
Chapter 3

Simulation-Based Engineering

Melih Cakmakci, Gullu Kiziltas Sendur and Umut Durak

Abstract Engineers, mathematicians, and scientists were always interested in

numerical solutions of real-world problems. The ultimate objective within nearly all

engineering projects is to reach a functional design without violating any of the

performance, cost, time, and safety constraints while optimizing the design with

respect to one of these metrics. A good mathematical model is at the heart of each

powerful engineering simulation being a key component in the design process. In

this chapter, we review role of simulation in the engineering process, the historical

developments of different approaches, in particular simulation of machinery and

continuum problems which refers basically to the numerical solution of a set of

differential equations with different initial/boundary conditions. Then, an overview

of well-known methods to conduct continuum based simulations within solid

mechanics, fluid mechanics and electromagnetic is given. These methods include

FEM, FDM, FVM, BEM, and meshless methods. Also, a summary of multi-scale

and multi-physics-based approaches are given with various examples. With con-

stantly increasing demands of the modern age challenging the engineering devel-

opment process, the future of simulations in the field hold great promise possibly

with the inclusion of topics from other emerging fields. As technology matures and

the quest for multi-functional systems with much higher performance increases, the

complexity of problems that demand numerical methods also increases. As a result,

large-scale effective computing continues to evolve allowing for efficient and

practical performance evaluation and novel designs, hence the enhancement of our

thorough understanding of the physics within highly complex systems.
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3.1 Introduction

3.1.1 Overview of the Engineering Design Process

The ultimate objective of all engineering projects is to reach a functional design

without violating any of the performance, cost, time, and safety constraints often

optimizing the design for one of them. Generally, in the beginning of each project

high-level requirements for the system is developed. These high-level requirements

can be as literal as “The fuel consumption of the vehicle shall be 40 mpg or more.”

or comparative such as “The new CNC machine will be as precise as our com-

petitors.” Then, these high-level requirements are cascaded down to the lower

levels of the system design steps to obtain the well-defined engineering design

problems.

Engineering design problems are concrete problem constructs that contain

quantifiable performance and constraint metrics. The inputs to the engineering

problems are the performance constraints, design parameters, external conditions.

The output of the engineering design process is the design communicated in tech-

nical terms such as materials, dimensions, and algorithms. Usually, a lesser focused

output of an engineering project is the operation recommendations, lifecycle

maintenance, and storage instructions. In general, main steps of the engineering

design process can be given as, requirements analysis, design, implementation,

verification, and maintenance.

In Fig. 3.1, inputs and outputs of the engineering development process is given

as discussed previously. It is also important to note that this process can be applied

at the component, the sub-system (i.e., group of interrelated components), and at the

system level.

Over time, two primary approaches emerged to approach the solution of com-

plex engineering design projects.

The early approach also known as the “Waterfall Design Process”, the sub-

problems can be tackled and solved sequentially. Even though, it provides a

structured method to perform design and testing tasks, its sequential nature fails to

catch design-related errors early in the development process.

Inspired from the approaches in development of software intensive systems, as

an extension of “Waterfall Design Process”, a new engineering design approach has

emerged which is called the “V-process” where relations of design and validations
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steps are stressed. Simulations of varying resolution and fidelity become important

tool in the V-process, in order to conduct validations as well as the evaluations of

design decisions before the actual prototype of the system can be build.

In Fig. 3.2, the typical steps of the V-process is given based on (Ulsoy et al.

2012). The essence of the V-process is to cascade from the system level to the

smaller scale such as the component level and the level-based validation of the

work to catch problems at early stages. The different levels of validation and design

work in the V-process increase the importance of effective simulations throughout

the whole process.

Today almost all of the engineering community is using the iteration based

V-diagram process. One of the early hesitation points regarding the engineering

V-process was also its strongest feature, namely the existence of stepwise iterations

and the cost they bring to the overall development. However, the evolution of

Fig. 3.1 Engineering development process
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advanced simulation techniques made iterations more manageable minimizing the

cost of rework during development.

One of the most important topics in the simulation development process is the

decision of the feature content and their fidelity. Too much content or dynamics and

the simulation will be consuming too much computational resources generally

resulting in time and cost problems. Too little detail in simulations will result in

misguided simulations, missing important modes of the target systems and taking

away the benefit of simulation-based iteration in the development process.

When the engineering V-process is considered, the level of validation increases

as the project progresses in time as shown in Fig. 3.2. The decomposition of the

requirements and development process requires a proof-of-concept simulation first,

which are detailed in physics but abstract at the interface level. When the test phase

starts these component-based simulations are combined to produce sub-system and

system-level simulations that are also advanced in terms of the mechanical

and electronics interactions (the interface) of the system. The sub-system and sys-

tem-level simulations are more detailed than the component-level simulations.

In most engineering development projects, the understanding of the target sys-

tem improves with the progress of the project. Therefore, the resolution and fidelity

of the simulations can also be improved using the new data and understanding of

system of interest.

Generally, in the early stages of the engineering development process a proto-

type of the target system does not exist. However, a concept emulating simulation

of the system can be developed using existing models from the company’s

resources or from the existing technical literature. When these simulations are

functional, the new feature of the system can be included in the model and the

simulations can be used to make early predictions about the performance of the

target system with fairly good confidence. These simulations can be used to verify

the feature-based requirements in the V-process. These simulations are usually

known as feature-in-the-loop simulations.

Figure 3.3 shows a simulation case where a new feature (Feature A) in the

system is simulated with the already validated features (Features B-E). Even though

the system (Features A-E) may have more than one component, in feature-in-the

loop simulations the physical boundaries and interfaces are not considered.

After enough confidence is gained about the feature-in-the-loop simulations for

the new features of the components, component-in-the-loop simulations can be

developed. Component-in-the-loop simulations usually contain all the newly

developed features of the system. Feature-in-the-loop simulations are generally

done separately for easy troubleshooting and for de-coupling of individual

contributions.

Component-in-the-loop simulations contain all the new and carry-over features

as well as the actual electronic and mechanical interface of the system. These

simulations are used in the component-level testing for the engineering develop-

ment process. When prepared properly with the actual system-level interface they

can be directly used in system simulations that include all components of the system

both electric and mechanical.
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In Fig. 3.4, a component-in-the-loop simulation scenario is given. The work is

done all in the simulation environment, however, a notion of the component

physical boundaries exists that forces the interaction of Features A and B through a

common interface as compared to the feature-in-the-loop simulation given in

Fig. 3.3. Generally, this interface is developed as the proposed physical and elec-

trical interface of the component with the rest of the system.

One of the most important challenges of an engineering development process is

to work in a task-based team environment, where different teams are in charge of

different features/components/sub-systems of the project. The development cycle of

different targets can be at different stages at different times, which makes it difficult

to validate functionality with the complete configuration of the system. Testing with

hardware-in-the-loop simulations is an approach developed by engineers to over-

come this problem. In hardware-in-the loop simulations part of the system is

Simula
Fig. 3.3 Feature-in-the-loop
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emulated using computers using simulations and part of the system is the actual

hardware, which already designed or carried over from the previous version of the

system. In many cases the benefit of the HIL simulations are bidirectional in the

sense that they can both be used for improving the quality of the simulations using

it against the actual hardware or testing a specific prototype hardware for func-

tionality while emulating the rest of the system.

