 0, 15, 30 and 60 min at 37°C. (e) Agarose gel electrophoresis of 639 

co-purified nucleic acids extracted from affinity purified MjAgo (purification at 4°C) 640 

after heterologous expression in E.coli. Nucleic acids were Phenol/Chloroform 641 

extracted from the protein and digested with the nucleases given.  642 

 643 

 644 

Figure 4: Mutational analysis of MjAgo guide-independent plasmid cleavage 645 

activity. (a) MjAgo crystal structure in complex with a 21 nucleotide guide strand 646 

(PDB: 5G5T). The 5’-end of the guide is anchored in the Mid domain binding pocket 647 

(highlighted in teal), the 3’-end is bound in the PAZ domain binding pocket (red). 648 

Helix 7 is a flexible element (orange) that undergoes conformational changes and is 649 

involved in correct positioning of a target strand (see also Supplementary Figure S9). 650 

MjAgo structures revealed the position of a putative third nucleic acid binding 651 

channel (light blue) located between the PIWI and N-terminal domain. Positions of 652 

the MjAgo point mutations used for plasmid cleavage studies are highlighted. Inset 653 

shows the apo MjAgo structure (PDB: 5G5S). Due to a rotation of the PAZ domain, 654 

residues N170 and D438 are located in close proximity potentially interacting with 655 

each other. (b) Agarose gel electrophoreses of the final plasmid degradation 656 

products of MjAgo wt and MjAgo mutants (1 µM MjAgo, 300 ng plasmid DNA; 657 

cleavage for 2h at 85°C). As a control, the plasmid was incubated in the absence of 658 

MjAgo (-) or with MjAgo wt in the presence of EDTA (wt + EDTA).  659 

 660 

 661 

Figure 5: Putative model of guide-dependent and guide-independent DNA silencing 662 

by MjAgo. (a) (1) Invading nucleic acids like plasmid DNA or viral DNA are recognised 663 

by MjAgo and will be subject to nucleolytic degradation. M.jannaschii’s genomic 664 

DNA (gDNA) is protected against MjAgo-mediated degradation as M.jannaschii 665 

encodes histone proteins that keep the gDNA in a chromatinized state. (2) The first 666 

round of guide-independent degradation leads to a primed MjAgo with accelerated 667 

MjAgo-mediated cleavage of DNA in a second cleavage round. One priming 668 

mechanism is the incorporation of short DNA fragments generated during the first 669 

wave of DNA degradation. These DNAs can serve as guide to direct guide-dependent 670 
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silencing of invasive nucleic acids. (b) Genomic location of MjAgo (Mj_1321). Blast 671 

search in the KEGG genome database revealed that MjAgo is encoded in a cluster 672 

with three hypothetical proteins, showing similarities to enzymes involved in rRNA 673 

processing (Mj_1320, RNase motif) and DNA recombination /repair (Mj_1322: 674 

exonuclease SbcC, Mj_1323: DNA repair protein RAD32). 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 
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Supplementary Methods 
 

 

Generation of MjAgo monoclonal antibodies 

Mouse monoclonal antibodies against recombinant MjAgo were raised at the Antibody 

Facility Braunschweig (Germany). Monoclonal antibodies were generated by immunizing 

mice with recombinant MjAgo protein according to a standard immunization protocol. After 

hybridization and cloning, antibody producing hybridoma cells were screened by ELISA for 

their ability to bind recombinant MjAgo protein. The specificity of the antibody was checked 

by immunoblot. Isotype analysis of the 7D9 clone against MjAgo revealed an IgG1 subtype. 

Antibody-containing supernatants were gained according to standard protocols. The 

experimental protocols were carried out in accordance with the Directive 2010/63/EU of the 

European Parliament and the Council of the European Union of 22 September 2010 and all 

procedures were approved by guidelines from the Animal Committee on Ethics in the Care 

and Use of Laboratory Animals of TU Braunschweig, Germany (Az §5 (02.05) TschB TU BS). 

