Guide to the Software Engineering
Body of Knowledge

A Straw Man Version

Pierre Bourque, Université du Québec a Montréal
Robert Dupuis, Université du Québec a Montréal
Alain Abran, Université du Québec a Montréal
James W. Moore, The MITRE Corporation
Leonard Tripp, IEEE Computer Society

'
O
"
Ll
=
T

Karen Shyne, The Boeing Company
Bryan Pflug, The Boeing Company
Marcela Maya, Université du Québec a Montréal
Guy Tremblay, Université du Québec a Montréal

September 1998

UQAM

Guide to the Software Engineering Body of Knowledge — A Straw Man Version [

Executive Summary
Consensus on a Core Body Knowledge Is Crucial

Software engineering has not reached the status of a legitimate engineering discipline and a recognized
profession. Since 1993, the IEEE Computer Society and the ACM have been actively promoting software
engineering as a profession, notably through their involvement in the Joint IEEE Computer Society and
ACM Steering Committee for the Establishment of Software Engineering as a Profession.

Achieving consensus by the profession on a core body of knowledge is a key milestone in all disciplines
and has been identified by the Steering Committee as crucial for the evolution of software engineering
toward a professional status. This report, written under the auspices of this committee, is the first step in
a four-year project designed to reach this consensus.

Focus on Generally Accepted Knowledge

The software engineering body of knowledge is an all-inclusive term that describes the sum of knowledge
within the profession of software engineering. Since it is usually not possible to put the full body of
knowledge of even an emerging discipline, such as software engineering, into a single document, there is
a need for a Guide to the Software Engineering Body of Knowledge. This Guide will seek to identify and
describe that subset of the body of knowledge that is generally accepted, even though software engineers
must not only be knowledgeable in software engineering, but also of course in other, related disciplines.

Guide to the Software Engineering Body of Knowledge Project
The objectives of the Guide to the Software Engineering Body of Knowledge project are therefore to:
» characterize the contents of the Software Engineering Body of Knowledge
* provide a topical access to the Software Engineering Body of Knowledge;
* promote a consistent view of software engineering worldwide;

» clarify the place of, and set the boundary of, software engineering with respect to other disciplines such
as computer science, project management, electrical engineering and mathematics;

» provide a foundation for curriculum development and individual certification and licensing material.

The intended audience for the Guide to the Software Engineering Body of Knowledge includes: private
and public organizations, practicing software engineers, makers of public policy, professional societies,
students and educators, as well as researchers.

A three-phase approach is proposed to develop the Guide to the Software Engineering Body of
Knowledge. These three phases will respectively produce the “Straw Man”, “Stone Man” and “lron Man”
versions of the Guide.

Phase 1: Straw Man Version

The objectives of the first phase are to define the strategy, to deliver what is referred to as the Straw Man
version of the Guide, and to gather momentum in the profession for the project. The present report
constitutes this Straw Man version.

The main goal of this initial report is to propose a list of Knowledge Areas for the Guide to the Software
Engineering Body of Knowledge (SWEBOK). This report also proposes a draft list of the disciplines that
interact with software engineering. As its name implies, this Straw Man version is intended to be
challenged and to stimulate a vigorous debate.

Knowledge Areas are the major components of a discipline, or sub-fields of study. Related Disciplines are
the other disciplines with which software engineering has a non-empty intersection or shares a common
boundary.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version ii

In order to propose Knowledge Areas and Related Disciplines for “generally accepted” knowledge and to
do so based on recognized, public and verifiable sources of information, it was decided that the tables of
contents of general software engineering textbooks, the curricula of undergraduate and graduate
programs in software engineering, and the admission criteria for graduate programs would constitute the
input to our analysis. A total of 24 textbooks and 29 programs were examined.

For the purposes of this Straw Man version, a potential knowledge area had to be mentioned in the table
of contents of at least one quarter of the textbooks sampled to qualify as a proposed Knowledge Area.

The ISO/IEC 12207 standard on Software Life Cycle Processes is used as the basis and vocabulary for
the classification of the different topics related to the life cycle. A number of other topics not related to the
life-cycle were also considered.

The list of proposed Knowledge Areas based on ISO/IEC 12207 is:

* Development Process * Configuration Management
* Requirements Analysis * Quality Assurance

* Detailed Design » Verification and Validation
* Coding * Improvement Process

* Testing

* Maintenance Process
The list of proposed Knowledge Areas that do not converge well with ISO/IEC 12207 is:

» Software Development Methods » Software Development Environments
- Object Oriented » Software Engineering Overview & Definition
- Formal Methods * Measurement/Metrics
- Prototyping * Software Reliability

The list of proposed Related Disciplines is:

» Computer Science * Management

* Project Management » Science

» Electrical Engineering * Other Engineering Disciplines

* Mathematics * Cognitive Sciences

¢ Telecommunications/Networks

Phase 2: Stone Man Version

The deliverables of the second phase (Stone Man) under the stewardship of the Industrial Advisory Board
are:

* an approved list of Knowledge Areas of software engineering;
* an approved list of topics and relevant reference materials for each Knowledge Area;

* an approved list of disciplines related to Software Engineering, and the Knowledge Areas and topics
lying at the junction of Software Engineering and one or more of these Related Disciplines.

To ensure relevance of the Guide, to continue building consensus and momentum for the Guide and to
encourage its quick uptake in the marketplace, three components are key to the proposed strategy of the
Stone Man phase: an Industrial Advisory Board, a series of specialized subcommittees and a broad
comment-gathering and consensus-building process.

The Industrial Advisory Board will include key representatives from industry, major professional societies,
international standards-setting bodies and academia, as well as authors of widely sold textbooks on

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version iii

software engineering. It will be responsible, among other things, for the overall strategy of the project, for
the selection criteria for the Knowledge Areas and the Related Disciplines, and the selection criteria for
topics included in each Knowledge Area, for the selection of the subcommittee chairs for each Knowledge
Area and for promoting the Guide to the SWEBOK.

Phase 3: Iron Man Version

A subsequent Iron Man version should be completed roughly two years after the Stone Man version. The
development of this version will once again probably involve an Industrial Advisory Board and various
expert panels. However, an even more exhaustive review and consensus-building process to gather
comments and insights from members of the profession will have to be defined for this phase of the
project.

Involvement By All Parties is Critical

Many long hours of work, debate and consensus-building will be required to develop the Stone Man and
subsequent Iron Man versions of the Guide to the Software Engineering Body of Knowledge. Achieving
consensus on the core body of knowledge is a key milestone in all disciplines and is pivotal for the
evolution of software engineering toward a professional status. Involvement by all parties, industry,
professional societies, standards-setting bodies and academia, is critical to ensure the relevancy and the
credibility of results, and for a quick uptake of the results.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

TABLE OF CONTENTS
EXECULIVE SUMMANY ...ttt ettt e e e e e s e bbbt e e e e e e e e e nbbeeeeaaaeeaaannbreneeaaaeaaaanns i
ACKNOWIEAGIMENTS ...ttt ettt et e oo oottt e et e e e e e e s s st bt e e e e e e e e s s e abbbeeeeaaeeaaaannbbneeeaaansaaann 1
3 I [0 1 (oo [0 T 1o o PP URTT ORI 2
2. The Guide to the Software Engineering Body of Knowledge Project............ooooiiiiiiiiiiiiiiiiiiieeeeees 3
3. Context and RelatioNSNIPS.......ooo i e e e e e e e e e e 8
4. Development Methodology for Identifying Knowledge Areas and Related Disciplines...........cc........... 17
5. Proposed KNOWIEAGE AFEASuuiiiiiiiiiiiiiitite e ettt e e e e e e ettt e e e e e e e s e aab b e ee e e e e e e s s annrbeeeaaaaeeaaanns 23
6. Proposed Related DiSCIPINESuuiiiiiiiiiiiie ettt e e e e e e s rabr e e e eeaaaeeaaan 26
7. SUMMArY aNd NEXE SEEPS ..ottt e e e e e s ab e e e e e e e e e s anbrreeeeaaaeeaann 27
8. REIIBINCES. ..ottt e e e ettt e e e e e e e et e e e e e e e e e e e e abrreeeaaaaeaaaaan 30
S Yo o 1= g o [o7 PP UOUTUPPPRPUR 32
Appendix A. List of General Textbooks and Tutorials on Software Engineeringcccooeuuueee. 33
Appendix B. URLs of Undergraduate and Graduate Programs in Software Engineering............... 34
Appendix C. General Textbooks and Tutorials on Software Engineering - Classification
of Table of Contents Entries According to Potential Knowledge Areas...................... 37
Appendix D. Undergraduate Programs in Software Engineering - Classification of Courses
According to Potential Knowledge Areas..........cooiiiiiiiiiiiiiiiiiieeee e 54
Appendix E. Undergraduate Programs in Software Engineering - Classification of Courses by
Related DisSCIPlINE ...t a e e e e e e 59
Appendix F. Graduate Programs in Software Engineering - Admission Requirements
by Related DiSCIPlINeoooeieieeee et a e e 64
Appendix G. Graduate Programs in Software Engineering - Classification of Courses
According to Potential Knowledge Areas..........ccoooiiiiiiiiiiii i 69
Appendix H. Graduate Programs in Software Engineering - Classification of Courses
by Related DiSCIPlINeooieiiiieee et a e e e 84
Appendix I. Draft Classification of Knowledge on Formal Methods Based on the Proposed
FOUr-Category SChEMA.cui i a e e 96
Appendix J. Additional Information on Other Body of Knowledge Proposalsccccceeiiiiinnee. 105

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 1

Acknowledgments

The authors would like to thank the following reviewers for providing us with insightful comments and
suggestions based on a draft version of this document. These reviewers are in alphabetical order: Denis
Bourdeau (Bell Canada), Gilles Gauthier (Université du Québec a Montréal), John Harauz (Ontario
Hydro), David Longstreet (Longstreet Consulting), Stephen MacDonnell (University of Otago), Serge
Oligny (Université du Québec a Montréal), Lyn VanHoozer (The MITRE Corporation), Dolores Wallace
(National Institute of Standards and Technology) and Laurie Werth (University of Texas at Austin). This
does not imply, however, that these reviewers or their organizations agree with the positions and
proposals put forward in this document.

Funding for this work was provided by the IEEE Computer Society and the Software Engineering
Management Research Laboratory of the Université du Québec a Montréal. This laboratory is supported
through a partnership with Bell Canada. Additional funding for the laboratory is provided by the Natural
Sciences and Engineering Research Council of Canada.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 2

1. Introduction

In spite of the millions of software professionals worldwide and the ubiquitous presence of software in our
society, software engineering has not reached the status of a legitimate engineering discipline and a
recognized profession.

Since 1993, the IEEE Computer Society and the ACM have been actively promoting software engineering
as a profession and a legitimate engineering discipline, notably through its involvement in the Joint IEEE
Computer Society and ACM Steering Committee for the Establishment of Software Engineering as a
Profession. A draft version of accreditation criteria for software engineering university programs [1] and a
draft Code of Ethics for software engineers [2] have already been produced.

Achieving consensus by the profession on a core body of knowledge is a key milestone in all disciplines
and has been identified by the Steering Committee as crucial for the evolution of software engineering
toward a professional status. This report, written under the auspices of this committee, is the first step in
a four-year project designed to reach this consensus.

In other engineering disciplines, the accreditation of university curricula and the licensing and certification
of practicing professionals are taken very seriously'. These activities are seen as critical to the constant
upgrading of professionals and, hence, the improvement of the level of professional practice. Recognizing
a core body of knowledge is pivotal to the development and accreditation of university curricula and the
licensing and certification of professionals.

The main goal of this initial report is to propose a draft list of Knowledge Areas for the Guide to the
Software Engineering Body of Knowledge (SWEBOK). This report also proposes a draft list of the
disciplines that interact with software engineering. As its name implies, this Straw Man version is intended
to be challenged and to stimulate a vigorous debate.

The report begins with a statement of the objectives of the project, its intended audience and the
proposed three-phase development and consensus-building for producing the deliverables. Chapter 3
discusses in more detail the problem being addressed and the reasoning leading up to it, other body of
knowledge proposals, as well as the intended impact of the deliverables downstream. It is followed by a
description in Chapter 4 of the methodology used to identify the proposed lists of Knowledge Areas and
Related Disciplines. Knowledge Areas and Related Disciplines are then proposed in Chapters 5 and 6.
The report closes with some brief concluding remarks and a discussion on the next steps

' For a more detailed discussion on the accreditation of university engineering curricula and the licensing and certification of

practicing engineers, see the websites of the Accreditation Board for Engineering and Technology at www.abet.org or the
Canadian Council of Professional Engineers at www.ccpe.ca

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 3

2. The Guide to the Software Engineering Body of Knowledge
Project

Body of Knowledge

The software engineering body of knowledge is an all-inclusive term that describes the sum of knowledge
within the profession of software engineering. As with other professions such as law, medicine and
accounting, the body of knowledge rests with the practitioners and academics who apply and advance it.

Guide to a Body of Knowledge

Since it is usually not possible to put the full body of knowledge of even an emerging discipline, such as
software engineering, into a single document, there is a need for a Guide to the Software Engineering
Body of Knowledge. This Guide will seek to identify and describe that subset of the body of knowledge
that is generally accepted or, in other words, the core body of knowledge of the discipline.

Software engineering body of knowledge and
curriculum are not the same

Software engineers must not only be knowledgeable in what is specific to their discipline, but they also, of
course, have to know a lot more. The goal of this initiative is not, however, to inventory everything that
software engineers should know, but to identify what forms the core of software engineering.

It is the responsibility of other organizations and initiatives involved in the licensing and certification of
professionals and the development and accreditation of curricula to define what a software engineer must
know outside software engineering. We believe that a very clear distinction must be made between the
software engineering body of knowledge and the contents of software engineering curricula.

Project Objectives
The objectives of the Guide to the Software Engineering Body of Knowledge project are therefore to:
» characterize the contents of the Software Engineering Body of Knowledge;
» provide a topical access to the Software Engineering Body of Knowledge;
» promote a consistent view of software engineering worldwide;

» clarify the place of, and set the boundary of, software engineering with respect to other disciplines
such as computer science, project management, electrical engineering and mathematics;

+ provide a foundation for curriculum development and individual certification and licensing material.

Intended Audience

The intended audience for the Guide to the Software Engineering Body of Knowledge includes:

* public and private organizations wishing to use and promote a consistent view of software engineering
internally, notably when defining education and training, job classification and performance evaluation
policies;

» practicing software engineers wishing to enhance their professional skills;

* makers of public policy engaged in defining software engineering licensing rules and guidelines for
professionals: consensus on a Guide to the Software Engineering Body of Knowledge is crucial to
ensure the coherence of licensing and accreditation guidelines and policies across national and state
boundaries;

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 4

» professional societies engaged in defining software engineering university program accreditation
guidelines, and certification rules and guidelines for professionals;

» software engineering students learning the discipline;
» educators and trainers engaged in defining curricula and course content;

» researchers looking for an agreed-upon framework when discussing their work.

A Three-Phase Development and Consensus-Building Approach

The three-phase approach outlined in Figure 1 is proposed to develop the Guide to the Software
Engineering Body of Knowledge. Total duration of the three phases is expected to be four years. These
three phases will respectively produce the “Straw Man”, “Stone Man” and “lron Man” versions of the
Guide.

Two principles underlie this three-phase approach:
- transparency: the development process is itself published and fully documented;

- consensus-building: the development process is designed to build, over time, consensus in industry,
among professional societies and standards-setting bodies and in academia.

It is in this spirit that communication channels are constantly kept open between our project and the Joint
Task Force on Software Engineering Curriculum which is also under the auspices of the Joint IEEE
Computer Society and ACM Steering Committee for the Establishment of Software Engineering as a
Profession.

A startup phase to develop an initial version of the Guide began at the outset of 1998. The objectives of
this phase are to define the strategy, to deliver what is referred to as the Straw Man version of the Guide,
and to gather momentum in the profession for the project. The present report constitutes this Straw Man
version. As will be described in detail in Chapter 4, the adopted methodology used for this version is
based on an analysis of a large number of software engineering textbooks, undergraduate and graduate
software engineering curricula and graduate admission requirements. Additionally, the framework used to
analyze these textbooks and academic programs is a joint ISO/IEC and IEEE standard which has itself
been adopted through a rigorous and international consensus building, review and balloting process. In
essence, one can say that the Straw Man version tries to identify where there is already consensus.

The Straw Man version will serve as the primary input for the subsequent “Stone Man” phase of the
project expected to end by mid-1999. The deliverables of the Stone Man phase of this project will be:

* a list of Knowledge Areas of software engineering (Knowledge Areas are the major components of a
discipline, or subfields of study).

* alist of topics and relevant reference materials for each Knowledge Area;

* a list of disciplines related to Software Engineering, and the Knowledge Areas and topics at the
junction of Software Engineering and one or more of these Related Disciplines; however, the Stone
Man version will not point to any reference materials from a Related Discipline unless it is specifically
adapted to software engineering.

To ensure relevance of the Guide, to continue building consensus and momentum for the Guide and to
encourage its quick uptake in the marketplace, three components are key to the proposed strategy of this
Stone Man phase. They are, as shown in Figure 2, an Industrial Advisory Board, a series of specialized
subcommittees and a broad comment-gathering and consensus-building process.

The Industrial Advisory Board will include key representatives from industry, major professional societies,
international standards-setting bodies and academia, as well as authors of widely sold textbooks on
software engineering. The draft definition of the responsibilities for the Industrial Advisory Board consists
of the following:

* Review and approve the scope and development strategy of the Guide to the Software Engineering
Body of Knowledge;

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 5

* Review and approve the selection criteria for Knowledge Areas;

* Review and approve the list of proposed of Knowledge Areas;

* Review and approve the selection criteria for Related Disciplines;

* Review and approve the proposed list of Related Disciplines;

* Review and approve the selection criteria and the list of topics for each Knowledge Area;
* Review and approve the reference material selection criteria;

* Review and approve the list of subcommittee Chairs;

* Review and approve a broad comment-gathering and consensus-building process for the Stone Man
version;

* Oversee the broad comment-gathering and consensus-building process for the Stone Man version;
» Assist in promoting the Guide to the Software Engineering Body of Knowledge.

A number of subcommittees made up of subject matter experts will be established during the Stone Man
phase and these will be responsible for selecting key reference material in the existing software
engineering literature based on predefined reference selection criteria. These references could be book
chapters, journal articles, public reports from industry, etc. The incorporation of these subcommittees in
the design of the approach is an additional step in building consensus.

To inform software engineering professionals about the Guide, to promote it, to continue building
consensus and to gather comments from a broad sample of professionals, a broad comment-gathering
and consensus-building process will also be completed electronically during the Stone Man phase among
the membership of the Computer Society and possibly other professional societies. The Industrial
Advisory Board will ensure that due process is followed regarding this consultation and comment-
gathering step.

A subsequent Iron Man version should be completed roughly two years after the Stone Man version. The
development of this version will once again probably involve an Industrial Advisory Board and various
expert panels. However, an even more exhaustive review and consensus-building process to gather
comments and insights from members of the profession will have to be defined for this phase of the
project. This review and consensus-building process should be somewhat akin to the already existing
software engineering standards development and review process.

To facilitate its wide dissemination, all versions will be available at no cost on the Internet.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Guide to the
SWEBOK

(Straw Man Version)

Guide to the SWEBOK

(Stone Man Version)

Approach:

- Industrial A:dvisory Board

- Expert Panels
- Broad Comment-Gathering Guide to the SWEBOK
and Consensus-Building
Process (Iron Man Version)
Approach:

: - Expert panels

- Industrial Advisory Board

- - Exhaustive Comment-
Gathering and Consensus-
Building Process

1998 é 1999 é 2000 é 2001
Figure 1 A Three-Phase Approach for Developing the Guide to the SWEBOK

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Completeness and
Cohesiveness Review
of In-Progress Stone
Man Version

Straw Man Version

Industrial Advisory Board — Stone Man Version

l

Knowledge Areas and
Related Disciplines

Subcommittee of Specialists

Broad Consensus-Building
Comment-Gathering Process

A 4

Topics identified and
reference materials

selected for each
Knowledge Area

Figure 2 Proposed Strategy for Developing the Stone Man Version

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 8

3. Context and Relationships

What is software engineering?

The IEEE Computer Society defines software engineering as’:

“(1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software.

(2) The study of approaches as in (1).” [3]

What is a recognized profession?

For software engineering to be known as a legitimate engineering discipline and a recognized profession,
consensus on a core body of knowledge is imperative. This fact is well illustrated by Starr [4] when he
defines what can be considered a legitimate discipline and a recognized profession. In his Pulitzer-prize-
winning book on the history of the medical profession in the USA, he states that:

“the legitimation of professional authority involves three distinctive claims: first, that the knowledge and
competence of the professional have been validated by a community of his or her peers; second, that this
consensually validated knowledge rests on rational, scientific grounds; and third, that the professional’s
judgment and advice are oriented toward a set of substantive values, such as health. These aspects of
legitimacy correspond to the kinds of attributes — collegial, cognitive and moral — usually cited in the term
“profession.”

The software engineering profession is still immature

The term “software engineering” has now been in use for 30 years, since it was officially coined at an
October 1968 conference held in Garmisch, Germany [5]. Since then, considerable progress has been
made. Evidence of this progress can be found in the list of 24 general software engineering textbooks
found in Appendix A. Additionally, Appendix B lists 5 undergraduate and 24 graduate programs now
being offered in software engineering and that were found described on the World Wide Web. A multitude
of conferences and workshops are given on the topic of software engineering yearly. As well, the
discipline has now accumulated a significant number of national and international standards [6].

This progress does not, of course, imply that software engineering is, as currently practiced by individuals
or by organizations, at a level sufficient to ensure consistent and reliable outcomes. The industry is still
plagued by significant cost and schedule overruns. Unreliable software continues to be delivered, often
with dire consequences. Projects are regularly canceled or deliver only a subset of the expected benefits.
Maintenance costs, best exemplified by the Year 2000 bug, are very often prohibitive .

In 1996, Ford and Gibbs [7] wrote an in-depth report on the level of maturity of the software engineering
profession. In order to discuss the maturity of a profession in a more objective and constructive manner

Of course, there are many other definitions of software engineering. Since this effort originates from a joint committee of the
ACM and the IEEE Computer Society and since this definition was agreed upon by a wide consensus within the Computer
Society, it seems reasonable to start from it. The Industrial Advisory Board may find it inadequate for the purposes of the Guide
to the Software Engineering Body of Knowledge or this definition may prove to be insufficient later on in the project

8 p.15.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 9

and to better predict its future evolution, they begin by proposing a model of its maturity in terms of eight
infrastructure components. These components are:

- Initial professional education system;

- Accreditation of professional education programs;

- Skills development mechanisms for professionals entering the practice;

- Certification of professionals administered by the profession;

- Licensing of professionals administered by government authorities;

- Professional development programs to maintain currency of knowledge and skills;
- Code of ethics;

- Professional society or societies.

