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ABSTRACT 

Accurate cell type identification is a key and rate-limiting step in single cell data analysis. 

Single cell references with comprehensive cell types, reproducible and functional 

validated cell identities, and common nomenclatures are much needed by the research 

community to optimize automated cell type annotation and facilitate data integration, 

sharing, and collaboration. In the present study, we developed a novel computational 

pipeline to utilize the LungMAP CellCards as a dictionary to consolidate single-cell 

transcriptomic datasets of 104 human lungs and 17 mouse lung samples and constructed 

“LungMAP CellRef” and “LungMAP CellRef Seed” for both normal human and mouse 

lungs. “CellRef Seed” has an equivalent prediction power and produces consistent cell 

annotation as does “CellRef” but improves computational efficiency and simplifies its 

utilization for fast automated cell type annotation and online visualization. This atlas set 

incorporates 48 human and 40 mouse well-defined lung cell types catalogued from 

diverse anatomic locations and developmental time points. Using independent datasets, 

we demonstrated the utility of our CellRefs for automated cell type annotation analysis of 

both normal and disease lungs. User-friendly web interfaces were developed to support 

easy access and maximal utilization of the LungMAP CellRefs. LungMAP CellRefs are 

freely available to the pulmonary research community through fast interactive web 

interfaces to facilitate hypothesis generation, research discovery, and identification of cell 

type alterations in disease conditions. 
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INTRODUCTION 

Single cell RNA-seq (scRNA-seq) analysis is being widely applied to biomedical research, 

enabling the study of complex organs, such as the lung, at unprecedented scale and 

resolution, and transforming our understanding of organ development and disease1-4. 

Accurate cell type identification is a key and rate-limiting step in the single cell data 

analysis that usually requires time-consuming processes to optimize computational 

parameters followed by manual inspections that require domain expertise. With the 

increasing number of published scRNA-seq datasets and the release of large-scale cell 

atlases, advanced computational tools5-7 have been developed using annotated datasets 

to predict cell identities in new datasets. Common issues related with the use of a 

published scRNA-seq data as a reference for supervised classification of user-supplied 

datasets include the lack of comprehension (missing cell types), inclusion of speculative 

cell types/states that have not been functionally validated, technology specific-biases in 

the reference or query, and insufficiently powered to represent the repertoire of common 

healthy lung cell types. The lack of common cell type nomenclatures and guidelines for 

single cell transcriptomic studies also creates substantial technical challenges for data 

integration and comparison. Therefore, single cell references with comprehensive cell 

types, reproducible and functional validated cell identities, and common nomenclatures 

are much needed by the research community to optimize automated cell type annotation 

and facilitate data integration, sharing and collaboration. 

A growing number of community-wide efforts have been devoted to the development 

of common cell type nomenclatures, including cell type ontologies of the Human Cell 

Atlas8 and the common cell type nomenclature for the mammalian brain9. Recently, the 
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LungMAP consortium produced a LungMAP CellCards10, a rigorous catalogue of lung 

cells based on a community effort of the consortium that synthesizes current functional 

and single cell data from human and mouse lungs into a comprehensive and practical 

cellular census of lung cells. The current version of LungMAP CellCards catalogued 39 

major cell types and numerous immune cell subtypes, spanning the principal cellular 

heterogeneity present in diverse regions of normal lung, including trachea, bronchi, 

submucosal glands (SMG), and lung parenchyma10. These common cell type 

nomenclature efforts provide a scaffold and guideline for the ongoing development of a 

comprehensive lung single cell reference for single-cell genomics analysis. In addition to 

curation, novel computational methods are further needed to utilize these common cell 

type nomenclatures as guidelines to accurately identify cell types using integrated single 

cell datasets.  

Here, we present a novel approach for cell atlas construction that directs the 

identification of reference cell populations according to a dictionary of pre-compiled cell 

type terms and molecular markers derived from CellCards. The pipeline consists of two 

key steps, first identifying a “seed” population for each cell type which best represents the 

cell identity in the dictionary, then mapping all cells to the “seeds” based on transcriptomic 

similarity to construct a complete single cell reference, term “CellRef”. Using this 

approach, we constructed and released a CellRef consisting of a total of 48 normal human 

lung cell types, which we named “LungMAP Human Lung CellRef”. Using the same 

approach, we identified “seed” cells for 40 mouse lung cell types and constructed the 

“LungMAP Mouse Lung Development CellRef”. We deployed this resource as multiple 

user-friendly web interfaces to facilitate easy access and maximal use of the LungMAP 
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CellRefs. These interfaces include use of the recently developed Azimuth interface, which 

enables research investigators to annotate their own scRNA-seq dataset automatically 

using the LungMAP CellRef, via automated supervised classification, prior user-

annotation comparison, and exploration against the CellRef for any scRNA-seq input 

dataset (up to 100,000 cells). We developed functions to facilitate evaluation of 

automated cell type annotation results using CellRef marker genes. Using prior published 

datasets, we demonstrated the utility of LungMAP CellRefs for automated cell type 

annotation analysis of scRNA-seq data from normal and diseased human lungs. The 

present guided approach is implemented in R and is applicable for CellRef construction 

for other organs.   
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RESULTS 

Data collection and guided construction for LungMAP single cell reference 

The LungMAP CellCards catalogued 39 cell types and their associated marker genes in 

multiple regions of normal lung, including trachea, bronchi, SMG, and lung parenchyma10. 

To construct a LungMAP human lung CellRef in accordance with the CellCards, we 

collected 10 large-scale sc/snRNA-seq datasets (8 published and 2 unpublished) from 

the four regions of human lung (Figure 1A): Habermann et al.11 (n=10 donors; 

parenchyma), Reyfman et al.12 (n=8 donors; parenchyma), Adams et al.13 (n=28 donors;  

parenchyma), Deprez et al.14 (n=9 donors; trachea/bronchi/parenchyma), Travaglini et 

al.15 (n=3 donors; bronchi/parenchyma), Goldfarbmuren et al.16 (n=15 donors; trachea), 

Wang et al.17 (n=3, small airway), Melms et al.3 (n=7, parenchyma), CCHMC LungMAP 

cohort (n=5, bronchus SMG) and UPenn LungMAP cohort (n=16, parenchyma). This 

collection contains data from similar numbers of female and male donors (n=48 and 55, 

respectively; 1 unannotated) (Figure 1A; Supplementary Table 1). The median age of 

donors was 41 years (interquartile range [IQR], 29 - 61 years; 1 unannotated). Data were 

generated from three 10x chromium single cell libraries: Single Cell 3’ sequencing kit 

based on v2/v3 and Single Cell 5’ chemistry. In total, sc/snRNA-seq of 505,256 lung cells 

from 148 normal human lung samples from 104 donors were used for LungMAP human 

lung CellRef construction (Supplementary Table 1).  