Figure 3.5 shows a hardware-in-the-loop scenario for the system and features

given in Figs. 3.3 and 3.4. This time the actual hardware of the component that

includes Features A and B are run against the rest of the system (Features C–E) all

simulated in the computer environment. It is also important to note that the

preparation of the simulations in the earlier stages help to build successive versions

of the feature, component and hardware-in-the-loop simulations. For example the

physical and electrical based build of the interface in the component level increase

the reuse of the component representation in the hardware-in-the-loop simulations.

A good example of the simulation-based V-process development is the so-called

mode-based controller development process (MBCD) in the automotive industry. In

(Ulsoy et al. 2012), a technical requirements development method is shown for a

specific battery control module example. This example shows how the vehicle

100,000-mile requirement affects specific features (control problems) for a partic-

ular vehicle application. The effect of this requirement and others define the feature

control problem to be solved. The solutions obtained from all of the features

represent the control algorithm for a vehicle.

In the design step, first the control design problem is formulated based on the

given performance requirements and developed mathematical formulation. There

will be more than one control design approach, which will provide a solution for the

control problem. By using analytical methods and/or computer simulations, the best

alternative among these candidate algorithms is selected. If the control problem is

similar to an earlier application, development teams often prefer to start with an

Simula
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existing control algorithm and try improve the solution by building upon the

existing (and proven) solution.

Then the design is implemented on the actual hardware. During the imple-

mentation phase the objective is to develop a real-time application, which will be

executed in the control module using the desired control algorithm. While devel-

oping the executable code the real-time constraints of the target hardware (i.e., the

controller module) should also be considered. Software implementation of the

algorithm should be matched to the computing resources available and if there are

overruns during the real-time execution simplifications in the algorithm should be

made, or new target hardware should be selected. In today’s modern vehicles,

controller modules also communicate with other controllers via communication

networks. The effects of the loss of this communication with one or more contacts

or the cases of limited communications should be investigated and necessary

modifications should be made.

Testing in the MBCD process starts as early as in the algorithm development

step. By testing the algorithms open-loop (Fig. 3.6a) developers can feed in simple

test vectors and analyze the test output for expected functionality. These simple

algorithms can also be tested against the simpler conceptual vehicle models, which

are available in the earlier stages of the program (Fig. 3.6b). These models are later

Fig. 3.6 Different types of testing in automotive industry
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fortified with improvements based on component and vehicle testing data, which

makes them suitable for more complex testing procedures such as module, com-

ponent and vehicle in the loop types of testing.

In the later stages of the vehicle development process, a hardware-in-the-loop

simulation can be run to see the proper operation of the vehicle controller using part

real hardware and part simulations run in the computer environment as shown in

Fig. 3.7.

3.1.2 Source of Models

Models are purposeful abstractions of the real world. With abstraction while certain

aspects of the system are explicitly represented, other aspects are omitted that are

not of concern (Topçu et al. 2016). They can be physical, mathematical, and/or

logical (Sokolowski and Banks 2010). The scaled aircrafts that are used in wind

tunnels are very good examples of physical models. When they are not physical,

models are composed of a series of mathematical equations and/or logical

expressions. These models can be physics-based, data-based, or hybrid (combined).

Physics-based models can be defined as the ones which are essentially mathe-

matical and the governing equations are based on physical principles such as

thermodynamics laws or Newton’s law of motion.

The application of physics-based models in engineering domain is so common.

Since early the days of engineering, Newton’s law of motion has been used for

modeling rigid bodies. Dynamics of machinery is an engineering field that deals

with forces and moments and their effects on the motion. The theory of machines

studies the relative motion of machine elements under the effects of external forces

(Khurmi and Gupta 1976).

Modeling the mechanical behavior as a continuous mass is the topic of con-

tinuum mechanics. It is concerned with the stress in the continuous medium (solids,

liquids or gases) and their deformation or flow (Malvern 1969). Continuous as an

adjective is used to express the approximation that assumes the mass without gaps
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Fig. 3.7 Different types of testing in automotive industry (cont’d)
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and empty spaces thereby representing the mathematical functions as well as their

derivatives are continuous. This hypothetical medium is called continuum. The

governing physical laws in this case are conservation of mass, momentum, and

energy. These equations will be summarized in Sect. 3.2.6. The motion of viscous

fluids is mostly computed by applying Navier–Stokes equations which encom-

passes time-dependent equations for conservation of mass, momentum, and energy.

Euler equations are well-employed simplification of Navier–Stokes equations

which neglects the effects of viscosity (Schetz and Fuhs 2013). Computational

Fluid Dynamics (CFD) is the area of study which applies numerical methods like

finite difference or finite volume to solve the approximations of these equations.

Physical model of heat has also been built considering it as a fluid inside the matter.

Heat equation is a partial differential equation that concerns the distribution of heat

in material over time (Widder 1976). Solid mechanics deals with the behavior of

solid materials under load. While elasticity is the study of body that retains its

original state after releasing the load, plasticity governs the nonreversible defor-

mation of solid. Euler–Bernoulli beam equation and plate theory are well-applied

simplifications in modeling and simulation of elastic behavior. They both define the

relations between the applied forces and the resulting deflections (Fung 1965).

Finite Element Method (FEM) as will be discussed later in Sect. 3.2.3., is com-

monly employed for approximating partial differential equations within Navier–

Stokes equations, heat equation and Euler–Bernoulli beam equation (Dhatt et al.

2012). It promotes using simple approximation of unknown variables to transform

partial differential equating to algebraic equations.

Data-based models utilize the data that describes the particular aspects of the

system that is subject to modeling. It is also named as empirical modeling since the

model depends on empirical observations rather than mathematical equations

(Sokolowski and Banks 2010). While the computing power as well as the optimized

implementations of finite element analysis and computational fluid dynamics soft-

ware getting better, engineering design optimization of complex systems like air-

crafts or cars requires long lasting simulations which are sometimes unacceptable in

practice (Wang and Shan 2007). Additionally, sometimes it is required to incor-

porate data from the real world into the simulation. Data-based models, or simply

called metamodels approximate computation-intensive functions or real-world data

to analytical models. The modeling process starts with data collection using sam-

pling methods such as fractional refactoring, or Latin hypercube. Then the model is

constructed is a particular method of choice. Polynomial equations, splines,

Multivariate Adaptive Regression Splines (MARS), artificial neural networks are

some of these methods. Model fitting is done with an appropriate approach like

least squares or backpropagation.

Hybrid modeling combines previously mentioned two modeling paradigms.

While a part of a physical process is approximated using data models, the rest of the

physical process is modeled using equations that represent the law of physics. In

modeling and simulation of air vehicles, it is a common practice to develop data

models for the aerodynamics modeling, where the flight dynamics is modeled using

Newton’s laws of motion (Jategaonkar et al. 2004). The aerodynamics data may be
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collected from the flight experiments, wind tunnel tests or with CFD runs.

Nowadays, the design of complex multidisciplinary systems such as aircrafts,

automobiles and similar is carried out using hybrid models within a Multi-

Disciplinary Design Optimization (MDO) framework (Martins and Lambe 2013).

Such procedures allow designers to incorporate all relevant disciplines simultane-

ously. The optimum of the coupled problem is superior to the design found by

optimally designing each module sequentially, since it can exploit the synergistic

coupling between them. However, this concurrent consideration results in a much

more complex problem. Therefore, systematic structuring, modeling, and approx-

imation tools have to be employed within MDO, which has been applied with

successfully to the design of many commercial products.

3.2 Simulation of Continuum

The term modeling refers to the development of a mathematical representation of a

physical situation whereas simulation refers to the procedure of solving the equa-

tions that resulted from model development (Ashby 1996). With the development

of mathematical models it was possible for scientists to integrate research into

natural phenomena within their investigations. Analysis of these models was only

possible via existing analytical or numerical methods which by then were only

tackled for specific problems. Each of these methods in literature is known by the

great scientist who developed them such as Euler, Newton, and Gauss.

