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ABSTRACT The image super-resolution algorithm can overcome the imaging system’s hardware limitation

and obtain higher resolution and clearer images. Existing super-resolution methods based on convolu-

tional neural networks(CNN) can learn the mapping relationship between high-resolution(HR) and low-

resolution(LR) images. However, when the reconstruction target is a face image, the reconstruction results

often have problems that the face area is too smooth and lacks details. We propose a guided cascaded face

super-resolution network, called guided cascaded super-resolution network (GCFSRnet). GCFSRnet takes

the LR image and a high-quality guided image as inputs, and it consists of a pose deformation module and

a super-resolution network. Firstly, the pose deformation module converts the guide image’s posture into

the same as the low-resolution face image based on 3D fitting and 3D morphable model (3DMM). Then,

the LR image and the deformed guide image are used as input of the super-resolution network. The super-

resolution networks are formed by a cascade of two layers of networks, which extract different features.

During the reconstruction process, the guide image can provide real facial details and help generate subtle

facial textures. The cascade structure of a super-resolution network can gradually extract features and restore

different levels of image details. The experimental results on the CASIAWeb Face and CelebA datasets show

that the proposed method can generate facial images with clear outlines and rich details, which are superior

to other state-of-the-art methods such as SRResNet, SRGAN, VDSR, DBPN, etc.

INDEX TERMS Face super-resolution, 3D morphable model, guide image, pose deformation, cascade

structure.

I. INTRODUCTION

Super-resolution reconstruction is one of the classic com-

puter vision problems, which aims to recover high-frequency

details from low-resolution videos or images. The human

face is a common object in digital media. Using a super-

resolution algorithm to improve the human face’s clarity has

high application value in areas such as face recognition, smart

security, etc.

In general, super-resolution methods can be divided

into three categories: interpolation-based methods [1]–[3],

restoration-based methods [4], [5], and learning-based meth-

ods [6]–[11]. The interpolation-based methods assume that
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the image structure is piece-wise smooth and uses a basis

function or kernel function to perform image interpolate to

obtain an enlarged image. The interpolation-based method is

fast and can maintain the image’s edge, but the reconstructed

model is usually unstable, making it difficult to recon-

struct the details of the image accurately. The restoration-

based method can gradually restore the HR images by

solving the inverse process of image degradation, but it

requiresmuch calculation, and the degradationmodels are not

unique. The learning-based method uses machine learning

theory to learn the mapping function between HR and LR

image pairs from the training database. Since the learning-

based method can autonomously learn the mapping function,

it has become an important super-resolution reconstruction

method [12].
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With the rapid development of computing power, the

super-resolution method based on Convolutional Neural Net-

works (CNN) has gained the most success in learning-

based methods. Dong et al. first proposed Super-Resolution

CNN(SRCNN) [7] in 2016. It stacks three convolutional

layers to learn the non-linear mapping relationship between

HR and LR image pairs to achieve image super-resolution

reconstruction. However, due to the small number of network

layers, only shallow image information can be extracted, and

there is a blur phenomenon in the reconstructed image. Based

on SRCNN,Wang et al. [8] extended the depth of the network

to 20 layers to extract deep features and used the residuals

of HR and LR image pairs as the learning target to reduce

calculation.

For face images, Yu et al. proposed UR-DGN [9]. It is the

first time that a Generative Adversarial Networks(GANs) is

introduced into the face super-resolution method. UR-DGN

uses the approximately aligned frontal face image to train the

model and resolve the artifacts in the reconstruction results

caused by the input image’s very low resolution. However,

since the pictures in the dataset only contain front faces, the

reconstruction results have a large error for side face images

and different pose face images. Zhu et al. [10] reconstructed

face images with clear contours by alternately optimizing

the face SR task and the face dense field estimation task,

but the non-end-to-end network structure makes the learning

process very complicated. Song et al. [11] divide the LR

image into five regions according to the facial features, then

train networks for different regions, respectively, and stitches

the reconstructed images together. This method can generate

an image with rich facial features, but due to the stitching

edges between adjacent regions, there will be noticeable dis-

continuous regions in the reconstructed image.

Unlike Single Image Super-Resolution(SISR), the video

can be regarded as a collection of frame images, and there

are only slight differences between adjacent frames. There-

fore, Video Super-Resolution(VSR) can effectively use the

adjacent frames’ information to assist the reconstruction of

the current frame image. In the VSR method proposed by

Sajjadi in 2018 [13], the reconstructed frame image at the

previous moment is added to the reconstruction process of the

current frame image. It can obtain better auxiliary effects and

improve the frame image clarity. To eliminate the deviation

between adjacent frames, motion estimation and compensa-

tion is used to align two adjacent frame images.