Their report states that nearly all these components have existed for many years and are being continually
improved for more established professions such as medicine, law, engineering, architecture and
accounting. They then analyze the software engineering profession using this eight-component taxonomy
and conclude that only the professional development and professional society components have
advanced past the ad hoc level. They therefore infer that the software engineering profession is still
immature.

Increasing interest in program accreditation, certification and licensing

There is without any doubt increasing interest in university program accreditation and the licensing and the
certification of software professionals. The Cutter IT Journal published by Ed Yourdon recently devoted
an entire issue to the certification and licensing of software professionals [8]. In 1996, the Institution of
Engineers, Australia, began granting full accreditation to undergraduate software engineering programs
[9]. Some authors have even stated recently that we in the software industry had better take these issues
very seriously, otherwise government officials will do it themselves. The following citations from these
authors illustrate their point of view well:

“If the profession does not provide an effective mechanism such as certification to assure that its
practitioners are doing everything possible to promote safety and security, then government will try to do it
with licensing.” [7]

“In my opinion, the licensing or certification of at least some software engineering specialties (e.g. safety-
critical systems, secure systems) is inevitable. In the current climate, licensing will probably emerge first.
The only decision that we need to make is whether we want to be part of the solution or part of the
problem” [10]

“If the software community cannot organize itself to become a recognized profession, we will have this
done for us by legislatures and others without the necessary technical expertise and understanding of the
issues” [11]

“If the software engineering community cannot rise to the level of becoming a recognized profession and an
engineering discipline, we face an uncertain future with ever-mounting prospects of unfriendly legislation
and harmful government actions.” [12]

“... but society might believe that severe regulation and licensing of software activities are the only way to
avoid a repetition of the Year 2000 catastrophe .”[13]

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 10

It is important to note that on June 17, 1998, the Texas Board of Professional Engineers unanimously
approved a proposal to recognize software engineering as a legitimate engineering discipline and to begin
licensing professional engineers in this area’.

Consensus on a core body of knowledge is an inescapable first step

Figure 3 shows that to correctly address the development of software engineering curricula, the
accreditation of professional education programs and the licensing and certification of professionals,
consensus by the profession on a core body of knowledge is an inescapable step. The necessity of a
consensus on a core body of knowledge when discussing professional education program accreditation
and the licensing or certification of professionals is well illustrated by these two citations:

“The discipline of software engineering is still immature, but pressures from regions where engineers are
licensed will add urgency to this issue. Clearly, some judgment about core material is required to perform
an accreditation...” [9]

“If we accept that licensing is inevitable, then we believe it is important that the profession be prepared to
advise the state legislatures about the nature of software engineering and the appropriate contents of a
licensing examination.” [7].

Development of
Software Engineering
Curricula

23 A A
& Z
IS C
¢ S
N @
RS Consensus on a Core %,
Body of Knowledge
Development of Certification/ | Influences .| Development of University
Licensing Criteria and Exams | Program Accreditation Criteria

Figure 3 Key interrelationships for a core body of knowledge

* See http://www.main.org/peboard/sofupdt.htm

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 11

Computer science is the underlying discipline of software engineering

History has shown that a professional engineering discipline emerges when there is a sufficient scientific
basis to enable a core of educated professionals to apply not only craft, experience and skill, but also
theory to the analysis of problems and synthesis of solutions [14]. For most engineering disciplines, this
emergence occurred in the 18" and 19" centuries with the increased scientific understanding of our
physical world. Based on this criterion, Shaw [14] argues that, though software engineering has not yet
matured to the state of a professional engineering discipline, this is an achievable goal. Baber [15] argues
that software engineering is currently in a “pre-engineering” phase of its development, in many ways
similar to the “pre-engineering” phases of shipbuilding, bridge construction and electrical technology. The
availability and regular use by professionals of predictive models that have a scientific and mathematical
basis is a distinguishing characteristic of “engineering” from “pre-engineering” practice.

Computer science has also evolved significantly over the past decades. Advances in the areas of
algorithm design, compilers, data structures, database management systems, operating systems and
programming languages, among others, testify to the ever-increasing depth and breadth of knowledge in
computer science.

Parnas [16] is of the opinion that it is notably because of the maturity of computer science that we can now
offer software engineering university programs. In fact, he argues that due to distinct fundamental goals, it
is in the interests of both communities to separate the disciplines. Precedents for this position have been
established in other engineering disciplines, such as in the separation of physics and electrical
engineering.

When discussing the relationship of software engineering to its underlying science, Maibaum [17] states:

“It is clear that the important symbiotic relationship between analysis, physics and engineering that we have
experienced over more than 200 years will be repeated in the next century between logic, theoretical
computer science and software engineering.”

Distinct fundamental goals of computer science and software engineering

The fundamental goals of computer science and software engineering differ, as do the fundamental goals
of science and engineering.” Science as a whole seeks to better understand and explain various
phenomena. In essence, knowledge is the product of science. In his seminal book entitled “What
Engineers Know and How They Know It” [20], Vincenti declares “For engineers, in contrast to scientists,
knowledge is not an end in itself or the central objective of its profession.”® He then goes on to say that,
for engineering, science is “a means to a utilitarian end.” Brooks describes this difference in goals very
clearly by stating: “A scientist builds in order to learn; an engineer learns in order to build.”” In essence,
artifacts rather than knowledge are therefore the product of engineering, be they bridges, ships, airplanes,
oil refineries, computer chips or software.

An illustration of this difference in goals is the importance given to professional education program
accreditation in engineering and in science. On this issue, Parnas [16] states:

“The work of scientists will be usually judged by other scientists, but engineers often deal with customers
who are neither engineers nor scientists. Thus, while nobody has ever felt it necessary to hold science

As one can debate the true engineering underpinnings of software engineering by discussing, for instance, its use of quantitative
methods, one could also debate the true scientific underpinnings of computer science by discussing, for instance, its use of the
scientific method. This report will leave these worthy debates to others. For an excellent discussion of the application of the
scientific method in computer science and in software engineering, see [18] and [19].

® p.6

7 Cited on p. 21 of [7].

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 12

programmes to rigid standards, accreditation has always been an important consideration for engineering
programmes.”

Computer science therefore seeks to better understand and to extend our knowledge in the area of
computing. Extending our knowledge of software or computing is not the fundamental goal of software
engineering, but rather applying this knowledge to building software.

Shaw [14] declares that although there are many definitions of engineering they all share these common
elements: creating cost-effective solutions to practical problems by applying scientific knowledge to
building things in the service of mankind. She then states that, for software, the problem is, appropriately,
an engineering problem.

The definition given by the ACM/IEEE Computer Society Task Force on the Core of Computer Science for
computing [21] is different from the definition of software engineering®. The Task Force states that:

“The discipline of computing is the systematic study of algorithmic processes that describe and transform
information: their theory, analysis, design, efficiency, implementation and application. The fundamental
question underlying all of computing is “What can be (efficiently) automated?”

Engineering is much more than applied science

Vincenti in [20] argues at length that engineering is much more than applied science. The following quote
from the opening paragraph of his book illustrates his argument:

“Engineering knowledge, though pursued at great length and expense in schools of engineering, receives
little attention from scholars in other disciplines. Most such people, when they pay heed to engineering at
all, tend to think of it as applied science. Modemn engineers are seen as taking over their knowledge from
scientists and, by some occasionally dramatic but probably intellectually uninteresting process, using this
knowledge to fashion material artifacts. From this point of view, studying the epistemology of science
should automatically subsume the knowledge content of engineering. Engineers know from experience
that this view is untrue..."

Vincenti categorizes the elements of engineering design knowledge in the following manner:
- Fundamental design concepts;
- Criteria and specifications;
- Theoretical tools;
- Quantitative data;
- Practical considerations;
- Design instrumentalities.

He then goes on to classify engineering knowledge-generating activities into seven categories, of which
only one is directly linked to the underlying science. The categories are:

- Transfer from science;

As cited on p. 8, the IEEE Computer Society definition of software engineering is “(1) the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to
software. (2) The study of approaches as in (1).”
9

p.3

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 13

- Invention;

- Theoretical engineering research;

- Experimental engineering research;
- Design practice;

- Production;

- Direct trial.

These two lists illustrate well that an engineering discipline has a body of knowledge different from the
body of knowledge of its underlying science. They obviously interact heavily and often have overlapping
content. However, their respective categories of knowledge and types of knowledge-generating activities
differ greatly. As discussed in Chapter 7, an adaptation of Vincenti’s classification schema for engineering
design knowledge is proposed as a common framework for structuring topics and reference materials
within Knowledge Areas.

Other body of knowledge proposals

A number of groups, professional societies and individuals have proposed a number of views regarding
the software engineering body of knowledge. These proposals are described in more detail in Appendix J.

The Joint Steering Committee of the IEEE Computer Society and the ACM for the Establishment of
Software Engineering as a Profession established a task force in 1996 to conduct exploratory work on the
issue of a software engineering body of knowledge. The task force designed and conducted a pilot survey
on a sample of tasks that could be considered to be within the scope of software engineering'®. The
survey asked whether each task described would be expected to be performed by a “novice software
engineer”, an “expert software engineer”, a “software engineering specialist” or a “manager” in the
organization.

Certain proposals are incorporated into certification programs, either for a broader field as is the case with
the Certified Computing Professional program of the Institute for Certification of Computer Professionals,
or a more specialized field related to software engineering such as the Software Quality Engineers
program of the American Society for Quality, and the Certified Quality Analyst and Certified Software Test
Engineer programs of the Quality Assurance Institute.

Other proposals are being made within the context of developing software engineering curricula. Parnas
for instance, while describing a new undergraduate program in the field, proposes a list of knowledge
areas related to tasks performed by software engineers. The Working Group on Software Engineering
Education and Training, which includes members from industry and academia, proposed a set of
guidelines last spring for software education which included their view of the software engineering body of
knowledge areas and knowledge components. The Australian Computer Society also includes ‘Software
Engineering and Methodologies’ as a Knowledge Area within its Core Body of Knowledge for Information
Technology Professionals. Finally, a collaborative effort of the ACM and other organizations recently
published a model for undergraduate degree programs in information systems entitled 1S’97 which
included many software engineering elements.

These proposals regarding the software engineering body of knowledge cannot be used in their totality
either, because:

* the focus is more on curriculum development than on the core body of knowledge of software
engineering itself;

» the focus is not directly on software engineering but rather on perhaps broader or narrower disciplines
such as computing, information technology, information systems, software quality engineering and test
engineering;

» the consensus building process is not documented.

" The report on the survey’s results can be found at computer.org/tab/seprof/survey.htm

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 14

However, these proposals are an excellent input to the Industrial Advisory Board to ensure the soundness
of the list of Knowledge Areas and Related Disciplines proposed in the Straw Man version of the Guide to
the Software Engineering Body of Knowledge. Additionally, they should be examined when identifying
topics and selecting reference materials for the Stone Man version.

Consensus on a body of knowledge is a must

The Joint IEEE Computer Society and ACM Steering Committee for the Establishment of Software
Engineering as a Profession has recognized that the body of knowledge of the emerging software
engineering discipline, as for other disciplines of engineering, is an autonomous body of knowledge
distinct from that of computer science. This committee has identified that consensus by the profession on
this body of knowledge is key to the maturation of the discipline, and improvement in the level of
professional practice.

Offering a much more detailed and complete view, Figure 4 enables us to understand better how this
Guide to the Software Engineering Body of Knowledge may eventually impact education and training,
enterprise human resources management, professional development, professional societies and licensing
boards in the field of software engineering.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 15

The Interrelationships of the Software Engineering Body of Knowledge Stakeholders
Context Diagram

. . Enterprise
Other Fields upon E ion Human R v Professional Professional Licensing
- - P uman Resources T
which SWEBOK relies and Training Man men Development Societies Boards
Management
Initial Education |« Establishes Standards / Curriculum Accreditation
=
Influences
. >
Research Influences
Investigations
A
Enterprise Strategies 3 3 '“dus"éﬁsz;‘em‘c
— Software] Code of ethics (developed
R —— Engineering ‘ Defi ne‘s pasic va‘wdes Skills Requirements o — by Professional Society) I
I ———— i i .
Computer > Influences ——» Body of Knowledge Imparted through skills for framework for test questions
Scionce L Influences Professional Society Manages Testing l—
organizod as E"T“r;ar::‘r"; & ‘ Job Classifications Learning
T
— \ ‘ Certification
[——" focuses
. — :) enhances n
Project Subject matter Standardized Consistent
Management across the |icensing]
~— i .
Standards community should ensure: naton criteria
— f
S taught through s cxpeggtone or Underlying Scientific
= provdes Y Concepts
Electrical Qpponulmes o Experiencs rewards Workforce Skills lq—enhances Civil Monitoring/
ineeri - : Penalties N
Engineering Me[éﬁ!\;?sr)r/n . preem e N provide basis for ! / Enforcement
e Fundamental
) > impart measured by Requﬁz‘ruenls Total Skl enable education Review
Mathematics Accreditation setthe Met Capabiliies ¥
- 1 -
T empirically validatex Project
= Knowledge o hrough Establishes pricaly ‘) Experience
" ithi
Telecommunications/ | acquire i A allow consensus on
unicati ! Professional Practices - Licensedin
(Nowere) _ through Standardized Best another
verified through . f learning Practices state
o prescribe (universally recognized)
. >
|
——] Yearsin
; " profession
Management Examinations provide basis for
Maturing Discipline
>
—
—
—
Science
-
Y
—
S——
Other < Influences and Advances
Engineering
_Discipines Shapes
Lay the Groundwork for » 5 :
o — ocumen
—
— 5 swe-
. -
Cognitive e Software
Sciences Database Engineering
N

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 17

4. Development Methodology for Identifying Knowledge
Areas and Related Disciplines

Introduction

This chapter describes the methodology used for identifying the Knowledge Areas and Related
Disciplines. Knowledge Areas are the major components of a discipline, or sub-fields of study. Related
Disciplines are the other disciplines with which software engineering has a non-empty intersection or
shares a common boundary.

Criteria used in selecting our identification methodology

The following criteria were used in defining the methodology for identifying Knowledge Areas and Related
Disciplines:

» The identification methodology had to be based on public and verifiable sources of information and had
to follow a well-documented and reproducible procedure. The authors have tried to make as few
editorial decisions as possible.

* The identification methodology had to be as inclusive as possible. For this Straw Man version, it was
deemed better to suggest too many Knowledge Areas and Related Disciplines and for them to be
abandoned later than the reverse.

Focus is on generally accepted knowledge

As stated earlier, the software engineering body of knowledge is an all-inclusive term that describes the
sum of knowledge within the profession of software engineering. However, the Guide to the Software
Engineering Body of Knowledge seeks to identify and describe that subset of the body of knowledge that
is generally accepted or, in other words, the core body of knowledge. To better illustrate what “generally
accepted knowledge” is relative to other types of knowledge, Figure 5 proposes a draft four-category
schema for classifying knowledge. As an example, Appendix | proposes a classification of the knowledge
on formal methods based on this schema.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 18

Generally Accepted

Established traditional practices used by
many organizations

Advanced

Innovative practices tested and used only by
some organizations

Specialized
of software

Research

Practices used only for certain types

Concepits still being developed and
tested in research organizations

Figure 5 Categories of knowledge in the SWEBOK

The Project Management Institute in its Guide to the Project Management Body of Knowledge'' [22]
defines “generally accepted” knowledge for project management in the following manner:

“Generally accepted means that the knowledge and practices described are applicable to most projects
most of the time, and that there is widespread consensus about their value and usefulness. Generally
accepted does not mean that the knowledge and practices described are or should be applied uniformly on
all projects; the project management team is always responsible for determining what is appropriate for any
given project.”2

" This guide is currently adopted as an IEEE standard. See Chapter 7 of [6].

12 p. 3
© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 19

Knowledge Area and Related Discipline identification methodology

In order to propose Knowledge Areas and Related Disciplines for “generally accepted” knowledge and to
do so based on recognized, public and verifiable sources of information, it was decided that the tables of
contents of general software engineering textbooks, the curricula of undergraduate and graduate
programs in software engineering, and the admission criteria for graduate programs would constitute the
input to our analysis. Certainly, no one can question that general textbooks and academic curricula are
an excellent source of information for better understanding any discipline.

Undergraduate

Programs in Software
Engineering - Curricula

. Preliminary List of
Graduate Programs in Related Disciplines
Software Engineering - > (Computer Science
Admission Criteri @ and others)
Graduate Programs in
Software Engineering - List of Related
Curricula Disciplines
— Preliminary List of
Textbooks in Software ' Software Engineering >
Engineering - Knowledge Areas
TT Proposed
Software
ISO/IEC 12207 Engineering
Information Knowledge Areas
Technology - Software
Life Cycle Processes

]|

Selection Criteria:

- Knowledge Area must be
discussed in Software
Engineering general text
books

- If Knowledge Area comes
from another area, it is
included if specifically
adapted to Software
Engineering

Figure 6 Knowledge Area and Related Discipline Identification Methodology

In fact, it is proposed that a Knowledge Area must be discussed in a significant number of general
software engineering textbooks to be considered as “generally accepted”.

General software engineering textbooks may not be the only source of generally accepted knowledge.
However, textbooks are expected to contain a synthesis of what is currently considered to be the best
thinking in a given field. The Industrial Advisory Board will decide if this collection of documents is
sufficient or if a wider spectrum should be considered. Additionally, the various subcommittees involved in
producing the Stone Man version will certainly not limit themselves to general software engineering
textbooks when identifying topics and selecting reference materials within each Knowledge Area.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 20

Additionally, it is proposed that if a Knowledge Area and subsequent subtopics are related to a discipline
other than software engineering, they have to be specifically adapted to software engineering to be
included in the Guide to the Software Engineering Body of Knowledge. For example, statistics are used in
software engineering, but there is no specific type of statistics for this discipline. By contrast, project cost
estimation is different in software engineering from that in electrical engineering. Another example would
be formal methods, which have a strong relationship with computer science and even mathematics, but
are specifically created to solve software engineering problems.

The general methodology used to identify the software engineering Knowledge Areas and Related
Disciplines is illustrated in Figure 6. The left-hand portion shows that information was first gathered from
recognized, public and verifiable source: general software engineering textbooks and academic
programs. The middle portion shows that this material was synthesized into lists of Knowledge Areas and
Related Disciplines. The right hand portion shows that these were organized using another well
recognized standard, ISO/IEC 12207 [23], wherever applicable.

Collected information
Using the Internet, the following information was collected:

« The tables of contents of general textbooks' in software engineering, which present the authors’
opinions on what the boundary of software engineering is and on how to classify the topics into
candidate Knowledge Areas. However, these books seldom explicitly identify the Related Disciplines,
even though these implicitly reveal the authors’ opinions of where the discipline ends.

* The curricula of undergraduate and graduate programs in software engineering, which are another
public source of information for identifying Knowledge Areas. They also provide an excellent basis for
setting the boundary of software engineering and identifying the Related Disciplines. Software
engineering curricula include not only courses in software engineering, but also courses in the other
disciplines in which a software engineer should be educated. This is especially true at the
undergraduate level. Graduate programs are generally much more focused on the discipline itself.
Information on compulsory and elective courses was collected separately, since it was believed that
compulsory courses would be a better basis for identifying the core body of knowledge than electives
and because of the widely varying nature of elective courses due notably to which faculty and
department offered the program.

* Admission criteria to graduate software engineering programs also indicate what the institutions think
students should know outside software engineering. This information is useful for identifying the
Related Disciplines and for setting the boundary of software engineering.

A total of twenty-four (24) general textbooks, five (5) undergraduate programs and twenty-four (24)
graduate programs in software engineering were found and examined. For the undergraduate and
graduate programs, only those having the list of required courses on the website were retained. There is
no reason to believe that there would be any substantial differences between programs which have a
website and those which don’t. These programs are offered by universities in the United States, Canada,
the United Kingdom, Australia and Sweden. Appendix A lists the general textbooks used for this report
and Appendix B lists the URLs of the retained undergraduate and graduate programs.

ISO/NEC 12207

Initially, it was expected that various approaches — even paradigms — would be found by analyzing the
tables of contents of general software engineering textbooks, but such was not the case. It was found that
textbooks generally present most of the subject matter of software engineering around a life-cycle model.
Often, more advanced material or material pertinent to the entire life cycle and not to one particular phase
is presented in additional chapters.

' These table of contents were gathered from www.amazon.com

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 21

However, since these textbooks do not necessarily share a common life-cycle model, it was decided that
the ISO/IEC 12207 standard on Software Life Cycle Processes L23] be used as the basis and vocabulary

for the classification of the different topics related to the life cycle

4

ISO/IEC 12207 was chosen for the following reasons:

It is considered the key standard regarding the definition of life cycle process and has been adopted by
the two main standardization bodies in software engineering: ISO/IEC JTC1 SC7 and the IEEE
Computer Society Software Engineering Standards Committee ™.

It has been designated as the pivotal standard around which the Software Engineering Standards
Committee (SESC) is currently harmonizing its entire collection of standards [6].

It is designed to be independent of any specific software development method or life-cycle model.
Regarding ISO/IEC 12207, Moore states in [6] that:

“The standard is intended to be independent of development technologies and methodologies and useful
for any form of life cycle model, for example, waterfall, incremental, spiral, etc. In fact, one of the specified
responsibilities of the supplier’s role is to select the life cycle model and map the requirements of the
standards to that model.”16

It covers the entire life cycle from concept to retirement.
It provides roles for the acquirer, supplier, developer, maintainer and operator.

Intermediate Steps: Inventory of prepared tables

In the course of writing this report, several tables were prepared:

General textooks on software engineering. First, a list of the topics covered by the various authors was
produced. The majority of the books present the different topics using a software life-cycle approach.
Within each category the specific topics were listed according to the number of books covering the
given topic. The resulting table is presented in Appendix C.

Undergraduate and graduate programs in software engineering. First, a list of the courses offered by
the different programs was produced. A differentiation between required courses (those which the
institutions consider to be the core knowledge) and optional courses was made. The courses were
then classified according to two criteria: the software life-cycle processes, as described by ISO/IEC
12207, and the disciplines to which the courses were related. A total of five (5) tables were produced:

- Undergraduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas
in Appendix D.