Despite major contributions by various outstanding scientists, the main issues

concerning the theoretical and physical understanding of the equations in contin-

uum mechanics are still being worked on. Continuum mechanics has changed

dramatically since the late nineteenth century, so that theoretical studies are now

coined with numerical experimentation and simulation. Furthermore, progress in

the computational speed and power allowed researchers to develop mathematical

models for much more complex physical problems some of which will be discussed

in the multi-scale and multi-physics sections. After the invention of calculus, many

advanced PDE’s were introduced to describe the physics of systems from different

disciplines such as solid mechanics, fluid mechanics, and elastodynamics.

Important contributions were initially made by Euler, Lagrange, and Cauchy and

these were followed by the application of PDE’s to describe the physics of elec-

tromagnetic (EM) theory by Maxwell, Heaviside, and Hertz, and finally to quantum

mechanics with major theoretical work by Schrodinger. These equations are

descriptive of the time evolution and relationship of various fields in a three

dimensional space. Major efforts of continuum simulation in the areas of Solid

Mechanics, Fluid Mechanics, and Electromagnetics will be described in the next

sections to follow.

The introduction of efficient and powerful platforms enabled researchers to solve

the constitutive laws of continuum in mechanics in combination with the laws of

conservation of mass, energy, and momentum. The same is valid for other fields
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including EM. Some of the most popular methods used for this purpose are the

Finite Element Method (FEM), Finite Volume Methods (FVM), Finite Difference

Methods (FDM), and Boundary Element Methods (BEM). These methods are

applied to the simulation of matter in all forms, i.e., solids, liquid, and gas, based on

a major assumption of continuum media, thus Computational Mechanics of

Continua. Namely, the term continuum describes the nonseparability of the con-

sidered domain and validity of continuity between any points in the domain so that

differentiation is possible. Therefore, continuity between elements in any

continuum-based numerical technique is maintained as well. Unlike analytical exact

solutions of differential equations, which allow the solution at every point, the

numerical solution is only calculated at chosen finite number of nodes, yielding in

turn a reduction in complexity of the system. Well-known methods to conduct

continuum-based simulation are described in the next section.

3.2.1 Finite-Difference Method

One of the earliest and widely used numerical method for solving PDE’s within

continuum mechanics is the Finite-Difference Method (FDM). The main idea of

FDM is based on replacing the differential terms with respective to the spatial

coordinates with the so-called finite differences over small enough distances based

on the Taylor’s series approximation. For that purpose, the domain of interest needs

first to be discretizedinto vertical and horizontally located nodes, on which finite

differences are defined. Several finite difference integration schemes exist known as

forward, backward, and central difference schemes. It is worth noting that the FDM

is equally applicable to time differentiations. As a result of discretizing the domain

into nodes, a system of algebraic equations in terms unknowns at the chosen nodes

are constructed. Each algebraic equation belonging to its corresponding node is

expressed as a combination of function values at its own node and its neighboring

nodes. Next step is to impose boundary conditions, which leads to the solution step

of the equation system using either direct or iterative solution methods. Finally,

unknowns at each node are solved. This solution is only an approximate solution

since the finite differences are first-order approximations of the partial derivatives.

The FDM when compared with the FEM or BEM allows for a direct discretization

of the equations and does not rely on the use of interpolation functions. Therefore, it

is one of the most direct and intuitive techniques that exist for the solution of PDEs.

Moreover, for material nonlinearities, the FDM proves to be favorable as it allows

their simulation without the need of iterative techniques. However, it suffers from

relying on regular noded discretization scheme which makes modeling of irregular

geometries a challenging task. This also results in difficulties when heterogeneous

material compositions and unusual boundary conditions are present. However, the

FDM has been generalized to overcome related shortcomings through methods

based on irregular node/grid structures with methods such as irregular quadrilateral,

triangular, and Voronoi grids.
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3.2.2 Finite Volume Method

The Finite Volume Method is similar to the FDM method and evolved as its

successor to solve PDE’s with one major difference: these differential equations are

expressed in integral form. Its formulation leads to the concept of finite volumes,

which essentially correspond to volumes around and encompassing each node in a

mesh. Similar to the FDM, algebraic equations of unknowns at nodes are built by

replacing the integrals and by considering boundary and initial conditions. Thereby,

the system of equations to be solved is constructed. The FVM, similar to the FDM

has certain advantages such as allowing the usage of irregular unstructured mesh

and modeling capabilities of nonhomogeneous material compositions.

3.2.3 Finite Element Method

The Finite Element Method (FEM) was introduced in the 1960s as an alternative

method to FDM for the numerical solution of stress concentration. More impor-

tantly, it is the first numerical solution method which was capable of dealing with

complexities such as nonlinearities, nonhomogeneous materials, complex geome-

tries, and sophisticated boundary conditions. As a result, FEM was soon recognized

as the most popular numerical method in continuum mechanics, mainly so because

unlike FDM, it allowed for nonuniform discretization. The method was found more

extensive and used a decade later with the theoretical developments made by Bathe

(2006) and Zienkiewicz and Taylor (2005). Many researchers have contributed to

the development of the method which is by far the most favorite method for the

approximate solution of many sophisticated continuum mechanics problems of

dynamic, anisotropic, and inelastic behavior. It is a generic numerical solution

technique for boundary value problems coming from various disciplines. The main

principle rests on the idea of dividing the problem domain into smaller subregions

(areas or volumes) called finite elements. This is followed by typical steps of

defining local element approximations, performing assembly of finite elements and

ultimately solving the resulting global matrix equation. More specifically, the

unknown function (e.g., displacement field, temperature field, electric field, velocity

and pressure fields) is approximated via trial/interpolation functions of the nodal

values (or edge unknowns in EM problems) using polynomial functions. Numerical

integration is performed in each element using Gauss quadrature points. After

assembly, the algebraic global system of equations is obtained. Because of con-

tinuum assumptions, standard FEM methods cannot be directly and efficiently

applied to discontinuum problems involving cracks, damage-induced discontinu-

ities or singularities and failure analysis.

In addition to the well-known superiority of the FEM which is well suited for

complex analysis of systems composed of heterogeneous materials and irregular

geometries owing to the possibility of using an irregular mesh, it also proved to be
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an appropriate tool for modeling various nonlinear geometries and inelastic material

behavior and nowadays material hardening and softening. Moreover, it has the

capability of representing geometric nonlinearities, contact mechanisms,

fluid-structure interaction, multi-scales, etc., as will be discussed in separate sec-

tions below. Therefore, the FEM will stand out as the mostly used and diverse

numerical method in continuum mechanics.

3.2.4 Meshless Methods

The bottleneck in applying FEM to complex engineering problems with intricate

geometries, unusual material properties, and complex boundary conditions is the

mesh generation process, which usually in 3D problems is an extremely challenging

task mostly comparable to the problem solution itself. Another disadvantage of

FEM relates to numerical instability due to a distorted mesh. Both of these problems

can be avoided by another class of methods known as ‘meshless methods’, which as

the name implies does not rely on elements but interpolation functions are gener-

ated from neighboring nodes within a domain of influence. More specifically, nodes

are created across the domain without the need of a fixed element topology defi-

nition. As a result, the interpolation functions obtained are no longer polynomial

functions leading to more difficult numerical integration when compared with the

FEM where Gauss integration points are used. Moreover, meshless methods suffer

from increased computational requirements but do not rely on standard mesh

generators and are able to easily represent more complicated geometries. In liter-

ature, methods such as smoothed particle hydrodynamics, diffuse element method

(DEM), element-free Galerkin method, reproducing kernel particle methods,

moving least squares reproducing kernel method, hp-cloud method, the method of

finite spheres, and finite point method stand out.

