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Guided and defect modes in periodic dielectric waveguides
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The nature of guided modes and defect modes in periodic dielectric waveguides is investigated computationally
for model systems in two dimensions. It is shown that defect states that exist within the band gap of guided
modes can be excited to form tightly localized high-Q resonances.

1. INTRODUCTION

Periodic dielectric materials offer a great deal of control

over the propagation of light.1 Usually the basic idea is

to design periodic dielectric structures that have a band

gap for a particular frequency range. In a recent study2

Meade et al. showed that defects in a three-dimensional

(3-D) periodic dielectric material (photonic crystal) can ad-

mit localized states within a band gap. It is the purpose

of this paper to investigate the characteristics and prop-

erties of modes in periodic dielectric waveguides. In par-

ticular, we are interested in understanding the nature of

guided modes and whether defects can lead to highly lo-

calized resonances.

Before we present our model systems it is useful to con-

sider guided modes in a uniform dielectric waveguide. A

schematic rectangular waveguide is shown in Fig. 1(a).

Because of the translational symmetry along the slab

the mode can be characterized by wave vector kk. The

dispersion relation vskkd is also sketched in Fig. 1(a).

Modes above the light line sv  kkd are radiating modes,

with a continuous spectrum. Below the light line are

guided modes, which have a discrete band structure. The

guided modes that make up a given band have the same

symmetry and similar polarization properties.

We can consider a small periodic index contrast along

the waveguide to be a weak perturbation of a uniform

slab. (A typical example is the corrugated grating on the

surface of a thin-film waveguide in a distributed-feedback

laser.) For such a system a unit cell of length a is re-

peated along the waveguide, and modes can be charac-

terized by a wave vector kk that is confined to the first

Brillouin zone. The perturbation-induced coupling be-

tween the modes at kk  pya and kk  2pya opens

up small gaps at the zone edge [see Fig. 1(b)]. Light

cannot propagate along the waveguide with a frequency

within the gap since there are no permitted propagating

states. This phenomenon can also be readily understood

by Bragg’s condition—multiple reflections from the dif-

ferent unit cells conspire to interfere destructively within

the structure.

In distributed-feedback laser systems the translational

symmetry is broken by placement of a phase shift into

the structure. The phase shift can be designed (for ex-

ample, by use of a ly4 phase shift) so that a weakly local-

ized mode is created inside the gap.3 This mode would

act as the lasing mode. However, since the band gap is

small the localized mode will decay gradually into the pe-

riodic system. For a frequency difference dv between

the bottom of the upper band and the defect mode, the

decay length is roughly proportional to dv20.5. The in-

troduction of a small index contrast and phase shift in

distributed-feedback lasers results in a narrow linewidth

and single-longitudinal-mode operation.3 Increasing the

index contrast, we expect a larger gap to emerge, as in

Fig. 1(c), which might permit us to create a high-Q defect

resonance inside the gap. The purpose of this study is to

explore this possibility.

The format of the paper is as follows: In Section 2 we

begin with a description of our model systems and the

techniques used for the calculations. In Section 3 the

results of our calculations on several model systems are

presented, with emphasis on identifying defects that give

rise to strongly localized resonances for different polariza-

tions. Finally, in Section 4 we conclude with a summary

of our results and discussions of future directions.

2. CALCULATIONAL DETAILS

A. Model Systems
We chose to perform studies on two-dimensional (2-D)

model systems, with the hope of eliciting all the essential

physical properties. By 2-D we mean systems in which

there is no variation in the fields or dielectric constant in

the z direction and waves propagate only in the x–y plane.

In these 2-D systems any mirror-reflection operator about

the z axis leaves the system invariant and permits all the

modes to decouple rigorously into two symmetry classes.

One class of modes can be classified as transverse electric

(TE), in which the magnetic field points in the z direction

and the electric field lies in the x–y plane, and the other

class is transverse magnetic (TM), in which the electric

field points in the z direction and the magnetic field lies

in the x–y plane.4 Maxwell’s equations are decoupled

for these two polarizations, so we can investigate the

properties of each independently. 2-D systems are more

amenable to computation than their 3-D counterparts,

and their fields are much easier to visualize. In a 3-D

periodic waveguide, modes may still be roughly charac-

terized as TE-like or TM-like according to their dominant

polarization directions. We hope that the knowledge
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Fig. 1. Schematic of the band structures for waveguides with
different dielectric-constant contrast along the guide. (a)
Uniform dielectric waveguide, with the band structure shown
on the right-hand side. (b) Periodic dielectric waveguide with
weak index contrast. The origin of the gap is shown on the
right-hand side. (c) Periodic dielectric waveguide with strong
index contrast. The expected band structure is sketched on the
right-hand side.

gained from 2-D models can be readily applied to more

realistic 3-D systems.