In some cases, it is necessary to improve facial clarity

for specific characters. For example, restore old photos or

compressed images with low quality. Inspired by VSR [13],

considering that the face super-resolution pays more attention

to facial areas’ performance, it should be helpful to use a high-

definition face image with the same identity with LR image,

we called guide image, to assist the reconstruction. Therefore,

we introduce a Guided Cascaded Face Super-Resolution net-

work called GCFSRnet. The proposed GCFSRnet consists of

a pose deformation module and a super-resolution network.

The pose deformation module firstly performs 3D fitting on

the input images using 3D Morphable Model (3DMM) and

then deforms the guide image to the same pose as the LR face

image.

Since gradually increasing the image’s clarity is conducive

to obtaining the essential nature of image from coarse-to-fine

change [15], the SR networks are formed by a cascade of two

layers of networks, which extract different features. And then,

each layer of the SR network takes the distorted guide image

together with the low-resolution image as a common input to

generate subtle facial textures. Finally, an adversarial network

is used to generate more realistic textures for reconstructed

images. In summary, this paper’s main innovations are that

a high-resolution face image as the guide image is added

into the process of face super-resolution reconstruction, and

a complete scheme is designed to make full use of the guide

image so that the SR network can generate more details.

The rest of this article is arranged as follows: section II

introduces the related works in this article; section III intro-

duces our proposedmethod; section IV introduces the dataset,

experimental setting, and experimental results; section V

summarizes the full paper.

II. RELATED WORKS

A. FACIAL LANDMARK DETECTION

Facial landmark detection is a fundamental task in face image

processing and has broad application scenarios. In recent

years, landmark detection technology has gradually matured,

and many open-source models have been used. However,

when the image’s resolution is lower than 30 pixels, the detec-

tion accuracy of medium and large poses face at standard

facial resolution (192× 192) has decreased by 15% and 30%,

respectively [16]. Therefore, the existing research on facial

landmark detection mainly focuses on improving ultra-low

resolution facial images’ detection accuracy.

In the face alignment method (FAN) [17] proposed by

Yang et al. in 2017, a stacked HourGlass (SHG) structure is

used to estimate face landmarks. The SHG structure was first

proposed by Newell et al. [18] in 2016 to estimate human

pose. This structure can make full use of multi-scale feature

mapping to capture information at different scales. Benefit

from the excellent performance of SHG structure, various

algorithms based on SHG continuously proposed, such as the

face alignment algorithm FAN [17] proposed in 2017 and the

LAB [19] algorithm was proposed in 2018.

B. FACE CORRECTION BASED ON 3DMM

As a technical means to verify human identity, face recogni-

tion has completed complex and heavy tasks in many scenes

because of its non-contact and convenience. Most face recog-

nition methods require that the person being verified provides

frontal photos. However, human faces that can be collected in

natural environments usually have large posture and expres-

sion changes. It is necessary to use a face correction algorithm

to correct non-frontal face images to obtain an ideal frontal

image. Existing research on face pose correction can be

173388 VOLUME 8, 2020



L. Cao et al.: Guided Cascaded Super-Resolution Network for Face Image

FIGURE 1. Network structure of the proposed GCFSRnet.

divided into 2D-based and 3D-based methods. Among them,

the 3D-based methods can use 3D structural information

to simulate the conversion between postures. 3D structural

information can be obtained through a 3D morphable model

(3DMM). 3DMM is a face 3D deformablemodel proposed by

Blanz and Vetter et al. [14]. A common way to correct face

posture based on 3DMM is to use a 3D face model to match

a 2D face image, and then rotate the 3D model to obtain the

frontal image.

In the face correction algorithms proposed in recent years,

Hassner et al. [20] uses a unique and fixed 3D face model

to approximate the fitted shape of input faces. This method

is very effective for the human face’s frontal area but will

cause severe texture loss and artifacts on the contour and near-

contour surfaces. Zhu et al. [21] normalized the 3D model by

projecting the landmark of the 2D face onto the 3D facemodel

and then filled the invisible areas by Poisson editing to obtain

a smooth and natural normalized result. This method can

retain more original information and has better performance

than the 2D-based methods.

C. GAN

The proposal of GAN [22] solves the problem that the gener-

ated image is too smooth when using CNN for reconstruction.

The GAN trains the generator and the discriminator simulta-

neously based on the game idea until the two reach the Nash

equilibrium. This training process can cause the generator to

produce images with realistic textures. Since Ledig et al. first

proposed SRGAN, which combined GAN with SR, in 2016,

GAN has been applied to most CNN-based SR tasks. How-

ever, the original GAN is prone to gradient disappearance

during training; it is difficult to achieve the Nash equilibrium

state. Therefore, the GAN based image SR method is also

continuously improved with the improvement of GAN, such

as DCGAN [23] proposed by Dosovitskiy et al., WGAN [24]

proposed by Arjovsky et al. and the improved WGAN-GP

[25] based on WGAN.