3.2.5 Multi-scale Methods

All products whether man-made or natural are composed of multiple scales. Taking

an example from the aeronautical industry, the Airbus A380 consists of many

thousands of structural components and many more sub-structural details.

Similarly, its fuselage consists of 750,000 holes and cutouts with different structural

and material scales. When viewed at the roughest material scale, fuselage com-

posites’ part consists of woven/textile composite and laminate scales; at the inter-

mediate scale, it is composed of a tow or yarn, which consists of a bundle of fibers.

When looked at a more discrete scale, including atomistic and ab initio scales, the

aircraft’s metal part consists of a polycrystalline scale, a single crystal scale, a

discrete dislocation scale, and also time atomistic and ab initio scales.
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Computations and simulations in the aforementioned multi-scales have been

identified as areas of utmost importance to advance the future in nanotechnology.

One of the obvious fundamental challenges associated with such a multi-scale

approach relates to the increased uncertainty and complexity introduced by these

finer scales. However, the application of any multi-scale approach has to be care-

fully evaluated. For instance, considering metal matrix composites with fibers

arranged in a periodic fashion, finer scales could prove useful because the bulk

material typically does not obey normality rules, and the development of a phe-

nomenological coarse-scale constitutive model would be extremely difficult. This

would also allow a better understanding of each phase and the overall material

response could be extracted from its fine-scale constituents via homogenization

techniques. However, for brittle ceramic matrix composites, with microcracks that

exist in a random distribution and complex interface properties, are difficult to

characterize, a multi-scale approach would not be an appropriate alternative.

There are two main categories of multi-scale approaches in literature, namely,

hierarchical or concurrent. In the former approach, the fine-scale response is

idealized/approximated and its overall/average response is integrated into the coarse

scale. In the latter approach, fine and coarse-scale resolutions are simultaneously

employed in different portions of the same problem domain, and the exchange of

information occurs through the interface. The sub-domains which present them-

selves at different scale resolutions can be either overlapping or disjoint.

Various hierarchical multi-scale methods have been labeled by different names,

including upscaling, coarse-graining, homogenization, or simply multi-scale

methods. There are also subcategories of the above definitions, such as system-

atic upscaling, operator upscaling, variational multi-scale, computational homoge-

nization, multigrid homogenization, numerical homogenization, numerical

upscaling, and computational coarse-graining, just to mention a few. Moreover,

different definitions are used to indicate various scales. If the structure exists in two

scales, however, the fine scale is often referred to as a micro-scale, unresolvable

scale, atomistic scale, or discrete scale; the coarse scale is often defined as the

macroscale, resolvable scale, component scale, or continuum scale. For more than

two scales, the additional scales may be termed as mesoscales.

One alternative approach to the homogenization of artificial structures avoiding

the limitations associated with earlier analytical homogenization models (Milton

2002) is the theory of a mathematical homogenization approach. It is based on the

asymptotic expansion also known as two-scale homogenization, which is a well

established concept in the theory of PDEs with rapidly oscillating periodic coeffi-

cients (Bensoussan et al. 1978). Its main advantage is that the method is generalized

enough and unlike analytical techniques, can handle unit cells with inclusions of

arbitrary geometry and any number of phases with no additional computational

cost. Also, instead of formulating the problem as an eigenvalue problem, two-scale

homogenization works directly on the original form of the governing equations and

is therefore able to result in expressions valid for effective constitutive tensors.

In their studies, (El-Kahlout and Kiziltas 2011) further developed this approach

by applying two-scale homogenization method to Maxwell’s equations and
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extracting the effective parameters of periodic dielectric and magnetic materials,

that can be in their most generalized form lossy and are made of inclusions with

arbitrary shapes and multi-phase material constituents. The numerical solution of

the resulting PDE is carried out using a commercial FEA based solver, namely

COMSOL Multiphysics, where the effective tensors are evaluated at a single fre-

quency, for both isotropic and anisotropic effective material tensors with isotropic

constituents. This is the first study where numerical material model based on

two-scale homogenization is used to synthesize the microstructure of EM material

with desired material matrices using formal design techniques such as topology

optimization. Results of this design study are shown in Fig. 3.8 which was also

fabricated (El-Kahlout and Kiziltas 2011) using novel Dry Powder Deposition

techniques as demonstrated in Fig. 3.9.

Similar to EM materials, most heterogeneous materials, such as composites,

polycrystals, and soils consist of constituents/phases with clear-cut boundaries that

display different mechanical and transport properties. The use of homogenization of

continuum allows a better understanding of the physical governing equations of

individual phases, including their geometry and constitutive equations at the

fine-scale phases, or at least a better grasp than at the coarse-scale phases. Put in

other way, the process of homogenization provides a mathematical means by which

coarse-scale equations can be deduced from well-defined fine-scale equations.

Moreover it allows the determination of heterogeneous material behavior, at least

theoretically without the need of testing, which is usually a very expensive

endeavor. Also, through homogenization, one can estimate the full multiaxial

properties and responses of heterogeneous materials, which present themselves as

anisotropic materials and are most of the time extremely difficult to measure

experimentally. In addition to describing the overall behavior of heterogeneous

materials, the act of homogenization leads to local fields via the process known as

downscaling given coarse-scale fields, phase properties, and phase geometries. This

information is of critical importance in understanding and describing material

damage and failure.
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Fig. 3.8 Optimal material distribution (dielectric ranges from 20 to 140) of designed unit cell

(left) and array (right) for a desired permittivity tensor of e = [45.0;’0.70] using mathematical

homogenization and topology optimization.[reproduced courtesy of The Electromagnetics

Academy]
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3.2.6 Solid Mechanics

Two main branches exist within the application of the principles of mechanics to

bulk matter: the mechanics of solids and fluids. When viewed from a global per-

spective, the common subject is that of continuum mechanics. More specifically,

continuum mechanics conceives the useful model of matter as continuously

divisible, and does not make any reference to its discrete structure at microscale,

which is well below those scales of the phenomenon of interest. Solid mechanics is

concerned with stresses, deformation, and failure of structures and solid matter.

A material is called a solid and not a fluid if it is able to support significant amount

of shear force over a certain time period of a natural process or technological

application of interest.

The main equations of continuum physics can be presented by separating them

into global and local laws. The former serve as the foundations of continuous media

theory and are summarized here (Muntean 2015). In all these formulations, X′

(t) denotes arbitrary configuration of partial volume B′ of B. More specifically,

global balance laws for the five major conservation principles are presented here for

mass, linear and angular momentum, energy, and entropy.

Mass:

The conservation of mass is expressed in its most general form as

d

dt
m X0 tð Þ; tð Þ ¼ 0 ð3:1Þ

for all X′(t) � X(t), where m(t) stands for the total mass in X′(t), i.e.,

m X0 tð Þ; tð Þ ¼
Z

X0 tð Þ

dlm ¼
Z

X0 tð Þ

qdx ð3:2Þ

Fig. 3.9 Automated fabrication of design in Fig. 3.8 using dispensing machine within DPD in

action (left) and resulting desired deposited substrate (right). [Reproduced courtesy of The

Electromagnetics Academy]
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with q(t, x) denoting the density. Assuming that there is no internal mass pro-

duction, (3.2) states that the total mass of any material partial volume is conserved.