 

Western Blotting and Immunodetection 

M. jannaschii cell mass was obtained from the Archaeen Zentrum (University Regensburg). 

For immunodetection of MjAgo in M. jannaschii cell extracts, proteins in the cell extract 

were resolved by 15% SDS-PAGE, transferred to nitrocellulose membranes (Bio-Rad) using a 

semi-dry blotting system (Bio-Rad), and immunodetection was performed using TBS-T buffer 

with 5% caseine as blocking reagent. The blots were incubated with the mouse antisera and 

Alexa647-conjugated goat anti-mouse IgG (Life Technologies) as secondary antibody, 

scanned on a FLA-5000 scanner (GE Lifesciences) equipped with a 635 nm excitation laser. 

For immunodetection of MjAgo expressed in S. acidocaldarius, whole cell fractions were 

loaded on an 11% SDS-PAGE gel and analysed by Western-blotting. MjAgo was detected 

using the anti-MjAgo antibody as primary antibody and HRP conjugated anti-mouse 

antibodies (Pierce) as secondary antibody. The protein was visualised using Clarity Western 

ECL Blotting Substrate (Bio-Rad). 

 

Isolation and enzymatic digestion of co-purified nucleic acids 

In order to detect and isolate nucleic acids that co-purify with MjAgo upon recombinant 

expression of MjAgo in E. coli, cell lysis and MjAgo preparation via Ni-NTA affinity 



chromatography was carried out at 4°C, which keeps the nucleic acid-MjAgo complexes 

intact. After elution of MjAgo from the Ni-NTA columns, co-purified nucleic acids were 

isolated by phenol-chloroform extraction followed by Ethanol precipitation. Isolated nucleic 

acids were treated with either RNase (Thermo Fisher) or DNaseI (Thermo Fisher) according 

to manufacturer’s instructions. The nucleic acids were analysed via Agarose gel 

electrophoresis. 
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Supplementary Figure 1: MjAgo mediated cleavage of non-canonical substrates. A 41 nt 
long guide with and without phosphate group at the 5’-end of the guide strand (5’-PHO) was 
used for a cleavage reaction. Substrates were incubated with 3 µM MjAgo wt, 0.33 µM 
DNAguide and 0.67 µM DNAtarget at 85°C and reactions were stopped after 0, 5, 10, 15, 20, 30, 
60, 90 and 120 min. Cleavage products were resolved on a 15% denaturing polyacrylamide 
gel. A 5’-phosphate group at the guide directs a fast cleavage reaction with association of 5’-
end the guide in the Mid-binding MjAgo leading to a cleavage product at the canonical 
cleavage site opposite bases 9-10 of the guide. This reaction competes with a slower 
cleavage reaction. Here, MjAgo starts degradation of the DNA from the 5’-end of the target. 
Three independent experiments (technical replicates) were carried out and a representative 
gel is shown. 
 

 

 

 

 

 

 



 
 

 

 

Supplementary Figure 2: Guide-directed target cleavage activity of MjAgo and the 

catalytic mutant MjAgo
E541A

 using canonical and non-canonical substrates. (a) The guide 
and target strand sequences are derived from the human let-7 miRNA (see Figure 1 for 
sequences). Substrates were incubated with 3 µM MjAgo or MjAgoE541A, 0.33 µM DNAguide 
and 0.67 µM DNAtarget at 85°C and reactions were stopped after 0, 7.5 and 15 min. Cleavage 
products were resolved on a 15% denaturing polyacrylamide gel. No cleavage of the 
substrate was observed when the catalytic mutant was used. Four independent experiments 
(one biological and three technical replicates) were carried out and a representative gel is 
shown. (b) SDS-PAGE (10%) analysis of purified MjAgo wt and the catalytic mutant 
MjAgoE541A. MjAgo was purified via a 6x histidine tag. The gel was stained with Coomassie 
Brilliant Blue. The position of MjAgo (theoretical molecular weight: 84.5 kDa) is indicated. 
Three independent experiments (technical replicates) were carried out and a representative 
gel is shown. 
 