III. METHOD

A. OVERVIEW OF GCFSRnet

In this work, we propose a novel guided cascaded face

super-resolution network called GCFSRnet. The GCFSRnet

consists of two parts: a pose deformation module noted as

WarpNet (Mwarp) and a super-resolution network noted as

RecNet (G1,G2). The architecture of GCFSRnet is shown

in Fig. 1. Note that the guide image should have the same

identity and same size as the ground truth(GT) image, and

the LR image is degraded from the GT image during training.

Denote ILR as the LR input image, Ig as the guide image, ISR

and IHR as the recovered image and the GT image. As shown

in Fig. 1, we first construct the pose deformation module

Mwarp on I
LR and Ig to get the warped guide image Iwg,

Iwg = Mwarp(I
LR, Ig) (1)

The warped guide image Iwg supposed to have the same

pose and face shape as ILR. Then Iwg and ILR are concate-

nated as the input of the SR network.

The SR network uses a two-layer cascade framework. The

first layer is a prior recover network (G1 ) and the second

layer is a structural constrain network (G2). The input image

goes through the prior recover network G1 to get the prelim-

inary reconstructed image IMID,

IMID = G1(I
LR, Iwg) (2)

Then, the structural constrain network(G2) is utilized to

recover the SR image by taking IMID and Iwg as input,

ISR = G2(I
MID, Iwg) = G(ILR, Iwg) (3)

During training, the reconstructed image ISR is used as the

input of the discriminator together with the GT image IHR.

The discriminator randomly selects an image to determine

whether it is a real high-quality image.

B. THE POSE DEFORMATION MODULE

In order to ensure that the SR network to obtain enough infor-

mation from the input, we select another image of the same

identity as the LR image to be the guide image, which can

provide real high-frequency information for the reconstruc-

tion. To provide more additional high-definition information,

the face area in the selected guide image is supposed to be

clear, frontal, and open.

In the latest proposed face posture correction method [21],

a non-frontal 2D face image is projected onto the 3DMM face

model. Then the non-frontal face model is standardized by

rotating the 3D model of the current image. Inspired by [21],

the pose deformation module separately performs 3DMM

projection on the guide image and the LR image and solve

the rotation matrix between the projected 3DMM face model

VOLUME 8, 2020 173389
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FIGURE 2. Flow chart of the pose deformation module.

and the standard 3DMM face model. To maintain posture

consistency, the 3DMM model of the deformed guide image

should have the same rotation matrix as the 3DMM model

of the LR image. Therefore, through the inverse rotation

matrix and parameter transformation, the guide image can be

transformed into the same pose as the LR input. The overview

of the pose deformation module is shown in Fig. 2.

3DMM is used as an average model to describe the shape

of a human face. As in (4), a face image of any shape can be

approximated as S by adjusting the correlation coefficient:

S = S̄ + Aidαid + Aexpαexp (4)

where S̄ is the average shape of the three-dimensional face

model, Aid and Aexp are the identity base and expression the

base of the face model, αid and αexp are shape parameters

and expression parameters respectively. To fit the 3DMM

model, the most commonmethod is to use a weak perspective

projection [26], any 2D face image can be projected onto the

3D face model as:

s2d = fPR(α, β, γ )(S + t3d ) (5)

In (5), s2d is the image plane position of the 2D landmark

which can use landmark detection algorithm to detect, f

is the scale factor, P is the orthographic projection matrix
(

1 0 0

0 1 0

)

, R(α, β, γ ) is a 3 × 3 rotation matrix controlled

by three rotation angles, and t3d is the translation parameter.

When there is a deviation between the 2D face pose and the

front face, the 2D and 3D landmarks do not exactly match.

In this case, the matching process of the 3DMM needs to be

corrected by landmark marching [21]:

s2d_land = fPR[S̄ + Aidαid + Aexpαexp + t3d ]land (6)

In (6), the subscript land indicates the landmarks of the

corrected 3D face. With fixed parameters, the 3DMM fitting

parameters αid , αexp, f , R, t3d in (6) can be solved in an itera-

tive manner. Then, the landmarks of the face and surrounding

area are used to obtain the 3D grid bins. Finally, multiply the

non-frontal 3D face model with the inverse rotation matrix

R−1 to obtain the frontal image:

Simg_rn = R−1Simg (7)

where Simg is the three-dimensional grid map including a

non-frontal three-dimensional face model and landmarks,

R is a rotation matrix estimated during the fitting process,

and Simg_rn is a standard normalized three-dimensional grid

map. Since (7) is only for the standard frontalization process

of non-frontal face images, it cannot be directly applied to

the discussed scenario. The deformation between the guide

image Ig and the LR image ILR can be obtained by solving

(6) to get the respective fitted 3D face model, and the two can

be converted by (8):