5
16

The authors are aware that ISO/IEC TR-15504 Information Technology Software Process Assessment also defines life cycle
processes. However, ISO/IEC 12207 was preferred over ISO/IEC 15504 for the purposes of this Straw Man version since it has
been adopted by both IEEE/EIA and ISO/IEC and because it has the status of a standard while ISO/IEC TR-15504 has the
status of a Technical Report Type 2. However, the Industrial Advisory Board may wish to consider as potential Knowledge
Areas the following additional processes defined in 15504 but not included in 12207[24]:

- Primary processes: Requirements elicitation process
- Support processes: Measurement process
Reuse process
- Organizational processes: Quality management
Risk management process
Organizational alignment process
IEEE/EIA is an adaptation of ISO/IEC 12207 with the same number and name.
p. 197

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 22

- Undergraduate Programs in Software Engineering -
Classification of Courses by Related Discipline in Appendix E

- Graduate Programs in Software Engineering -
Admission Requirements by Related Discipline in Appendix F

- Graduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas
in Appendix G

- Graduate Programs in Software Engineering -
Classification of Courses by Related Discipline in Appendix H.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 23

5. Proposed Knowledge Areas

Using the methodology described in the previous chapter, a compilation of topics included in the tables of
contents of general textbooks and in university software engineering curricula is presented in Tables 1, 2
and 3. These tables, compiled from Appendix C, Appendix D and Appendix G, show the number of
textbooks that cover a given topic at the Table of Contents level, and the number of programs that include
required and elective courses on this topic.

As stated earlier, a proposed Knowledge Area must be covered in a significant number of textbooks to be
considered as “generally accepted”. For the purposes of this Straw Man version, this significant number is
set at 6, or one quarter of the textbooks listed in Appendix A. Potential Knowledge Areas meeting this
requirement and that converge well with the ISO/IEC 12207 standard are shaded in Table 1.

However, a number of topics do not converge well with ISO/IEC 12207. The list of potential Knowledge
Areas that do not converge well with the ISO/IEC 12207 standard but that meet the requirement for
“generally accepted” are shown in Table 2. The list of potential Knowledge Areas that do not converge
well with the ISO/IEC 12207 standard and that do not meet the requirement for “generally accepted” are
shown in Table 3.

Since university programs of different types (undergraduate and graduate, professional and research,
etc.) were surveyed, it was decided not to include this information in the selection criterion for considering
a Knowledge Area as “generally accepted”. Additionally, a limited number of courses are often offered in
one program, especially the graduate level. This information, however, may be useful to the Industrial
Advisory Board in their review and approval of Knowledge Areas.

The following two elements where taken into consideration in setting the significant number at 6, or one-
quarter of the textbooks:

- As discussed earlier, the identification methodology had to be as inclusive as possible and it was
deemed better to suggest too many Knowledge Areas than too few.

- many topics are covered in a textbook without them being included in the table of contents; a
more detailed analysis of the textbooks would surely be most insightful and would better
represent each book.

Also, these limitations must be kept in mind in interpreting the proposed list of Knowledge Areas:

- The survey of the textbooks only considered tables of contents of textbooks written in English
and accessible through the Internet. This means that it is quite possible that many excellent
textbooks not listed on the website of the online library were omitted from this analysis,
especially textbooks in languages other than English. This is because the objective here was
not to exhaustively survey all general software engineering textbooks, but rather to collect a
representative sample of them.

- Many excellent university programs not found or not described on the Internet have surely been
omitted from this analysis, especially programs taught in languages other than English.

- Analysis of university software engineering programs was based on course titles only. Once
again, a more detailed analysis of the course syllabuses would surely be most insightful.

- There is occasionally overlap, and some topics belonging to more than one category are
counted more than once. For instance, Formal Methods is sometimes presented in the
appendices as a separate topic, and sometimes it is included within the life-cycle classification
(e.g. Formal methods/specification languages, Object-oriented topics, etc.). This information is
presented this way to better evaluate the coverage of these topics not to create redundancy.

- The importance of some specialized topics (e.g. Fault-tolerant software, Real-time software,
etc.) may be underestimated since the analysis is based on general software engineering
textbooks.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 24

Process Class Life Cycle Processes Textbooks | Programs(29) with | Programs(29) with
and Activities (24) Required Optional Courses
Courses'’
Primary Software Acquisition 2 2
Software Supply
Development Process 11 (general)™® 9 (general)
Requirements 22 22 10
Analysis'® *°
Architectural 2
Design
Detailed Design”’ 23 14 14
Coding 18 4 12
Integration 4
Testing 16 9 7
Installation 3
Acceptance Support 3
Operation Process
System Operation 2
User Support
Maintenance 14 4 5
Process?®
Supporting Documentation
Configuration 10
Management
Quality Assurance 15 11 7
V&V 12 9 7
Joint Review 5
Audits 3
Problem Resolution
Processes
Organizational Management Process 20 20 10
Infrastructure
Process
Improvement 16 5 2
Process
Training Process

Table 1 Proposed Knowledge Areas based on ISO/IEC 12207

20

21

22

23

Includes 24 graduate and 5 undergraduate programs

Courses discussing the development process in general

The activity entitled Process Implementation is omitted from this table since no book chapters or courses refer directly to this
activity.

Since in this report we did not wish to engage in the worthy debate of distinguishing “systems engineering” from “software
engineering”, the activity entitled “systems requirements analysis” is not listed in this table.

Please note that many of the topics in the tables of contents and course titles that we assigned to detailed design could arguably
be assigned to architectural design. A more detailed analysis of the textbook chapters themselves and the course syllabuses
would enable a better assignment of these topics and often resolve the differences in vocabulary.

The material in the textbooks is never organized according to the ISO/IEC 12207 classification of activities for maintenance and
therefore no analysis is performed at the activity level for maintenance.

Proposed Knowledge Areas considered as generally accepted are shaded. A proposed Knowledge Area must be covered in a
significant number of textbooks to be considered as “generally accepted”. For the purposes of this Straw Man version, this
significant number is set at 6, or one quarter of the textbooks listed in Appendix A.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 25

Potential Knowledge Areas Textbooks (24) Programs(29) Programs(29)
with with
Required courses | Optional courses

Software Development Methods 14 2
Object Oriented 14 4 14
Formal Methods 9 11 7
Prototyping 9

Software Development 13 1 3

Environments

Software Engineering Overview & 11 11 5

Definition

Measurement/Metrics 9 4 9

Software Reliability 6 1 5

Table 2 Potential Knowledge Areas for non-ISO 12207 Topics That Meet the Selection Criteria

for “Generally Accepted”

Potential Knowledge Areas Textbooks (24) Programs(29) Programs(29)
with with

Required courses | Optional courses

Software Products 5

Software Reuse 5 2 4

Real-Time/Embedded Software 4 2 7

Reengineering 4 2

Human Factors 3 5 10

Standards 3

Fault-Tolerant Software 2

Ethics 1 1

Legal Aspects 2

Software Security/Safety 2 7

Table 3 Potential Knowledge Areas for non-ISO 12207 Topics That Do Not Meet The Selection
Criteria for “Generally Accepted”

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 26

6. Proposed Related Disciplines

Based on a synthesis of the courses taught in undergraduate and graduate programs in software
engineering and on the admission criteria for graduate programs, Table 4 proposes a list of Related
Disciplines for software engineering. The complete list of courses and the details of the admission criteria
are listed in Appendix E, Appendix H and Appendix F.

Table 4 is sorted in order of number of required courses in the discipline, then by number of graduate
programs requiring knowledge in the discipline as an admission criterion, followed by the number of
programs containing optional courses in the discipline.

Table 4 shows a strong bias toward Computer Science in the list of elective courses. This is probably
explained by the fact that most software engineering programs are offered by Computer Science
departments. |t follows that the electives offered are very often a subset of the courses offered by these
departments. Consequently, the relatively small number of courses in electrical engineering and in “other
engineering disciplines” is probably due to the fact that few of these programs are taught in engineering
schools.

When interpreting the list of proposed Related Disciplines, the reader must always keep in mind the
following limitations:

* Many excellent university programs were not an input to this survey, especially those not taught in
English. The purpose of this survey is to build a representative sample of university programs in
software engineering, not to establish a definitive list of university programs.

* Analysis of software engineering university programs was based on course titles only, and an analysis
of their syllabuses would surely provide additional insight. However, such a further analysis was not
within the scope of this Straw Man phase.

Proposed Related Disciplines

Core Courses

Admission Criteria

Elective Courses

Number of Number of Number of
programs/Number programs /24 programs/Number of
of courses courses
(out of 29 under- (graduate (out of 29

graduate and

programs only)

undergraduate and

graduate graduate programs)
programs)

Computer Science™ 19/67 17 23/190
Project Management 19/24 10/14
Electrical Engineering 9/13 3 712
Mathematics 8/21 11 4/9
Telecommunications/Networks 7112 1 11/29
Management 4/11 9/25
Science 1/4

Other Engineering Disciplines 1 1/4
Coghnitive Sciences 2/2

Table 4 Proposed List of Related Disciplines

2 The list of topics included in Computer Science is listed in the Appendices. Although there is always room for interpretation, this

list is similar to the one used by Glass [25], for instance, which is derived from the CS Curriculum of the ACM/IEEE-CS Joint
Task Curriculum Task Force. For some, Software Engineering includes everything related to the development of software,
including programming languages, for example. This is not the view here, the precise goal being rather to distinguish between
Computer Science and Software Engineering.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 27

7. Summary and Next Steps

Given the pervasive presence of software in our society and the increased concerns over the necessity for
certification and licensing, consensus on a Guide to the Software Engineering Body of Knowledge is a
must. It is critical that leadership on this important issue be on a worldwide scale, otherwise future
university program accreditation guidelines and certification and licensing rules for professionals will differ
widely.

A three-phase project has been initiated to develop the Guide to the Software Engineering Body of
Knowledge. This report is the result of the first phase and was written with the premise that such a Guide
must contain “consensually validated” knowledge and practices and rest on rational grounds.
Consequently, it is based on the analysis of general software engineering textbooks and university
programs offered in the field. The compilation was carried out as objectively as possible and in a
reproducible manner. The process produced a list of potential Knowledge Areas and Related Disciplines.

The list of proposed Knowledge Areas based on ISO/IEC 12207 is:
» Development Process
- Requirements Analysis
- Detailed Design
- Coding
- Testing
* Maintenance Process
» Configuration Management
* Quality Assurance
» Verification and Validation
* Improvement Process
The list of proposed Knowledge Areas that do not converge well with ISO/IEC 12207
* Software Development Methods
- Object Oriented
- Formal Methods
- Prototyping
» Software Development Environments
» Software Engineering Overview & Definition
* Measurement/Metrics
* Software Reliability
The list of proposed Related Disciplines is:
* Computer Science
* Project Management
* Electrical Engineering
* Mathematics

¢ Telecommunications/Networks

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 28

* Management

» Science

» Other Engineering Disciplines
» Cognitive Sciences

This report, which is intended to jump start the second, or Stone Man phase, will most certainly stimulate
a lively debate within the Industrial Advisory Board. The deliverables of the Stone Man phase are:

» alist of Knowledge Areas of software engineering;
* alist of topics and relevant reference materials for each Knowledge Area;

» a list of disciplines related to Software Engineering, and the Knowledge Areas and topics lying at the
junction of Software Engineering and one or more of these Related Disciplines.

To ensure the completeness and cohesiveness of the Stone Man version, a common framework is
required for structuring Knowledge Areas. The identification methodology used in the Straw Man version
for proposing Knowledge Areas and Related Disciplines must be expanded to be appropriate for
identifying topics and selecting reference materials within each Knowledge Area. This is due notably to:

» the varying level of granularity of the tables of contents of textbooks;

» the widely ranging age of these textbooks;

» the widely varying types of university programs surveyed for this report;
 the different number of courses offered within each program;

» the fact that course titles and table of contents entries were analyzed rather than course syllabuses
and textbooks chapters.

It is therefore suggested that a list of topics be drafted for each subcommittee based on an synthesis of
the six most recent general software engineering textbooks listed in Appendix A®. These draft lists of
topics would be classified using an adapted version of the schema proposed by Vincenti [20]for
engineering design knowledge®. Each subcommittee would then be asked to review and improve the list
of proposed topics and select reference materials for each topic. The subcommittees would return an
updated version of the list of proposed topics for a given Knowledge Area and pertinent reference
materials classified using the adapted Vincenti categories.

The Vincenti categories of engineering design knowledge are proposed as a framework for organizing
topics and reference materials because:

» they are based on a detailed historical analysis of an established branch of engineering: areonautical
engineering;

« they are viewed by Vincenti as applicable to all branches of engineering?’;

% These textbooks are Behforooz and Hudson, 1996, Jalote, 1997, Pfleeger, 1998, Pressman, 1996, Sommerville, lan, 1995 and

Dorfman and Thayer, a general tutorial on software engineering.

As cited in Chapter 3 and proposed by Vincenti, the categories of engineering design knowledge are:

- fundamental design concepts;

- criteria and specifications;

- theoretical tools;

- quantitative data;

- practical considerations;

- design instrumentalities.

In the introduction to the chapter that proposes the categories of engineering design knowledge, Vincenti states on p. 200:
“Although the cases all come from aeronautics, the generalizations of this chapter are intended to be more universal. Design in
other branches of engineering (mechanical, electrical, etc.) though different in detail, proceeds in much the same fashion. It
therefore involves the same broad categories of knowledge and activities that generate it. The specifics from my experience and
the studies of others supply illustrative evidence for this fact. As stated in chapter 1, | believe the generalizations to the other
branches will call for addition and modification rather than fundamental revision.”

© |IEEE Computer Society September 1998

26

27

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 29

* gaps in the software engineering body of knowledge within certain categories as well as efforts to
reduce these gaps over time would be made apparent;

* due to generic nature of the categories, knowledge within each knowledge area could evolve and
progress significantly while the framework itself would remain stable;

Many long hours of work, debate and consensus building will be required to develop the Stone Man and
subsequent Iron Man versions of the Guide to the Software Engineering Body of Knowledge. Achieving
consensus on the core body of knowledge is a key milestone in all disciplines and is pivotal for the
evolution of software engineering toward a professional status. Involvement by all parties, industry,
professional societies, standard setting bodies and academia, is critical to ensure the relevancy and the
credibility of results, and for a quick uptake of the results.

Later on p. 236, he states, after presenting a summary table of knowledge categories and knowledge-generating activities: “I
believe the table and the ideas behind it apply to design in all branches (aeronautical, mechanical, electrical, etc.), of modern
engineering. | believe, in addition, though | haven’t thought about the matter in depth, that they can also be adapted without
major difficulty to the engineering that occurs in production and operation.”

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 30

8. References

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

“Draft Software Engineering Accreditation Criteria,” IEEE Computer, vol. 31, pp. 73-75, 77, 1998.

D. Gotterbarn, K. Miller, and S. Rogerson, “Software Engineering Code of Ethics, version 3.0,” IEEE
Computer, pp. 88-92, 1997.

“IEEE Standard Glossary of Software Engineering Terminology,” IEEE, Piscataway, NJ std 610.12-
1990, 1990.

P. Starr, The Social Transformation of American Medicine: BasicBooks, 1982.

P. Naur and B. Randell, “Software Engineering,” presented at Report on a Conference sponsored
by the NATO Science Committee, Garmisch, Germany, 1968.

J. W. Moore, Software Engineering Standards, A User's Road Map. Los Alamitos: IEEE Computer
Society Press, 1998.

G. Ford and N. E. Gibbs, “A Mature Profession of Software Engineering,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical CMU/SEI-96-TR-004,
January 1996.

“Special Issue on IT Licensing and Certification,” in Cutter IT Journal, vol. 11, 1998, pp. 30.

P. Dart, L. Johnston, C. Schmidt, and L. Sonenberg, “Developing an Accredited Software
Engineering Program,” IEEE Software, vol. 14, 1997.

N. R. Mead, “Are We Going to Fish or Cut Bait? Licensing and Certification of Software
Professionals,” Cutter IT Journal, vol. 11, pp. 4-8, 1998.

L. Werth, “Certification and Licensing for Software Professionals and Organizations,” presented at
11th Conference on Software Engineering Education and Training (CSEE&T '98), Atlanta, Georgia,
1998.

C. Jones, “Software Challenge - Legal Status of Software Engineering,” Computer, vol. 28, pp. 98-
99, 1995.

E. Yourdon, “Why Do We Need Licensing? It's Not As If We've Killed Anyone...,” Cutter IT Journal,
vol. 11, pp. 26-30, 1998.

M. Shaw, “Prospect for an Engineering Discipline of Software,” IEEE Software, pp. 930-940, 1990.

R. L. Baber, “Comparison of Electrical "Engineering" of Heaviside's Times and Software
"Engineering" of Our Times,” IEEE Annals of the History of Computing, vol. 19, pp. 5-17, 1997.

D. L. Parnas, “Software Engineering Programmes are not Computer Science Programmes,”
McMaster University, Hamilton, Ontario CRL Report no. 361, April 1998.

T. Maibaum, “What We Teach Software Engineering in the University: Do we Take Engineering
Seriously?,” ACM SIGSOFT, Software Engineering Notes, vol. 22, pp. 40-50, 1997.

W. F. Tichy, “Should Computer Scientists Experiment More?,” Computer, vol. 31, pp. 32-40, 1998.

M. V. Zelkowitz and D. Wallace , “Experimental Models for Validating Technology,” Computer, vol.
31, pp. 23-31, 1998.

W. G. Vincenti, What Engineers Know and How They Know It - Analytical Studies from Aeronautical
History. Baltimore and London: Johns Hopkins, 1990.

P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young,
“Computing as a Discipline,” Communications of the ACM, vol. 32, pp. 9-23, 1989.

W. R. Duncan, “A Guide to the Project Management Body of Knowledge,” Project Management
Institute, Upper Darby, PA 1996.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 31

[23] “Information Technology - Software Life Cycle Processes,” International Standard, Technical
ISO/IEC 12207:1995(E), 1995.

[24] T. P. Rout, “Issues in the Development of an International Standard for Software Process
Assessment,” Software Process Newsletter, vol. 10, pp. 1-6, 1997.

[25] R. Glass, “A Comparative Analysis of the Topic Areas of Computer Science, Software Engineering,
and Information Systems,” Journal of Systems Software, vol. 19, pp. 277-289, 1992.

[26] T. B. Hilburn, D. J. Bagert, S. Mengel, and D. Oexmann, “Software Engineering Across Computing
Curricula,” 3° Annual Conference on Integrating Technology into Computer Science Education -
ITICSE'98, pp. 4, 1998.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 32

9. Appendices

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 33

Appendix A. List of General Textbooks and Tutorials on Software Engineering

Behforooz, Ali and Frederick J. Hudson, 1996, Software Engineering Fundamentals, Oxford University
Press.

Bell, Dough, lan Morrey and John Pugh, 1992, Software Engineering, 2 Edition, Prentice Hall.
Blum, Bruce ., 1992, Software Engineering: A Holistic View, Oxford University Press.
Conger, Sue A., 1993, The New Software Engineering, Course Technology.

Dorfman, Merlin and Ricahrd H. Thayer, Editors, 1996, Software Engineering, |IEEE Computer Society
Press, Los Alamitos, California.

Fairclough, Jon, Editor, 1995, Software Engineering Guides, Prentice Hall.
Fairley, Richard E., 1985, Software Engineering Concepts, McGraw Hill.
Ford, Neville J. and Mark Woodroffe, 1993, Introducing Software Engineering, Prentice Hall.

Ghezzi, Carlo, Mehdi Jazayeri and Dino Mandrioli, 1991, Fundamentals of Software Engineering,
Prentice Hall.

Humphrey, Watts S., 1995, A Discipline for Software Engineering, Addison-Wesley.

Ince, D., 1989, Software Engineering, International Thomson Computer Press.

Jalote, Pankaj, 1997, An Integrated Approach to Software Engineering, Springer Verlag, New York.
Jones, Gregory W., 1990, Software Engineering, John Wiley & Sons.

Mazza, C., J. Faircoulgh, B. Melton, D. de Pablo, A. Sheffer and R. Stevens, 1994, Software
Engineering Standards, Prentice Hall.

Pfleeger, Shari Lawrence, 1998, Software Engineering: Theory and Practice, Prentice Hall, New Jersey.
Pressman, Roger S., 1988, Software Engineering, A Beginner's Guide, McGraw Hill.

Pressman, Roger S., 1996, A Manager's Guide to Software Engineering, McGraw Hill.

Pressman, Roger S., 1996, Software Engineering: A Practitioner's Approach, 4" Edition, McGraw Hill.
Sage, Andrew P. and James D. Palmer, 1990, Software Systems Engineering, John Wiley & Sons.

Sallis, Philip, Tate Graham and Stephen McDonnell, 1995, Software Engineering: Practice,
Management, Improvement, Addison-Wesley.

Schach, Stephen R, 1993, Software Engineering, 2 Edition, McGraw-Hill.
Sommerville, lan, 1995, Software Engineering, 5™ Edition, Addison-Wesley.

Thayer, Richard H. and Andrew D. McGettrick, Editors, 1993, Software Engineering: A European
Perspective, IEEE Computer Society Press, Los Alamitos, California.