  



 
 

 

Supplementary Figure 3: Time-resolved MjAgo-mediated plasmid cleavage. (a) Plasmid 
cleavage reactions (2 µM MjAgo and 400 ng Plasmid per 10 µL reaction) were carried out at 
85°C. Samples were taken after 0’, 5’, 10’, 15’, 20’, 25’, 30’, 40’, 50’ and 60’. Samples were 
separated on 0.5% agarose gels. Three independent experiments (technical replicates) were 
carried out and a representative gel is shown. (b) The intensities of the educt bands were 
quantified (average of three independent experiments with error bars representing the 
standard deviations are plotted against the time) and the intensity at time point 0’ has been 
set to 100%. The other band intensities were normalized accordingly. The decrease of educt 
intensity was mathematically analyzed using a single exponential equation yielding a rate 
constant of 0.002 ± 0.0003 s-1.  



 
 

 

 
 

 

 

 

Supplementary Figure 4: MjAgo mediated plasmid cleavage requires divalent cations.  
MjAgo-mediated cleavage of circular plasmid DNA in the absence of DNA guides at 85°C in 
the presence and absence of EDTA (1.1 µM MjAgo, 1.6 µg plasmid DNA; time points: 15, 30, 
60 min. + EcoRI: EcoRI digested plasmid). Six independent experiments (two biological and 
four technical replicates) were carried out and a representative gel is shown. 
 
 
 

 

 

 



 
 

 

 

Supplementary Figure 5: Endogenous MjAgo level. Immunoblot analysis to detect 
endogenous MjAgo in M. jannaschii cell extract. Recombinant MjAgo (254 ng) is loaded for 
comparison (left). Three independent experiments (technical replicates) were carried out 
and a representative gel is shown. 
 
 

 

 

 

 

 

 

 

 

 



 
 

 

 

Supplementary Figure 6: Histone A3 protects DNA against MjAgo-mediated cleavage. 
MjAgo cleavage reaction of dsDNA (750 bp) in the presence and absence of M. jannaschii 
histone A3. 1.5 µg dsDNA fragment was incubated with 1 µM MjAgo at 85°C. If the dsDNA is 
pre-incubated with 14.3 µM M. jannaschii histone A3, the DNA is protected against MjAgo 
degradation (time points 0, 45, 90 min). If reduced concentrations of histone A3 are used 
(2.4 µM), a regular ladder-like pattern emerges suggesting that MjAgo has access to 
regularly spaced unprotected DNA sites. Samples were resolved on a 1% Agarose gel. Three 
independent experiments (technical replicates) were carried out and a representative gel is 
shown. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Supplementary Figure 7: MjAgo degrades genomic DNA from different archaeal organisms 

and plasmid with different methylation pattern. (a) Agarose gel electrophoresis analysis of 
gDNA from the archaeal organisms Sulfolobus acidocaldarius, Pyrococcus furiosus and 
Methanocaldococcus jannaschii after incubation with MjAgo (1 µM MjAgo, 1 µg genomic 
DNA, reactions were carried out at 37°C, time points: 0, 3 and 6h). Control reaction: 
incubation of the respective genomic DNA for 6h at 37°C in the absence of MjAgo. Six 
independent experiments (three biological and three technical replicates) were carried out 
and a representative gel is shown. (b) Agarose gel electrophoresis analysis of plasmid DNA 
with different methylation pattern.  After incubation with MjAgo (1.1 µM MjAgo, 400 ng 
plasmid DNA, reactions were carried out at 85°C, time points: 0, 15, 30 and 60 min). Five 
independent experiments (two biological and three technical replicates) were carried out 
and a representative gel is shown. Dam- and Dcm-: plasmids were propagated in E. coli 
strains that lack either the Dam methylase (Dam-) or Dcm methylase (Dcm-) or both (Dam-
/Dcm-). Dam- plasmids are not methylated at the N6 position of adenine in the sequence 
GATC. Dcm- plasmids are not methylated at the C5 position of the second cytosine in the 
sequence CCAGG and CCTGG.   
 

