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Abstract—This paper proposes a new approach to upsample
depth maps when aligned high-resolution color images are
given. Such a task is referred to as guided depth upsampling
in our work. We formulate this problem based on the recently
developed sparse representation analysis models. More specif-
ically, we exploit the cosparsity of analytic analysis operators
performed on a depth map, together with data fidelity and color
guided smoothness constraints for upsampling. The formulated
problem is solved by the greedy analysis pursuit algorithm.
Since our approach relies on the analytic operators such as
the Wavelet transforms and the finite difference operators, it
does not require any training data but a single depth-color
image pair. A variety of experiments have been conducted on
both synthetic and real data. Experimental results demonstrate
that our approach outperforms the specialized state-of-the-art
algorithms.

Keywords-Guided depth upsampling; cosparse analysis
model; multi-modal data fusion

I. INTRODUCTION

Guided depth upsampling in this work refers to up-

sampling a depth map while an aligned high-resolution

image is taken as guidance. Such a task is desirable in

various computer vision applications. For instance, in tra-

ditional stereo vision, some techniques [1] reconstruct a

dense disparity map by upsampling sparse measurements

that are reliably obtained from point-wise correspondence

matching. These techniques circumvent matching ambigu-

ities occurred in homogenous or repetitively textured re-

gions, so that reconstruction quality is improved. Another

line of exemplary applications surges with the advent of

active range sensing technologies. State-of-the-art ranging

sensors, such as Velodyne HDL lidars [2], Time-of-Flight

(ToF) cameras [3] or Microsoft Kinects [4], are capable

of producing high quality range information in real time.

However, depth maps obtained by them are still low in

resolution, especially compared to high-resolution visual

images. Therefore, the ranging sensors are commonly used

in conjunction with conventional cameras, intriguing a group

of studies on guided depth enhancement [5], [6], [7].

As introduced above, guided depth upsampling aims to

generate high-resolution depth maps by integrating sparse

range data with visual information. Therefore, it belongs to a

multi-modal data fusion problem. This problem is conducted

relying on an observation that depth discontinuities often

co-occur with color or intensity changes [5]. A variety

of approaches have been developed so far to exploit such

dependencies in order to enhance depth maps. Roughly

speaking, early methods are mainly based on filtering or

Markov Random Field (MRF) techniques. The former uses

joint bilateral filters and their variations [8] [6] to inte-

grate color information for depth enhancement. MRF-based

methods [5], [9], [10], [11] infer depth via optimizing

an energy function that consists of two or more terms:

one term evaluates depth consistency with known sparse

measurements and the others regularize first- or higher-order

depth smoothness according to color information.

Meanwhile, since depth upsampling is closely related to

intensity image super-resolution, sparse representation (SR)

techniques [12] that are prevalent in super-resolution have

also been employed. For example, Li et al. [13] jointly

train dictionaries for depth and color image patches and

reconstruct high-resolution depth maps in terms of SR of

learned dictionaries. Hawe et al. [1] achieve depth map

super-resolution by exploiting SR in the Wavelet domain

and a particular sampling strategy guided by intensity edges.

Both of these two methods rely on the SR synthesis models.

Very recently, cosparse analysis models [14], [15] were

proposed and their effectiveness in image reconstruction has

been successfully demonstrated. A pioneer work of applying

the analysis models to guided depth upsampling is reported

by Kiechle et al. [16]. It learns a depth-intensity bimodal

analysis operator offline and applies the bimodal cosparse

analysis model to reconstruct high-resolution depth maps.

Our work takes advantage of the sparse representation

analysis models as well. More specifically, the proposed

approach explores the cosparsity of analysis operators per-

formed on a depth map, together with data fidelity and color

guided smoothness constraints for upsampling. Instead of

learning operators [16], we employ the well known analytic

ones, such as the Wavelet transforms and the finite difference

operators, for our guided depth upsampling. It implies that

the approach requires no training data but a low-resolution

depth map and an aligned high-resolution color image. It is

therefore can be freely applied to either uniformly or non-

uniformly sampled low-resolution depth maps, for instance,
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depth maps obtained by Kinects and sparse range data

collected by 3D lidars.

II. COSPARSE ANALYSIS MODELS

In contrast to the sparse representation synthesis mod-

els [17], [12] that have been extensively studied for decades,

cosparse analysis counterparts have started to be investigated

very recently. Therefore, we briefly review them in this

section and stress on the differences.