Simg_rn_lr = R−1
lr Simg_lr

Simg_rn_g = R−1
g Simg_g = R−1

wgSimg_wg (8)

where Simg_rn_lr and Simg_rn_g are standard normalized 3D

grid maps with ILR and Ig as the identity base respectively,

Simg_lr , Simg_g, Simg_wg and Rlr , Rg, Rwg are LR images,

guide images and the 3D grid map and rotation matrix of the

deformed guide image to be solved. Because the distorted

image should have the same rotation matrix as ILR, which

means Rwg = Rlr . According to the above conditions, Simg_wg
can be expressed as (9):

Simg_wg = RlrR
−1
g Simg_g (9)

After the posture and expression are normalized, it is nec-

essary to adjust further the landmarks of the boundary of

the distorted image to eliminate the change in the position

of the landmarks and preserve the original structure of the

image. Finally, through the light adaptation [21] and edge

filling [6] the image artifacts caused by the large yaw angle

compensated and final distorted image Iwg is obtained.

C. THE SUPER-RESOLUTION NETWORK

In order to enhance the reconstruction accuracy of the SR

network in the face region, GCFSRnet brings the structural

information of the face image into the SR process. However,

when the input image’s resolution is too low, it is difficult to

extract the accurate structural information of the face directly.

Therefore, the SR network is designed as a two-layer cascade

structure, consisting of a prior recover network G1 and a

structural constrain network G2, as shown in Fig. 1.

The prior recover network restores high-frequency details

based on the inherent before the LR image, thereby improving

173390 VOLUME 8, 2020
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FIGURE 3. The diagram of prior recover network.

FIGURE 4. The diagram of structural constraint network.

face structure information extraction accuracy. Then, the

structural constraints network enhances the facial region’s

reconstruction accuracy by additionally estimates the struc-

tural information of the face.

1) THE PRIOR RECOVER NETWORK

The detailed structure of the prior recover network is shown

in Fig. 3. In order to extract deep features from LR input,

recover face image with rich high-frequency information, and

avoid gradients exploding/vanishing phenomenon, the resid-

ual block [27] is utilized as the basic architecture for feature

extraction in the prior recover network. The residual block

is composed of two convolutional layers with a kernel size

of 3 × 3. Each layer is connected to the batch normalization

layer and uses PReLU as an activation function. The LR input

first goes through a convolutional layer with a kernel size of

3 × 3. To reduce calculation, the stride is set to 2, and the

feature map size is half of the input size. Then 20 residual

blocks are used to extract the feature, and the deconvolution

layer is utilized to up-sample the feature map to the initial size

of the input. Finally, a convolution layer is used to reconstruct

the HR image.

2) THE STRUCTURAL CONSTRAINT NETWORK

The structural constraint network is shown in Fig. 4. The

HourGlass(HG) structure [18] is utilized to estimate facial

landmark heatmaps. Fig. 5 is the basic structure of a four-

layer HG block. Using skip connection between symmetric

layers, the HG block can effectively integrate multi-scale

features and retain spatial information at different scales.

Stacked hourglass(SHG) can capture the spatial information

of each landmark of the face. Besides, the stacked hourglass

FIGURE 5. The structure of a Hourglass block.

can significantly improve the estimation accuracy by multi-

plexing the previous level’s information.

In the structural constraint network, the upper layer’s

reconstruction results are extracted by the shallow features,

and then a two-layer SHG block is used to estimate the facial

landmark. After decoding the features through three residual

blocks, two deconvolution layer recover the feature map to

the original size. Finally, a single convolutional layer recovers

the feature map to the high-resolution image. Introducing

the HG block into the structural constraint network can not

only strengthen the facial structure consistency of the recon-

structed image and the GT image but also extract more high-

frequency information and improve the visual effect of the

reconstructed image.

D. ADVERSARIAL NETWORK ARCHITECTURE

In order to generate more realistic image details, the

GCFSRnet is regarded as a GAN, which uses the discrimi-

nator network to promote the generator to generate a more

realistic result. The discriminator architecture is as shown

in Fig. 6. It contains 8 convolutional layers. Compared with
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FIGURE 6. The structure of the adversarial network.

the VGG network [29], the convolution kernel has increased

from 64 to 512. We follow the architectural guidelines sum-

marized by Radford et al. [23] and use LeakyReLU activation

(α = 0.2) and avoid max-pooling setting in the network.

After 8 convolutional layers, the resulting feature maps are

followed by two dense layers. Then a final sigmoid activation

function is used to obtain a probability for classification.