Linear Momentum:

The conservation of linear momentum or balance of forces is expressed in its

most general form as: For every part X′(t) � X(t) we have

d

dt
‘ X0 tð Þ; tð Þ ¼ F ð3:3Þ

where the linear momentum can be defined via

‘ X0 tð Þ; tð Þ ¼
Z

X0 tð Þ

v qdx ð3:4Þ

More specifically, the time rate of change of total linear momentum of l in B′ is

equal to the force F exerted on B′. The force F consists of the contribution of the

internal body forces per unit of volume qfb and contact or surface forces per unit of

area t acting on the boundary ∂B′ of B′. Here, t is the stress vector or traction.

Angular Momentum and Moment of Momentum:

The conservation of angular momentum or balance of moments is expressed in its

most general form as

For every part X′(t) � X(t), we have

d

dt
a X0 tð Þ; tð Þ ¼ M ð3:5Þ

where the angular momentum can be defined via

a X0 tð Þ; tð Þ ¼
Z

X0 tð Þ

x� v q dx ð3:6Þ

More specifically, the time rate of change of total angular momentum a of B′ is

equal to the moment M of the force F exerted on B′.

Energy:

The conservation of energy balance is expressed in its most general form as: The

time rate of change of the total energy within B′ which is composed of the kinetic

energy K and internal energy E and is equal to the rate of work, say P, done by both

the body force and the contact force, plus the heat supply Q from internal heat

production and heat fluxes across the boundary of B′. So for every part X′(t) �
(t), this can be written as
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d

dt
K tð ÞþE tð Þð Þ ¼ P tð ÞþQ tð Þ ð3:7Þ

where

K tð Þ ¼
Z

X0 tð Þ

vj j2

2
dlm ¼

Z

X0 tð Þ

vj j2

2
q dx; ð3:8Þ

E tð Þ ¼
Z

X0 tð Þ

e dlm ¼
Z

X0 tð Þ

e q dx; ð3:9Þ

P tð Þ ¼
Z

X0 tð Þ

v � Tnð Þdr ¼
Z

X0 tð Þ

~f �~v qdx; ð3:10Þ

Q tð Þ ¼
Z

X0 tð Þ

fHeatq dxþ
Z

X0 tð Þ

q � ndr: ð3:11Þ

In Eq. (3.9), e represents the inner energy density. The first term in Q(t) accounts

for the heat source. The measure lm in the equations of K(t) and E(t) corresponds to

the mass measure associated with the material body B.

Entropy:

The entropy increase within B is greater than or equal to the internal entropy

supply, i.e., internal heat source over h, which is the absolute temperature, plus the

entropy flux across the boundary of B′, which can be expressed as follows:

d

dt

Z

X0 tð Þ

s dlm

0

@

1

A�
Z

X0 tð Þ

fHeat

h
dlm �

Z

@X
0
tð Þ

q � n

h
dr: ð3:12Þ

Here s represents the entropy density. It is explicitly noted that all conservation

laws are in term of extensive quantities. More specifically, global balance laws can

only be written in terms of extensive quantities. However, the intensive quantities

are related to local balance laws expressed in terms of PDEs and inequalities as well

as boundary conditions and can be derived based on global laws of the preceding

section (Muntean 2015).

3.2.7 Fluid Mechanics

Various theories govern the physics of fluid mechanics and different methods are

proposed and used in literature to provide numerical solutions/simulations primarily

depending on the spatial and temporal scale of the phenomenon. Instead of going
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into detail with all methods, these theories and typical numerical methods employed

according to the temporal and spatial scales are summarized in Fig. 3.10. As

depicted in the graph, continuum mechanics prevails for above microscale and

below tens of meters with a time scale between 1 s and hours. When the continuum

assumption breaks down, the fluid has to be described by an atomistic point of

view, such as the molecular dynamics as a microscale method or statistical rules

govern the molecular group behavior, i.e., kinetic theories as mesoscopic methods

for larger scales. On the spatial and time scale limit, if the characteristic length is

smaller than 1 nm or the characteristic time is shorter than 1 fs, the quantum effect

may not be negligible for the system of interest and quantum mechanics has to be

brought into describe the transport. In fact, modeling at a smaller scale may present

a more accurate description of the problem, but is likely to cause a much higher

computational cost. Therefore, as always in numerical simulations, in engineering

an appropriate tradeoff is considered when trying to determine in an accurate and

fast way, the fluid behavior of interest.

Despite the emergence of high-speed platforms and the advances in efficient and

accurate numerical methods, some computational fluid dynamics (CFD) problems

still present themselves as challenging problems for the practical solution via

numerical simulation techniques. For example, NASA has recently modified its

aerospace design codes for earth science applications, thereby speeding up super-

computer simulations of hurricane formation (Kazachkov and Kalion 2002). An

example of such a CFD simulation using a 512-processor supercomputer is referred

to in (Kazachkov and Kalion 2002). More specifically, actual data from a variety of

different sources and climate models were integrated to generate high fidelity

simulations so as to reproduce a hurricane forming in the Gulf of Mexico. As a

result, engineers were able to simulate the formation and movement of a hurricane.

However, the weather forecast of global earth based on CFD atmospheric and ocean

Fig. 3.10 Typical numerical methods used in fluid mechanics based on temporal and spatial scale
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simulation is still a challenging problem, and calls for even larger amount of

computing power and more accurate data. Overall, this is a multi-phase CFD

problem with very complex geometry and dynamic boundary conditions.

3.2.8 Electromagnetics

In electromagnetics (EM), matrix systems with a few millions of unknowns known

as dense matrix systems have been solved numerically for ten years now. Today,

the number of unknowns that can be solved via simulations is on the order of a

billion of unknowns (Gurel and Ergul 2007). This impressive improvement is

attributed to the synergistic progress between hardware and algorithm design. It is

also noted that for sparse matrix systems resulting from specific simple EM

problems within electrostatic and magnetostatics, even larger scale problems can be

addressed such as the World-record algorithm from Jülich calculating over three

trillion particles (World-Record Algorithm from Jülich Calculates Over Three

Trillion Particles—Research in Germany 2011).

As stated earlier, the physical response of many fields including EM, can be

analyzed via differential equations. Therefore, PDE’s were used for more than four

centuries and continue to set the standard for modeling the physics of different

media today. There are three main groups of differential equations, namely

hyperbolic, parabolic, and elliptic, which describe fields with various physics. The

Laplace equation or the Poisson equation given below is a well-known example of a

generalized simple elliptic PDE. These are encountered in the numerical modeling

of EM problems in the static regime and various transport problems. They are

known for characterizing fields or potentials associated with no singularities distant

from the source location, or equivalently these equations are differentiable functions

and therefore do not allow for any singularity propagation.

r2u rð Þ ¼ �
q rð Þ

e
: ð3:13Þ

Typical examples of parabolic equations, the second group of PDE’s, are the

Schrodinger and diffusion equations. These equations are characterized by their first

time derivative and second space derivative. These are fundamental equations in

quantum mechanics and heat transfer as well as low-frequency EM propagation in

conductive media, respectively. A diffusion equation in standard form is

r2u rð Þ �
1

c s

@

@t
u rð Þ ¼ 0: ð3:14Þ

The third class PDE’s refers to hyperbolic equations, and an example belonging

to this group is the wave equation. It has second-order space and time derivatives.
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r2u rð Þ �
1

c2
@2

@t2
u rð Þ ¼ 0: ð3:15Þ

Solution of differential equations as earlier denoted are carried out by three major

methods: a subspace projection method (e.g., FEM), the FDM, and the pseudo-

spectral method. Various basis/interpolation functions are introduced to fit the

unknown field (Chew 1995) in the subspace projection method. It covers a sub-

space of the larger space that the field is defined over due to the finite characteristics

of basis functions. Thereby, the PDE is easily converted to a time dependent

ordinary differential equation. For the solution of the equation via time stepping or

marching, the derivatives can further be approximated using finite difference or the

subspace projection method. Or as an alternative, time domain Fourier transform

can be used to remove the time derivatives resulting in a matrix equation to be

solved via iterative or inversion techniques.