The integration of such a large and complex single cell data collection is extremely 

challenging due to the huge batch differences associated with both biological (i.e., 

different donor and different anatomic regions) and technical variations (e.g., sample 

preparations by different protocols from different research institutions). To perform 
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accurate single cell reference construction, we developed a novel computational pipeline 

which combines batch correction, unsupervised cell clustering, “single cell ranking”, 

power analysis, and automated cell type annotation to consolidate single cell datasets 

and annotate cell identities guided by a pre-defined cell type dictionary (i.e., LungMAP 

CellCards) (Figure 1B). We utilized both positive and negative markers to improve the 

sensitivity to distinguish cell types sharing similar gene expression patterns and marker 

genes, for example, lung goblet cells (MUC5AC+/MUC5B+) and SMG mucous 

(MUC5AC-/MUC5B+). The pipeline consists of four major steps (Figure 1B, Methods). 

First, batch correction. We used the mutual nearest neighbor (MNN) matching method in 

Monocle 3 as default, and Seurat’s reciprocal principal component analysis (RPCA) 

based integration5 and Harmony18 as alternative. Next, “seed” identification (steps 2 and 

3 in Figure 1B). This is a unique feature of our approach. We aim to identify a core set of 

cells that best match to the identity of each cell type in the dictionary. We perform 

unbiased clustering analysis and determine candidate cell clusters for each cell type 

based on the expression of marker genes. The use of unbiased clustering provides an 

opportunity to discover new cell types that are not yet defined in the dictionary. To identify 

the best “seed” cells, we developed a “single cell ranking” method that first ranks cells 

based on expression of each cell specific marker gene in the dictionary and then 

aggregates the rankings of all markers for a given cell type to identify “seed” cells for the 

cell type. We performed a power analysis to determine the minimum number of “seed” 

cells required. The last step is automated cell type annotation. We applied multiple cell 

type annotation methods (e.g., Seurat’s label transfer and SingleR) to map all other cells 

to the “seed” cells and predict their cell types. Cells that have consistent cell type 
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predictions in all methods will be included in the CellRef. The last step can be repeated 

to include newly collected datasets into the CellRef by mapping them to the “seed” cells. 

We implemented this cell-type-dictionary guided CellRef construction pipeline in R and 

hosted its development and documentation in github: https://github.com/xu-lab/CellRef.  

 

The LungMAP Human Lung CellRef  

Using this guided approach and a cell type dictionary derived from LungMAP CellCards 

(Supplementary Table 2), we identified 8,080 “seed” cells representing 48 normal 

human lung cell types, termed “LungMAP Human Lung CellRef Seed” (Figure 2A). 

Next, we mapped all other cells in our collection to the “seed” cells and predicted cell type 

annotations using two independent methods, “Seurat Label Transfer” and “SingleR”. Cells 

with consistent cell type annotations were combined with the “seeds” to form the 

“LungMAP Human Lung CellRef” (347,970 cells) (Figure 2B, Supplementary Figures 

1-2, Methods).   

 The CellRef includes the following CellCards cells: 12 epithelial (AT1, AT2, basal, 

ciliated, goblet, myoepithelial [MEC], mucous, PNEC, secretory, serous, Tuft cells, and 

ionocytes); 5 endothelial (arterial, venous, lymphatic endothelial and capillary 1 and 2 

cells), 8 mesenchymal (alveolar fibroblast 1 and 2 [AF1, AF2], airway and vascular 

smooth muscle cells [ASMC, VSMC], mesothelial, chondrocytes, pericytes, and 

myofibroblasts [SCMF]), and 16 immune cell types (alveolar and interstitial macrophage 

[AM, IM], inflammatory and patrolling monocytes [iMON, pMON], mast/basophils, 

neutrophils, B, plasma, NK, ILC, cDC1, cDC2, pDC, CD8+ T, CD4+ T, and T regulatory 

[Treg] cells). In addition to the known lung cell types,  we extended the dictionary to 

incorporate 7 cell types that are not yet in the CellCards but have marker genes reported 
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in recent scRNA-seq studies and selectively expressed in our unbiasedly identified cell 

clusters, including deuterosomal cells14 (DEUP1, FOXN4, CDC20B), suprabasal cells14 

(SERPINB4, KRT19, NOTCH3), systemic venous endothelial cells19 (SVEC; marker 

genes: COL15A1, ABCB1, ACKR1),  mature dendritic cell subset20 (maDC; marker 

genes: CCR7, CCL19, LAD1), megakaryocyte/platelets15,21 (ITGA2B, ITGB3), SMG duct 

cells22 (MIA, ALDH1A3, RARRES1),  and respiratory airway secretory cells4 (RAS; 

marker genes: SCGB3A2, KLK11, SOX4). We combined SMG basal and SMG duct cells 

into one mixed type, “SMG Basal/Duct cell”, since their marker genes were co-expressed 

in the same cell cluster in our data integration. Similarly, we combined mast and basophil 

cells into a mixed “Mast/Basophil” cell type. We performed uniform manifold 

approximation and projection for dimension reduction (UMAP) analysis on the “LungMAP 

Human Lung CellRef”. All cells, from trachea to alveoli, were projected into a common 

UMAP space and showed clear separations by the predicted cell identities (Figure 2B). 