Finally, we note that TM (TE) modes, defined as above

in terms of the 2-D plane normal, correspond, respectively,

to the conventional TE (TM) modes defined with respect to

the propagation direction along a traditional waveguide.

We adopt the former definition throughout this paper be-

cause of its wider applicability to 2-D mixed dielectric me-

dias in general (e.g., for localized states with no identifi-

able propagation direction).

B. Methods of Computation
In general, the detailed characteristics of light propa-

gation and confinement cannot be determined ana-

lytically for complex dielectric structures. Accurate

numerical methods are available for this purpose. We

applied two complementary schemes to deal with different

aspects of these systems. A frequency-domain approach

was used to find the eigenmodes of perfect systems and

systems with defects. A time-domain approach was then

applied to study the transient properties and the quality

factor Q of the localized defect modes.

1. Frequency-Domain Approach
We can obtain a single governing equation for electromag-

netic modes by rearranging Maxwell’s equations sc  1d:

= 3

"
1

´srd
= 3 H

#
 v

2
H . (1)

Here ´srd is the dielectric function and H is the mag-

netic field of an electromagnetic mode of frequency v. If

´srd is periodic, the magnetic field, which must be trans-

verse, is expanded in a basis of transverse plane waves

el expfisk 1 Gd ? rg, where k is in the first Brillouin zone,

G is a reciprocal lattice vector, and el are the unit vec-

tors perpendicular to wave vector k 1 G. In this basis

Eq. (1) becomes a matrix eigenvalue equation:

P
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Q
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where hGl is the coefficient of the plane wave el expfisk 1

Gd ? rg. The matrix is defined by

Q
k

sGld,sGld0  fsk 1 Gd 3 elg ? fsk 1 G
0 d 3 el0 g´21sG, G0 d .

(3)

In this expression ´21sG, G0 d is the inverse of the Fourier

transform of the dielectric function ´srd. Standard nu-

merical methods can then be applied to diagonalize the

matrix and obtain eigenvalues and eigenmodes. The de-

tails are discussed elsewhere.5

To model finite dielectric structures, we use the su-

percell approximation. In this method one embeds the

structural geometry of interest in a large supercell that is

then repeated periodically in position space. For a per-

fect periodic dielectric waveguide, one supercell simply

contains one period. For a waveguide with a defect, one

supercell contains the defect in question and several (typi-

cally seven in this study) periods of the waveguide on ei-

ther side of it. Since the modes of interest will decay

exponentially away from the waveguides or cavities, the

size of the supercell is chosen large enough so that the

coupling between different cells is negligible, and the re-

sults can be considered accurate descriptions of a single

waveguide or cavity.

2. Time-Domain Approach
To study the time evolution of electromagnetic fields, we

applied a finite-difference time-domain scheme to solve

the Maxwell equations. For illustrative purposes we

present the simplest case, i.e., the wave equation for TM

modes in 2-D systems. The case of TE modes is similar,

except that the wave equation is slightly modified. Re-

call that for TM modes the electric field points strictly

in the z direction. This single component of the electric

field obeys the simple wave equation

≠2Esx, yd

≠x2
1

≠2Esx, yd

≠y2
 ´sx, yd

≠2Esx, yd

≠t2
. (4)

This equation is discretized on a simple square lattice.

Space–time points are separated by fixed basic units of

time Dt and distance Ds. We can label the time in-

dex as n and the space indices as i and j, so that the

correspondence EsiDs, jDs, nDtd ! E
n
ij holds. The di-

electric function can be discretized in the same manner:

´siDs, jDsd ! ´ij . We then approximate the derivatives

at each lattice point by a corresponding centered differ-

ence, giving rise to the finite-difference equation

En
i11,j 2 2En

ij 1 En
i21,j

sDsd2
1

En
i,j11 2 2En

ij 1 En
i,j21

sDsd2

 s´ij d
E

n11
ij 2 2En

ij 1 E
n21
ij

sDtd2
. (5)

The idea is to solve this relation for the future time com-

ponent En11
ij and use this to update the values of the field

in the interior of the grid. On the boundary, where in-

formation about neighboring points is not available, we

applied the second-order transparent boundary condition.
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A detailed discussion of this boundary condition as well

as other features on finite-difference time-domain simu-

lations can be found in Refs. 6–8.