Van Vliet, Hans and Vrije Van Vliet, 1993, Software Engineering: Principles and Practice, John Wiley &
Sons.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 34

Appendix B. URLs of Undergraduate and Graduate Programs in Software Engineering

We found five undergraduate programs in software engineering at four universities:

» The University of Birmingham offers two distinct programs, one entitled Software Engineering and the
other Software Engineering with Business Studies - Birmingham, United Kingdom.

www.cs.bham.ac.uk/degreeregs/

» University of London - Imperial College of Science, Technology and Medicine Birmingham, United
Kingdom

www.doc.ic.ac.uk/teaching/under/comp/regulations/mengse.html

* University of New South Wales, Australia

www.cse.unsw.edu.au/school/teaching/courses/bese.html

* University of Ottawa - Ottawa, Canada
No URL available

We found 24 graduate programs at 23 universities:

* Andrews University - Berrien Springs, Ml, USA
MSc in Software Engineering

http://www.andrews.edu/CS/cis-ms.html

* Carnegie Mellon University - Pittsburgh, PA,USA
Master of Software Engineering

http://www.cs.cmu.edu/afs/cs/project/mse/www/

» Concordia - Montreal, QC
Master in Computer Science - Software Engineering Option
http://www.cs.concordia.ca/Graduate_Info/Graduate_Programs_M.html
* DePaul University - Chicago, IL,USA

MSc in Software Engineering (One concentration in Software Development, the other in Software
Management)

http://www.cs.depaul.edu/programs/Segrad.html

* Embry-Riddle University - Daytona Beach, FL,USA
Master of Software Engineering

http://www.db.erau.edu/catalog/graduate/mse.html

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Flinders University of South Australia, Australia
Master of Software Engineering

http://www.cs.flinders.edu.au/

Kansas State University - Manhattan, KS, USA
Master of Software Engineering

http://www.ksu.edu/grad/catalog/cis.htm

Monmouth University, West Long Branch, NJ, USA
MS in Software Engineering

http://www.monmouth.edu/muse/stinfc97.html

National Technological University - Fort Collings, CO, USA
MS in Software Engineering
http://www.ntu.edu/2/software.htm

National University - La Jolla, CA, USA

MS in Software Engineering
http://www.nu.edu/catalog/somt/msse.html

Seattle University - Seattle, WA, USA

Master of Software Engineering

http://www.seattleu.edu/~mse/mse97.html

Southern Methodist University - Dallas, TX, USA
MS in Software Engineering

http://www.seas.smu.edu/disted/se/

Texas Christian University - Fort Worth, TX, USA

Master of Software Engineering
http://www.cs.tcu.edu/grad/grad.html

Université du Québec a Montréal - Montreal, QC, Canada
M.Sc.A. in Software Engineering
http://www.regis.ugam.ca/Programmes/3821.html
University of Calgary - Calgary, AL, Canada

MSc with Specialization in Software Engineering
http://ksi.cpsc.ucalgary.ca/SERN/SEMSc.html
University of Colorado - Colorado Springs, CO, USA
Master of Engineering - Option in Software Systems Engineering

http://mepo-b.uccs.edu/software.html

35

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

University of Houston - Clear Lake - Houston, TX, USA
MS in Software Engineering

http://www.cl.uh.edu/nas/applied/graduate/MSoftEngg.html

University of Karlskrona/Ronneby - Sweden

MS in Software Engineering
http://www.hk-r.se/for/internationell/master.htm

University of Maryland - College Park, Maryland, USA

Master of Software Engineering
http://www.cs.umd.edu/Grad/mswe.html

University of Missouri-Kansas City, USA

MS in Computer Science - Software Engineering Concentration
http://www.umkc.edu/umkc/catalog/html/cmp-sc/0000.html
University of Scranton - Scranton, PA, USA

MS in Software Engineering
http://academic.uofs.edu/department/gradsch/gsofteng.htm
University of St. Thomas - Minneapolis, Minnesota, USA

MS in Software Engineering
http://www.gps.stthomas.edu/ms.html

University of Stirling - Stirling, Scotland, United Kingdom

MS in Software Engineering

http://www.cs.stir.ac.uk/~sbj/se-leaflet.html

36

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 37

Appendix C.
General Textbooks and Tutorials on Software Engineering - Classification of Table of Contents
Entries According to Potential Knowledge Areas

© |IEEE Computer Society September 1998

38

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

Gg8e | "uep - sideouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v
[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ybnojoureq uor Aq palip3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

9661 AIne - sjeluswepun4 Buuesuibu] eressgog

‘g Joboy 966}
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

September 1998

v

ineering

View Point-Oriented Analysis

Other

Function-Oriented Analysis
Requirements Specification

Object-Oriented Analysis
Analysis Modeling
Informal Approach
Process-Oriented Analysis

Structured Analysis
Method-Based Analysis

Requirements/Problem/Systems Analysis - Analysis
Data-Oriented Analysis

Software/System and Hardware Procurement

Development Process
System/Software Requirements Analysis

Software Engineering Principles
ISO/IEC 12207 Primary Processes

Software Engineering Overview
Software Problem/Crisis
Acquisition Process

© |IEEE Computer Society

Introduction to Software Eng

3Y

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

‘g Joboy 966}
Bny - uolp3 Uiy - yoeouddy sJsuomnoeld v : Bunssuibug aremyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

I

v

Formal Specification/Specification Languages

Methods/techniques

Specification Attributes
Specification Tools

Algebraic Specification

Animation of Requirements Specification
Real-Time Software Specification
Requirements Document

Prototyping

Requirements Process/Activities

Requirements Identification/Capture
Non-Functional Requirements
Jackson System Development
Types of Requirements

Requirements Evolution
Software Architectural Design
Software Detailed Design

Object-Oriented Design

Design Process/Activities

Real-Time Systems Design

Design Document

September 1998

© IEEE Computer Society

4v

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

‘g Joboy 966}
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

September 1998

Programming Style/Techniques

Structured Programming

Jackson System Development
Internal Documentation

Function-Oriented Design
Data flow Design

Structured Design
Process-Oriented Design
Programming Languages

Tools

Human/Interface Design
Software Coding

Design Methods/Models
Design Specification

Concepts and Principles
Design Strategies

Data-Oriented Design
Design Improvement

Formal Methods

Data Structure Design
Merise

© IEEE Computer Society

41

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

‘g Joboy 966}
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

Tools

User Manual

Code Generators

I

(o))
£
€
o) €
£ ©
(o)
IS 22
£E 282 =
g £Ea £
—
gmdm
cEQCE
o8 c
o O
— 5.2 2
T o5
c =0
o0 Lo
= O =
C.wea
C O = =
S 0 Q2 ©
L 310

Principles

Top-Down/Bottom-Up Programming

System/Software Integration

Integration Plan
System/Software Testing

Unit/Module Testing

System Testing

>

A

Testing Fundamentals/Basic Concepts/Principles

(@]

£

=

3

(®)]

2er
R
e_m.m
L
© 7
£8585
S ® L3
553 5 =
ne.nk.h;&
S e Q% 0
D £0O0+H+

Interface Testing

September 1998

© IEEE Computer Society

4z

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

Gg8e | "uep - sideouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O

$661 - spiepuels Buussuibug a1emyos = e i
AaiydwnH 'S snepm
G661 "uep - Buussuibug asemyos 4oy aundiosiq v
[lpuogoe usydsls pue e weyeln ‘sieg diyd
G661 - Juswanoidw) ‘swabeuey ‘@onoeid : Buussuibug aiemyos
ybnojoure uor Aq palip3
G661 - sapIing Buussulbug a1emyos ke gid g &
9||IAJBWWOS Ue|
G661 - UONIPT UIG - Buuesuibug aremyos T T T 7
uewSSald °S Jeboy
966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy
9661 AInp - sjeluswepun Buussulbu] auessgg ke e
‘g Joboy 966}
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos e e
1afey] "H payeory pue uewyioq ulie Aq palp3
9661 "das - Buuesuibug aremyos
alojer feyued
/661 - Buuesuibug aremyosg o} yoeoiddy pajesbajujuy ~ 7
19698|1d @ousime] Leys
866 UoJB - 9011081 pue Aloay] : Buussulbug a1emyos ks ks = e & ks
(@] -
= 2 5
3 3 o
x (@)} »n
8 £88c:.% g¢g
17 C = O =
2o .W % & B = m £ ?
238 s LS8 3 £°
C8E @ _8BE5FT S 89 9
P X O Q =
%) m.mmmemgwm 8
S oo 0ODE =og=0c<E 2o
E L P25Hh Co0ovco s L
S 2 Z3o-oCcTaeSSeost
UeeOheeeeWMPaWCmmn
-2 0acrFgra g<r+ 8
5} o ®
n n =
o
o

September 1998

System Operation
Maintenance Process
Documentation
Maintainability
Maintenance Process

© IEEE Computer Society

43

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy
19698|1d @ousime] Leys

8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

>

Tools

Cost

ISO/IEC

Cycle

Supporting Life

12207

Processes

Configuration Management Process

>

Process Implementation

>

Configuration Management Plans

Tools
Configuration Identification

Configuration Control

e

>

Change Control

Item control/storage

Change Management
Configuration Status Accounting

>

>

Status Accounting and Auditing
Configuration Release Management and Delivery

Version and Release Management

System Building
Quality Assurance Process

Process Implementation

Quality Assurance Plans

September 1998

© IEEE Computer Society

44

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

> e

Quality Assurance Process/Activities

Quality Management
Product/Process Assurance

Quality Attributes
Verification and Validation Processes

Verification and Validation Plans

Software/Program Inspections
Walkthroughs

Design Verification/Validation
Requirements Validation
Cleanroom Method

Traceability

September 1998

Requirement Reviews

Static Verification
Audit Process

Tools
Joint Review Process

Design Reviews

Reviews
Code Reviews

Audits

© IEEE Computer Society

40

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

September 1998

v

Life Cycle
Models/Estimation

Estimation

12207 Organizational

Activities/Framework

Cost/Effort Estimation

Duration/Schedule Estimation

Resource Estimation

Building

COCOMO

Size Estimation

FPA

Non-labor cost Estimation

Risk Management

Risk Assessment/Analysis

Risk Control

Concepts/Principles
Planning

Estimation

Initiation and Scope Definition
Risk

Management Process
© |IEEE Computer Society

Processes
Techniques

ISO/IEC

4b

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

September 1998

Risk Table/Matrix

Project Scheduling

Risk Areas
Process/Activities

Risk Model
Management of In-house software development

Tools

Review and evaluation
Resources Evaluation and Improvement

Project Control/Monitoring/Tracking

Managing People
Leading the project/Manager's Role
Management of contracted software

Staff/Personnel/Resources Planning
Reporting

Execution and Control
Technical Management

Cost-benefit Analysis
Planning Tools
Project Budgeting

Productivity

© IEEE Computer Society

4/

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uonipg yip - yoeouddy sJauonnoeid v : Buussuibug sasemyos 7

Jakey] "H piyeolY pue uewod ulleN Aq palp3

e s e e

9661 "dog - Buuesuibug siemyos © -~ © 7 - v vv
alojer feyued
/661 - BuueauiBug a/emyos o} yoeosddy pejesbeujuy - T T T T T T ke > > >
Jebas|d sousImeT] Leys
VVV ke > > >

8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

©
©
o
=
—
5
_ ——
3§ 5
o8 9o £
— o ¢
a k] o c 2]
£ o3 58 ¢ S © (7] 1]
G c = < W 5o 4] %]
tS&.N.Olnn Co = <
cC oo FT=FTo2o 2 K%} =
o525 EZL=2 s 2 SE
E232Cgs20FcLas258as
g EESS52c8F2,28¢852 2
sso/ﬁSaHnE&dWcmmu =
Q.= = 9 = = = TT 0 s 252 =2
mbPe Oneh%vo ©
r..@buw MASCSEW. = o
A »n oS w0 n n g [P =)
- W > w» DO 0 E S
c O OO O D Q = O &
o NS OO0 00N = 0O
£ Q0 S0 00 WO psS 00
o o ocaoaoo oo 0a?
> 0 o <)
Sa a &
o o
E

September 1998

© IEEE Computer Society

48

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

September 1998

Spice

Special Topics
Real-Time Systems Requirements Specification

Object Oriented Metrics
Software Attributes
Technical Metrics

Real-Time Systems Design
Real-Time Systems Testing
engineering/Reengineering

Management Metrics
Tools

Complexity Metrics

Quality Metrics

Size Metrics
Reliability Metrics

Process Metrics
Product Metrics
Data Collection
Other Metrics
Real-Time Systems

Metrics/Measurement
© IEEE Computer Society

Re

49

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

‘g Joboy 966}
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

I

Reverse Engineering

Software Development Environments

CASE

CASE Classification
Integrated CASE

CASE Workbenches
Integrated Environments
Tool Integration
Tools/Toolsets

>

Unix Environment
Software Development Methodologies/Paradigms

>

>

Object-Oriented Approach

Object-Oriented Design

Object-Oriented Analysis

Definitions, Concepts, Principles
Object-Oriented Development

Object-Oriented Programming

Formal Methods

>

Formal Specification/Specification Languages

Definition

Formal Design

September 1998

© IEEE Computer Society

ou

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

Prototyping

Prototyping in the Software Development Process

Design and Prototyping
Prototyping Techniques

Requirements Analysis and Prototyping

User Interface Prototyping

Jackson System Development
Data-centered Approach

Function-Oriented Approach
Knowledge-based Approach

Structured Systems Analysis and Design Method

(SSADM)

>
>
>
> >
>
>
>
>
A
-
&
c
o €
= O
«c >
Ele
© O
>
o E
@S L
a S82
© T o=
Soco4d
leDl.H
Soo@
5285
S EE G
2 3838=
gD E
(o] (o]
n n

Defensive Programming

Definitions

Design Rules

Exception handling
Fault Avoidance

Fault Tolerance

September 1998

© IEEE Computer Society

ol

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 100 - MaIA onslioH v : Bupssulbug sremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

966 AInp - sjejuswepun4 Buussuibu] aressgag

'S Jeboy 9661
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy
19698|1d @ousime] Leys

8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

Models

Redundancy

Specification
Software Reuse

Code Reuse

Software Development for Reuse

Software Development with Reuse

Standards

>

Evaluating Software Engineering Standards

Quality Standards

Other Topics

Cleanroom Software Engineering
Safety-Critical Software

Software Tools

Fault-Tolerant Software
Human Factors
Client/Server

Ethics

Expert Systems

Software Engineering Education

Software Psychology

September 1998

© IEEE Computer Society

o<

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Asjireq "3 preyory

G861 "uep - sydeouon Buussuibug aremyos

uewSSald 'S Jeboy

8861 "qo4 - apIinY) sJauulbag v ‘Buussuibug aiemyos

a0u| 'q

6861 - Buussuibug a;emyos

Jawed ' sawep pue abesg ‘d maipuy

066 YoJe - Buuesuibug swalsAs alemyos

sauop "M Aiobain

0661 YyoJep - bussuibug aremyos

IJoUpUB ouIqg pue LBAezep IpYsN ‘1zzayw) ojied

166} "uer - Buusauibug asemyos Jo s|eluswepuny

ybng uyor pue Aauop ue| ‘1og ybnog

2661 Aep - Buussuibug aremyos

wn|g ‘| 8dnig

2661 190 - MAIA OnsIjoH v : Buussuibug aremyos

191\ UBA B[UA pue 18IIA UBA SUBH

66| |udy - 901014 pue sojdiduud : Buusauibug aiemyos
YOURODOW g MaIpuy pue Jakey] ‘H preydly

€661 ‘Bny - aanoadsiad ueadoing vy : Buusauibug aiemyos
J9bu0) 'y ang

€661 "09(Q - Buuesuibug aremyos mapN ayL

yoeyog 'y usydalg

€661 - uonip3 pug- bupssuibuz siemyos

8}JOJDOOAN YIB\ pue pio- [3||IASN

¥661 100 - Bunesuibug aremyos BuignpRSi4

"d ‘Ioyeys v ‘0|qed 8p "q ‘UOHBN g ‘Ubnodired ‘r ‘ezzep 'O
Y661 - spJsepuels Buusaulbug aiemyos

AaiydwnH 'S snepm

G661 "uep - Buussuibug asemyos 4oy aundiosiq v

[lpuogoe usydsls pue e weyeln ‘sieg diyd

G661 - Juswanoidw ‘Juswabeuepy ‘@anoeld : Buussuibug aiemyos
ubnojoire uor Aq payp3

G661 - SOpINY Buusauibug aiemyos

9||IAJBWWOS Ue|

G661 - uonip3 uig - bunesuibuz aiemyos

uewSSald °S Jeboy

966 YoJe\ - Buussuibug asemyos o} aping) sabeuey v
UOSPNH [YouUdpal4 pue zoolojyag Iy

9661 AIne - sjeluswepun4 Buuesuibu] eressgog

‘g Joboy 966}
Bny - uop3 Yy - yoeouddy sJauonioeid v : Buussuibug aiemyos

1afey] "H payeory pue uewyioq ulie Aq palp3

9661 "das - Buuesuibug aremyos

alojer feyued

/661 - Buusauibug asemyos 01 yoeouddy paleibalul uy

19698|1d @ousime] Leys
8661 Yo\ - 9onoeid pue Aloay]| : Buusauibug aiemyos

Technology Transition

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 53

Appendix D.
Undergraduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 54

5 |
= - 5 |C
= = el 7]
2 | ® gu |3
wi wi 52 |E
[} (0] c© =
& & £2 |ho
H H 8% |4 2
X5 |X3 Fo (o8 | o=
S D& Jo |8¢e = 3
- D - D o = =5 S c
ES |EQ XxXS$=E |cS | E5
c © = RO R =W Oc¢c
< o cCo0n .0 Qo > 0
[N} o205 .2 cW g oo i
k=N £HNT [95 0 2] EN
Eg |Exz2 |29 |22 | &8¢
=9 =Q9n 63 o RS 5 2
23 1232|225 |£o |23
SRS OEO® |90 o5 ow
28 |2R£ [29% |2 | 2=
o £ o.Em 5'5.9 ol o N
20 20c |.2a30 20 2
cw cwnxE c IS [[
om Oom =2 o E= om om
Introduction Software Engineering 2 2 6 1
Software Engineering/IS Engineering vV vV AN Y
ISO/IEC 12207 Primary Processes 1 1 2 3 7
Development Process 1 1 2 3 7
General Subjects 2
Software Development Vv
Foundation of software Development Vv
System/Software Requirements Analysis 1
Analysis Vv
Object-Oriented Analysis Vv
Requirements Engineering Vv
Software Detailed Design 1 1 2 4
Design vV v v
Human/User Interface Vv Vv v
Object-Oriented Design/Modeling Vv
ISO/IEC 12207 Supporting Life Cycle Processes 1
Quality Assurance Process 1
Quality Vv
ISO/IEC 12207 Organizational Life Cycle Processes 1 1
Management Process 1 1
Project/Software Management Vv
Information Management v
Special Topics 3
Real-Time Software/Embedded Systems Vv
Reengineering Vv
Software Security/Safety Vv
Other Courses 11 15 18 20 28
Accounting
Algebra v
Algorithms v v v
Artificial Intelligence v
Business Management Vv vV
C++ A A
Calculus vV
Chemistry Vv
Communication Skills and Professional Issues v Vv
Compilers Vv

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 55

Computational Methods/Computing
Computer Architecture

Computer Graphics

Computer Science

Concurrent Systems/Programming
Data Bases/Data Management
Data Strucutres/Data Organization
Digital Computer Organization
Discret Mathematics

Economy

Ethics

File Management

Foundations of Computer Science
Hardware

Human/User Interface

Human Factors/Human Resources
Logic

Marketing

Mathematics

Mechanics

Microprocessors
Networks/Networking

Operating Systems

Physics

Programming

Reuse

Semantics

Simulation

Software Workshop

Statistics

Technical Communication and Writing
Telecommunications/Communication Systems

ISO/IEC 12207 Primary Processes
Development Process
System/Software Requirements Analysis
Formal Methods/specification languages
Software Detailed Design

BSc in Computer Science/Software Engineering

University of Birmingham, UK

vV

- < AN

BSc in Computer Science/Software Engineering

University of Birmingham, UK
with Business Studies

< <

vV

vV

University of London, UK

Imperial College of Science, Technology and
Medicine MEng Computing (Software Engineering)

<
<<<

University of New South Wales, Sydney, Australia

Bachelor of Software Engineering

<
<

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 56

5 |
g | e 5 |T
= = - O [7%2]
2 | ® gu |3
wi wi 3¢ |5
o o €S | >
© S 2 | =2
2 2 lols) &= 2
X5 |X3 Fo (o8 | o=
SH 2D o |S< |58
£8 |8 xsE (22 | 25
o < © < = RO R =W Oc¢c
< o cCo0n .0 Qo > 0
[N} o205 .2 cW g oo i
k=N £NDT 853 2] EN
Es |Ez3 |52 |82 | 8¢
=9 =90 s 5o o £ £ 3
nm>s @3, [28<S [28 oz
— O — Q9 |==2uWw — N - O
o E OEw [OQs |[©Oo% X%}
28 |2R£ [29% |2 | 2=
29 828 |83c |88 | B
o S gfm |o58 |l o0
20 20c |.2a30 20 2
cw cwnxE c IS (] C © [
om Oom =2 o E= om om
Human/User Interface v Vv
Software Coding 4 4 1
Commercial Programming v Vv
Comparison of Programming Languages v v
Programming Vv
Programming Languages Principles v v
Programming Methods Vv Vv
System/Software Testing 1 1
Verification, Validation and Testing v v
ISO/IEC 12207 Supporting Life Cycle Processes 1 1
Verification and Validation Process 1 1
Verification and Validation Vv Vv
ISO/IEC 12207 Organizational Life Cycle Processes 2 2
Management Process 2 2
Project Planning v v
Strategic Management Vv Vv
Special Topics 1
Real-Time Software/Embedded Systems Vv
Other Courses 29 21 2 14
Accounting Vv Vv
Algebra Vv
Artificial Intelligence VW 2| VAV e v
Automata Theory Vv
Calculus Vv
Cognitive Science Vv Vv
Compilers Vv Vv Vv
Computer Graphics Vv Vv Vv
Computer Structures Vv
Trends in Computing v
Data Bases/Data Management Vv Vv
Distributed Systems Vv
Evolutionary Computation Vv Vv
Expert Systems e Ve
Foreign Language Vv
Image Processing v Vv v
Internet v
International Business Vv Vv
Logic Vv Vv

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 57

Marketing
ML (Programming Language)
Networks/Networking
Numerical Methods
Operating Systems
Combinatorial Optimization
Pattern Recognition
Parallel Systems
Prolog
Robotics
Simulation
Statistics
Telecommunications/Communication Systems
Virtual Reality
Optional specified (humber)
Optional specified (credits)
Optional non specified (number)
Optional non specified (credits)
Project/Studio (credits)

<_ | University of Birmingham, UK
= |= < | BSc in Computer Science/Software Engineering

<
=~ <

120

20
V(40)

University of Birmingham, UK
<_ <. | BScin Computer Science/Software Engineering

with Business Studies

120

V(40)

University of London, UK

Imperial College of Science, Technology and
Medicine MEng Computing (Software Engineering)

16

University of New South Wales, Sydney, Australia

Bachelor of Software Engineering

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 58

Summary

Medicine MEng Computing (Software Engineering)

University of New South Wales, Sydney, Australia

[o)) D
£ £
5] 5] g
- 5
(o)) (o))
5| & 8
o o £
| 2| 8 -
« £ « £ 5 £
56 | 53 @ 2 29
o | =9 o 5 | S&
E o E o x g c <SS
© S c o .2 i Oc
£ o £ 09 - Q |
20 260 | c® o <
=N SEnNT _8 5 © =9
Es Esd| o £ s
55 | @359 39 5| 5&
- —af| =2] i<}
o £ SR [Sle) 5 ow
=8 285 | 29 = 2c
3 3 25 5 2=
EQ | EQE| E8 S £<
om Oom =2 o = m om
2 8|13 8|3 8|3 §|z3 8
o] o] o] o S o]
> Q > Q > Q > Q > Q
g 212 218 S8 2|8 ¢
2 2|13z €|z &z &3z g
o o o o o o o o o o
Introduction Software Engineering 2 2 6 1
ISO/IEC 12207 Primary Processes 1 7|1 6|2 4 7 A
Development Process 1 711 6|2 3 7 A
General Subjects 2
System/Software Requirements Analysis 1 2 1
Software Detailed Design 1 11112 1 4
Software Coding 4 4 1
Software Testing 1 1
ISO/IEC 12207 Supporting Life Cycle Processes 1 1 1
Quality Assurance Process 1
Verification and Validation Process 1 1
ISO/IEC 12207 Organizational Life Cycle Processes 2 1 1
Management Process 2 2 1 1
Special Topics 1 3
Other Courses 11 29|15 21|18 2 |20 28 14
Optional non specified (number) 16 5 13
Optional non specified (credits) 20