To evaluate cell identities in the “LungMAP Human Lung CellRef Seed”, we preformed 

the following validation analyses. Cell type marker genes were found to be selectively 

expressed in their corresponding “seed” cells, the majority having high cell type specific 

expression frequencies, suggesting that the cell identities of the “seed” cells were 

consistent with the cell type dictionary (Figure 2C). To further validate the identities of the 

“seed” cells, we created pseudo-bulk gene expression profiles for each cell type by 

averaging gene expression in its “seed” cells, measured their correlations, and performed 

hierarchical clustering analysis, demonstrating that cell types were first unbiasedly 

clustered by their major cell lineages and then by sub-lineages (Figure 2D). The pseudo-

bulk profile of SMG myoepithelial cells (MEC) co-clustered with mesenchymal cells and 
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positively correlated with both the profiles of SMG Basal/Duct cells and smooth muscle 

cells, consistent with their complex cell nature. UMAP analysis showed that the “seed” 

cells formed dense cell clusters and clearly distinguished all cell types except closely 

related T cell subtypes (i.e., Treg and ILC are clustered with CD8/4 T cells), supporting 

distinct transcriptomic patterns of cell types in the “LungMAP Human Lung CellRef Seed” 

and a high similarity of the “seed” cells representing each cell type (Figure 2A). In 

summary, using our guided approach, we developed the “LungMAP Human Lung CellRef 

Seed”, a collection of “seed” cells for 48 normal lung cell types with cell identities in 

accordance with a cell type dictionary derived from the LungMAP CellCards.  

To validate the similarity of cell identities in the “seed” and “CellRef’, we created 

pseudo-bulk profiles for the cell types in the “LungMAP Human Lung CellRef”, combined 

them with the pseudo-bulk profiles generated using the “seed” cells, measured 

correlations among all pseudo-bulk profiles, and performed unbiased hierarchical 

clustering analysis. Like the “seed” cells, the pseudo-bulk profiles of the cell types in the 

“LungMAP Human Lung CellRef” were also first clustered by their major cell lineages and 

then by sub-lineages. Moreover, each of them was well correlated with the pseudo-bulk 

profile of the same cell type created using the “seed” cells (Figure 2D). Taken together, 

these results validated the identities of cell types in our constructed “LungMAP Human 

Lung CellRef”.  

 

The LungMAP Mouse Lung Development CellRef 

Using the above approach, we constructed a cell type dictionary based on the LungMAP 

CellCards to define cell types in mouse lung during perinatal development, identified 
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“seed” cells for each cell type (termed “LungMAP Mouse Lung Development CellRef 

Seed”), and constructed a CellRef for mouse lung development (denoted as  “LungMAP 

Mouse Lung Development CellRef”) using Drop-seq of mouse lungs (n=95,658, 17 

experimental samples, 8 time points) from embryonic day 16.5 to postnatal day 28 

(Figure 3, Supplementary Figure 3, Supplementary Tables 3-4). Because of the time 

course design, the mouse lung CellRef included more developmental progenitor cells and 

transitional cell states than the LungMAP Human Lung CellRef, including, Sox9+/Id2+ 

distal epithelial progenitor cell23,24,  an “AT1/AT2” cell population21,25  expressing both AT1 

(Ager, Hopx) and AT2 (Lamp3, Sftpc, Abca3) cell markers in conjunction with Cldn4, 

Krt19, and Krt8 (signature genes of recently reported PATS26, DATP27, or ADI28 cells), 

Foxf1+/Kit+ endothelial progenitor cells (EPC) 29, and proliferative mesenchymal 

progenitor (PMP) cells30,31 (Figure 3). In total, 40 mouse lung cell types have been 

identified with the guidance of the mouse lung cell type dictionary (Figure 3, 

Supplementary Table 4). Cell identities were validated using expression of marker 

genes, UMAP visualization of cell types, pseudo-bulk expression and hierarchical 

clustering analysis based cell lineage reconstruction, and cell type specific signature gene 

identification (Figure 3).  The construction of this LungMAP mouse lung CellRef in parallel 

with the human lung CellRef will enable cross comparisons for better understanding of 

how the cell types in mouse lung relate to the human lung and how data from mouse 

studies in the literature relate to human disease. 

 

Interactive web-tools for search and display of the LungMAP CellRefs 
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To facilitate data sharing and broad use of the resource, we developed several user-

friendly web portals to host the LungMAP single cell references online, including the 

LGEA LungMAP CellRef page 

(https://research.cchmc.org/pbge/lunggens/CellRef/LungMapCellRef.html) and 

scViewer-Lite (http://devapp.lungmap.net/app/seuratviewer-lite, an R Shiny based 

application). These tools provide highly interactive search and visualization functionalities 

for users to explore cell type and gene expression patterns provided by the LungMAP 

CellRefs (Figure 4, Supplementary Figure 4). The LGEA CellRef page enables users 

to perform “Gene Expression Query”, “Cell Type Query”, and “Cell Signature Query”. The 

“Gene Expression Query” enables users to input any gene of interest to visualize the 

expression patterns and associated statistics in UMAP, Box, Notched Box, Beeswarm, 

Scatter plot, and bi-directional bar charts (Figure 4A-B). The “Cell Type Query” enables 

users to select any one of the pre-defined cell types and obtain cell-type information 

collected by LGEA32 including cell selective marker genes, transcription factors, and 

surface markers, ligands and receptors) as well as a link to the LungMAP CellCards29 

(Figure 4C). The “Cell Signature Query” function provides cell type selective signature 

genes identified using the LungMAP CellRefs, along with interactive tables and bar graph 

that enables users to search differential expression statistics and compare the mean gene 

expression across all cell types (Figure 4D). scViewer-lite is a R shiny based app that 

allows for comparative viewing of gene expression and/or other meta data overlapped on 

dimension reduction plots and violin plots. Users can also select and highlight cells of 

interest (Supplementary Figure 4). In addition to these two newly developed web 
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interfaces, LungMAP CellRefs can be interactively explored in LungMAP web portal using 

ShinyCell33 based web interfaces (https://lungmap.net/cell-cards/, “scRNA-seq” tab). 

  

Automated cell type annotation using the LungMAP CellRefs 

We developed LGEA and scViewer-lite for users to explore expression patterns of normal 

lung cells and genes of interest without the need for computational coding. Another 

powerful use of the LungMAP CellRefs is to use them for automated cell type annotation 

of users’ own single cell datasets to facilitate analysis and standardization of cell type 

prediction and annotations. To achieve this goal, we built our LungMAP “seed” cells and 

CellRefs into R objects in accordance with Seurat reference mapping pipeline5,34. Azimuth 

(https://satijalab.org/azimuth/) instances were established at LungMAP.net 

(https://lungmap.net/cell-cards/, “Azimuth” tab) to enable users to upload their own 

datasets (up to 100,000 cells) for online automated cell type annotation using our CellRefs 

(Figure 5A) and exploration of any gene features on the projected UMAP or in Violin 

plots. Additionally, to facilitate evaluation of automated cell type annotation results, we 

developed functions in our R pipeline to visualize the expression of CellRef markers 

across all predicted cell types, identify cell type signature genes and their associated 

functional annotations, and compile all visualization and evaluation results into a single 

evaluation report using R markdown (Figure 5A). 