C. Calculation of Q Value
The quality factor Q of a resonator is defined universally

as9

Q 

vE

P
 2

vE

dEydt
, (6)

where E is the stored energy, v is the resonant frequency,

and P  2dEydt is the power dissipated. An equiva-

lent and more descriptive statement is that a resonator

can sustain Q oscillations before the energy dies down

to e22p ø 0.2% of its original values. By excitation of

the resonance mode and computation of the energy in-

side the cell over time with the time-domain scheme it is

a straightforward matter to compute Q and quantify the

dissipation.

3. RESULTS

Previous studies of photonic crystals have shown that, for

a structure with dielectric contrast as high as 13:1, con-

siderations like Bragg’s condition (which does not take

into account the vector nature of electromagnetic fields)

are not sufficient to describe essential physical properties.

Waves with different polarizations have different behav-

iors in most dielectric configurations. Studies of 2-D pho-

tonic crystals show that isolated high-dielectric spots are

important in developing a photonic band gap for TM-

polarized modes, whereas connectivity of high-dielectric

material is important for TE band gaps.10 With that

in mind we chose to study two different types of wave-

guide: a one-dimensional array of dielectric rods and a

one-dimensional array of air holes in a dielectric strip.

The former structure should give rise to large gap in TM

modes, while the latter should be favorable for a large

TE gap.

A. Dielectric-Rod Array Waveguide
This structure consists of a single row of dielectric

columns in air and is sketched in the inset of Fig. 2(a).

The columns have the dielectric constant ´  13 and gen-

erally have a rectangular shape. The spacing between

columns defines the lattice constant a. The dimensions

of the columns are chosen to be 0.3a 3 0.3a.

Because the system is periodic along one direction (say,

the x axis) we can catalog the eigenmodes according to

vskxd, which is done in Fig. 2. States above the light

line sv  kxd can satisfy the dispersion relation of free

space v  jkj, so these modes are extended in the air

regions. On the other hand, states below the light line

must be evanescent in the y direction and are guided by

the dielectric. Note that for TM modes there is a large

range of frequencies in which there are no guided modes

[Fig. 2(a)]. We refer to this as a gap, even though it does

not extend over the entire Brillouin zone. We chose the

structural parameters so that a big gap exists between

the first and second TM guided-mode bands. TE bands,

as expected, have only a small gap for this structure

[Fig. 2(b)].

To gain insight into the nature of gaps here, we exam-

ined the field patterns of different modes. The electric

field of modes at k  Gy2 of the first two TM bands are

shown in Fig. 3 (G  2pya is the reciprocal lattice vec-

tor). Since both modes are at zone edge the fields alter-

nate in sign from cell to neighboring cell. In Fig. 3(a) we

see that the fields associated with the dielectric material

are strongly concentrated in the dielectric regions. This

contrasts strongly with Fig. 3(b), which shows the field of

the second band. Here a nodal plane cuts through all the

dielectric rods, and the antinodes occur in the air region

between the dielectrics.

The frequency of light for a given wavelength is lower

in dielectric material than in air. It seems reasonable,

Fig. 2. Calculated band diagrams for the (a) TM and the (b)
TE modes in a perfect dielectric-rod waveguide structure. The
shaded regions represent extended modes, and the solid curves
below the light line are guided modes.

Fig. 3. Contour plots of the TM displacement fields at the
zone edge for the (a) first and the (b) second bands in the
perfect dielectric-rod waveguide structure. The TM modes have
D normal to the plane. The dashed curves represent contours
with Dz , 0, while the solid curves represent contours with
Dz . 0. The positions of the rods are shown by the shaded
areas.
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Fig. 4. Gray-scale plots of the power in the electrical fields of
TE states at the zone edge for the (a) first and the (b) second
bands in the perfect dielectric-rod structure.

then, that eigenmodes that have most of their character

in the dielectric region have lower frequency than those

with most of their energy in air. This simple observa-

tion explains the large splitting between these two bands:

the first band has most of its character in the dielectric

regions and has a lower frequency, while the second has

most of its character in the air and has a higher frequency.