E. LOSS FUNCTIONS

1) RECONSTRUCTION LOSS

Define the training set A and B as
{

ILR, IHR
}N

i=1
, N is the

number of training sample pairs. Then the reconstruction

loss lpixel is used to minimize the pixel distance between the

reconstructed image and the real HR image, it is defined as:

lpixel =
1

2N

{

∥

∥

∥
IHRi − IMIDi

∥

∥

∥

2
+

∥

∥

∥
IHRi − ISRi

∥

∥

∥

2}

(10)

where IMIDi , ISRi and IHRi are the output of G1, the output

of G2 and the corresponding GT image of the i-th image

respectively.

2) PERCEPTUAL LOSS

The reconstruction loss alone can constrain the two images’

consistency at the pixel level and improve the PSNR value,

but the reconstructed image should also maintain the right

consistency with the real image in high-level features.

SRGAN and the perceptual loss proposed by Johnson et al.

make the reconstructed image closer to the real image in detail

by constraining the two pictures’ similarity in the feature

space. SRGAN uses the advanced features after the fourth

convolutional layer before the fifth pooling layer of VGG-19

[29] structure and formulated the perceptual loss as (11):

lfeature/i,j=
1

Wi,jHi,j

Wi,j
∑

x=1

Hi,j
∑

y=1

(φi,j(I
HR)x,y−φi,j(G(I

LR))x,y)
2

(11)

where G is a generator of the SR network, φi,j represents

the feature map of the i-th pooling layer (after the activation

layer) before the j-th convolution layer in the VGG-19 net-

work,Wi,j and Hi,j are the dimension of feature map in width

and height respectively. In our work, i and j are the same as

SRGAN, respectively 5 and 4.

3) LANDMARK LOSS

To enhance the recovered image’s spatial consistency and

the GT image, the SHG in a structural constraint network is

utilized to generate the landmark heatmap. The landmark loss

can be defined as (12):

llandmark =
1

N

N
∑

n=1

∑

ij

(M ñ
i,j −Mn

i,j)
2 (12)

where Mn
i,j and M

ñ
i,j represent the n-th landmark heatmap of

the recovered image and the GT image at position (i, j).

4) ADVERSARIAL LOSS

To generate realistic image details, this paper uses a discrim-

inator network to constrain the adversarial loss. During the

training process, the discriminator randomly selects one of

the reconstructed image and the real image to distinguish the

actual data distribution from the generated data distribution.

The discriminator interacts with the generator to push the

generator to produce realistic and detailed images. In order

to reduce the difficulty of network training, this paper uses

WGAN-GP [25] to define the adversarial loss as:

lWGAN = EI ′∼Pg
[D(ISR)] − EI∼Pr [D(I

HR)]

+λEI ′∼PI ′
[(

∥

∥▽I ′D(I
′)
∥

∥

2
− 1)2] (13)

where G and D are the SR network and adversarial network,

Pg and Pr are the generated sample I ′ = G(ILR) and the GT

sample respectively. Randomly sample a pair of true and false

samples, and randomly interpolate between the two samples

to obtain the sample distribution PI ′ .

5) OVERALL OBJECTIVE

The overall objective function of the GCFSRnet can be writ-

ten as in (14):

lSR = αlpixel + βlfeature + µllandmark + δlWGAN (14)

where α, β, µ, δ are the weighting coefficients for lpixel ,

llandmark , lfeture and lWGAN respectively.

IV. EXPERIMENTS

A. DATASET

Since the GCFSRnet needs to obtain a high-quality frontal

face image, which has the same identity as the LR image,

the CASIA WebFace dataset [30], which is commonly used
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FIGURE 7. Example images of CASIA WebFace.

in face recognition tasks, is used as the training set, then the

CASIA WebFace and CelebA are used as the test set. The

CASIA WebFace contains 494,414 unaligned face images

of 10575 people at various ages, expressions, and lighting

environments with the image size of 256 × 256. CelebA

dataset contains 202,599 face images of 10,177 celebrities.

However, as shown in Fig. 7, the quality of the images in

CASIAWebFace is quite different, and there are cases where

the identity label is wrong. So we exclude images with poor

quality (Fig. 7-b), large occlusion in face area (Fig. 7-c), and

incorrect identity label (Fig. 7-d) in CASIAWebFace dataset.

Then the selected 5156 images corresponding to 300 people

in CASIA WebFace are used as the training set, 497 images

for 30 people in CASIAWebFace, and 800 images for 50 peo-

ple in CelebA are used as the test set, and there is no inter-

section between the training set and test set. In addition, each

person has a corresponding guide image. The guide image is

supposed to be frontal, open eyes, clear, and unobstructed,

and the guide image and its degraded image are not used as

the HR-LR pair in training.

Without any pre-alignment operation, the LR image is

generated according to Eq.15.