A major alternative exists to the numerical solution of the governing Maxwell’s

equations in EM expressed in PDE. Specifically, initially a point source response

called Green’s function can be introduced. Based on linear superposition and as a

result of an arbitrarily distributed source, the unknown field is obtained via spatial

convolution of the distributed source expressed via Green’s function. This corre-

sponds to the equivalence principle (Harrington 2001) which allows the field in a

given region to be expressed as Green’s operator acting on the sources. Hence, the

resulting equations are of integral equation type (IE). When compared with PDE, IE

have an important advantage where the EM unknowns correspond to only surface

unknowns, or to volume unknowns that occupy only a spatial finite region.

Therefore, the number of unknowns in the IE formulation may be much less than

those in the PDE formulation. More importantly, this IE formulation leads to the

automatic satisfaction of the radiation condition if a suitable Green’s function is

chosen. However, in the PDE formulation absorbing boundary conditions or the

so-known boundary integral equations replace the radiation condition. Additionally,

using the subspace projection method (Harrington 2001), these IE can be converted

into matrix equations. Equivalently, operators of the integral are replaced with

matrix operators. However, the matrix representation of Green’s operator corre-

sponds to a matrix system which is dense because of its non-local nature. Hence,

the computational storage and operations such as matrix vector products with that

type of a matrix system can be computationally expensive. In literature, some

methods have been developed to overcome these expensive matrix solutions. These

include fast Fourier transform based methods, fast-multipole-based methods,

rank-reduction methods, the nested equivalence principle algorithm, recursive

algorithms, etc. (Weng et al. 2001).

As a final class of numerical techniques for EM radiation and scattering prob-

lems, hybridized versions of the two main classes combining their advantages have

been developed. The FE-Boundary Integral (BI) method is one of the most pow-

erful techniques belonging to this class. More specifically, it offers the flexibility of

the FEM to analyze structures with highly complex geometrical and material details
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but at the same time imposes a rigorous boundary condition via the use of the BI

formulation. This tool’s efficient and accurate analysis capability has allowed

researchers to conduct numerous designs (Volakis et al. 2006).

It is especially noted that these efficient and accurate codes allowed for the first

metamaterial-based antenna design using topology optimization based techniques

as shown in Fig. 3.11 (Kiziltas et al. 2003). The design developed from scratch as

shown in Fig. 3.11 was based on 5 individually textured layers which were also

fabricated and measured. The agreement between measurements and calculations is

truly impressive for the complex dielectric design. Above all, the threefold

improvement in bandwidth is a clear demonstration of the remarkable potential of

efficient and accurate numerical techniques in delivering novel designs not only in

EM but also in other engineering disciplines.

Multi-scale problems as discussed in Sect. 3.2.5, present themselves in circuits,

packages, and chips at various levels of complexity. Similarly, they exist also in

antennas on complex platforms, in nano-optics and nanolithography applications.

Therefore, multi-scale solutions of problems are critical for many applications.

Similar to other applications, the size evaluation of the EM multi-scale problem is

of great importance. More specifically, one needs to evaluate the multi-scale

structures relative to the wavelength to determine which physics of the three to

apply for their solution: circuit physics, wave physics, or optics physics. Avoidance

or identification of ill-conditioned numerical systems plays a great role in the

effective solution of multi-scale EM problems.

It is finally noted, that one of the biggest challenges today in the numerical

solutions of EM problems is the model size of realistic problems which deems

high-performance computing a vital necessity. Significant speedups have been

achieved by hardware scaling and additional efforts have resulted in three main

types of HPC platforms: (1) supercomputers, (2) computer clusters, and (3) cloud

Fig. 3.11 Design results of novel material distributions of a patch antenna via integration of

FE-BI method and topology optimization (Kiziltas et al. 2003)
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computing. It is quite evident that, computational EM and large-scale computing

will continue to evolve given that these are indispensable tools for EM analysis and

design. Not only will it allow for efficient and practical performance evaluation and

novel designs but it is expected to continue the enhancement of our thorough

understanding of the physics within highly complex systems.

3.2.9 Multi-physics Methods

Many realistic problems present themselves as very complex problems due to their

multi-physics nature. Scientists and engineers from various fields have been

working on the combination of different numerical techniques with the goal of

addressing these elaborate physical processes, such as the transition from contin-

uum to discontinuum (e.g., fracture processes) or the interaction of multi-phases of

matter (e.g., hydrofracture processes). As a result, a new class of numerical methods

called hybrid/multi-physics methods evolved. It is due the developments in

high-performance computing and computational science and computer hardware

that this group of methods evolved. Major examples are: Combined Finite-Discrete

Element Method (F-DEM), Hybrid Lattice Boltzmann-FEM, Lattice

Boltzmann-DEM, etc. Areas of interest include algorithms and novel solutions for:

– Coupling of FEM and DEM simulations

– Coupling of FEM and/or DEM with CFD solvers

– Coupling of different solvers of continuum mechanics, e.g., FEM-FVM.

– Coupling of continuum and discontinuum mechanics solvers, e.g., FEM-DEM,

FEM-MPM, FEM-LBM, etc.

– Coupling of solid and fluid mechanics solvers, e.g., FEM-LBM, FEM-FVM,

etc.

– Coupling of discontinuum mechanics solvers, e.g., DEM-SPH, DEM-LBM, etc.

– Coupling of solvers for different scales, e.g., coupling of FEM-DEM.

3.3 Simulation of Machinery

In many simulation studies developers represent the components of the target

system based on their dominant energy-based properties. Although various linear

and nonlinear extensions exist, basic energy-based properties can fundamentally be

given as inertia, storage (spring), and dissipation (damping). For example, in many

engineering simulations a bearing is represented as a damping element and an axis

slider in a manufacturing system is represented as inertia. It is also noted that a

bearing component brings a negligible rotational inertia to the system as well as a

slider which is somewhat flexible and its dimensions may change very slightly

under heavy operating conditions. But these are not considered as dominant

properties for these components.
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The approach of representing complex and spatially distributed physical systems

based on their dominant energy properties is known as the “lumped parameter

modeling”, implying the dominant energy-based characteristic(s) of a component

are represented by using specific and predetermined elements (Karnopp et al. 2000).

The use of lumped parameter systems approach results in a more structured

approach of developing simulations for complex engineering systems. Using

energy rather than other physical features (force, current, etc.) also makes it possible

to use this approach in multi-domain systems.

3.3.1 Single Degree of Freedom Systems

Generally, in engineering, the classification of lumped parameter systems is given

based on the number of the inertia elements. In many cases especially for

mechanical systems, the freedom of motion of the component represented as inertia

is important. For example, if a component can move in both x and y axis and/or can

also rotate about z axis, these motion properties are all represented as separate

inertial elements and flow variables.

Single degree of freedom systems are systems represented with one inertial

element and have one variable governed by fundamental physical equations.