In both bands the fields are concentrated along the wave-

guide and decay exponentially away from it, which is the

characteristic of their guided-mode nature.

For TE bands the electric power for the first two modes

at the zone edge is shown in Fig. 4. Like the TM modes

the TE modes tend to concentrate inside the dielectric

regions to lower their frequency. However, there is no

continuous pathway between the dielectric rods. Since

the field lines must be continuous they must penetrate

the air regions. For this reason neither band is strongly

concentrated in the dielectric. Since the bands do not

contrast strongly with each other they do not have a large

frequency splitting. The vector nature of the electromag-

netic fields is crucial in explaining this behavior. Also,

because both modes have most of their power concen-

trated in the air region, they are close to the light line,

as shown in Fig. 2(b).

One fact worth pointing out is that, for waveguides

with spatial period a, modes with frequencies above pya,

in general, are extended modes. As usual, modes are

guided if v , kk and extended if v . kk. For peri-

odic dielectric waveguides, kk is constrained in the re-

gion s2pya, pyad. Modes with frequency v . pya will

automatically satisfy the extend-mode condition. Thus

spatial periodicity imposes an upper-frequency cutoff for

guided modes. However, in the continuum of modes with

frequency above pya, we expect that strongly guided reso-

nances can still exist.

To create a localized resonance, we increased the width

of a single dielectric rod, as shown in the bottom of Fig. 5.

As the width of the dielectric increases, the frequency of

the resonance moves through the band gap. The most lo-

calized TM mode, with frequency v  0.3130, was found

for a defect formed by a central column of width 0.8a.

Figure 5 also shows a surface plot of the z component of

the displacement field across the supercell. The super-

cell is composed of seven dielectric columns on each side

of the defect. The striking feature of this diagram is the

rapid decay of the field amplitude in both the x and y di-

rections. This corresponds to a very low loss of power out

of the cavity mode and therefore to a small coupling be-

tween nearest-neighbor cavities. All TE resonances for

this defect are found to be delocalized.

The quality factor of this resonator was calculated by

use of the time-domain method mentioned above. We

initialize the system with a certain electric-field configu-

ration and let it evolve according to Eq. (5). For effective

excitation of the localized resonance the initial condition

should have a large overlap with the defect mode. The

energy inside the cell was measured over time and is

shown in Fig. 6. For the first few cycles all modes ex-

cept the high-Q mode radiate away. The defect mode

continues its slow exponential decay. The Q value of this

mode, calculated from the slope of the logarithmic plot, is

,12,000.

Unlike structures with a complete frequency gap, in

which any defect state in the gap must be localized,2 there

Fig. 5. Plot of the displacement field of the high-Q TM defect
mode. The largest positive and negative peaks of the displace-
ment field lie within the dielectric region of the defect. The
other peaks of the displacement field lie within the square
dielectric elements of the waveguide.

Fig. 6. Transient decay of the high-Q TM defect mode. Plotted
is the total energy in the defect mode as a function of time. E0

is the initial energy in the fields. T is the period of the high-Q
defect mode. Since the mode is not excited completely purely
the low-Q modes radiate away before the high-Q exponential
decay becomes manifest. The Q value for this defect mode is
12,000.
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is no complete gap in this structure to ensure localization.

It is perhaps surprising to achieve strong localization in

the absence of a complete band gap. A simple explana-

tion is that waveguides will support guided modes, but a

periodic index contrast will reflect guided modes within

a certain frequency range. If the cavity has the proper

size to support a mode in the band gap, a localized mode

is obtained.

We can understand the results in terms of mode cou-

pling. The addition of dielectric lowers the frequency of

a guided mode from the upper band into the gap. This

defect mode is primarily a superposition of guided modes

from the first two bands. As a result, there is no nodal

plane parallel to the waveguide, as can be seen in Fig. 5.

However, there will be some coupling between the reso-

nance and the extended states. In the supercell approxi-

mation a defect system is approximated by a periodic

system with large periodicity L. An exact description is

reproduced in the limit that L goes to infinity. From

the discussion of cutoff frequency in the periodic dielec-

tric waveguide we know that the upper cutoff is inversely

proportional to L, so it goes to zero as the spatial period

goes to infinity. Hence, in general, a truly localized state

does not exist in such defect systems. Coupling between

the resonance and the continuum gives rise to a lateral

outflow of energy from the resonance mode. The finite

size of the lattice leads to an outflow of energy along the

waveguide. These factors cause the resonance to have a

finite lifetime, characterized by Q.