 

Use cases driven evaluation of LungMAP single cell references for automated cell 

type annotation 
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Annotation of scRNA-seq of normal human lung. Six published scRNA-seq datasets of 

normal human lung samples were collected to independently evaluate the accuracy of 

the automated cell type annotation using the LungMAP CellRefs. The datasets were from 

normal human lung samples of 2 months to 45 years of age and were generated using 

10X chromium 3’ (GSM5388411/12/1335 and GSM4504966/6736; aligned to hg38 

reference genome) and 5’ (GSM40354721; aligned to hg19 reference genome) platforms. 

For each test dataset, we used both the “LungMAP Human Lung CellRef Seed” and 

the “LungMAP Human Lung CellRef” to predict cell type annotations using Azimuth’s 

mapping algorithm5.  A prediction score (between 0 and 1) was assigned to each cell in 

the test dataset based on its transcriptomic similarity to cells in the reference. With the 

minimal prediction score threshold set as >= 0.6, on average, 85.13% cells in the test 

dataset can be confidently annotated using the “LungMAP Human Lung CellRef” in 

comparison with 85.10% using the “LungMAP Human Lung CellRef Seed”, suggesting 

that similar numbers of cells can be confidently predicted when using both the complete 

“CellRef” and the “CellRef Seed” (Figure 5B). In addition, the predicted cell type 

annotations were highly consistent in all test datasets using both the “CellRef Seed” and 

the “CellRef” (Figure 5C). Predictions using the “LungMAP Human Lung CellRef Seed” 

were computationally efficient, taking approximately 1 minute to annotate a 10x chromium 

scRNA-seq of 4000-8000 cells.   

We applied the validation functions in our pipeline (Figure 5A, Methods) to evaluate 

the accuracy of cell type predictions for the five test datasets. As shown in Figure 5D-H 

and Supplementary Figure 5, predicted cell types were well separated and formed 

clusters. Cell-type-specific marker genes from CellCards were selectively expressed in 
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each predicted cell type, supporting the concordance of the cell identities (Figure 5E, 

Supplementary Figure 5). Cell type specific signature genes were identified using widely 

accepted criteria (adjusted p value of Wilcoxon rank sum test <0.1, expression frequency 

>=20%, and fold change >=1.5) (Figure 5F-G). Functional enrichment analysis of cell 

type signature genes was used to further validate the predicted cell identities. For 

example, predicted AT2 cells were functionally enriched in “surfactant homeostasis” and 

“lipid/phospholipid/fatty acid metabolic processes”. ToppCell (ttps://toppcell.cchmc.org/) 

analysis showed that the predicted signature genes were consistent with genes 

selectively expressed in normal AT2 cell identified in independent single cell studies of 

human lung37,38 (Figure 5H). In summary, these evaluations demonstrated the general 

applicability of our constructed single cell references for annotating cell types in scRNA-

seq datasets of normal human lung. 

 

Application to scRNA-seq of human lung diseases. We previously performed single 

cell transcriptomic analyses of lung samples from patients with 

lymphangioleiomyomatosis1  and identified a unique population of cells termed LAMCORE 

that were readily distinguished from endogenous lung cell types and shared closest 

transcriptomic similarity to uterine myocytes in both normal and LAM uteri1.  In the present 

work, we re-aligned the data to the hg38 reference genome and performed automated 

cell type annotation using the “LungMAP Human Lung CellRef Seed”. Using a criterion of 

prediction score >=0.8, we predicted 31 cell types from the two LAM lungs (Figure 6A-

C). Cell type predictions were largely consistent with the original clustering-based 

annotations1. Using the “LungMAP Human Lung CellRef Seed”, however, more cell sub-
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types can be distinguished. Importantly, the previously identified LAMCORE cells (73 cells) 

had low prediction scores below the cutoff line (Figure 6D), supporting the notion that this 

LAM-associated cell population was not similar to normal lung cell types in the present 

LungMAP CellRef. Therefore, our constructed LungMAP CellRefs can be used to assist 

in analysis of lung disease data and identify potential disease related cell clusters. 
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DISCUSSION 

In the present study, we developed a computational approach to integrate large scale and 

heterogeneous sc/snRNA-seq datasets and constructed a single cell reference, termed 

“CellRef”, in accordance with a well-defined cell type dictionary. Using the pipeline and 

the recently published LungMAP CellCards10, we constructed LungMAP CellRefs for 

normal human lung and developmental mouse lung, termed “LungMAP Human Lung 

CellRef” and “LungMAP Mouse Lung Development CellRef”, respectively. User-friendly 

web interfaces were developed to facilitate access, visualization, and use of the LungMAP 

CellRefs. For advanced users who are interested in annotating their own datasets using 

the LungMAP CellRefs, we established “Azimuth” instances to support online automated 

cell type annotations of users’ own scRNA-seq. Evaluation functions were developed in 

our pipeline to perform fast and comprehensive evaluation of the predicted cell type 

annotations. 

The “LungMAP Human Lung CellRef” contains a total of 347,970 cells and 48 well 

defined lung cell types, covering major cellular heterogeneity in the four regions: trachea, 

bronchi, SMG, and lung parenchyma. The “CellRef” identified cell types mapped to the 

cell type nomenclature in the LungMAP CellCards10. In addition, based on unbiased 

clustering analysis, we identified cell types that are not yet included in the CellCards but 

reported in recent scRNA-seq analyses, including deuterosomal cells14, suprabasal 

cells14, systemic venous endothelial cells19,  mature dendritic cell subset20, SMG duct 

cells22,  respiratory airway secretory cells (RAS, a recently identified multipotent secretory 

cell population in respiratory bronchioles)4, and megakaryocyte/platelets15,21. During the 

“CellRef” construction, we discovered cell clusters selectively expressing marker genes 
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of those new cell types, and thus we have included those cell types into the “LungMAP 

Human Lung CellRef”. We will continue to incorporate more cell types in accordance with 

new findings from single cell and/or functional studies. 

Two earlier versions of human lung references15,39 have been published or are in 

preprint. We compared and incorporated the first reference into our CellRef construction. 