A good example for a single degree of freedom system is the longitudinal motion

simulation of vehicles as shown in Fig. 3.12.

The system represented in this figure is given in (3.17) as a mathematical

relationship (i.e., model) based on Newton’s second law, where wheel traction

forces, F, are the input and the vehicle acceleration, ax, is the output.

max ¼ W=gð Þax ¼ Fxr þFxf �W sinH� Rxr � Rxf � DA þRhx ð3:17Þ

This mathematical model is straightforward to apply in simulation environments

such as MATLAB/Simulink. The single degree of freedom longitudinal simulation

can be used in basic fuel economy and traction (acceleration/braking) studies as

Fig. 3.12 Longitudinal

motion of a vehicle
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reported in Rajamani et al. (2000), Ulsoy et al. (2012). However for many vehicle

engineering studies such as axle-based traction control (Cakmakci et al. 2011;

Dokuyucu and Cakmakci 2016) more complicated representations (i.e., higher

fidelity simulations) that are also suitable for V-process development model dis-

cussed in Sect. 3.1 is needed.

3.3.2 Multi-Degree of Freedom Systems

One way to improve the fidelity of the simulations is to increase the degree of

freedom of its underlying mathematical model. This can be done by increasing the

number of flow variables representing the inertia element, or adding more inertia

elements to the system simulation. As an example of increasing the fidelity of the

model by adding new flow variables to the inertia representing is the half-car model

for vertical motion given in Fig. 3.13.

In Fig. 3.13, the vertical motion of a vehicle is represented with two degrees of

freedom (translation and rotation about the center of mass) rather than only the

vertical motion of the mass of the vehicle. A detailed mathematical model describing

this system can be found in (“Automotive Suspension—MATLAB Simulink

Example,” n.d.) 2017, using road elevations, q, as input and vertical movement of

the center of mass, z, and body rotation, h as outputs. With this representation in

simulations, the vertical motion of the occupant area can be studied as well as the

wheel based vertical road force, which is critical for traction control studies such as

wheel-based braking, and acceleration with so-called load transfer.

Another way of increasing the content is to increase the number of inertial

elements considered in simulations. In this case, rather than using a single system

boundary, where all of the components were lumped together before, can be broken

into components and their relative interaction can be studied.

A good example for this kind of situation is the quarter car model shown in

Fig. 3.14. In this model, a quarter of vehicle vertical dynamics is studied using

quarter of the mass of the vehicle with the suspension system represented by ks and

cs, f, tire parameters, kus and cus and vertical motion variables, z.

The mathematical equations representing this simulation is given in (3.18) based

on Newton’s second law:

ms€zs þ csð_zs � _zusÞþ ksðzs � zusÞ ¼ �f

mus€zus þ csð_zus � _zsÞþ ksðzus � zsÞþ cusð_zus � _z0Þþ kusðzus � z0Þ ¼ f
ð3:18Þ

K 2K 1

z

θ

C 1
C2

q 1
q 2

Road

excitation

Vehicle dynamics
Fig. 3.13 Vehicle vertical

dynamics
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It is important to note that by adding a new inertial element representing the

mass of the wheel hub and suspension frame, the stroke motion of the suspension

can be studied including the effects from the tire and the vehicle inertia which is not

possible with the system given previously in Fig. 3.13.

The quarter car model given in (3.18) is an example of a multicomponent

simulation in single axis of motion. More complicated models can be used to study

wheel based multi degree of motion as given in Figs. 3.15 and 3.16 respectively for

vehicle vertical motion (Rajamani and Hedrick 1995) and full vehicle motion.

In engineering simulation studies, as the number of components and the ele-

ments representing these components increase, the number of mathematical equa-

tions representing used in these simulations also increase. Therefore, the

appropriate simulation content should be chosen to do the correct analysis with

optimal computation time. For example, the full car model given in Fig. 3.16 is

executed by solving 18 nonlinear equations per simulation step size as compared to

the longitudinal model given in Fig. 3.12 contains only one ordinary differential

equation. Both of the models can be used for fuel economy studies and both of them

will contain uncertainties in inertia, spring and storage parameters.

Fig. 3.14 Quarter car model

for vertical motion

simulations

Fig. 3.15 Standard half-car

model
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3.4 Simulation of Multi-domain Systems

In modern engineering systems, components that operate primarily in different

domains (such as mechanical, electrical, digital) work together to complete com-

plicated tasks. Therefore, a realistic simulation of the system should include the

elements from different domains such as mechanical parts, power electronics to

energize these mechanical parts, and digital components to monitor and/or control

the operation.

Two representative cases of multi-domain simulations improving the perfor-

mance can be given as the multi-domain simulations of electromechanical systems

with controllers and online simulations to improve smart mechatronic/robotic

systems.

3.4.1 Control Systems

Generally, algorithms in control systems are designed to have a certain dynamic

behavior which can be represented in terms of a transfer function (in Laplace

Domain) or a state space model (Ogata 1990). When these algorithms are actually

implemented in actual systems their performance shows variations (usually degra-

dations) due to the effect of execution in digital medium. These variations are due to

the digitization of the algorithm, lack of realistic representation of the control system

hardware and the effect of a communication in common medium such as networks.

Many control algorithms are developed by using a frequency or a time

domain-based structured method based on their dynamic properties as discussed in

many sources in control literature (Chen 1995; Ogata 1995). Once the development

is finished, the resulting output is a fractional function that represents the

input/output relationship of the control algorithm called controller transfer function,
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Fig. 3.16 Full car (18DOF)

model
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C(s), where s is the Laplace variable. The dynamic controller relationship can also

be represented by a matrix equation pair generally given in the form _x ¼
AxþBu; q ¼ CxþDu where u is the controller input, q is the controller input, and

x is the controller states. These representations both imply a continuous system

where calculations or events take place instantaneously using a specific order.

However, when implemented in a real-time control system, algorithm computations

take certain amount of time to finish before an updated command can be issued. For

many systems with fast dynamics, the effect of implementation generates a defi-

ciency in performance since the optimal performance was designed for a medium

where events take place instantaneously.

More realistic and predictable results can be obtained by using discrete control

systems that take into consideration of the digital timing in their formulation

(Franklin et al. 2009; Ogata 1995). Algorithms can be designed and simulated as

digital controllers using adaptations of the continuous methods. Alternatively,

continuous controller functions can be digitized afterwards using simple methods.

For example by using a direct conversion approach, a controller transfer function C

(s) can be converted to its discrete version by replacing the s operator with

z� 1ð Þ=Tz using a backward difference transformation. In this recipe z is the dis-

crete variable and T is the sampling period.

Another important aspect of implementation of an algorithm in the digital world

is the effect of quantization. Real numbers can have infinitely large digits during

calculations, however for computers, it is more practical and maintainable to do

operations in chunks of bits causing the calculations to take place in limited digits,

which cause round off errors [Franklin et al.]. The effects of digitization and

quantization can both be included in simulations to predict possible controller

performance degradation in engineering systems.

Another important aspect in implementation of the control systemsis to include

the hardware related properties such as un-modeled sensor/actuator dynamics (S

(s) and A(s) respectively) and the effect of sampling as shown in Fig. 3.17.