Id,s =
((

I
⊗

kρ

)

↓s +nσ

)

JEPGq
(15)

In Eq.15, the image I is first convolved with a Gaussian

blur kernel kρ with a standard deviation of ρ, then down-

sampled by factor s and added additive white Gaussian noise

nσ with a noise coefficient of σ . Finally, we use JPEG com-

press quality coefficient q on the image is able to obtain the

degraded image Id,s. In order to keep the size of the output

image as same as the input, we use Bicubic interpolation to

upsample Id,s to the initial size as the LR input. Because this

experiment use 4x scale face super-resolution reconstruction

as an example, so we set the down-sampling parameter s = 4

in Eq.15. In the general image compression quality factor q is

about 80. In order to show the SR algorithms can reconstruct

image with severe degradation we set q = 50 in this paper.

The multiplicative noise factor and the additive noise factor

FIGURE 8. Distortion results of the pose deformation module.

are used using a common settings ρ = 1 and σ = 3. So the

parameters of Eq.15 are set as s = 4, ρ = 1, σ = 3, q = 50.

ILR =
(

Id,s
)

↑s (16)

B. TRAINING DETAILS

In order to determine each hyper parameter of the loss func-

tion, we use a grid search method: set the value of each

parameter to: 0.005, 0.01, 0.05, 0.1, 0.5, 1, and calculate the

average PSNR of the training set under different parameters,

the parameters with the highest PSNR are selected as the final

parameters, which are α = 1, β = 0.1, µ = 0.005, and

δ = 0.01.

TABLE 1. The PSNR of the different hyper parameters for overall loss.

In addition, we also analyzed the different effects of differ-

ent parameters on the overall loss. For this reason, we added a

set of ablation study to demonstrate the hyper parameters (α,

β, µ, and δ). The experimental results are shown in Table 1.

α, β, µ, and δ represent the four hyper parameters. We fix

the three parameters of α = 1, β = 0.1, µ = 0.005, and

δ = 0.01 in turn, and then set the remaining one parameter to

0.005, 0.01, 0.05, 0.1, 0.5, 1 and calculate the average PSNR

of the training set. The results in each row in Table 1 represent

the average PSNR of the training set for different parameter

values. It can be seen from the table that as the value of α

increases, the PSNR result gradually increases, which shows

that α has the greatest impact on the overall loss. Compared

with α, the influence of parameter β is second. At the same

time, the influence of the parameters µ, and δ on the overall
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FIGURE 9. Reconstruction results of GCFSR(-g), GCFSR(-w) and GCFSRnet with upscale factor of 4.

loss is significantly smaller than that of α and β, and the

influence of µ is the smallest.

The GCFSRnet is trained using the RMSprop algorithm

with an initial learning rate of 0.001. The discriminator is

trained using the Adam algorithm with learning rate 0.0001,

β1 = 0.1, β2 = 0.999, e = 10−8. The tradeoff parameters

are set as α = 1, β = 0.1, µ = 0.005, and δ = 0.01.

The training process of GCFSRnet can be divided into two

steps. At first, the GCFSRnet is trained with the mini-batch

size of 16. The discriminator does not participate in network

training. Therefore the adversarial loss weight is set to 0.

After 100 epochs, the adversarial loss weight is set to 0.1,

the learning rate of RMSprop decays by a factor of 0.9 after

each epoch. The batch size is 4 at this stage, and the training

is stopped after 30 epochs.

C. ABLATION STUDY

Fig. 8 shows the distortion results of the pose deformation

module in GCFSRnet. After the guide image and LR image

pass through the pose deformation module, it can generate a

natural and smooth facial deformation result with a noticeable

deformation effect. For the image’s face area, the distorted

image is clear and undistorted; it has the same posture as the

LR image and can provide sufficient high-frequency informa-

tion during the SR process.

In order to verify the effectiveness of the guide image

and the pose deformation module, we further build three

networks i.e., GCFSR(-g), GCFSR(-c), and GCFSR(-w) for

comparison. Among them, GCFSR(-g) neither use the guide

image nor contain the pose deformation module. Only the LR

image is used as the input. In GCFSR(-c), the guide image

is only used in the pose deformation module and the first-

layer prior recovery network as a common input. GCFSR(-w)

does not contain a pose deformation module, and the original

guide image without deformation is directly input into the

SR network with the LR image. GCFSR(-g), GCFSR(-c)

and GCFSR(-w) are all trained with the same dataset and

parameters as the GCFSRnet.

To compare the experimental results more effectively,

we divide the above networks into three groups for compar-

ison, see Fig. 9, Fig. 10, and Fig. 11. Fig. 9 illustrates the

influence of the pose deformation module, and Fig. 10 illus-

trates the influence of the addition of guide images in the SR

network, and Fig. 11 illustrates the beneficial information of

the guided image and the deformation module to the network.