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 59

Appendix E.
Undergraduate Programs in Software Engineering -
Classification of Courses by Related Discipline

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 60

Communication
Communication Skills and Professional
Issues

Technical Communication and Writing
Computer Science
Algorithms
Artificial Intelligence
C++
Compilers
Computational Methods/Computing
Computer Graphics
Computer Science
Concurrent Systems/Programming
Data Bases/Data Management
Data Structures/Data Organization
File Management
Foundations of Computer Science
Operating Systems
Programming
Semantics
Simulation
Software Workshop
Electrical Engineering
Computer Architecture
Digital Computer Organization
Hardware
Microprocessors
Management
Accounting
Business Management
Economy
Marketing
Mathematics
Algebra
Calculus
Discrete Mathematics
Logic
Mathematics
Statistics
Project Management
Project/Software Management
Science
Chemistry
Mechanics
Physics

BSc in Computer Science/Software Engineering

University of Birmingham, UK

vV

<

vV

BSc in Computer Science/Software Engineering

University of Birmingham, UK
with Business Studies

vV

<

vV

Imperial College of Science, Technology and

University of London, UK
Medicine

<

< <

<

vV

Universityof New South Wales, Sydney, Australia

Bachelor of Software Engineering

vV

vV

vV

University of Ottawa, Ontario
B.A.Sc. in Software Engineering

SRR SR RS

Ve

<|<in <k <

<
<

© IEEE Computer Society

September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 61

S
2| g g
5] 5] T B
el 2 s 4 <
el 2 | 8 g
wi w s g £
g g £ g 325
S| £ |8 3 9%¢ o
x5 |x% Fd 38| o%
29 29 g 9 sc S0
£8 |8 kg g 22| £5
c © < D .2 H £uw O c
E=} 09,9 q 5 .
[¥3] 90 2|c H o <
£N | ENTI8s T O =9
Et |Esdlse & 22 | &S
55 8395198 § 23 | 82
-2 |«28EK2 J Z2a Z 0
o £ OEfE oo g S S ow
28 | 2R8£129Cewd 2= 2c
92 |2Q32@escg 88 | B
o £ sfm|g58 g o2 [oX %)
20 2 90c Eg_guCJ E% .E<'
S8 |S535 58 S5m
Telecommunications/Networks 1 2 3
Networks/Networking vV
Telecommunications/Communication vV
Systems
Application Domains 1
Real-Time Software/Embedded Systems Vv
Cognitive Science 1 1
Cognitive Science Vv Vv
Communication 1
Foreign Language Vv
Computer Science 24 20 1 13
Artificial Intelligence VW | Ve v
Automata Theory Vv
Commercial Programming v v
Comparison of Programming Languages v Vv
Compilers v Vv v
Computer Graphics Vv Vv Vv
Computer Structures Vv
Trends in Computing Vv
Data Bases/Data Management v Vv
Distributed Systems Vv
Evolutionary Computation Vv v
Expert Systems Ve Ve
Human/User Interface v Vv
Image Processing Vv Vv Vv
Internet Vv
ML (Programming Language) v v
Operating Systems vV vV
Parallel Systems Vv Vv Vv
Pattern Recognition Vv
Prolog v v
Programming v
Programming Languages Principles v v
Programming Methods v v
Robotics Vv
Simulation v
Virtual Reality v v
Management 5 4
Accounting Vv Vv
International Business v Vv
Marketing vV v
Strategic Management v Vv
Mathematics 4 2 2
Algebra Vv
Calculus v

© IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 62

Universityof New South Wales, Sydney, Australia

D D
£ £
o @ g
21 & |8
2| & | 58 3
L L g 3
ol g | £ g3,
S| £ |8 g8 %< 2
¥5 [x% ooy e o=
S0 D0 g ¢ £ =8
€8 €8 k& d 5| ££
sc |s¢c PE & W o2
£0 |cOoafl.Q G L
D0 o0 90 |cW A [ol
£ [EDNTISy © B
Es |Es2[2 g 2 R
=0 =90 |o % g dc:)' = 2
23 |23gEe F 243 | 2%
o £ OEfE oo g S ow
28 | 285|129 ¢ d = 2c
29 |89 %awcO S 3
oS |oEd@|s59 g 2 5%%)
20 2 90c Eg_guCJ g .E<'
S8 |SREBEZSS m S5m
Combinatorial Optimization v Vv
Logic Vv Vv
Numerical Methods v
Statistics Vv
Project Management 1 1
Project Planning v v
Software Engineering 2 1
Formal Methods/Specification languages Vv
Verification, Validation and Testing v v
Telecommunications/Networks 1 1
Networks/Networking v
Telecommunications/Communication v
Systems
Optional specified (number) 1 3
Optional specified (credits) 120 120
Optional non specified (number) 16 5 3
Optional non specified (credits) 20
Project/Studio (credits) V(40) | V(40) v v v

© IEEE Computer Society

September 1998

63

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Summary Table

. 9|qe|leAY S8sIno) [euondO m‘.lv] —
Buussuibug asemyos M_ 29'Y'g ®
1 “eM SEN -
OLIEJUQ "BMBIQ JO AlISIBAIUN s8s1n09 A1osindwo) -~ ™ <+~ < ™
a|ge|leAy s$8sino?) [euond
Buussuibug asemyos Jo Jojayoeg 1qeenY ol ° ©
| ny ‘ABupAs nosg mi AlSIaN
Bl[BASNY ASUPAS 'SSIEM UINOS MBN JOANSISAIUN s9sIn09 Aiosindwo) mw - - o} N
(Buneauibug asemyos) Bunndwo) Bug auIpaly | aigeirey sesinog feuondo — |-
pue ABojouyos] ‘@ousiog Jo ab9jj09 [euadw) ©
MN ‘uopuoT Jo Alsianiun sesinog Alosindwon pnl) ™ —
Salpnig ssauisng yiim 8|ge|ieAy s8sino) [euondp % — < |lou o~
Buusauibug aremyosg/aousiog Jaindwo) ul 9Sg
MN ‘weybuiwiig jo Alsiaaiun sesinog Alosindwon ~ © |~ o |~
9|qe|leAY S8sIn0) [euond) +— M - o <t ~ —
Buussuibug ngtom\ooco_%w ESQEmo ul 0sg S
¢ 1wl SEN
N “wieybuiuulg Jo Ausisaun s9sin09 Aiosindwo) — |00 +— [sV)
o=~
2
la|l=
5|E|B
HHE
2le|=
o — W ["ER]
£ c 2IE =
(ORI Q cl|lolo
3 O o IS = |0 |0
clc & c [0) c ||l
8 s .85 e glo|e
(SR~ = c|@ cl|c
0§ P o L5 2lel|e
0 0w E T =S clc
2|3 5 (TN o E|=|=
=RRe] = © | ®©
ZElEac|lo @0l0 2 9
c 5 8 ® S oS 9lsls
> EE 0= c¢c =50 0|0|0
0 000 £t 88 LG olE|E
CCCEEMMPSTOD.OP

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

Appendix F.
Graduate Programs in Software Engineering -
Admission Requirements by Related Discipline

64

© IEEE Computer Society September 1998

0o

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

3S Ul SN

pueNoog ‘Builng - Bung jo Ausieaun | 7 e -
3JS UISIN ~
BlOSaUUI ‘Sljodeauulpy - Sewoy] 1S Jo Ausieaiun | 7 o ks
3JS UISIN S o =
Vd ‘UOIUBIOS - UoBIS Jo Ausienun | T S < 7 2> @
UoNBJIU82UOD IS - 89UBI9S JeIndwon Ul SN °
AND sesuey-LNOSSI JO ANSIaAlun P ks & &
3S Jo JeIsepy So
puelAiep “Yed abajj00 - pueliepy Jo Austeaun | T o < ke -
3JS UISIN
USpoaMg - Agauuoy/euoIys|EY Jo Austeaun | &
3JS UISIN
X1 ‘UCISNOH - 8ye Jea|D - UolSNoH Jo Ausseaun | = -
3S ui uondo yum Busauibug jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun &Y
3S Ul ur uonezifeads Yim oS -
v ‘AsebBen - Arebleq jo Ausieaun | 7 ke ks o
JS Ul'YOS'N S o
DO ‘[BSIUOIN - [BIUO B 2909ND NP SHSIoAUN | 7 & < ke e O e
3S Jo JeIsep -
XL ‘UUOM HO4 - Alsionun uensuyo sexal | - o M e o
3S Ul SN So 5
XL ‘sejleq - Ausionun 1sipoyley ussyinos | 7 & < = 7
3S Jo JeIsep 5
VM ‘a[ess - Ausionun sjiess | - i B -
ISUSW | 5
v ‘ellof &7 - Ausianiun [euoeN | > @ >
IS Ul SN 00
‘sBuljjon uo- - Ausianiun [eaibojouydss] [euonen
ISUSN [_ 1 o
PN ‘youeig BuoT 1SOA “AlISISAIUN YINOWUOY | ©~ o = @ ke e < >
3S Jo JeIsepy o
S ‘UBNBYUBI - ANISIaAIUn d1elS sesuey | T o & Rdiia b g bl e
3S Jo JeIsep
BI[RAISNY ‘BI[RASNY YINOS 10 AlSieAun siepulld | ~ ks
3S Jo JeIsepy
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug
uonelueduo) JuswdojeAeq 8JeMIOS - IS Ul SIN
1 ‘oBeoiyn - Ausianiun [nedeq | 7 - kd g -
uondo 3S - 80uaI0g Jaindwon ul JBISE
DD ‘[BSIUOI - BIPIOOUOD | 7 L2
3S Jo Jsl1se| x| x
vd ‘UBingsnld - Ausiaaiun uojspy a1bausen e ~N7Flo o T
Bunesuibug aremyos ul SN
uebiyoI - AusIaAlun Smaipuy | 7 ke & ke ks L2 ks
)
)
°
9
2
)
- <
3 @ @]
© Q & o)
> c o I
3 g 2 5
g Q o S
o (3}
1 o -
o © o
8 S Q £
c S = = » = S c
o S B ‘B o 3 E o S
3] £ 5 & = o= O IR
@ oo S ¢ 3 c £ 9 8 258
o 590292 o o < g S 23 o ¢ g
& 52828, B 38 55 B B
o 3 8 co o €32 2€238 § RG]
£ T80=>285302l8E,2U5 G e g
) wRee(eﬁSmmmmcane mwESCEQO
(S I aewwed.mrmm&aﬁme - £ ® = >
[} 5 0 O = O = F - © Q90 QT 9 Q Q
c © 5 222 62=52csog<c 2 ©veE5E€E
= © s £ 592925 o8 PE=GE 0] 3
o = 5.2 0028 N 20T 2083020082090 00Q
o O GNSSranmARDPhMtSHimACCC
[T] - .- 03
P 2 8883 £ 3 iFs
(=] w w.c wnoe

September 1998

© IEEE Computer Society

obb

IS UI'SIN
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BlOSauUI ‘sljodeauul|y - SBwoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJURIOS - UOJUBIOS JO AlISIaAIUN

Uo[lBJIUSOUOY JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-Unossip Jo Alsiaaiun

3S 10 J8lse\
puejAie|y “Yied 869)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey Jo Ausiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|D - UOISNOH Jo ASIBAIUN

3S ui uondo yum Busauibug jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

3S ul Ul uoezi[eoads yium oSN
v ‘Aebe) - Arebje) jo Ausianiun

3S Ul 'VOS'N

0D ‘[eSJIUOI - [BRJIUOIN B 9809ND NP 9MISISAIUN
3S 10 J8lse\

X1 ‘UMOM Ho4 - Alsiaaiun uensuyD sexs |

3JS Ul SN

X1 ‘se|[eq - Aus1oAlun 1SIpPoyId|y UIayINog

3S 10 Jelse\

VM ‘@Hess - Ausieniun apess

3S Ul SN

vO ‘ellor e - Ausieaiun [euoneN

JS Ul SN 09

‘sBuljjon uo- - Ausianiun [eaibojouydss] [euonen
3JS Ul SN

PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO
3S 10 J8lse\

S ‘ueleyuely - AlISIaAIUN BlBlS Sesuey)

3S 10 Jelse\

Bl[eJISNY ‘Bl[BAISNY YINoS Jo AliSIaAlun sapulld
3S 10 J8lse

714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

uonesuasuo) juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 80uaI0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJodu0)

3S 10 Jelse\
vd ‘ybingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

vV

vy
September 1998

v o[VVY

o*
o*

v

Principles of Hardware Organization

Probability/Stochastic Processes

Human-Computer Interaction
General Engineering

Operating Systems

Programming
Programming Languages

Programming Methods

Unix
Electrical Engineering

Computer Architecture
Circuits and Devices
Digital Computing
Discrete Mathematics
Linear Algebra
Mathematics

Statistics
© IEEE Computer Society

Computer Science

Data Analysis

Data Structures

Data Bases

Discrete Structures

File Processing

General Engineering
Mathematics

Calculus

o/

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'SIN
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BlOSauUI ‘sljodeauul|y - SBwoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJURIOS - UOJUBIOS JO AlISIaAIUN

Uo[lBJIUSOUOY JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-Unossip Jo Alsiaaiun

3S 10 J8lse\
puejAie|y “Yied 869)j09 - puejhiepy jo Ausiaaiun
3JS Ul SN
uapaamg - Agauuoy/euonysiiey Jo Ausiaaiun
3JS Ul SN
X1 ‘UCISNOH - 8y Jes|) - UoISNoH 10 Ausieaun = ke
3S ui uondo yum Busauibug jo Jaisep
09 ‘sbundsg opeiojo) - opeiojo) Jo Ausieauny ks
3S ul Ul uoezi[eoads yium oSN
qv ‘Arebreo - Aieben jo Ausionun ke
3S Ul 'VOS'N
0D ‘[eSJIUOI - [BRJIUOIN B 9809ND NP 9MISISAIUN =
3S 10 J8lse\
X1 ‘UMOM Ho4 - Alsiaaiun uensuyD sexs |
3JS Ul SN
X1 ‘se|[eq - Aus1oAlun 1SIpPoyId|y UIayINog
3S 10 Jelse\
VM ‘epess - Ausieniun aness
3S Ul SN
vO ‘ellor e - Ausieaiun [euoneN
JS Ul SN 09
‘sBuljjon uo- - Ausianiun [eaibojouydss] [euonen
3JS Ul SN
PN ‘youeig BuoT 1sop ‘Ausioaiun yinowuopy = ke
3S 10 J8lse\
S ‘ueleyuely - AlISIaAIUN BlBlS Sesuey)
3S 10 Jelse\
Bl[eJISNY ‘Bl[BAISNY YINoS Jo AliSIaAlun sapulld
3S 10 J8lse
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug
uonesuasuo) juawdojpaag a/emyos - 3S Ul SN
1 ‘oBeoiyn - Ausseniun negeq | 7
uondo 3S - 80uaI0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJodu0)
3S 10 Jelse\
vd ‘ybingsiid - Ausianiun uojgy aibsuie)
Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy
[7)
=
o
c ..M
2508
o O£ £ =
b 0Og o @
|l 5 Q9 2§
o8 ol £ .0
O O = > DO =
HEIRAPIRIR:
52 = 0 W.=
c=0 o952
Wlg + @ © 5
NEEEERE
862556 ®
S Onwvw o=z
= Q
o ()
(%) [o

*two

required

September 1998

© IEEE Computer Society

(o]e]

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

3JS UISI 9ousuadx3g [euondo
puejjodos hmC___:w - mC___:w jo \ﬁ_w._®>_CD abpajmouyy/sesinoy paiinbay -
3JS uISIN BlOSBUUIN 9ousuadx3g [euondo
hw__OQ.NQCC__\/_ - Sewoy] 1S Jo \ﬁ_w._®>_CD abpajmouyy/sesinoy paiinbay
JS Ul SN 9ousuadx3g [euondo
Vd ‘UOJUEBIOS - UOJUBIOS JO AlISISAIUN aBpomouyysesinog paanbay | | T —
uoneJIu82uUoY IS - 80UsI9S JeINdwo) Ul SN sousyedk3 euondo
\ﬁ_o Sesuey-UnossiA Jo \ﬁ_w._®>_CD abpajmouyy/sesinoy paiinbay ~ s N
3S Jo Jalsepy 9ousuadx3g [euondo
UCM_\CN_\/_ ,v_;_.mn_ m@®__OO - UCN_>_N_>_ jo \ﬁ_w._®>_CD abpajmouyy/sesinoy paiinbay -
3JS U S 9ousuadx3g [euondo
uspesms - >Q®CCOE\NCO_V_m_Lm¥ jo \ﬁ_w._®>_CD abpajmouyy/sesinoy paiinbay -
3S Ul S X1 9ousuadx3g [euondo
.COHwDOI - 87 Jes|D - UOISNoH Jo \ﬁ_w._®>_CD abpajmouyy/sesinog painbey | T - -
3S ur uondo yum Bussuibul Jo Jaise souayed3 euondo
00 .w@C__Qm Opelojo) - 0pelo|o) JO \ﬁ_w._®>_CD aBpajmouyy/sesinog painbay N -
3S Ul Ul uollezierads yim OSIN Souaec feuondo
v h\A‘_.m@_.mo - >‘_MD_.®O jo \ﬁ_w._®>_CD abpajmouyy/sesinoy paiinbay N -
JS Ul YOS 9ousuadx3g [euondo
OO h_.NO_“EO_\/_ - [eSJJUO\ B O®Q@30 np alisisAlun abpajmouyy/sesinoy paiinbay N ® -
3S Jo Jalsepy 9ousuadxg [euondo
X1 hcto\s Hod - >”—_w‘_®>_CD uelisuy sexs] abpajmouyy/sesino paiinbay N
3JS Ul S oousuadx3g [euondo
X1 hm.m__.mﬁ_ - >”—_m_®>_CD Isipoyis|y wisyinos abpajmouyy/sesinoy paiinbay -
3S Jo Jalsepy 9ousuadx3g [euondo
YM hm_z.mwm - \ﬁ_m._®>_CD EINEN abpajmouyy/sesinoy paiinbay -
3JS Ul S oousuadxg [euondo
VO h.m__Oﬂ e - >H—_m_®>_CD |euoneN abpajmouyy/sesinoy paiinbay ©
3S U S 09D hwmc___oo 9ousuadx3g [euondo
Ho4 - \AH_WL®>_CD _NO_@O_OCr_Om._- |euoneN abpajmouyy/sesino) paiinbay
3JS Ul S 9ousuadxg [euondo
N _IOC.N;_m DCOl_ IS8\ F>H__w_®>_c3 yinowuow aBpajmouyy/sesinog paiinbay ~ -
35 J0 JaIsep sousnadxg [euondo ® -
SH ,CMH—MCCN_\/_ - >”—_w‘_®>_CD 8jelS sesue)y] abpajmouyy/sesino paiinbay
3S Jo Jalsepy oousuadx3g [euondo
elfeJisny ‘elfessny yinos jo Ausiaaiun siapulld aBpajmouy/SasiN0g paiinboy
3S Jo Jalsepy oousuadx3g [euondo
14 ,co.mmm NCOH>NO - >H__w._®>_CD Q_UU_N_u\CQEm abpajmouyy/sesinoy paiinbay
IS U S sousuadxg euondo | T -
1l ,O@MOEO - >”—_w‘_®>_CD Inedeq abpajmouyy/sesinog painbey | T -
uondQ 3S - 9ousI0g J8INdwo) ul JsIse| aouaiedx3 [euondo
00 h_.NO\:CO_\/_ - BIpJOJU0D abpajmouyy/sesino paiinbay ®
3S Jo Jalsepy 9ousuadxg [euondo
vd “sm_Dsz_n_ - >”—_w_®>_CD UojI3N ®_@®C~_MO abpajmouyy/sesino) paiinbay ™~ -
9ousuadxg [euondo N
Bunesulbug aremyos ul SN
CN@EO__\/_ - >H_w‘_®>_C3 SMalpuy abpajmouyy/sesinoy paiinbay ® ®
(]
X
o
o
2
2
-y 2o 2%
P
= Seo s 32
£ $ EQ c ®
2 3B E , L
@ »§28 55
S35 %o
S5 O ®© E = E
g 590 %o
20 c 25
E o c s £
SIS
owso z=zw2

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 69

Appendix G.
Graduate Programs in Software Engineering -
Classification of Courses According to Potential Knowledge Areas

© |IEEE Computer Society September 1998

/v

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builngs - Buing jo Ausiaaun

IS Ul SN
BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun

42

V2

V2

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

36

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3.0

3G Jo J8lse\
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

36

IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

40
pts

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

36

(credit
hours)

\/4

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

3.0

Vo [WAR

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

vV

3S U VIS
DD ‘[BQIUOIN - [EAUOJ € 99GIND NP QNSISAN

45

3S Jo JaIsep
XL ‘UUOM Ho4 - AsIioalun uensuyo sexsa]

31
(sem
hours)

V2

IS U'S
XL ‘Se|feq - Ausioniun ISIPOYIBIN UISYINOS

30
(sem
credit

hrs.)
3.0/
4.0

3S jo JeIsel
VM ‘ojeas - Ausianlun ajeas

45
(grad.