We carefully compared all annotated cell types in the recently released integrated version 

of Human Lung Cell Atlas (HLCA) with our CellRef based on the HLCA marker gene 

expression. Although not all cell type names are identical, the majority of the HLCA 

annotated cells align well with a clearly defined cell type in our CellRef. Only two fibroblast 

sub types in HLCA do not align with a clearly defined cell type of CellRef. In addition, 

each reference identified several unique lung cell types or states (i.e., don’t align to any 

given cell cluster in the other reference). Further cross-team discussions and comparison 

is needed to reach consensus on cell identity and common nomenclature, with the 

ultimate goal of generating a consensus blueprint of normal human lung cell reference for 

the research community.  The present LungMAP CellRefs has several unique features.  

1) We developed a new computational pipeline and a guided approach to construct and 

evaluate the reference which can be reused for future updates of LungMAP CellRef or 

references of other organs. 2) The LungMAP CellRef identified cell types in accordance 

with the LungMAP CellCards10, a rigorous catalogue of lung cells validated by both single 

cell and functional studies. 3) During CellRef construction, we identified the best “seed” 

populations for each cell type (CellRef Seeds), which was not only used to construct the 

complete “CellRef” but can be independently used for automated cell type annotation and 

online visualization with improved computational efficiency and hardware requirements. 
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4) We constructed LungMAP CellRef for both human and mouse, the two most commonly 

used species, and provide options for users to use either scRNA-seq or snRNA-seq 

based CellRef separately based on the input sequences type to achieve better 

performance on cell type annotation. 5) Web portals have been developed by our 

LungMAP research centers and LungMAP data coordination center to facilitate the 

resource sharing and maximal use of the constructed references by the research 

community. 

There are several limitations of the current version of LungMAP CellRef and CellRef 

Seed. Based on the current pipeline and data collection, the present CellRefs do not yet 

clearly define immune sub-populations and transitional cell states. Antibody base 

approaches (e.g., CITE-seq or flow cytometry) may help to improve resolution of immune 

cell sub-populations or cell states40. Future lineage/compartment specific reference 

constructions will be useful in providing enhanced resolutions and granularities at sub-

cell type levels or cell transitional states. The current data collections do not have 

sufficient statistical power for precise annotation of certain rare lung cell types, e.g., SMG 

duct cells. Region specific Laser Capture Microdissection (LCM) and cell sorting will be 

useful in identifying and capturing rare lung cell types and their RNA expression patterns.  

In summary, we developed a novel computational pipeline utilizing a cell type 

dictionary to consolidate single cell transcriptomic datasets and constructed “LungMAP 

CellRef” and “LungMAP CellRef Seed” for normal human and mouse lung. “CellRef Seed” 

has an equivalent prediction power and produces consistent cell annotation as does 

“CellRef”, but with significantly improved computational efficiency and hardware 

requirements facilitating utilization for automated cell type annotation and online 
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visualization, addressing a significant computational challenge for single cell reference 

applications. Using independent datasets, we demonstrated the utility of the CellRefs for 

automated cell type annotations of normal lung and for potential identification of disease-

related cells based on their deviation from normal pulmonary cells. Our CellRefs, along 

with the analytic and web-based tools, are freely and widely available to the pulmonary 

research community to facilitate hypothesis generation, research discovery, and 

identification of cell type alterations in disease conditions.  
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METHODS 

Collection and pre-processing of single cell/single nucleus RNA-seq of human lung 

We collected eight published and two unpublished sc/snRNA-seq datasets of human lung 

for LungMAP human lung single cell reference construction. For the published datasets, 

unique molecular identifier (UMI) count matrix of gene expression in single cells were 

downloaded from Gene Expression Omnibus (GEO), European Genome-phenome 

Archive (EGA), or Synapse.org using the following accession numbers: GSE12296012, 

GSE13589311, GSE13417416, GSE1368322 GSE16138213, EGAS0000100408214, 

GSE1715243, syn2104185015. For all datasets, hg38-alignment based data from 

normal/control lung samples were used.  

For the unpublished UPenn LungMAP cohort, samples of normal de-identified human 

lungs (n=16) from donors who were not matched for lung transplant were obtained as 

described previously4. scRNA-seq experiments (10x Single Cell 3’ v2 and v3 chemistry) 

were performed as described in Basil et al., 20224. Sequencing read alignment to the 

hg38 human genome and UMI matrix generation were performed for each sample using 

10x Cell Ranger v3 software.  

For the unpublished CCHMC LungMAP cohort, microdissection was performed to 

isolate submucosal gland (SMG) samples from five de-identified normal human lungs for 

scRNA-seq experiments using 10x Single Cell 3’ v3 sequencing kit. Sequencing read 

alignment to the hg38 human genome and UMI based gene expression matrix generation 

were performed for each sample using 10x Cell Ranger v5. 

Data preprocessing. For published datasets with original cell type annotations, we 

included cells selected in the original analyses. For published datasets without original 
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cell type annotations (Reyfman et al., 201912) and unpublished datasets (UPenn 

LungMAP cohort and CCHMC LungMAP cohort), the following quality control (QC) criteria 

were applied to cell prefiltering, including 500-7,500 expressed genes, less than 25% of 

UMIs mapped to mitochondrial genes, and less than 50,000 total UMIs. For scRNA-seq 

data from “Donor29” in the CCHMC LungMAP cohort, we used 1,500-7,500 as the 

criterion for the “number of expressed genes” based on its unique cell distributions. After 

pre-filtering, scrublet41 was performed to identify and remove potential doublet cells from 

each data sample. In total, 505,256 cells from 148 lung tissue samples from 104 donors 

were used as input for our guided pipeline to construct the single cell reference of normal 

human lung. 

 

Mice and Drop-seq of mouse lung development 

Animal protocols were approved by the Institutional Animal Care and Use Committee in 

accordance with NIH guidelines. C57BL6/J mice (Jackson Laboratories), female, 

embryonic days (E) 16.5, 18.5 to postnatal days (PND) 1, 3, 7, 10, 14, 28, were used for 

single cell RNA-seq experiments using Drop-seq42. All mice were time mated. The 

presence of a vaginal plug was defined as E0.5. PND1 was defined as 24 ± 6 h after birth. 

Cell isolation and Drop-seq experiments on mouse lungs were described in Guo et al. 