In many controller development activities, the controller is designed based on

the plant dynamics P(s) only without including the sensor (S(s)) and actuator (A(s))

dynamics. The dynamic response effects provided by actuators and sensors can be

included in simulations by using time delays, noise, and offsets. The effect of digital

to analog conversion in the actuator is modeled as a zero-order hold (ZOH) element

that keeps the value of the actuator output constant for one time step. This element

also represents the fact that the actuator has internal dynamics and cannot change its

output instantaneously. A sampler element is used at the sensor to represent the

T

Sensor S(s) Actuator A(s)

ZOHC(z)r

Plant

S(s)P(s)A(s)
y
su

Fig. 3.17 Feedback system

with device boundaries and

sampling
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analog to digital sampling with rate T. This models the behavior of the sensor that it

can only report plant outputs in every T seconds. Adding these effects to the overall

simulation of the system provides more realistic performance studies.

Finally, in today’s engineering applications, a common approach is to use

communication networks instead of dedicated digital communication lines as

shown in Fig. 3.18a, b. In fact, the benefit of this networked structure is being able

to integrate as many components together with the capability of increased resources

and easy maintenance as shown in Fig. 3.18c (Cakmakci and Ulsoy 2009).

However, with the introduction of networks, the communication among system

components can experience delays (or even loss of contact) as reported and studied

by many researchers (Lian et al. 2002; Walsh et al. 2002). To remedy this effect, the

overall system can be simulated using worst communication delays possible to

measure the performance using step size-based delay elements and the controllers

are calibrated accordingly.

3.4.2 Robotics and Cyber-Physical Systems

One of the important use of simulations that predict system performance after the

product design phase is to employ them as observers and/or monitoring threads in

actual systems running in parallel and making predictions/modifications to improve

system performance.

A good example of this type of utilization is the friction observers in robotic

locomotion devices such as the one developed in Ristevski and Cakmakci (2015) as

shown in Fig. 3.19. Many non-wheeled robotic systems observe the friction force

during translation. Inside the controller, a simulation of the whole system based on

the dynamic force balance is run to predict the effective friction force called the

friction observer. The friction predictions from this observer is used to update level

C A
Controlled  
System (P) Sr

y

u

A
Controlled  

System (P) SC

Network
r,su u y

Dedicated 
Digital Line 

Controlled  
System

Network

A3 S3A2 S2A1 S1

C1 C2 C3

(a) 

(b) 

(c)

Fig. 3.18 Dedicated digital

communications (a) versus

networks (b, c)
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of the actuator force given to the system as an offset in parallel with its feedback

controller so that the response performance can be improved almost 25%.

Another application of after-design simulation work in engineering systems is

the pre-analysis and optimization of inputs embedded in computers of the manu-

facturing systems. Manufacturing of small parts can be costly and cumbersome

since it often requires trial and error of adjustment of the machine settings.

However, a remedy to this can be found by use of virtual iterative learning as

reported in (Türeyen et al. 2016). A simulation of the additive-manufacturing

system can be developed and used in parallel with a learning algorithm on the

dimensional error of the final part before the real production is actually ran as

shown in Fig. 3.20a. Researchers report using this method can improve the

dimensional accuracy of a representative part up to 75% (Fig. 3.20b).

It is finally noted that similar to MDO based efforts for designing multidisci-

plinary systems such as automotive and aerospace products, there has been a con-

tinuous effort to design controlled mechanical systems using co-design strategies

(Patil et al. 2010). The ultimate goal in these studies is to develop design frameworks

that allow to reach system optimal designs from both the control and the mechanical

design perspectives. Toward that goal, one such recent study is performed in

(Kamadan 2016) where co-design strategies are proposed for robotic systems.

(a) Vibration based translational system 

(b) Translation Controller using a Friction Observer 

Fig. 3.19 Translating mechatronic device and friction observer
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Robotic systems designed using domain-specific conventional approaches result in

underperforming systems, i.e., are not system-optimal. This work introduces for the

first time a unified framework of system-optimal designs of nonlinear controlled

robotic systems driven by compliant actuators spanning a range of designs.

3.5 Conclusions and Outlook of the Topic

The ultimate objective within nearly all engineering projects is to reach a functional

design without violating any of the performance, cost, time, and safety constraints

while optimizing the design with respect to one of these metrics. Generally, in the

beginning of each project, wish list like high-level requirements for the msyste

Cure Simulations

First Run 

5th Run 

(a) Algorithm and Simulations

(b) Production Example 

Fig. 3.20 Improving manufacturing quality with preproduction iterations
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performance are specified. Then, high-level requirements are cascaded down to the

lower levels of the system allowing systematic design steps to be applied to these

well-defined engineering design problems. The resulting problems are concrete

problem constructs that contain quantifiable performance and constraint metrics. In

time, two primary approaches emerged for the solution of complex engineering

design projects. With the early approach also known as the “Waterfall Design

Process”, the subproblems can be tackled and solved sequentially. In recent years,

as an extension of “Waterfall Design Process”, a new approach has emerged called

the “V-model” where scalable and varying fidelity simulations plays an important

role before the actual prototype of the system can be build.

A good mathematical model is at the heart of each powerful engineering sim-

ulation being a key component in the design process. These models can be obtained

by using physics-based methods, empirical collections and analysis or a combi-

nation of these two for balanced fidelity and complexity. Another important aspect

of developing simulations is its resolution, or in other words its building blocks. In

the simulation of the continuum, systems can be built from their smallest elements

using the most fundamental forms of the governing equations. Sometimes, a

lumped parameter-based simulation of machinery approach can be taken to simplify

the simulations and the forthcoming engineering work such as in the case of the

model based control system design.

The introduction of efficient and powerful platforms enabled researchers to

solve/simulate the constitutive laws of continuum in mechanics in combination with

the laws of conservation of mass, energy, and momentum. The same is valid for

other fields including fluid mechanics and EM. Some of the most popular methods

used for this purpose are the Finite Element Method (FEM), Finite Volume

Methods (FVM), Finite-Difference Methods (FDM), and Boundary Element

Methods (BEM). These methods are applied to the simulation of matter in all forms,

i.e., solids, liquid, and gas, based on a major assumption of continuum media, thus

Computational Mechanics of Continua. Namely, continuum describes the non-

separability of the considered domain and validity of continuity between any points

in the domain so that differentiation is possible. Therefore, continuity between

elements in any continuum based numerical technique is maintained as well.

Many realistic problems present themselves as very complex problems due to

their multi-physics and multi-scale nature. More specifically, scientists and engi-

neers from various fields have been working on the combination of different

numerical techniques with the goal of addressing these complex and elaborate

physical processes, such as the transition from continuum to discontinuum (e.g.,

fracture processes) or the interaction of multi-phases of matter (e.g., hydrofracture

processes) at micro–macro scales. As a result, new classes of numerical methods

called hybrid or multi-physics and multi-scale methods evolved.

In today’s world, developing multidisciplinary systems such as for instance

cyber-physical systems that consist of both mechanical and electrical components

constitute a key part of the engineering projects. These types of systems contain

software algorithms, digital sampling and power electronics, mechanical compo-

nents as well as communication networks that have to be developed concurrently to
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work coherently. This critical need for coherence has rapidly increased the

importance of developing multi-domain simulations and engineers capable of

supporting multidisciplinary analysis and design methodologies.

Review Questions

1. What are the primary phases of the engineering design cycle and how is sim-

ulation work used in each of them?

2. Name some of the numerical methods that exist to solve continuum problems.

3. Which type of problems can be classified as multi-physics and multi-scale

continuum problems?

4. What challenges exist today when solving continuum problems?

5. What do all numerical methods suited to solve continuum problems have in

common?

6. What are the effects of not-considering supporting hardware (networks, digital

computers, etc.) to simulation performance in engineering systems?

7. What are possible uses for the simulations developed for the design cycle after

product release to improve performance?
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