IS UI'S
VO ‘BlOP €7 - AUSIaAN [euoieN

60
(quarte

3.0

JS Ul SN 09
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen

33
(sem.

credits) | r units) | credits)

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

36

3S 40 J8ISEN
S ‘Ueneyue| - AISIBAIUN B1B]S Sesuey

33

(credit
hours)

3S o JsIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 J8lse\
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

36

(credit
hours)

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

2.5/
4.0

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

2.5/
4.0

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

45

\/1

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

48
(quarte
r

credits)

vV

2

vV

Credits

Grades

Introduction to Software Engineering
Software Engineering Principles

Software Engineering/IS Engineering

ISO/IEC 12207 Primary Processes

Development Process

General Subjects

Development Methods/Methodologies
Object-Oriented Development
Software Development

Software Development Environments and

Tools

System/Software Requirements Analysis

Formal Methods/specification languages
Requirements Analysis/Specification

Software Detailed Design

Design

Human/User Interface

Object-Oriented Design/Modeling

Software Coding

C++

September 1998

© IEEE Computer Society

/1

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builngs - Buing jo Ausiaaun

IS Ul SN
BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3G Jo J8lse\
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

v

V2

v

V2

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

Vv

Vv

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

3S U VIS
DD ‘[BQIUOIN - [EAUOJ € 99GIND NP QNSISAN

Y2

V2

3S Jo JaIsep
XL ‘UUOM Ho4 - AsIioalun uensuyo sexsa]

V2

V2

V2

IS U'S
XL ‘Se|feq - Ausioniun ISIPOYIBIN UISYINOS

3S Jo Jalsep
VM ‘emeas - Alisianlun apess

IS UI'S
VO ‘BlOP €7 - AUSIaAN [euoieN

JS Ul SN 09
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

3S 40 J8ISEN
S ‘Ueneyue| - AISIBAIUN B1B]S Sesuey

3S o JsIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 J8lse\
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

\/2

e

\/2

\/2

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

1

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

1

Implementation

Programming Methods
System/Software Testing

Testing
Maintenance Process

Maintenance

ISO/IEC

Cycle

Supporting Life

12207

Processes

Quality Assurance Process

Quality Assurance

Reliability
Verification and Validation Process

Verification and Validation

ISO/IEC

Life Cycle

12207 Organizational

Processes

Management Process

Estimation

IT Management
Productivity

Project Planning

Project/Software Management
Software Economics

Improvement Process

Software/Systems Process

Life Cycle Models

September 1998

© IEEE Computer Society

/2

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builngs - Buing jo Ausiaaun

IS Ul SN
BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3G Jo J8lse\
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

2-3

2-3

\/1

\/3

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

Vo[V

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

3S U VIS
DD ‘[BQIUOIN - [EAUOJ € 99GIND NP QNSISAN

1-3

\/1

3S Jo JaIsep
XL ‘UUOM Ho4 - AsIioalun uensuyo sexsa]

IS U'S
XL ‘Se|feq - Ausioniun ISIPOYIBIN UISYINOS

3S Jo Jalsep
VM ‘emeas - Alisianlun apess

Y2

V2

IS UI'S
VO ‘BlOP €7 - AUSIaAN [euoieN

JS Ul SN 09
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

ViVt

3S 40 J8ISEN
S ‘Ueneyue| - AISIBAIUN B1B]S Sesuey

3S o JsIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 J8lse\
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

Y2

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

VvV VY

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

\/1

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Special Topics

CASE

Measurement/Metrics

Real-Time Software/Embedded Systems

Reengineering

Reuse

Software Security/Safety

Other Courses

Algorithms

Analysis of Software Artifacts

Artificial Intelligence

Computer Architecture
Concurrent Systems

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Data Bases/Data Management

Data Analysis and Regression

Data Structures

Distributed Systems

Foundations of Computer Science/SlI
Hardware and Software Integration

Information Security

Mathematics

Networks/Networking

September 1998

© IEEE Computer Society

‘3

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

3S Ul SN

pueloog ‘Buiis - Builis jo Ausiaaiun © = R e o e
3S Ul SN -
Bl0SBUUI ‘Sljodeauully - Sewoy] 1S Jo AlsiaAiun e ® o all - -
IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlSIBAIUN N
UOIBJUBOUOD JS - 90UBI0S JaINdWo) Ul S -
AuD sesuey-INOSSI 10 AlSIaAIun ke &Y &Y
3S 10 Jalsey R
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun ke T~
IS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun
IS Ul SN
X1 ‘UOISNOH - &eT Jes|D - UOISNOH Jo AlsiaAiun ke
3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun - =
3S Ul Ul uoneziepads yim oSN N
v ‘Aiebjen - Aiebjed Jo Ausisaiun ke 2 @ Q| | = - =
IS Ul 'VYOS'IN .
DD ‘[ESUO - [EQIUO B 08GIND NP SHSIOAIN >
3S 10 Jalse
X1 ‘YUOM Lo4 - AlisieAlun UBISUYD SEXa | ke @ @
IS Ul SN
XL ‘se|eq - Aisioniun ISIPOYIS|N Uisyinos e N - ke
3S 10 Jalse
VM ‘sjHess - Ausianun amess e 0 N - e
3S IS R
VO ‘Bliop &7 - Ausisaiun [euoneN =
IS Ul SN 00
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen
ERE _
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO > Bl -
3S 10 Jalse _
S ‘ueneyuel - AlSIBAIUN B]BIS sesuey 2 @ >
3S 10 Jalse
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4
3S J0 Jalse R
14 ‘yoeag euolhe(q - AlsiaAiun s|ppIY-Aiquig = <2 @ = > - ke
uoneuddu0) Juswabeuel 108loid - IS ul SN - N - -
71 ‘oBesyn - Ausieaiun Inegeq - 7 - —|® Y AR
uoineuaouo) JuswdojeAs(q 9J/EMIOS - IS Ul S o N -
71 ‘oBeoyn - Ausieaiun Inegeq e - 7 - — (@R |7
uondo 3S - 80ual0g JaIndwon ul JBISE R
DO ‘[B8JIUOIN - BIPIOOUOD = © O = N >
3S 10 Jalse
vd ‘ubingsiid - Ausianiun uojgy aibsuie) e
Buniesuibug aremyos ul SN
uebIyoI - AsiaAlun smaipuy | 7
(®)]
£
$ 2 8
7]
£ = o > &
2 52 O £ s 3
w e =
8= 38 g o 2% §
= ol c = C - -
= 2 §5¢ g§28 § £% 5
5 < c £ £ U @ E &g =
£ g w S5 o5 3 s 2 g g2
> 3 80 § > O 3 EEE B 5
© o 0 on 2 = © 555 o =
R= = S ¢l c o £ 04 s .Wmmq g g
ES 2 §8¢e% SS2,38 28528 29
8= < Bf:% £iE828.38538,83
2 65 52 O..Nsme.nu.o......n.erSO;n_L.v
58 o £885 HBEZE88835885855
o B > Alm EPrAP.I.nDDtW;e.n
£T82E 68 g@eensroESO0pes =20
= s 8 = S S o e na%naeStn_uaaSAnla%
= @l O < etha 0W2n|vwm|ewwwame
2208, 8283, CMSEnE5585555885¢
OOPQWRSTTmW .wSE.m.SMmOSS.WDFO
£ ¢ @E 92 &° ?
%] %) £ @

September 1998

© IEEE Computer Society

4

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builngs - Buing jo Ausiaaun

> AN e

IS Ul SN
BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

vV

3G Jo J8lse\
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

vV

IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

3S U VIS
DD ‘[BQIUOIN - [EAUOJ € 99GIND NP QNSISAN

3S Jo JaIsep
XL ‘UUOM Ho4 - AsIioalun uensuyo sexsa]

V2
V2

IS U'S
XL ‘Se|feq - Ausioniun ISIPOYIBIN UISYINOS

3S Jo Jalsep
VM ‘emeas - Alisianlun apess

IS UI'S
VO ‘BlOP €7 - AUSIaAN [euoieN

JS Ul SN 09
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

3S 40 J8ISEN
S ‘Ueneyue| - AISIBAIUN B1B]S Sesuey

Vi

V2

V2

3S o JsIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 J8lse\
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

Vv | VY

Vv | VY

V2

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

Vi

Vi

Vi

V2

V2

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Requirements Analysis/Specification

Software Detailed Design

Design

Human/User Interface

Object-Oriented Design/Modeling

Software Coding

Implementation

Object-Oriented Programming
Programming Languages

System/Software Testing

Testing
Maintenance Process

Maintenance

ISO/IEC

Cycle

Supporting Life

12207

Processes

Quality Assurance Process

Quality Assurance

Reliability
Verification and Validation Processes

Verification and Validation

ISO/IEC

Life Cycle

12207 Organizational

Processes

Management Process

Estimation

Human Factors/Human Resources

IT Management
© IEEE Computer Society

September 1998

(o]

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builngs - Buing jo Ausiaaun

IS Ul SN
BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun

14

vV

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

19

3G Jo J8lse\
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

V2

v Vv

IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

31

vV

vV

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

V2
Y2

vV

3S U VIS
DD ‘[BQIUOIN - [EAUOJ € 99GIND NP QNSISAN

3S Jo JaIsep
XL ‘UUOM Ho4 - AsIioalun uensuyo sexsa]

IS U'S
XL ‘Se|feq - Ausioniun ISIPOYIBIN UISYINOS

3S Jo Jalsep
VM ‘emeas - Alisianlun apess

IS UI'S
VO ‘BlOP €7 - AUSIaAN [euoieN

JS Ul SN 09
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

3S 40 J8ISEN
S ‘Ueneyue| - AISIBAIUN B1B]S Sesuey

Vi

V2

3S o JsIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 J8lse\
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

YA

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

Y2

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Productivity Tools
Project Control
Project Planning

Project/Software Management
Risk/Cost-benefit Analysis
Software Economics

Strategic Management

Improvement Process

Software/Systems Process

Software Process Improvement
Software Process Modeling

Special Topics

CASE

Client-Server Systems
Measurement/Metrics

Real-Time Software/Embedded Systems

Reuse

Software Security/Safety

Other Courses

ADA

Algorithms

Artificial Intelligence

Compilers

Computational Geometry
Computational Theory

September 1998

© IEEE Computer Society

/0

IS UI'S
puepoos ‘Builngs - Buing jo Ausiaaun

IS Ul SN
BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

vV
vV

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN -
AUD) SESUBY-LINOSSI O ANSIoAILN z M
3G Jo J8lse\ N
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun =
IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun
3JS U SN

XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

vV
vV
VAR

September 1998

IS Ul 'V OS'IN o o |a o
DD ‘[BS4UO - [BSJIUOK B 98g9ND NP SlISISAIUN > > >
3S 10 Jelse\
X1 ‘UMOAM Ho4 - Alsiaaiun uensuyD sexe |
IS Ul SN
X1 ‘se|[eq - Aus1oAlun 1SIpPoyIe|y uIyINog
3S J0 Jelse\
VM ‘@Hess - Ausienlun ajess
IS Ul SN
vO ‘ellor e - Ausieaiun [euoneN
3S Ul SN 00
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen
IS Ul SN -
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO H
3S Jo Jalsep <)
S ‘ueneyue - AlSIBAIUN BlBlS Sesury) < ke
3G J0 Jelse\
BleJISNY ‘BIRIISNY YINOS JO AlSISAIUN Siapullq
3S J0 J8lse\

714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

Vi
Vi

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Data Bases/Data Management

Data Structures
Management and Behavioral Science

Computer/Engineering Optimization
Mathematics

Computer Language Processing
Control Systems

Computer Performance
Computer Technology

Computer Vision
Knowledge-based Systems

Computer Architecture
Computer Graphics
Distributed Systems
Domain Analysis
Expert Systems
Hardware Acquisition
Legal Aspects of Software
Microprocessors
Networks/Networking
New Technologies

© |IEEE Computer Society

Digital Systems
Multimedia

[/

3S Ul SN

[ee]

puelodg ‘Bullng - Buiung jo Ausiaaiun L

IS Ul SN o)

BlOSauUI ‘sljodeauul|y - SBWoy] °1S Jo AlsiaAiun ks L
3JS Ul SN

Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAIUN

UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN >
A1D sesuey-UNnossip Jo Alsiaaiun H
3G Jo J8lse\
puejAie|y “Yied 8b9)j09 - puejhiepy jo Ausiaaiun e
IS U SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun
3JS U SN

XL ‘UOISNOH - 8¥eT Jes|) - UoISNoH Jo AlSIBAIUN

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsianiun

3S ul Ul uoezi[eoads yum OSN
v ‘Aeble) - Arebje) jo Ausianiun

3S Ul 'VOS'N
00 ‘[e8JIUOI - [BRJIUOIN B 9809ND NP 9}ISISAIUN
3S 10 Jelse\
X1 ‘UMOAM Ho4 - Alsiaaiun uensuyD sexe |
3JS Ul SN
X1 ‘se|leq - AusIaniun 1SIPoYIs|N ulayinos
3S J0 Jelse\ &
VM ‘e[ess - Ausieniun apess =
IS U SN
VO ‘Blior e - AusieAlun [euoneN
JS Ul SN 09
‘sBuljjon o4 - Ausianiun [eaibojouydss] [euonen -
3JS Ul SN >
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO H o
3S jo Jeise N T
S ‘ueleyuely - AlSIaAIUN BlBlS Sesuey > AR
3G J0 Jelse\
Bl[eJISNY ‘Bl[BASNY YINOS JO AlISI9AIUN sJapulld
3S J0 J8lse\

714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 80ual0g JaIndwon ul JBISE
DO ‘|ea4luol\ - BIpJOduU0)

3G J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

vV
AR
VAR

September 1998

6-9

Vi
\/1:1

5 [vVi4-

i:1

Vi? -

Software Architecture/IS Architectures
Telecommunications/Communication

Systems
Design (not software design)

Organizational Management
Parallel Systems
Electrical Engineering
Management/Administration
Mechanical Engineering
Nuclear Engineering

© |IEEE Computer Society

Protocols

Object-Oriented Databases
Robotics

Operating Systems
Chemical Engineering

Semiconductors
Computer Science
Industrial Engineering
Information Systems
Languages

Simulation

Unix
Number to choose

Credits to meet

/8

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

3S Ul SN e
puelodg ‘Bullng - Buiung jo Ausiaaiun =5
3S Ul SN &
Blosauulp ‘sijodeauulpy - sewoy] 1S Jo Ausianiun g
3S Ul SN &
Vd ‘UOIUBIOS - UOJURIDS JO AlISianlun g
UO[1BJIUSOUOY JS - 90UBI0S Jalndwo) ul SN < =
A sesuey-unossip Jo Alsianiun g 5] g
3S Jo Jalsepy =
puejhiepy ‘yed ab9jj09 - puejhiepy Jo Alsianiun =
3S Ul SN o5
uspaams - Agauuoy/euosysiiey jo Ausianiun Ww
3S Ul SN © & ©
X1 ‘UOISNOH - 8YeT Jea|D - UOISNOH JO AlisiaAiun - @ - £
3S ur uondo yum Busauibug jo Jsisey <
09 ‘sbuudg opeiojo) - opelojo) Jo Alsianiun g
3S ul Ul uoezi[eoads yum OSN <
v ‘Aiebje) - Arebjen jo Ausianiun g
IS Ul 'V OS'IN S
DD ‘[BIUOIN - [BBIIUOI B 99gaND NP 9USISAIUN =
3S 10 Jelse\ «F
X1 ‘UMOA HOH - AlISIBAIUN UBISUYD SBXa | -3
IS Ul SN
X1 ‘se|[eq - Aus1oAlun 1SIpPoyIe|y uIyINog @
33 Jo Jalsepy =
VM ‘@Hess - Ausienlun ajess =
IS Ul SN - —~
VD ‘e|llor e - AuslaAiun [euoneN <
3S Ul SN 09
‘sBuijjon 104 - Ausieaiun [eaibojouyos] jeuonen N N
IS Ul SN © ©
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO o g
3S Jo Jalsepy o
S ‘ueneyuRp - ANISISAIUN SIBIS SESURY N © g
3S Jo Jalsepy
Bl[eJISNY ‘Bl[BASNY YINOS JO AlISI9AIUN sJapulld
33 Jo Jalsepy > = ~
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug © o g
uoljeIuUdduU0Y Juswabeuep 108foid - 3S ur SN 8.5
71 ‘obeoyD - Ausieaiun |nedeq N "3 +m
uonesuaduo) Juawdojpaag a/emyos - 3S Ul SN 9 P
71 ‘oBeoyD - Ausiealun Inedad o =3 g
uondo 3S - 99udI0S JaINdwoY) Ul JBISB &
DD ‘[eaJluo| - BIpJoduo) g
3G J0 Jelse\ * S =
vd ‘ubingsnid - Ausieniun uojey a1bsusey | 7 T T = W\%
Buniesuibug aremyos ul SN Do -
uebiyoip - AlsIaAluUn smalpuy <~ -
[0)
o
C
.0 °
? 2 —
(%) o O 2
= £ < °
o ¢ s o o
S5 o2 S —
L Qo .= w %)
=) o 2
He e 23 2 S 5
> 3ouW s g S % = o
g 9 3 0 g Q 5 @ %) oS
2258« E o E Fi 2
oS¢ 820] B a
té353: Mozl ¢
EB EDB
= R S o=
Z O Z| O

*Depend on concentration chosen

V1 Safety Track

Vv Sl option

V% Telecommunications option

V% System Artchitecture Specialization

Vz:Reuse/Reengineering Track

VvZ:Integration Option

v2:Quality Control Specialization

V3:Information Management Track

[}
(%]
-
>
(@]
o
4]
wf
[Oe)
S e
O ©
[ONa N
o .
SN

MS: Master of Science

M.Sc.A.: Master in Applied Science

Information Systems
IT: Information Technology

IS:

September 1998

© IEEE Computer Society

9

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

S|QB[IPAY

$9SIN0Y) BAIOB|T

3S Ul SN © © ~| N
puejloog ‘Bulns - Bulng jo Ausieaun $9s1N00) palinbay
STIETEnY
3JS UISIN $9SIN0D) 8AI09|F © © o - [SUS
ejosauul ‘sijodeauul|y - sewoy 1S Jo Ausieaun s8s1n0Q palinbay & o —| — |~
STIETEnY
3JS UISIN sesinopy eAloelg | T T
Vd ‘UojueloS - uojue.os 4o Aysiaaiun sesIn0) paiinbey < <+ - & -
STIETEnY
UOIBJIUBOUOD TS - 82U8I0S JeIndwo ul SN S681M00 BAIOSIT o o o
Ao sesuey-unossipy jo Ausianun sesinog painbey | — oy al = —
STIETEnY
3S Jo Jsl1se| $95IN00) 3AI1D8|T N - - -
puelAie|y “yied a6s)j0D - puelhiepy jo Ausieaun sesIn0 painbay | = o ol =] —
STIETEnY
3JS UISIN $9SIN0D) 8AI09|F
uapaams - Agauuoy/euonysiiey o Alsiaaiun sesIn0p paiinbay - o —| — -
STIETEnY
3JS UISIN $9SIN0D) 8AI09|F
X1 ‘UOISNOH - 8yjeT] Jea|Q - UolsnoH Jo Alsiaaiun sesIn0) paiinbey < <+ ol — —
35 uondo - Buusauibug Jo Jaisep 5931100 OAIO9 = = -
09 ‘sbuudg opelojo) - opelojo) Jo Ausianun $95107) painbay BN o -
STIETEnY
3S ul uonezieroads yum oSN $9SIN0D) 8AI09|F © © o < -
v ‘Asebleg - Arebed jo Ausianun $95107) painbay N O
. STIETEnY
JS Ul'YOS'N $9SIN0D) 8AI09|F
0D ‘[eSJIUOI - [BRJIUOIN B 9809ND NP 9}ISISAIUN s8s1n0Q palinbay) < N |- -
STIETEnY
3S Jo Jsl1se| $9SIN0D) 8AI09|F (] (] [SUS
X1 “YUOA HOS - AUISISAIUN UBISLIYD SBxa | 58100 painbaY | -~ — —
STIETEnY
IS Ul SN sesinop oAjoeg | T O — ™ - |
X1 ‘se|eq - AusiaAiun 1SIPOYISN ulsyinos sesinog painbey | — oy =~ - -
STIETEnY
3S Jo JslIsel $9SIN0D) 8AI09|F] < - U o
VM ‘e[iess - Ausioniun apess $8sIN0Q palinbay & & - i .
STIETEnY
JS UISIN $9SIN0D) BAI09|F
vO ‘ellor e - Ausieaiun [euoneN sasinog painbay [oy — — —
STIETEnY
IS UISN 00 $9SIN0D) BAI09|F
‘sBuljjon uo- - Ausiaaiun [eaibojouyds] jeuonen sesInoy pasinbey N ~| | o .
STIETEnY
3JS UISIN sesinoy eAloely | T T - -
rN _cocm._m @Col_ 1S9 M\ h\Q_w_®>_CD ylnowuo $98IN0Y palinbey < < [N - —
STIEEnY
3S Jo Jsl1se| $9SIN0D) BAI09|F (] ™~ - -
S) ‘uelleyue\ - >H_w‘_®>_CD 9]e]S sesue) sosinog paiinbey | — ~ — —
STIETEnY
3S J0 J8lse|\ $8SIN0D 8AI08[3
el|RAISNY ‘BI[RAISNY UYINOS JO AlSISAIUN SI8pull] sesinog painbay
STIETEnY
3S Jo JslIse| $9SIN0D) 8AI09|F (] ™~ - -
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiquig $9SIN0D PaInbey | — oy & - -
STIETEnY) ~
uoljesuUadu0) Juswabeuep 10afoid - 3S ul SN sesinop anjodlg | T = N oo o«
71 ‘obeoiyn - Ausianiun |nedaq sesino) paunbey | — 1o 0| —| — N —
uoleuouoY Juswdojeasg 8JemIoS - 3S Ul SN mwm_:ooaw_>n_hwwum - 2 Noow oo
71 ‘obeoiyn - Ausianiun |nedaq sesinog painbey | — <o © - N —
STIETEnY
uondQ 3S - 8ouaI0g Jaindwon ul JBISE 508100 BAI08IT © © — « o~ —
DO ‘|ea4luol\ - BlpJoduU0) sesin0) palinbay < ™ — — —
STIETEnY
3S J0 J8lse|\ $8SIN0) 8AI08[3
vd ‘ubingsiid - Ausianiun uojgy aibsuie) $9sIn07 palinbay o~ N —
STIEEnY
Buusauibug asemyos ur SN $95IN00) 3AID|T
IN ‘sBuudg uauuag - Alsianiun smalpuy sesino) paunbey | oy ey ~ ~
[7)
2
c
(=] []
£ £
g 3 £
2 0 E]
- 0 (=2
o 9 (] c o))
g s c 5 2
> w = 7] =
& s> @9 Sk
£ £80322 Bov
o= 95 9@ S =S
3 O g S E =2 S5 =
(73] o 2o 9z o O =
e N« 2 0 a ol o
cQ c 529 2 09
SN S g T E w w £
S =2 o0 0 9]
So®ocBLEETD
S WS g o >0 o o >
o= o>0n=200n0
50 oo ©
E@<ao g

September 1998

© IEEE Computer Society

e]V)