201921. The alignment of paired-end sequence reads to mouse genome (mm10) and the 

generation of digital expression matrix were processed using Drop-seq tools 

(https://github.com/broadinstitute/Drop-seq/, version 2.3.0) with default parameters. The 

expression matrix was generated by counting the number of unique molecular identifiers 

(UMIs) per gene per cell. In total, single cell gene expression in 17 lung samples from 
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eight time points of mouse lung development were generated. For each data sample, the 

following pre-processing steps were performed. EmptyDrops43 was used to identify cell 

barcodes with expression profiles significantly deviated from the profiles of empty droplets 

in each data sample with the parameters: lower=100, FDR<0.01. Filters were then applied 

to keep cells with 400–7,500 genes, less than 40,000 UMIs, and less than 10% UMIs 

mapped to mitochondrial genes. Potential doublet cells in each sample were predicted 

and removed using Scrublet41. Ambient background RNAs were cleaned from gene 

expression in each cell using SoupX44 using contamination fractions automatically 

estimated from data.  

 

Guided construction of single cell reference 

Our guided single cell reference (CellRef) construction workflow consists of four major 

steps: data integration, candidate cell cluster identification, seed cell identification, and 

consensus prediction for CellRef. We compiled a cell type dictionary containing a list of 

cell types and associated marker genes, including positive (selectively expressed in the 

cell type) and negative (no expression in the cell type) markers. We required at least two 

positive markers for each defined cell type to be included in our CellRef construction.  

 

(i) Data integration. Multiple algorithms have been integrated into our R workflow, 

including mutual nearest neighbor (MNN) matching45, reciprocal principal component 

analysis (RPCA) in Seurat34, and Harmony18. By default, we use the “align_cds” function 

in Monocle 3 to perform MNN matching based data integration and batch correction. 

Before integration, we merge data from all datasets into a single gene expression matrix, 
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use it to construct a Monocle 3 “cell_data_set” object, and use the “preprocess_cds” 

function in Monocle 3 to normalize data to address read depth differences, regress out 

cell cycle effects and mitochondrial percentage differences, and calculate principal 

components representing major variances in the data. 

 

(ii) Candidate cell cluster identification. Using the integrated data, we identify candidate 

cell clusters for each cell type listed in the dictionary using a combination of unbiased 

clustering algorithm and marker based “single cell ranking”.  

We perform unbiased clustering analysis to group cells into distinct cell clusters based 

on transcriptomic similarity. By default, we perform clustering using the Leiden algorithm46 

implemented in the “cluster_cells” function in Monocle 3.  

Followed by the unbiased clustering analysis, we perform a “single cell ranking” for 

each cell type 𝑖 listed in the dictionary. Let 𝑃௜ be the set of positive marker genes of cell 

type 𝑖. For each marker gene 𝑥 ∈ 𝑃௜, we identify 𝑍௫௜, a set of cells with positive (>0) zscore-

scale expression of 𝑥, and generate 𝑅௫௜, a ranking of cells in 𝑍௫௜ in the descending order 

based on zscore-scaled expression of 𝑥. We then aggregate all rankings ሼ𝑅௫௜|𝑥 ∈ 𝑃௜ሽ into 

a single global ranking of cells, denoted as 𝑅௜, for the cell type 𝑖, aiming to identify cells 

that are ranked highly by multiple cell type marker genes. The aggregation was performed 

using an order-statistics-based robust rank aggregation algorithm47, which assigns a 

score to each cell in 𝑅௜ to represent significance of the cell that is ranked consistently 

better than expected under a null hypothesis derived from ሼ𝑅௫௜|𝑥 ∈ 𝑃௜ሽ. Cells passing 

selection criteria were used as candidates for cell type mapping. 
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Using the clustering and single cell ranking results, we determine candidate cell 

clusters for each cell type 𝑖 as follows. Let 𝜑௜ be the set of cells passed selection criteria 

(by default, score <0.1) in 𝑅௜ and ∑ be the cell clusters that we obtained from the unbiased 

clustering analysis. We calculate the precision and recall values for each cluster 𝜎௝ ∈ ∑ 

as follows: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑗ሻ ൌ ห𝜑௜ ∩ 𝜎௝ห ห𝜎௝หൗ , 𝑟𝑒𝑐𝑎𝑙𝑙ሺ𝑖, 𝑗ሻ ൌ ห𝜑௜ ∩ 𝜎௝ห ห𝜑௝หൗ , where ห𝜑௝ห and ห𝜎௝ห 

denote the number of cells in 𝜑௝ and 𝜎௝, respectively, and ห𝜑௜ ∩ 𝜎௝ห denotes the number 

of cells in both 𝜎௝ and 𝜑௝. The candidate cell clusters for cell type 𝑖 is determined as 𝐴௜ ൌ

൛𝜎௝ ∈ ∑|𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝑖, 𝑗ሻ ൒ 𝐹, 𝑟𝑒𝑐𝑎𝑙𝑙ሺ𝑖, 𝑗ሻ ൒ 𝑆,𝐹 ∈ ሾ0,1ሿ, 𝑆 ∈ ሾ0,1ሿൟ. A QC inspection of the 

candidate cell clusters is recommended to ensure the accuracy for the CellRef 

construction. 

In summary, in step 2, we use unbiased clustering in conjugation with marker based 

single cell ranking to select most relevant cell groups as candidates. The use of unbiased 

clustering before seed cell identification can also provide an opportunity to discover new 

cell types that have not yet been defined in the dictionary. For example, if the marker 

genes of a newly reported cell type are co-selectively-expressed in our cell clusters, this 

new cell type and marker genes are added to the cell type dictionary and then included 

in the downstream seed cell identification and CellRef construction.  

 

(iii) Seed cell identification. In this step, we aim to identify cells that best represent the 

identity of each cell type using “single cell ranking” based on marker genes in the 

dictionary. These cells will then serve as “seeds” to construct the CellRef. For a cell type 

𝑖, we first identify cells with expression of any negative markers of 𝑖 or expressed less 

than two positive markers of 𝑖 and remove those cells from 𝐴௜ (the candidate cell clusters 
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of cell type 𝑖 that we identified in step 2). Using the remaining cells in 𝐴௜, we perform 

“single cell ranking” using the positive markers of 𝑖 as described in step 2 and generate 

an aggregated ranking of cells. Top-ranked cells in the aggregated list will be selected as 

the “seed” cells for cell type 𝑖.  