In Fig. 11, where (b)(c)(e)(f) are obtained from the

residual between the GCFSR method and the GCFSR(-g),

GCFSR(-w) and GCFSR(-c). After the residual calculation,

the residual value is stretched. Among them, (a) and (d)

are the super-resolution results of the face obtained by the

GCFSR method, (b) and (e) are the extra details obtained

by the guided image in the GCFSR method, (c) is the extra

details obtained by the pose deformation module, (e) is the

extra details obtained by the cascade of two layers of net-

works. It can be clearly seen from (b) and (e) that adding

a guided image can effectively increase the edge and high-

frequency details of the image and increase the facial details;

the deformation module obtained in (c) can also increase the

high-frequency details and different facial parts of the image.

It can be seen in (f) that use two cascaded networks can further

capture the image information and make the image clearer

and sharper.

As shown in Fig. 9, GCFSR(-g) without using the guide

image cannot generate sharp contours in the facial features

area, and the high-frequency information of the overall image

of the reconstructed image is insufficient. For GCFSR(-w)

that deforms the guide image without the pose deformation

module, although its reconstruction results in the face area

are significantly improved compared to GCFSR(-g), there are

still unclear problems edges. In contrast, the reconstruction

results generated by the GCFSRnet have a clearer facial

contour, more accurate and sharp performance in the facial

features area, and a more fine-grained visual effect in other

non-face areas (as marked by the yellow box in Fig. 9).

Notice that when the guide image is very close to the face

pose in the LR image, GCFSR(-w) can also obtain satisfac-

tory reconstruction results. At this time, the effect of the pose
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FIGURE 10. The reconstruction results of GCFSR(-g), GCFSR(-c) and GCFSRnet with upscale factor of 4.

FIGURE 11. The extra details obtained GCFSR(g), GCFSR(w) and GCFSR(c) with upscale factor of 4.

deformation module on the guide image is almost negligible.

This is because the SR network improves the output image’s

consistency and the input image by minimizing pixel loss

during the training process. When the guide image’s face area

can already basically coincide with the LR image, it is enough

for the SR network to learn the high-frequency information of

the current reconstruction area without the pose deformation

network. However, under normal circumstances, the differ-

ence between the high-definition guide image and the LR

image makes GCFSR(-w) actively add real high-frequency

information to the SR process. This information always exists

large deviations with the current reconstruction area at pixel

position and cannot be used. Therefore, it is necessary to

jointly utilize the guide image and the pose deformation

module to reconstruct the realistic and rich-information face

image.

In Fig. 10, the areaswith noticeable facial features are high-

lighted. It can be seen fromFig. 10 that the GCFSR(-c), which

added the guide image only once during the SR process,

can produce clearer facial features compared to GCFSR(-g).

The picture’s overall clarity has improved, but it still exists

apparent deficiency compared with the GCFSRnet. Due to

the two cascaded guide images are used in GCFSRnet, the

facial feature area generated by GCFSRnet is more affected

by the guide image, and this area has a higher definition and

sharper edge texture.

PSNR and SSIM, which are often used in image processing

tasks, are used for quantitative comparison, and the results

are shown in Table 2. Generally speaking, the higher value

of PSNR and SSIM means better performance. The highest

value is displayed in red font, and the second-highest value

is marked in blue font. Consistent with visual quality, the

GCFSRnet has achieved the highest value in both PSNR and

SSIM indicators.

The above experiments prove that the guide image can

enhance the image details of the face area. In order to ver-

ify whether the reconstructed image will change when the

guide image is different, we set up two groups of comparison

results based on age and gender, as shown in Fig. 12. Since

GCFSRnet is not aiming at blind face reconstruction, under

the upscale factor of 4, the input LR image can maintain the

original contour and facial features. The overall reconstructed
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FIGURE 12. Reconstruction results when guide images have different identities.

FIGURE 13. Reconstruction results of GCFSRnet and other state-of-the-art methods at an upscale factor of 4 on CASIA WebFace dataset.

TABLE 2. Resulted mean PSNR and mean SSIM.

image is not changed, but when zooming in on the five

senses’ details, subtle changes can be observed. Therefore,

in the reconstruction task of the upscale factor of 4, the guide

image’s identity selection will have different degrees of influ-

ence on the expression of the reconstruction results in features

and textures. However, when the current reconstruction object

cannot find a suitable guide image of the same identity, the

features similar to the other identities can also achieve good

results.

D. COMPARISON WITH STATE-OF-THE-ART

To evaluate the reconstruction performance of the GCFSRnet

at the upscale factor of 4 and 8, we compared with

state-of-the-art SR methods, including SRGAN [22], SRRes-

Net [22], VDSR [15], DBPN [31], FSRNet [28], SiGAN

[32], ATMFN [33]. SRGAN, SRResNet, and VDSR only

provide 4× upscale models, while DBPN, FSRNet, SiGAN,

and ATMFN provide 4× and 8× upscale models. It is worth

mentioning that FSRNet, SiGAN, and ATMFN are SR meth-

ods for face hallucination. As a comparison, we add the above

methods to the comparison experiment. We use the above

models’ released pre-trainingmodel to conduct a comparative

experiment at the corresponding upscale factor.