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

35 Ul SN - - - = -~
puelodg ‘Bullng - Buiung jo Ausiaaiun
3S Ul SN o X
BJOSauUI ‘sljodeauul|y - SBwWoy] °1S Jo AlsiaAiun — - — - ~
JSUISN |~ ™ -
Vd ‘UOIUBIOS - UOJURIDS JO AlSiaAluN - ~
UOo[1BJIUSOUOY JS - 90UBI0S Jalindwo) ul SN -2
A1D sesuey-UNossip Jo Alsiaaiun =
3S Jo Jalsepy A - - < -~
puejAie|y “Yied 869)j09 - puejhiepy jo Ausianiun - e -~
3JS Ul SN
uapaams - Agauuoy/euonysiiey o Alsiaaiun - — — -~ -
IS Ul SN
X1 ‘UOISNOH - 8yeT Jea|D - UOISNOH JO AlisiaAiun - -l - BE
N N
35 uondo - buusauibug jo JoiSe — — — — =
09 ‘sbundg opelojo) - opelojo) jo Ausieaun | _ - - -~ -
3S ul uonezienads yum oSN © < N+~ o
v ‘Aebe) - Arebje) jo Ausianiun - - - - -~
3S Ul 'VOS'N <
0D ‘[BSNIUOI - [BOJJUOIN B 08Q9ND NP SUSIBAIUN | _ oy — ~— — — @
3S JO JBISB\ o o a2
X1 ‘UMOM Hod - Ausieaiun uensuyp sexe [~ e - —
JSUISN |~ - =
X1 ‘se|[eq - Aus1oAlun 1SIpPoyIe|y UIayINog o - -
33 jo Jalsey | — ™ ©
VM ‘@Hess - Ausieun apess . . 0
3JS Ul SN
vO ‘ellor e - Ausieaiun [euoneN — ~ e - ~
JS Ul SN 09 M=
‘sBuljjon o4 - Ausiaaiun [eaibojouyds] jeuonen -~ o~ - —| — .
PN ‘youeug BuoT 1sapn ‘AlSIBAIUN YINOWUO - — . - -
3S Jo Jalsepy - - SV
S ‘uelleyuely - AlISIaAIUN BlBIS Sesuey] .
3S J0 Jelse
Bl[eJISNY ‘Bl[BAISNY YINOS JO AlISI9AIUN SJapulld
33 Jo Jalsepy ® =~ N 0w
14 ‘yoeeg euoiheq - Ausieniun ajppig-Aiqug . .- -
uoneuddu0) Juswabeue 1080id - JSUISHN | — @ - N - - -~
71 ‘obeoiyn - Ausianiun |nedaq -~ & —| @
uolesuUsouUO Juswdojereg 8/emyoS - JSUISN [— @ ~ . ™ o
71 ‘obeoiyn - Ausianiun |nedaq =
uondo 3S - 8oual0g Jaindwon ul JBISE - - -~
QD ‘[B3JJUO - BIPIODUOD [_ o N~ o = &
3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie) - - -~
Bunesuibug aremyos ul SN
IN ‘sBuudg uauuag - Alsianiun smalpuy - - -
o o
o o
> >
O o O
(%]
8
2 o
a a5
(]
e - HH
] o0& D
£ 28 £26 88
£ 8 g S 8 o
5 9 2 S 2 2
(7] oS Sco ot)
o N 5 © N = e [
o« o c 9 S o L2 8
c w o T Q Q 5
< 0 < 2 o E E o2
c Q ...-d. Q0o 9 - o
SOREZTLOR D23 F =
cWg=TEWe 8228 0
558250688 8%
=lag C>lak = =8°

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 81

Appendix H.
Graduate Programs in Software Engineering -
Classification of Courses by Related Discipline

© |IEEE Computer Society September 1998

(74

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UOIBJIUBOUOYD TS - 90UBI0S JaINdWwo) ul S

o
A1D sesuey-UNnossip Jo Alsiaaiun [}
IS josIsBN |
puejAie|y “ied 869)j09 - puejliepy jo Ausiaaiun | @
JSUSH | o o
uspeamg - Agauuoy/euoiysiiey Jo Ausieaun | ¥ &
3JS Ul SN

XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

3S Ul 'Y OIS

42

36

36
(credit
hours)

\/1
V2R

\/3

\/1

\/1

3.0

September 1998

0D ‘[eSJIUO - [BRJIUOIN B 9809ND NP 9}ISISAIUN S =
3SJoJBISeN [_c@
X1 ‘YHOM Ho4 - AusiaAiun uensuyD sexa] | ™ § 3
ASUISN |2 | 5
X1 ‘Se|leq - Ausioniun 1sIpoyisy uisyinog | @ mm)
3Sjo eI | 5 Z o o
VM ‘aeas - Alsienun sjiees | < 59 = =
ASUSN | 582 o -
VO ‘Bllof €7 - AUsISAIUN [BUOKEN [© 35 | -
ASUWISN |, 2
09 ‘sbuljjon 1o - Ausianiun [eaibojouyos] [euonen | & mm
JSUISN | o
PN ‘youeag BuoT 1sap ‘Alisiaaiun yinowuopy | &
JSJo 8IS\ | , 52
SH ‘UeleyUB - AISISAIUN S1ElS Sesuey] | 5 3
IS0 I8ISBN | &
el[eJISNY ‘Bl[BNISNY YINOoS J0 AlSIaAlun siepull4 |~ S
3S Jo Jelse|y

714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

36
(credit
hours)

2.5/
4.0

2.5/
4.0
VY| VY

45
2-4
\/1

48
(quarte
credits)

Real-Time Software/Embedded Systems

Software Security/Safety

Technical Communication and Writing
Electrical Engineering

Computer Science
Foundations of Computer Science/SlI

Human/User Interface/Interaction

Data Bases/Data Management
Implementation

Data Structures
Programming Methods

Artificial Intelligence
Concurrent Systems
Distributed Systems
Information Security
Operating Systems
Protocols

Algorithms
C++

© IEEE Computer Society

Communication

Credits
Grades

83

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

V2

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

V2

v

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

Vs

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

voWAA

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

3S U YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GND NP NSISAN

\/1

1t

3S Jo Jalsepy
XL ‘UUOM Ho4 - AiSIoalun uensuyo sexsa]

V2

V2

3JSUI'S
XL ‘Se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S jo Jalsel
VM ‘ojeas - Ausianlun ajeas

IS UI'S
VO ‘BllOP €7 - AUSIaAN [euoieN

3JS U SN
09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

\/1

3S 40 JaISEN
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

3S o JslIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 Jelse\
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

V2

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

V2

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

\/2

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Computer Architecture

Hardware and Software Integration

Wireless
Management

IT Management

Organizational Management

Mathematics

Data Analysis and Regression

Mathematics
Project Management

Estimation

Productivity

Project Planning

Project/Software Management
Software Economics

Software Engineering

Analysis of Software Artifacts

CASE

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Design

Formal Methods/Specification languages

Life Cycle Models
Maintenance

Measurement/Metrics

September 1998

© IEEE Computer Society

o4

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

V2

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

V2

v

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

Vv

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

vV

3S U YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GND NP NSISAN

3S Jo Jalsepy
XL ‘UUOM Ho4 - AiSIoalun uensuyo sexsa]

3JSUI'S
XL ‘Se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S jo Jalsel
VM ‘ojeas - Ausianlun ajeas

IS UI'S
VO ‘BllOP €7 - AUSIaAN [euoieN

V2

3JS U SN
09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

vV

3S 40 JaISEN
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

3S o JslIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 Jelse\
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

V2

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

e

\/1

\/2

\/1

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

vV

vV

Object-Oriented

Object-Oriented Design/Modeling

Object-Oriented Development

Quality Assurance

Quantitative Approach to Engineering

Reengineering

Reliability

Requirements Analysis/Specification

Reuse

Software Architecture/IS Architectures

Software Development

Development Environments and Tools

Software Engineering Principles

SE Methods/Methodologies
Software Engineering/IS Engineering

Software/Systems Processes

Verification, Validation and Testing

Telecommunication/Networks

Networks/Networking

Telecommunications/Comm. Systems

Others

Research Process

September 1998

© IEEE Computer Society

8o

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

V2

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

15

vV

vV

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

12

YA

vV

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

21

vV

vV

vV

vV

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

vV

3S U YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GND NP NSISAN

\/1

\/1

3S Jo Jalsepy
XL ‘UUOM Ho4 - AiSIoalun uensuyo sexsa]

V2

3JSUI'S
XL ‘Se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S Jo Jalsepy
VM ‘emeas - Alisiaalun apess

vV

IS UI'S
VO ‘BllOP €7 - AUSIaAN [euoieN

3JS U SN
09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

3S 40 JaISEN
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

Vi

3S o JslIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

VV Y| ViV

3S J0 Jelse\
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

Vv

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

vV

V2

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Application Domains

Domain Analysis

Computer Science

ADA

Algorithms

Artificial Intelligence

Client-Server Systems

Compilers

Computational Geometry
Computational Theory
Computer Graphics

Computer Language Processing
Computer Performance
Computer Technology

Computer Vision

Computer/Engineering Optimization

Control Systems

Data Analysis and Statistical Software

Data Bases/Data Management

Data Structures

Distributed Systems
Expert Systems

Human/User Interface

Knowledge-based systems
Measurement/Metrics

September 1998

© IEEE Computer Society

8o

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

V2

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

vV

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

vV

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

vV

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

vV

AR

vV

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

3S U YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GND NP NSISAN

\/1

\/1

3S Jo Jalsepy
XL ‘UUOM Ho4 - AiSIoalun uensuyo sexsa]

3JSUI'S
XL ‘Se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S Jo Jalsepy
VM ‘emeas - Alisiaalun apess

IS UI'S
VO ‘BllOP €7 - AUSIaAN [euoieN

3JS U SN
09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

vV

3S 40 JaISEN
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

V2

V2

3S o JslIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

vV

3S J0 Jelse\
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

YA

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

Vi

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Multimedia

New Technologies

Object-Oriented Databases
Operating Systems

Parallel Systems
Programming

Programming Languages

Protocols

Real-Time Software/Embedded Systems

Robotics

Simulation

Software Security/Safety

Unix
Electrical Engineering

Computer Architecture

Digital Systems

Microprocessors
Semiconductors

Ethics/Legal Aspects

Legal Aspects of Software

Management

Human Factors/Human Resources

IT Management

Management and Behavioral Science

Organizational Management

September 1998

© IEEE Computer Society

(74

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

V2
V2

V2
V2

3S U YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GND NP NSISAN

3S Jo Jalsepy
XL ‘UUOM Ho4 - AiSIoalun uensuyo sexsa]

V2

3JSUI'S
XL ‘Se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S Jo Jalsepy
VM ‘emeas - Alisiaalun apess

IS UI'S
VO ‘BllOP €7 - AUSIaAN [euoieN

3JS U SN
09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

V2

3S 40 JaISEN
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

Vi

Vi

3S o JslIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

3S J0 Jelse\
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

13

vV

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

V2

12

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

Vi

Ve

Vi

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Strategic Management

Mathematics

Mathematics
Project Management

Estimation

Productivity Tools
Project Control
Project Planning

Project/Software Management
Risk/Cost-benefit Analysis
Software Economics

Software Engineering

CASE

Current Trends in Software Engineering
Current/Special/Advanced Topics in SE

Design

Formal Methods/Specification languages

Implementation
Maintenance

Object-Oriented

Object-Oriented Analysis

Object-Oriented Design/Modeling

Object-Oriented Development

Object-Oriented Programming

Quality Assurance

September 1998

© IEEE Computer Society

{e1e]

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

V2

V2

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

WW

AR

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

35 ui uondo yum Buussuibul jo Jvlsepy
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

VAR

AR

3S ul Ul uoezi[eoads yium oSN
v ‘Aeble) - Arebje) jo Ausianiun

vV

3S U YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GND NP NSISAN

3S Jo Jalsepy
XL ‘UUOM Ho4 - AiSIoalun uensuyo sexsa]

V2

3JSUI'S
XL ‘Se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S Jo Jalsepy
VM ‘emeas - Alisiaalun apess

hrs.

IS UI'S
VO ‘BllOP €7 - AUSIaAN [euoieN

3JS U SN
09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN

3JS Ul SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

V2

VAR

AR

5

3S 40 JaISEN
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

Ve

Vi

\/1:2-

\/2:1

3S o JslIse|
elelisny ‘elelisny Yinos Jo AlsiaAlun siapull4

27

units

3S J0 Jelse\
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

6-9

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

vV

Vi

\/1:1

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

A s

vV

5 |Vi4-

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

Vi

Ve

Vi? -

\/i:1

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Reliability

Requirements Analysis/Specification

Reuse

Research Topics in Software Engineering
Software Architecture/IS Architectures

Software Development

Software Development Methods

Software Engineering/IS Engineering
Software Process Improvement
Software Process Modeling
Software/Systems Process

Tools for Software Engineering

Verification, Validation and Testing

Telecommunication/Networks

Networks/Networking

Telecommunications/Comm.

Others

Hardware Acquisition
Software Acquisition

Number to choose

Credits to meet

Computer Science

September 1998

© IEEE Computer Society

o}v]

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

3JS Ul SN -l
puelodg ‘Bullng - buiung jo Ausiaaiun > m
JS Ul SN >
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun .y
EIRS s
Vd ‘UOIUBIOS - UOJURIDS JO AlSianlun g
UO[1BJIUSOUOY JS - 90UBI0S Jaindwo) ul SN = =
A1D sesuey-UNnossip Jo Alsiaaiun g =
3S Jo Jsisepy =
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun <
JS Ul SN o2
uapaamg - Agauuoy/euonysiiey o Alsiaaiun Jﬁmp
3JS Ul SN © B ©
X1 ‘UOISNOH - 8eT Jed|D - UOISNoH Jo Alsianiun > W < 9
35 ui uondo yum Buussuibul jo Jsisep <
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun Ny
3S ul Ul uonezieroads yim oSN &
v ‘Aeble) - Arebje) jo Ausianiun g
3S Ul 'VOS'IN L <
0D ‘[eSJIUO - [BRJIUOIN B 9809ND NP 9}ISISAIUN v
33 Jo Jalse| 3
X1 ‘UUOAA L0H - AlISI9AIlUN UBlSLYD SBXd | >3
(]
IS U SN
X1 ‘se|[eq - Aus1oAun 1SIPOYIS| UIayIN0g @
3S Jo Jsisepy 5
VM ‘@Hess - Ausieun apess -
IS U SN &
vO ‘ellor &7 - Aysiaaiun [euoneN z
IS U SN
09 ‘sbuloy o4 - Alsieniun [ea160jouyd9 | [eUOHEN > N
3S Ul SN S . B
PN ‘youeig Buo 18 ‘AlISIBAILM YINOWUO -° |3
33 Jo Jalse| -
S ‘uelBYUBJ - AUISISAIUN S]BIS SeSuRY| hZ kd el el ke N © <
3S jo JelIse|y & >
Bl[eJISNY ‘Bl[BASNY YINOoS Jo AlISIaAIUN sJapulld z -
3S Jo Jalse| o ~ -
714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug © - ° g
uonesuddu0) Juswabeuel 108loid - IS ul SN 8_58
71 ‘oBeoyn - Ausieniun Inedeq N Tg+8
uoneuaduo) Juawdojpaag a/emyos - 3S Ul SN =8 N
71 ‘obeayD - Ausienun |nedaq o =37~
(]
uondo 3S - 80uaI0g Jaindwon ul JBISe 5
DO ‘[e8JIUO| - BIPIOOUOD g
3S Jo Jelsepy S 2
Vvd ‘ybingsiid - Ausieaiun uojey aibaure) ke R R 3 E-
Buuesuibug aremyos ul SN - o
ueBiyoIpy - Austoalun smaipuy | 7 <+ A z
s e
o < e @
= =X > 9 -
S O o = ‘B 3] °
%) D £ £ o o0 n £ o
Eo® g5 2T o 3]]
s2883<5 e 22 2o £ -
eSS 208 ©oE £ - S ®
7g£Zeusg 28 8§ &, | %
S8 -YE59 <83855% c8._ 825 | _
£ 283 - 2 ESSCEcoo S 9STuTag %
w.==-5c 309 ® o @ wm og 2502 .= =
E_DEBE0 L 3 o o .2 o o £ £ T ie)
5 8 & ¢ 30 0= £ M__v S & ® ol o ' o = = o
2 0Wc T QS0 2=0 8~ 8= 2 O 3
EELO0OE£EZ2Z252085T=202 25aus=a @
5 @ =28 0 05 20X = 45=2809 K%
o £ O SSE32 88 ES T =2 2
wd aS=EGdansL 25089 2
20 WwzZzoaoaao i~

V1 Safety Track \/Z:Reuse/Reengineering Track

Vv Sl option

v': Telecommunications option

i System Architecture Specialization

September 1998

© IEEE Computer Society

Ju

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS UI'S
puepoos ‘Builns - Buing jo Ausiaaun

3JS U SN
BJOSauUI ‘sljodeauul|y - SBwoy] "1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJUBIOS - UOJUBIOS JO AlISIaAlun

UoflBJIUOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-UNnossip Jo Alsiaaiun

3S o J8lse\
puejAiey “Yied 8b9)j09 - puejhiepy jo Ausiaaiun

3JS Ul SN
uapaamg - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

35 ui uondo yum Buussuibul jo Jvlsepy

09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun
3S ul Ul uoezi[eoads yium oSN

v ‘Aeble) - Arebje) jo Ausianiun

3S Ul 'VOS'N

0D ‘[eSJIUO - [BRJIUOIN B 9809ND NP 9}ISISAIUN
3S 10 J8lse\

X1 ‘UMOM Ho4 - Alsiaaiun uensuyD sexs |

3JS U SN

X1 ‘se|[eq - Aus1oAun 1SIPOYIS| UIayIN0g

3S J0 J8lse\

VM ‘@Hess - Ausieun apess

3JS Ul SN

vO ‘ellor e - Ausieaiun [euoneN

3JS U SN

09 ‘sbuijon 1o - Ausianiun [eaibojouydsa] [euoneN
3JS Ul SN

PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO
3S J0 J8lse\

S ‘ueleyuely - AlISIaAIUN BlBlS Sesuey)

3S J0 Jelse\

Bl[eJISNY ‘Bl[BASNY YINOoS Jo AlISIaAIUN sJapulld
3S J0 Jelse\

714 ‘yoeag euoihe(- Ausianiun ajppiy-Aiqug

uoljesuUadu0” Juswabeuep 10afoid - 35 ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 8oual0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BlpJoduU0)

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

V3:Information Management Trackv4:Software Processes

Track

VZIntegration Option

VZQuality Control Specialization

Part of a course

Vo:

MS: Master of Science

M.Sc.A.: Master in Applied Science

IS:

Information Systems

IT: Information Technology

September 1998

© IEEE Computer Society

Il

SENeRy

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

IS Ul SN $88IN0D 3A108|] @ ©
puejoog ‘Bulns - Bulng jo Ausieaun $951N00) palinbay
SETERY
3JS Ul SN $85IN0D BAI08|] © el ®
elosauuly ‘sijodesuul|y - Sewoy | 1S Jo Ausieaun $8sIn0Q palinbay) o
SETERY
3JS UISIN $95IN00) 3AID|T] ()
Vd ‘UOJUBIOS - UOJURIOS JO AlISIaAluN $951N00) palinbay — <
SETERY ~
uolBJIUBOUOD JS - 80UdI0S JaINdwoD ul SN $8SIN0Y 8AI0B[T — - Al
AnD sesuey-unossiy 40 Alsieaun $951N00) palinbay ™ ~ ~
SETERY
3S JO JBISB\ $95IN00) 3AID8|T < @ ~
puejhiepy ‘yied 869)|00 - puejhiep jo Ausieaun sesun00 palinbay o~ o
SETERY
IS Ul SN $9SIN0D) 8AI109|F
uspaaMS - Agauuoy/euolyspey Jo Alsiealun $8sIN0Q palinbay 0
SETERY
IS Ul SN $9SIN0D) BAI09|F
X1 ‘UOISNOH - &3eT Jes|d - UoISNoH 4o Alsieaun $8sIn0Q palinbay @ ®
SETERY
3S ui uondo yum Busasuibug jo Jaisep $95IN00) 3AID8|T N ® - ©
09 ‘sbundg opeiojo) - ope.ojo) jo Alsieaun sesun09 palinbay - - o
SETERY
3S Ul Ul uoleziferdads yum OSIA sesinop anjoslg | N N ©
v ‘Aebeg - Areble) jo Ausienun s8s1n09 palinbay - o
SETERY
JS Ul'YOS'N $9SIN0D) BAIOS|T] -
DO ‘[B3JJUO - [BRIJUOI\ B D3gaND NP 9USIBAIUN $951N00) palinbay o — ~
~— ©
SETERY =)
3S Jo Jsl1se| $95IN00) 3AID8|T - - - <
XL ‘YHOM Lo - AlisiaAiun uensuy) sexa | $951N00) palinbay — <
SETERY
IS Ul SN $88IN0D) 3A108|] © o~
X1 ‘se|eq - AusiaAiun 1SIPOYISN ulsyinos $951N00) palinbay <
SETERY
3S JO JBISB\ $88IN0) 3A108|] © - w0
VM ‘eess - Ausiealun sjpess $951N00) palinbay - ™ <
SETERY
IS Ul SN $9SIN0D) BAI09|F
VO ‘Bllof e - AusisAlun [euoneN $951N00) palinbay ™ <
SETERY
3JS Ul S (o)e) $9SIN0D) 8AI09|F p N - [a]
‘sbuyjjoy wo4 - Ausseaiun [eaibojouyos] [euonenN s851n00) paiinbay - - o
SETERY
IS Ul SN $88IN0D 3A108|] < 0
PN ‘youelg BuoT isep ‘Ausieaiun yinowuow $951N00) palinbay — 0
SETERY S
3S 10 J8lse|\ $8SIN0) 8AI08[3 0 o ®
S ‘ueneyuel - AlsisAlun SlelS sesuey $951N00) palinbay ~
SETERY
3S JO JBISB\ $88IN0 3A108|T © ©
el[eASNY ‘Bl[BAISNY YINOS J0 ANsieAiun siopulld s951n00 palinbay
SETERY
3S JO JBISB\ $88IN0D 3A108|] @ - ©
74 ‘yoeeg euoikeq - Ausieniun sipprg-Aiqug $85In00) pauinbay o
SETERY
uoneuddu0) Juswabeuel 108loid - IS ul SN $9SIN0D) BAI09|F 2 2
1 ‘obedy) - Austeaiun Inedeq $951N00) palinbay ™ ©
SETERY ~
uoneJluddu0) Juswdojaasq aJemyos - 3S ul SN $9SIN0Y) BAIOB|T 521 —
71 ‘obeaiy) - Austealun Inedeq $951N00) palinbay < ©
SETERY
uondo 3S - 80ual0g Jaindwon ul JBISE $88IN0D 3A108|T © ©
QD ‘[B3JJUOI\ - BIPIO2UOD $951N00) palinbay 3 — ©
SETERY
3S Jo JslIse| $9SIN0D) BAI09|F 00 oo0oon [a]
vd ‘ybinasiid - Ausieaun uojiey eibeuse) sesInog paiinbay <
SETERY
Buuesuibug alemyos ul SN $35IN00) AAIOB|T o
uebiyoI - Ausiealun smaipuy $951N00) palinbay ™ — <
%)
X
<
s
=
(]
D — O) z
> 2} C| = c > c =5
£ = Q9 o= = @
| = (0] o O (o)) = o c
© o O O c IS my o o
m e c <€ c = Q 1S3 c =
o o .9 S < [0} o)) Q.= ©
£ A= 0 o= E g0 9O S99 ©
] - 8w we eowase s S>> &5 E
@ S€5 m3%LET2928 3, 2
2S5 cldd G EWLL S, P25 € o
Q E a o E % S & 9 = % 5 ® = o =
a EE® Q2 2cE 222 Qc G E o 2
9606 090LE FO8TEO L o &6 OF
<O 0O AQAWWwa==Z202a0a00wnn ©O0