   

(iv) Consensus prediction. Once all “seed” cells are identified, we use them to predict cell 

type annotations of all cells in the collection using two independent automated cell type 

annotation algorithms, Seurat’s label transfer5 and SingleR6. For the Seurat’s “label 

transfer” based prediction, we integrate scRNA-seq data of the “seed” cells using 

SCTransform normalization based reciprocal principal component analysis (RPCA) 

integration, perform SCTransform normalization on gene expression in each of our 

collected datasets, and predict cell type annotations using the “MapQuery” function in 

Seurat v4. A predicted cell type and an associated prediction score were assigned to 

each query cell based on transcriptomic similarity between the query cell and the “seed” 

cells. Cells with low prediction scores were excluded from the CellRef construction. For 

the SingleR based prediction, we normalize gene expression in the “seed” cells and in a 

query dataset by total UMIs per cell and use the “SingleR” function with default 

parameters to predict cell type annotations for the query cells. We removed poor-quality 

or ambiguous predictions using the “pruneScores” function. Let 𝑌 be the set of cells with 

consistent cell type predictions in both methods. We calculated a k-nearest-neighbor 

purity (kNN-purity) metric for each cell in 𝑌, measuring the percentage of the cell’s k 

nearest neighbors (by default, k=20) that have the same cell type prediction. The CellRef 
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was comprised of the “seed” cells and the cells that have consistent cell type predictions 

in both methods and with kNN-purity great than 0.6.  

 

Construction of the “LungMAP Human Lung CellRef” 

We constructed a cell type dictionary for normal human lung (a list of cell types and their 

associated marker genes) based on the cell types and marker genes listed in the 

LungMAP CellCards10. In addition, we extended the dictionary to include seven human 

lung cell types reported in recent single cell studies but not yet in CellCards, including 

systemic venous endothelial cell (SVEC), deuterosomal cell, submucosal gland (SMG) 

duct cell, megakaryocyte/platelets, suprabasal cell, mature dendritic cell (maDC), and 

respiratory airway secretory cell (RAS). In total, 48 cell types are defined in the dictionary. 

Using this cell type dictionary, we performed the guided CellRef construction 

described above using seven scRNA-seq datasets.  The original data were aligned to 

three versions of 10x Cell Ranger hg38 reference genome. To reduce the impact of 

reference genome differences on the data integration, we used the expression of 32,278 

common gene features (based on Ensembl IDs) among the three reference genome 

versions to perform data integration and candidate cell cluster identification as described 

above. A curation was performed on the candidate cell cluster assignment by inspection 

of marker genes expression in the cell clusters. Based on the curated candidate cell 

clusters for each cell type, we selected up to top 200 cells with the lowest scores as the 

“seed” cells for a cell type. In total, 8,080 “seed” cells were identified for 48 normal human 

lung cell types. We named this collection of “seed” cells as “LungMAP Human Lung 

CellRef Seed”. To facilitate the use of the “LungMAP Human Lung CellRef Seed” for 
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automated cell type annotation, we normalized gene expression in “seed” cells of each 

datasets using SCTransform, integrated data from different datasets using the RPCA 

pipeline, and performed UMAP analysis on the integrated data. 

We performed a power analysis and determined the minimum cell numbers required 

for a lung cell type to achieve a power>=0.8. The analysis was performed as follows. First, 

a Cohen’s d effect size was calculated for each cell type using the averaged mean 

expression and variance of all genes in the cell type of each individual donor when 

compared to those in all the other cells. We grouped effect size values to the following 

categories: small (0.2 ൑ 𝑑 ൏ 0.5), medium (0.5 ൑ 𝑑 ൏ 0.7), large (𝑑 ൒ 0.7) and then used 

the gPower software to calculate a sample size required by each cell type using the 

following parameters: alpha=0.01, two tailed t test, beta=0.2, allocation ration=1. Based 

on the calculation, a minimum of 50 cells is required to reach the statistical power.  44 out 

of the 48 human lung cell types meet the criterial; 4 cell types had less than 50 “seed” 

cells identified, including chondrocytes (n=6), ILC (n=14), megakaryocyte/platelets 

(n=29), maDC (n=34). 

Using the identified “seed” cells, we further predicted cell type annotations for all other 

cells in the 10 datasets collected. Both Seurat’s label transfer and SingleR were applied 

as described above. The “LungMAP Human Lung CellRef” (n=347,970 cells) was 

comprised of the “seed” cells and the cells with consistent cell type predictions and with 

“kNN-purity” scores >=0.6. 157,286 cells that did not pass the criteria were not included.  

To facilitate the use of the “LungMAP Human Lung CellRef” for automated cell type 

annotation, we normalized gene expression in each donor in the CellRef using 

SCTransform, integrated data from different donors using the RPCA pipeline, and 
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performed UMAP analysis on the integrated data. During the RPCA integration, we 

identified “anchors” using the “FindIntegrationAnchors” function, filtered out “anchors” 

mapping cells with different cell type predictions, and then used the remaining “anchors” 

for data integration using the “IntegrateData” function. 

 

Construction of the “LungMAP Mouse Lung Development CellRef” 

We constructed a cell type dictionary for mouse lung based on our constructed dictionary 

derived from the LungMAP CellCards. In addition, because of the developmental design 

of the mouse data, we extended the mouse lung cell type dictionary to include progenitor 

and transitional cells reported in recent single cell studies, including Sox9+/Id2+ distal 

epithelial cells23,24,   “AT1/AT2” cell, Foxf1+/Kit+ endothelial progenitor cells29, and 

proliferative mesenchymal progenitor cells30,31. We used Seurat to perform SCTransform 

based data normalization and performed UMAP analysis on the identified “LungMAP 

Mouse Lung Development CellRef Seed” and the constructed “LungMAP Mouse Lung 

Development CellRef”. 

 

CellRef evaluation of automated cell type annotations 

We developed an R script to evaluate cell type annotations predicted using the LungMAP 

CellRefs. Currently, the functions include: (i) Dotplot visualization of expression levels and 

frequencies of CellRef marker genes in each of the predicted cell types. Selective and 

abundant expression of marker genes in their corresponding cell types indicate a 

concordance of cell identities in the predictions and in the CellRef. (ii) Identification of 

signature genes for each of the predicted cell types. By default, the identifications were 

performed using Seurat’s FindAllMarkers function based on the following criteria: 
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adjusted p value of Wilcoxon rank sum test <0.1, pct>=20%, and fold change>=1.5. A 

sufficient number of signature genes (e.g., >=50 genes) would be expected to define a 

distinct cell type. (iii) Gene sets functional enrichment analysis (Gene Ontology Biological 

Process, Pathways) associated with the identified cell type signature genes. Functional 

enrichment analysis was performed using R package gprofiler2. Given an scRNA-seq 

data with automated cell type annotations, the R script can generate the visualizations 

and evaluations for all predicted cell types at once and compile results into an evaluation 

report using R markdown. 
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Figure 1. Data collection and the guided single cell reference (CellRef) construction 
pipeline. (A) Characteristics of the collection of single cell/nucleus RNA-seq datasets 
from normal human lung. (B) Schematic workflow for the LungMAP CellRef construction 
guided by using LungMAP CellCards as a cell type dictionary. 