Fig. 13 and Fig. 14 is the reconstruction results of

GCFSRnet and other state-of-the-art methods at the upscale

factor of 4 on the CASIA Web Face and CelebA dataset,
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FIGURE 14. Reconstruction results of GCFSRnet and other state-of-the-art methods at upscale factor of 4 on CelebA dataset.

TABLE 3. Qualitative comparison with state-of-the-art methods.

respectively. Table 3 summarizes quantitative results on the

two datasets.

For scale factor 4, it can be seen from Table 3 that similar to

the visible results of Fig. 13 and Fig. 14. The proposedGCFS-

Rnet has obtained the highest values on the PSNR and SSIM.

Besides, we used NIQE [34] as a reference-free image quality

evaluation to compare the different methods’ effectiveness.

The smaller value of NIQE means better image quality. The

results in Table 3 show that the proposed GCFSRnet has

good results in these three quantitative methods. It can be

seen that the reconstructed images of SRGAN and SRResNet

are too smooth since the network of these methods is too

shallow to obtain enough high-frequency information. There-

fore the blur effect caused by the low resolution still exists.

By increasing the network’s depth and fitting images of

different sizes, VDSR can effectively predict missing pixels

and generate sharper reconstruction results. However, when

zoomed in, the image’s unnatural texture transitions can be

clearly found, and the reconstructed image is not realistic.

Compared with SRGAN, SRResNet, FSRNet, and ATMFN,

the result of DBPN has slightly improved in sharpness and

edge texture but still blurring. The result of SiGAN is similar

to VDSR, with good sharpness and texture details, but the

overall effect of the image is not realistic. While our method

actively provides high-frequency information with the same

identity for reconstruction and can reconstruct images with

rich details and clear facial areas such as facial features and

hair, and closer to the GT image. Besides, the LR image is

reconstructed by two cascades of the SR network, which can

gradually improve the image clarity, makes the GCFSRnet

reconstruct the background with a more delicate texture.

For scale factor 8, Fig. 15 shows the comparison results

of the GCFSRnet and other state-of-the-art methods. It can

be seen that GCFSRnet can obtain the best visual effects, but

the quantitative value is not the highest.

It can be seen that our method can obtain better visual

effects in the face area, but the sharpness of the facial features

and facial contour areas of the 8× reconstructed image is sig-

nificantly reduced compared to the 4× reconstructed image,

and the overall image is smoother. This is because the upper
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FIGURE 15. Reconstruction results of GCFSRnet and other state-of-the-art methods at upscale factor of 8.

FIGURE 16. Reconstruction results of GCFSRnet at upscale factor of 16, the actual input image is shown in the
lower left corner of column b.

limit of the reconstructed image’s visual effect is affected

by the quality of the training data. During the experiment,

the image quality of our training set is not high and mixed.

Therefore the training set requires manual screening of image

data and labeling a guided image for each identity, making

the training data scale smaller and the reconstruction effect

limited. If we choose a face dataset with higher quality and

larger scale for training, wemay be able to obtain better visual

effects.

E. SHORTCOMINGS AND PROSPECTS

Generally, face SR and face hallucination methods mainly

targeted the upscale factor of 4 and 8, while the upscale

factor of 16 is still a big challenge. In this paper, the result

at the upscale factor of 16 is presented in Fig. 16. Although

the GCFSRnet takes high-quality guide images as an extra

input, the reconstructed images are still blurry and have

apparent errors. This result is mainly because under high

upscale factors, and it is challenging to detect accurate face

landmarks from LR images, sometimes the landmarks are

even undetectable, resulting in the deformation module not

working. When this happens, the SR network cannot learn

useful information from the guide image. Besides, when the

upscale factor is too large, the reconstruction network can

hardly obtain enough information from the LR image. It can

only depend on generative adversarial training to simulate

the real face image based on the small amount of input

information, making the difference between the reconstructed

image and the GT image is too large.

V. CONCLUSION

In this paper, we proposed a guided cascade face SR method,

called GCFSRnet. GCFSRnet takes the LR image and a high-

quality guide image of the same identity as inputs. It can be

divided into a pose deformation module and an SR network.

The pose deformation module converts the guide image’s

posture into the same as the low-resolution face image based

on 3D fitting and 3DMM. The SR network extracts image

features from the LR image and the deformed guide image

through a cascade structure. During the SR process, the

deformed guide image can provide high-frequency face infor-

mation, which generates fine facial texture. The cascade

structure of the SR network can enhance image clarity step by

step and improve the guide image’s utilization. Experiments

on the CASIA Web Face and CelebA dataset show that our

GCFSRnet can generate facial images with clear outlines and

rich details.
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