September 1998

© IEEE Computer Society

Iz

Guiae 10 the Sortware Engineering boay or knowiedge — A Straw ivian version

3JS urS
puepoos ‘Builns - Buing jo Ausiaaun

3JS Ul SN
BJOSauUI ‘sljodeauul|y - SBwWoy] °1S Jo AlsiaAiun

IS Ul SN
Vd ‘UOJURIOS - UOJUBIOS JO AlISIaAIUN

UollBJIUSOUO0Y JS - 90UBI0S Jaindwo) ul SN
A1D sesuey-Unossip Jo Alsiaaiun

3S 10 Jelse\
puejAie|y “Yied a69)j09 - puejhiepy o Alsiaaiun

3JS Ul SN
uapaams - Agauuoy/euonysiiey o Alsiaaiun

IS Ul SN
XL ‘UOISNOH - 8¥eT Jes|) - U0ISNOH Jo AlSIBAIUN

3S ui uondo yum Busauibug Jo Jaisep
09 ‘sbundg opeiojo) - opeiojo) jJo Alsiaaiun

3S ul Ul uoezi[eads yum oSN
v ‘Aeble) - Arebje) jo Ausianiun

3S Ul YOS
DD ‘[BSIUOIN - [EQAUOJ € 99GIND NP NSISAIN

3S Jo salsepy
XL ‘UUOM Ho4 - Alsionlun uensuyD sexsa]

IS UIS
XL ‘se|feq - Aisioniun 1SIPOYIBIN UISYINOS

3S jo Jelsely
VM ‘ojeas - Ausianlun ajeas

IS urS
VO ‘BllOP €7 - AUSIaAN [euoieN

JS UlSIN 09
‘sBuljjon o4 - Ausianiun [eaibojouyds] [euoneN

IS U SN
PN ‘youeig BuoT 1sop ‘AlISIBAIUN YINOWUO

3S 40 JaISE
S ‘Ueneyuel - AISIBAIUN B1elS Sesuey

3S Jo JslIse|
ellelisny ‘ellelisny Yinos Jo AlsiaAlun siapull4

3S J0 J8lse\
714 ‘yoeag euoihe(- Ausianiun a|ppiy-Aiqug

uoljeuUadu0) Juswabeuep 10afoid - 3S ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uonesuaduo) Juawdojpaag a4/emyos - 3S Ul SN
71 ‘obeoiyn - Ausianiun |nedaq

uondo 3S - 8ouaI0g Jaindwon ul JBISE
DO ‘|ea4luol\ - BIpJoduU0)

3S J0 Jelse\
vd ‘ubingsiid - Ausianiun uojgy aibsuie)

Buusauibug asemyos ur SN
uebiyoip - AlsIaAluUn smalpuy

Summary

Research Process

Hardware Acquisition
Software Acquisition

September 1998

© IEEE Computer Society

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 93

Appendix I.
Draft Classification of Knowledge on Formal Methods Based on the Proposed Four-Category
Schema

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 94

Introduction

As an illustration of how the subject matter of a Knowledge Area could be broken down into Generally
Accepted, Advanced, Research and Specialized, we present in the following pages some key areas of
formal methods. For this presentation, these topics were also broken down according to the main life cycle
phases, without using the 12207 vocabulary. The various topics included were identified from an informal
literature survey done over the last few years (see below for the references which were examined) and
which gave rise to an annotated bibliography (the annotations are in French) currently containing over 500
entries. This bibliography on formal methods is available at the following URL, where it can be searched:

http://www.info.ugam.ca/~tremblay/chercher-reference.cgi

The categorization into Generally accepted, Advanced, Research and Specialized was obtained, grosso
modo, as follows:

* Generally accepted: A topic discussed in a number of (mainstream) software engineering textbooks.

* Advanced: A topic discussed in numerous formal methods related books or papers. Note that this
category also includes a topic (program derivation and verification) discussed in numerous books, even
basic programming ones, but rarely used in practice.

* Research: A topic discussed in a few (more than 1) formal methods research papers.
* Specialized: A topic relevant to only certain types of software.

The references were obtained mainly, but not exclusively, from the followings:
* Books: Mainstream software engineering books and books specifically targeted to formal methods.

* Journals: ACM Computing Surveys, CACM, ACM Sigplan Notices, ACT TOPLAS, Computer
Networks and ISDN Systems, IEEE Computer, IEEE Software, IEEE Trans. on Soft. Eng., Journal of
Systems and Software, Science of Computer Programming, Software -- Practice and Experience, The
Computer Journal.

* Conferences: CONCUR, FME, VDM, AMAST, Computer-Aided Verification, Intl. Conf. on Soft. Eng.,
Protocol Specification, Testing and Verification, TAPSOFT, ZUM.

Requirements analysis and specification
Generally Accepted

« Formal specification of the abstract behavior of a system (black box functional specification) using
an abstract model or axiomatic specifications, with pre/post-conditions (e.g., vDM, z, Larch two-
tier approach) [Lam88, Pre92, GH93, Som95, Pfl98].

Advanced
« Verification of the internal consistency of a specification by generating and discharging
appropriate proof obligations (using rigorous inspection and/or formal
proofs) [Jon86,Sha95,BDMW97].
Research

+ Formal specifications of the abstract behavior of a system using various approaches, e.g.,
assertions on traces [BP78,Jan97], Petri nets [Rei87,Fur93, BOP97], Statecharts [Har88,HG97],
etc.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 95

» Animation of formal specifications and/or use of formal specifications for prototyping in order to
validate the requirements [HI88,BM93,WP94,BDMW97].

» Formal specification of (concrete) person-machine interfaces [Ale90,KB97].

» Integration of formal methods with existing requirements and analysis approaches (e.g., OO
approaches [CHB92,Ca93,AS97,HG97], structured analysis [PvKP91, SFD92,GP95]).

Specialized

» Telecommunication protocol design, telephony, hardware design: Formal specification of the
abstract, external behavior of a (finite state) system (e.g. SDL, Lotos, CCS/CSP) + Formal
specification of some important properties required and/or expected of the system using modal,
temporal logic + Verification of those properties using model-
checking [CES86,Tur93,CWa96,Bru97].

Architectural design
Generally accepted

» Formal specification of the behavior of modules using model-based or abstract machine
approaches (e.g., vby, z, B) [Lam88,ALN+91,Pre92,Som95,Pfl98].

Specification of abstract data types using algebraic approaches (e.g., Larch, ACT-ONE)
[Som95,Lam88,dMRV92,GH93].

Advanced

» Verification of the internal consistency of a module specification by generating and discharging
appropriate proof obligations (using rigorous inspection and/or formal proofs)
[Jon86,Sha95,BDMW97].

Research

» Formal specification of architectural styles and patterns [AG94,Gar95,CM97].

Detailed design
Advanced

» Verification of the refinement of modules by generating and discharging appropriate proof
obligations [Jon86,Sha95,BDMW97,TTOVI7].

Coding and testing
Advanced
» Program derivation and formal (in-the-small) program verification [Gri81,Dro89,A191].
Research

» Derivation of test cases based on the formal specification of a module (black-box unit
testing) [DF93,SC96,NB92,FJJ+96,Den96,BDMW97].

» Automatic or semi-automatic transformation of specification to synthesize software and/or
generate executable code [Par90,Jul93,SH94].

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 96

Qualification testing
Research

» Derivation of test cases based on the formal (functional) specification of a system (black-box
testing) [DF93,SC96,NB92,FJJ+96,Den96,BDMW97].

References
AG94

R. Allen and D. Garlan.
Formalizing architectural connection.
In Proc. 16th Int'l Conf. Software Eng., pages 71-80. IEEE Computer Society Press, 1994.

Al91

D. Andrews and D. Ince.
Practical formal methods with VDM.
The McGraw-Hill International Series in Software Engineering, 1991.

Ale90

H. Alexander.

Structuring dialogues using CSP.

In Formal Methods in Human-Computer Interaction, chapter 9, pages 273-295. Cambridge University
Press, 1990.

ALN+91

J.-R. Abrial, M.K.O Lee, D.S. Neilson, P.N. Scharbach, and |.H. Sorensen.

The B-method.

In VDM '91: Formal Software Development Methods, pages 398-405. Springer-Verlag, LNCS-552,
1991.

AS97

K. Achatz and W. Schulte.
A formal OO method inspired by Fusion and Object-Z.
In ZUM '97: The Z Formal Specification Notation, pages 92-111. Springer-Verlag, LNCS-1212, 1997.

BDMW97

J. Bicarregui, J. Dick, B. Matthews, and E. Woods.
Making the most of formal specification through animation, testing and proof.
Science of Computer Programming, 29(1):53-78, 1997.

BM93

P. Borba and S. Meira.
From VDM specifications to functional prototypes.
J. Systems Software, 21(3):267-278, Mar. 1993.

BOP97
L. Baresi, A. Orso, and M. Pezzé.

Introducing formal specification methods in industrial practice.
In ICSE '97 (Intl. Conf. on Soft. Eng.), pages 56-66, 1997.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 97

BP78

W. Bartussek and D.L. Parnas.
Using assertions about traces to write abstract specifications for software modules.
In European Cooperation in Informatics, pages 211-236. Springer-Verlag, LNCS-65, 1978.

Bru97

G. Bruns.
Distributed Systems Analysis with CCS.
International Series in Computer Science. Prentice-Hall, 1997.

Ca93

E. Casais and al.
Formal Methods and Object-Orientation.
Tutorial at TOOLS Europe 1993, 1993.

CES86

E.M. Clarke, E.A. Emerson, and A.P. Sistla.
Automatic verification of finite-state concurrent systems using temporal logic specifications.
ACM TOPLAS, 8(2):244-263, 1986.

CHB92

D. Coleman, F. Hayes, and S. Bear.
Introducing objectcharts or how to use statecharts in object-oriented design.
IEEE Trans. on Soft. Eng., 18(1):9-18, Jan. 1992.

CM97

P. Ciancarini and C. Mascolo.

Analyzing and refining an architectural style.

In ZUM '97: The Z Formal Specification Notation, pages 349-368. Springer-Verlag, LNCS-1212,
1997.

CWa96
E.M. Clarke, W.M. Wing, and al.
Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626-643, 1996.
Den96

R. Denney.
A comparison of the model-based & algebraic styles of specification as a basis for test specification.
Soft. Eng. Notes, 21(5):60-65, 1996.

DF93
J. Dick and A. Faivre.

Automating the generation and sequencing of test cases from model-based specifications.
In FME '93: Industrial-Strength Formal Methods, pages 268-284. Springer-Verlag, LNCS-670, 1993.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

dMRV92
Jan de Meer, Rudolf Roth, and Son Vuong.
Introduction to algebraic specifications based on the language ACT ONE.
Computer Networks and ISDN Systems, 23(5):363-392, 1992.

Dro89
G. Dromey.
Program Derivation -- The Development of Programs From Specifications.
Addison-Wesley Publishers Ltd., 1989.

FJJ+96

J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, and C. Viho.

An experiment in automatic generation of test suites for protocols with verification technology.

Technical Report 2923, INRIA, Rocquencourt, Juin 1996.
Fur93

U. Furbach.
Formal specification methods for reactive systems.
J. Systems Software, 21(2):129-139, Feb. 1993.

Gar9s

D. Garlan.
Research directions in software architecture.
ACM Computing Surveys, 27(2):257-261, 1995.

GH93
J.V. Guttag and J.J. Horning.
Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

GP95

C. Gaskell and R. Phillips.

98

A structured analysis formalism with execution semantics to allow unambiguous model interpretation.

In Software Engineering -- ESEC '95, pages 235-253, 1995.
Gri81

D. Gries.
The Science of Programming.
Springer-Verlag, 1981.

Har88

D. Harel.
On visual formalisms.
Comm. of the ACM, 31(5):514-530, May 1988.

HG97
D. Harel and E. Gery.

Executable object modeling with Statecharts.
IEEE Computer, 30(7):31-42, 1997.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 99

HI88

S. Hekmatpour and D. Ince.
Software Prototyping, Formal Methods and VDM.
Addison-Wesley Publishing Co., 1988.

Jan97

R. Janicki.
Foundations of the trace assertion method of module interface specification.
Technical Report CRL Report 348, McMaster University, 1997.

Jon86

C.B. Jones.
Systematic Software Development using VDM.
Prentice-Hall International Series in Computer Science, 1986.

Jul93

R.K. Jullig.
Applying formal software synthesis.
IEEE Software, 10(3):11-22, May 1993.

KB97

J.C. Knight and S.S. Birilliant.

Preliminary evaluation of a formal specification to user interface specification.

In ZUM '97: The Z Formal Specification Notation, pages 329-346. Springer-Verlag, LNCS-1212,
1997.

Lam88
D.A. Lamb.
Software Engineering: Planning for Change.
Prentice-Hall, 1988.
NB92
K. Naik and Sarikaya. B.
Testing communication protocols.
IEEE Software, 9(1):27-37, Jan. 1992.
Par90

H.A. Partsch.
Specification and transformation of programs: a formal approach to software development.
Springer, 1990.

Pfl98

S.L. Pfleeger.
Software Engineering -- Theory and Practice.
Prentice-Hall, Inc., 1998.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 100

Pre92

R.S. Pressman.
Software Engineering -- A Practitioner's Approach (Third Edition).
McGraw-Hill, Inc., 1992.

PvKP91

N. Plat, J. van Katwijk, and K. Pronk.

A case for structured analysis/formal design.

In VDM '91: Formal Software Development Methods, pages 81-105. Springer-Verlag, LNCS-551,
1991.

Rei87

W. Reisig.

Petri nets in software engineering.

In Petri Nets: Applications and Relationships to Other Models of Concurrency, pages 63-96. Springer-
Verlag, LNCS-255, 1987.

SC96

P. Stocks and D. Carrington.
A framework for specification-based testing.
IEEE Trans. on Soft. Eng., 22(11):777-793, 1996.

SFD92

L.T. Semmens, R.B. France, and T.W.G. Docker.
Integrated structured analysis and formal specification techniques.
The Computer Journal, 35(6):600-610, 1992.

SH94

A.C. Storey and H.P. Haughton.

A strategy for the production of verifiable code using the B method.

In FME '94: Industrial Benefits of Formal Methods, pages 346-365. Springer-Verlag, LNCS-873,
1994.

Sha95

N. Shankar.

Computer-aided computing.

In Bernhard M"oller, editor, Mathematics of Program Construction ‘95, number 947 in Lecture Notes in
Computer Science, pages 50-66. Springer-Verlag, 1995.

Som95

I. Sommerville.
Software Engineering (Fifth Edition).
Addison-Wesley, 1995.

TTOV97
S. Taouil-Traverson, P. Ozello, and S. Vignes.

Développement formel de logiciel de sécurité: utilisation de la méthode B a la SNCF.
Technique et Sciences Informatique, 16(9):1187-1209, 1997.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 101

Tur93

K.J. Turner.
Using formal description techniques: an introduction to Estelle, LOTOS, and SDL.
Wiley series in communication and distributed systems, 1993.

WP94

Y. Wang and D.L. Parnas.
Simulating the behavior of software modules by trace rewriting.
IEEE Trans. on Soft. Eng, 20(10):750-759, 1994.

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 102

Appendix J.
Additional Information on Other Body of Knowledge Proposals

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 103

The Joint Steering Committee of the IEEE Computer Society and the ACM for the Establishment of
Software Engineering as a Profession established a task force in 1996 to conduct exploratory work on the
issue of the software engineering body of knowledge. The task force designed and conducted a pilot
survey on a sample of tasks that could be considered within the scope of software engmeermg . The
survey asked whether each task described would be expected to be performed by a “novice software
engineer”, an “expert software engineer’, a “software engineering specialist” or a “manager” in the
organization.

The Institute for Certification of Computer Professionals (ICCP)®, a non-profit organization, offers a

certification program for software practitioners entitled Certified Computing Professional (CCP). The ICCP
states that there are currently 50,000 certificate holders. To obtain this certificate, a candidate must have
at least 48 months of direct full-time experience in computer-based information systems. A portion of this
experience requirement may be substituted with post-secondary education. Additionally, candidates must
successfully pass three exams, one of which is to be chosen from among various different topics,
including software engineering. The topics covered in the software engineering exam are: computer
systems engineering, software project planning, software requirements, software design, programming
languages and coding, software quality assurance, software testing techniques, software maintenance
and configuration management.

The Software Quallty Engineers program (SQE) is a certification program of the American Society for
Quality (ASQ)®. Obtaining this certificate also requires experience, which can be partly waived with post-
secondary education and by passing a 4-hour, 160-question exam. The “exam body of knowledge”
follows this table of contents:

. general knowledge, conduct and ethics;

. software quality management;

. software processes;

. software project management;

. software metrics, measurement and analytical methods;
. software inspection, testing, verification and validation;
. software audits;

. software configuration management.

The Quallty Assurance |Institute offers two specialized certification programs reIated to software
engineering: Certified Quality Analyst (CQA) and Certified Software Test Engineer (CSTE)*'. Obtaining
the CQA certificate requires a bachelor’'s degree, which can be waived with an Associate’s degree and/or
experience, a character reference and successfully passing a four hour, four part exam. The “Common
Body of Knowledge for the Information Systems Quality Assurance Profession” is provided as study
material for this exam. It describes knowledge in the following areas:

28
29
30
31

The report on the survey results can be found at computer.org/tab/seprof/survey.htm
See http://www.iccp.org/profess.html

See http://www.asq.org/about/divtech/softdiv/topcert.htm

See www.qgaiusa.com

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 104

Auditing and Control
Change Management
Communications

Disaster Recovery

Human Resource Principles
Management Techniques
Principles of I/S

Quality Assurance

Quality Control Techniques
Quality Management
Quantitative Methods
Reviews

Standards

Testing

Training and Development
Vendor Control

To obtain the Certified Software Test Engineer (CSTE) certificate, candidates must have direct
experience in software testing and must be able to show proficiency in six software testing skills
via a resume and other supporting documents. Candidates must, as of January 1999,
successfully pass an exam on the CSTE common body of knowledge. This body of knowledge
includes sixteen knowledge domains grouped into four categories:

Parnas

Test management: communication, professional development, testing concepts and
test environments;

Test planning: risk analysis, development methods and environment, test methods and
techniques, and planning process;

Test execution: verification methods, test tools, test-case design and performing tests;

Test results analysis and reporting: defect tracking and management, evaluating test
results, quantitative methods and test reporting.

proposes in [16] that the development of a body of knowledge in software engineering

must begin with the identification of tasks performed by software engineers. He then goes on to
propose a list of nine tasks:

Analyze the intended application to determine the requirements that must be satisfied,
and record these requirements in a precise, well-organized and easy-to-use document.

Participate in the design of the computer system configuration, determining which
functions will be implemented in hardware and which functions will be implemented in
software, and selecting the basic hardware and software components.

Analyze the performance of a proposed design (either analytically or by simulation) to
make sure that the proposed system can meet the application’s requirements.

Design the basic structure of the software, its division into modules, the interfaces
between these modules and the structure of individual programs, while precisely
documenting all software design decisions.

© IEEE

Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version 105

- Analyze the software structure for completeness, consistency and suitability for the
intended application.

- Implement the software as a set of well-structured and well-documented programs.
- Integrate new software with existing or “off the shelf” software.

- Perform systematic and statistical testing of the software and integrated computer
system.

- Revise and enhance software systems, maintaining their conceptual integrity and
keeping documents complete and accurate.

Parnas also points out that many other topics important to software engineers, such as project
management, are at the core of engineering as a whole and hence should not be included in the
software engineering body of knowledge.

Hilburn et al. in [26] recently proposed a body of knowledge for software engineering divided into
four major knowledge areas, which are then divided into knowledge components. These are:

. Core knowledge area:

Software requirements
- Software design
- Software construction
- Software project management
- Software evolution
+ Foundations area:
- Computing fundamentals
- Human factors
- Application domains
. Recurring area:
- Ethics and professionalism
- Software processes
- Software quality
- Software modeling
- Software metrics
- Tools and environments
- Documentation

. Supporting area: this area includes other fields of study which complete the education of
software engineers such as “general education”, mathematics, natural sciences and business
studies.

“Software Engineering and Methodologies” has also been incorporated as a “knowledge area” or
unit in the Core Body of Knowledge for Information Technology Professionals® published by the
Australian Computer Society. The topics covered in this unit are:

. Fundamentals of Software Engineering

- requirements analysis

% hittp://www.acs.org.au/national/pospaper/bokpt1.htm

© |IEEE Computer Society September 1998

Guide to the Software Engineering Body of Knowledge — A Straw Man Version

106

- functional and technical specifications

- process, data and object orientation models

- documentation standards
- software testing
- software maintenance
- software quality assurance
- formal specification methods
- software configuration management
. Project Management
- project planning, estimation and control
- project evaluation and control techniques
- team construction and management

- principles of software project management
- prototyping

A model curriculum and guidelines for undergraduate degree programs in information systems
entited 1S’97*® has recently been published after going through a very serious comment-
gathering and review process. This model curriculum was produced through a collaborative effort
of the Association for Computing Machinery (ACM), the Association for Information Systems (AIS)
and the Association of Information Technology Professionals (AITP). The draft curriculum was
reviewed at eleven national and international meetings involving over 1,000 individuals from
industry and academia. A body of knowledge for information systems that includes many software

engineering elements is proposed in 1IS’97.

¥ see http://webfoot.csom.umn.edu/faculty/gdavis/curcomre.pdf

© IEEE Computer Society

September 1998