Another fact worth noticing is that the frequency of the

most strongly localized TM mode is v  ayl  0.3130,

which is near the bottom of the gap in the periodic struc-

ture v  0.2754. We generally expect that highest-Q

modes will occur at frequencies near the center of the gap,

where the decay length is smallest. In one-dimensional

cavities a high-Q resonance requires a strong spatial lo-

calization, requiring the frequency to be close to the cen-

ter of the gap. However, it also requires that the mode

be localized in k space, so that the overlap between the

resonance and the free-space modes is minimized. This

requirement can be better satisfied if the resonance fre-

quency is lower. This helps to explain why a high-Q

resonance was found in the lower half of the gap.

B. Air-Hole-Array Strip Waveguide
As mentioned above, we expect a connected dielectric

structure to be favorable for the existence of TE band

gaps. Therefore we chose to study TE modes in the struc-

ture shown in the inset of Fig. 7. This is an array of

infinite-length air columns s´  1d inside a strip of dielec-

tric s´  13d. The distance between nearest-neighbor air

holes defines length unit a. The width of the slab is 1.2a,

and the radius of the holes is 0.36a. These parameters

were optimized to achieve the strongest localization by a

defect in this structure. The band structure is shown in

Fig. 7. Note that there is a large gap between the first

and second guided-mode bands.

Plots of electric power for two band-edge modes are

shown in Fig. 8. The TE modes in this system are con-

fined primarily inside the waveguide. Modes in the first

band have a displacement field contained in the dielectric

surrounding each air hole. However, the second band

has much of its power distributed inside the air holes.

This difference explains the large frequency difference be-

tween these two modes.

We create a defect in the system by increasing the

distance d between the two central air holes, as shown

in the bottom of Fig. 9. A supercell with seven air holes

on either side of the defect was used. We found the most

Fig. 7. Calculated band diagram for TE modes in a perfect
air-column structure. The shaded region represents extended
modes, and the solid curves below the light line are guided modes.

Fig. 8. Gray-scale plots of the power in the electrical fields of
TE states at the zone edge for (a) the first and (b) the second
bands in the air-column structure.

Fig. 9. Plot of the magnetic field of the high-Q TE defect mode.
The largest peak in the magnetic field lies within the dielectric
region of the defect. The other peaks lie within the circular air
regions of the waveguide.
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Fig. 10. Transient decay of the high-Q TE defect mode. Plot-
ted is the total energy in the defect mode as a function of time.
E0 and T are in the same convention as in Fig. 6. The Q value
of this mode is 13,000.

strongly localized state at v  ayl  0.2416 by choosing

d  1.4a. Figure 9 also shows the surface plot of the

z component of the magnetic field across the supercell.

The field amplitude decays rapidly in both the x and y

directions.

The time-domain method was supplied to calculate the

Q value for this defect mode. The energy inside the

cell was measured and is shown on a logarithmic scale

in Fig. 10. After a short transient period in which all

other modes but the high-Q mode radiate away the en-

ergy in the defect mode undergoes a slow exponential de-

cay. This quality factor exceeds 13,000.

Finally, as in the case of the TE modes, we find that

the coupling to the continuum still is an important factor

for determining the strongest localization in TE modes.

Strongest localization does not always occur in structures

with the largest guided-mode gap. Of course, a large

gap does strengthen confinement along the waveguide in

general; however, the midcap frequency should also be as

low as possible, to reduce the overlap with the continuum

of radiating modes.

4. CONCLUSION

In summary, our calculations demonstrate the possibility

of achieving strong confinement of light at defects in pe-

riodic dielectric waveguides, even without the assistance

of a complete photonic band gap. These resonances can

have a high quality factor Q and might prove useful in

various device designs, such as for microlaser cavities or

filters. We have also been able to identify the features

that are important for strong confinement for each of the

two polarizations.

These results appear quite promising and suggest that

similar effects may be operational in more realistic 3-D

rib-waveguide-cavity geometries. The properties of

spontaneous emission in such cavities and their effect

on lasing are also important problems that will need to

be addressed in the future.
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