 



 

 

 

 
 

 

 

Supplementary Figure 8: MjAgo-dependent target cleavage mediated by either 5‘-
phosphorylated or 5‘-hydroxylated guide strands. 1 µM MjAgo, 340 nM DNAguide and 680 
nM DNAtarget were incubated at 85°C. Samples were taken at time points 0’, 15’, 30’ and 60’ 
and separated using 15% denaturing PAGE. Three independent experiments (technical 
replicates) were carried out and a representative gel is shown. 
 
 

 

 

 

 

 

  



 

 

 

Supplementary Figure 9: Structural comparison MjAgo apo enzyme and MjAgo in complex 

with a guide DNA (binary complex). Structural alignment of MjAgo in its unliganded apo 
form (PDB: 5G5S) and MjAgo in complex with a 21nt canonical guide DNA (PDB: 5G5T, DNA 
not shown). Loading of a DNA guide results in a significant conformational change of the 
PAZ domain of MjAgo, e.g. the rotation of the PAZ domain by 74° opens up the bilobal 
enzyme. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Supplementary Figure 10: Putative secondary nucleic acid-binding channel in the X-ray 

crystal structure of the MjAgo binary complex. (a) Surface representation of MjAgo, 
coloured according to amino acid charges (blue=positive, red=negative). In the cleft 
between PIWI and N-domain positive simulated-annealing omit difference electron density, 
(contoured at 2.5 Å, green), can be observed, which hints at the presence of nucleobases. 
(b) A semi-transparent protein surface representation is overlaid over the ribbon of the 
MjAgo binary complex. The potential secondary nucleic acid binding cleft is indicated by the 
red arrow. (c) Zoom in the cleft between N- and PIWI domain, with surrounding residues 
shown as stick model (PDB code 5G5T). 



 
 

 

 

Supplementary Figure 11: MjAgo plasmid cleavage activity in presence of co-purified 

DNAs. (a) MjAgo-associated nucleic acids were isolated after MjAgo preparation at 4°C 
using phenol-chloroform extraction followed by ethanol precipitation of the nucleic acids.  
Defined amounts (500 and 2000 ng) were separated on a 1.5 % agarose gel. Three 
independent experiments (biological replicates) were carried out and a representative gel is 
shown. (b) Plasmid cleavage assays (3 µM MjAgo and 400 ng plasmid per 10 µL reaction at 
85°C for 10 min) have been conducted in presence of increasing concentrations of nucleic 
acids that co-purify with MjAgo. Reaction products were separated using 0.5 % agarose gel 
supplemented with 1 M urea. Three independent experiments (technical replicates) were 
carried out and a representative gel is shown. 



 

 
 

Supplementary Figure 12: Hetereologeous expression of MjAgo in S. acidocaldarius.  (a) 
Immunoblot analysis to detect MjAgo heterologously expressed in S. acidocaldarius. 
Wildtype MjAgo is expressed at significant lower levels compared to the catalytic mutant 
E541A. (b) SDS-polyacrylamid separation of S. acidocaldarius cell extracts expressing MjAgo 
wt or the catalytic mutant E541A shows that total protein amount used for the 
immunodetection in panel A is comparable.  (c) PCR amplification of MjAgo gene from the 
samples used in (A) shows that the reduced MjAgo protein level is due to a reduced 
concentration of MjAgo expression plasmid maintained in S. acidocaldarius cells when 
transformed with the MjAgo wt expression plasmid. Two independent experiments 
(biological replicates) were carried out and representative gels are shown. 



Supplementary 

Figure 13. Amino 
acid charges 
(blue=positive, blue 
= negative) are 
mapped on the 
surface of 
prokaryotic 
Argonaute 
structures. (d) 
Electron density 
was found in the 
cleft between PIWI 
and N-domain of 
MjAgo hinting at 
the presence of 
nucleobases. This 
cleft is lined by 
positively charged 
amino acids 
suggesting a 
putative secondary 
nucleic acid binding 
channel. A 
comparable 
channel is not 
present in any 
other prokaryotic 
Ago. 
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