 

Figure2. The construction of “LungMAP Human Lung CellRef”. (A) Uniform manifold 
approximation and projection (UMAP) visualization of “seed” cells representing 48 lung 
cell types of normal human lung, termed “LungMAP Human Lung CellRef Seed”. Cells 
were colored by their predicted seed identities. (B) UMAP visualization of the complete 
single cell reference for normal human lung, denoted as “LungMAP Human Lung 
CellRef”, which contains 347,970 cells from 104 donors and defines 48 cell types in 
normal human lung. Cells were colored by their predicted identities. (C) Validation of the 
“seed” cell identity using the expression of cell type selective marker genes derived from 
LungMAP CellCards. (D) Reconstruction of cell lineage relationships using hierarchical 
clustering analysis of cell type pseudo-bulk gene expression profiles. Color represents 
Pearson’s correlation of pseudo-bulk expression profiles. Labels ending with “.Seed” 
represent pseudo-bulk profiles created by averaging gene expression in the cells of  each 
cell type in the “LungMAP Human Lung CellRef Seed”, while labels ending with “.CellRef” 
represent pseudo-bulk profiles created using gene expression of each cell type in the 
“LungMAP Human Lung CellRef”.  

 

Figure 3. The construction of “LungMAP Mouse Lung Development CellRef”.  (A) 
The developmental time points of mouse lung single cell transcriptome data used for the 
guided CellRef construction. (B) Uniform manifold approximation and projection (UMAP) 
visualization of the “seed” cells representing 40 cell types of the developing mouse lung, 
termed “LungMAP Mouse Lung Development CellRef Seed”. Cells were colored by 
predicted seed identities. (C) UMAP visualization of CellRef for normal mouse lung 
development, named “LungMAP Mouse Lung Development CellRef”. Cells were colored 
by their predicted identities. (D) Validation of cell type identities in “LungMAP Mouse Lung 
Development CellRef Seed” using expression of cell type selective marker genes derived 
from the LungMAP CellCards. (E) Lineage relationships among mouse lung cell types 
were reconstructed using hierarchical clustering analysis using pseudo-bulk gene 
expression profiles.  

 
 
Figure 4. Online interactive exploration of LungMAP CellRef Seed using Lung Gene 
Expression Analysis (LGEA) web portal. The “LungMAP Human Lung CellRef Seed” 
was comprised of 8,080 “seed” cells representing 48 normal lung cell types. (A) The 
“Gene Expression Query” interface allows users to input a gene of interest (top) and 
visualize of the expression of the queried gene in UMAP embeddings of cells (bottom), 
Colors represent the putative cell identities (bottom left) or the expression of the input 
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gene (bottom right). (B) Visualization of the gene expression pattern (top: expression 
distribution; middle: expression frequency and sensitivity; bottom: fold change and p-
value of differential expression) across all cell types in the CellRef Seed. (C) LGEA hosts 
comprehensive cell information related with the query cell type. (D) “Cell Signature Query” 
function retrieves signature gene expression statistics of a given cell type and bar-plot 
visualization of signature genes expression across all cell types in the “LungMAP Human 
Lung CellRef Seed”. In (A) and (B), FOXJ1 expression was shown as example. In (C) 
and (D), “Ciliated cells” were used as example. 

 
Figure 5. Cell type annotation and evaluation using the LungMAP Human Lung 
CellRef. (A) Schematic workflow of the automated cell type annotation and evaluation 
pipeline. (B) Distributions of cell type prediction scores in each test dataset. Prediction 
scores using “LungMAP Human Lung CellRef Seed” (yellow bars) are comparable to 
those using the complete “LungMAP Human Lung CellRef” (blue bars). (C) Consistent 
cell type predictions using “LungMAP Human Lung CellRef Seed” and using “LungMAP 
Human Lung CellRef” in the six test datasets. Consistency percentages (y axis) were 
calculated for cells in each test dataset (color). X axis: prediction scores. (D-H) Evaluation 
of automated cell type annotations for three of our test datasets (GSM5388411/12/13, 
three scRNA-seq of normal human lungs). Evaluation of the other three testing datasets 
were shown in Supplementary Figure 5. (D) UMAP visualization of cells with prediction 
scores >=0.6 and predicted annotations with at least 5 cells. Cells were colored by 
automated cell type annotations using the “LungMAP Human Lung CellRef Seed” as 
reference. Data from different donors were integrated using Seurat’s RPCA pipeline. (E) 
Evaluation of cell type annotations using expression of marker genes derived from 
LungMAP CellCards. (F) Heatmap visualization of expression of cell type specific 
differentially expressed genes (DEGs). (G) The number of DEGs for each predicted cell 
type annotation. (H) Significantly enriched functional annotations using DEGs of the 
predicted AT2 cells: most enriched “Gene Ontology Biological Processes” (top) and 
“ToppCell Gene Sets” (bottom). Functional enrichment analysis was performed using 
ToppGene software suite. 
 
 
Figure 6. Application of LungMAP Human Lung CellRef to a disease dataset: 
scRNA-seq of human lungs with lymphangioleiomyomatosis (LAM). (A) UMAP 
visualization of a published scRNA-seq of human LAM lungs. Cell colors represent cell 
identities predicted in the original publication. A unique disease related cell population, 
termed as LAMCORE cells (magenta cell cluster) was identified. (B) UMAP visualization of 
cell type annotations using the “LungMAP Human Lung CellRef Seed” as reference. Cells 
with prediction score >=0.8 were shown. (C) Evaluation of cell type annotations using 
expression of CellRef marker genes. (D) Distributions of the cell type prediction scores in 
the 18 cell types identified in the original study1. The disease associated LAMCORE cells 
had prediction scores below the cutoff line when mapping to LungMAP Human Lung 
CellRef, suggesting low transcriptomic similarities of LAMCORE cell to normal lung cells in 
LungMAP Human Lung CellRef.  
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