Let us consider a set of measurements y ∈ R
m, which

are sampled from an original signal x ∈ R
d and are contam-

inated by noise v. That is, y = Φx+ v, where Φ ∈ R
m×d

is a sampling matrix, and m < d. In order to reconstruct x,

a synthesis model pursues a sparse representation x = Ψz

with respect to a redundant dictionary Ψ ∈ R
d×n (n ≥ d).

z ∈ R
n is the sparse coefficient vector obtained by the

following problem

min
z

||z||0 s.t. y = ΦΨz+ v. (1)

Instead, an analysis model suggests that the analyzed vector

Ωx is expected to be sparse, where Ω ∈ R
p×d is a redundant

analysis operator (p ≥ d). Upon this, the original signal x

is recovered via

min
x

||Ωx||0 s.t. y = Φx+ v. (2)

When both the dictionary Ψ and the analysis operator Ω

are square and invertible, the synthesis and the analysis

models are the same with Ω = Ψ−1. Otherwise, there is

no straightforward relation between them.

By checking the above linear transformations, we find out

that the representation Ωx cannot be very sparse if the rows

of Ω are linearly independent. The reason is that at least

p− d of the coefficients of Ωx should be non-zeros if x 6=
0 [14]. Therefore, instead of focusing on nonzero elements,

the analysis model emphasizes sparse representation on the

number of zeros, which is referred to as cosparsity. That is,

Cosparsity: ℓ := p− ||Ωx||0. (3)

Generally speaking, the cosparse analysis model can be

viewed as a sparse synthesis model encoded with some

structure. The structure of the signal x is encoded by its

cosupport, which is defined as the index set of the zero

entries and denoted by

Λ := {j| 〈ωj ,x〉 = 0} , (4)

where ωj is the j-th row of Ω.

When we use the above-defined analysis model to recon-

struct the original signal, a necessary number of measure-

ments must be given. Assuming that the sampling matrix Φ

and the analysis operator Ω are mutually independent, the

minimum number m should satisfy the following condition

in order to guarantee the uniqueness of a ℓ-cosparse solution.

m ≥ 2 · max
|Λ|≥ℓ

dim(WΛ), (5)

where WΛ = Null(ΩΛ) is the nullspace of ΩΛ, and |Λ| is

the cardinality of Λ (refer to [14] for more details). More

fortunately, when other constraints are taken into account

for upsampling, we expect to recover x with even less

measurements.

III. GUIDED DEPTH UPSAMPLING

The proposed approach for depth upsampling is based

on the cosparse analysis model, and meanwhile color in-

formation is integrated as guidance. In this section, we first

introduce the formulation of our guided depth upsampling.

Then, a numerical scheme relying on the Greedy Analysis

Pursuit (GAP) [14] algorithm is presented to solve the

formulized problem.

A. Problem Formulation

Assume that we are given a set of depth measurements

DL, together with an aligned high-resolution color image

IH . Our aim is to recover a depth map DH to be of

the same resolution as the color image. Let x ∈ R
n and

y ∈ R
m, respectively, be the vectorized high-resolution

depth map and the vectorized sparse depth measurements,

where n = h × w is the number of image pixels. Then,

our guided depth upsampling is achieved by minimizing the

following objective function:

E(x) = λ1EC(Ω,x) + λ2ED(y,x) + λ3ES(x), (6)

where EC(Ω,x) is a term targeting at a cosparse rep-

resentation, ED(y,x) evaluates the fidelity between the

measurements and the estimated depth values, and ES(x)
stands for a term assessing the smoothness of the recovered

depth map. λ1, λ2, and λ3 are regularization parameters

balancing the three terms. The details of each term are

presented below.

1) Cosparse Analysis Term: Given an analysis operator

Ω, the cosparse analysis term aims to achieve a sparse

representation of Ωx. Hence, it is defined as

EC(Ω,x) = ||Ωx||0. (7)

A critical point concerned in this term is the chosen of Ω.

Several researches [18], [15], [19] have been studied on the

learning of analysis operators. Learned operators are consid-

ered to be of better performance in image super-resolution

than analytic ones such as Wavelets [20]. However, their

disadvantages are also obvious. For instance, it takes time

to learn an analysis operator and performance of the learned

operator highly depends on training sets. Moreover, due to

limitations of computational resources, operators are often

learned in a patch-wise way and are applied locally to image

patches [15].

In contrast to learned operators, analytic operators are able

to be utilized globally to an entire depth map. Operators such

as the wavelet transforms, the finite difference operators,

and the curvelet and shearlet transforms [21] have been
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successfully used in signal processing applications. Thus, in

this work, we choose analytic operators for upsampling. We

also defend that, with the use of guided color information,

the upsampling performance of applying analytic analysis

operators is competitive to those using learned counter-

parts [16].

2) Data Fidelity Term: The data fidelity term evaluates

the errors between the sparse measurements and the corre-

sponding depth values that are recovered. It is designed as

ED(y,x) = ||y −Φx||22, (8)

where Φ represents the sampling matrix as before.

It needs mentioning that, when x is a vector of an entire

depth map, very large size matrices have to be constructed

to perform the matrix-vector multiplications of Ωx and Φx,

which are not affordable in memory. Practically, both Ω and

Φ are implemented by functions. It in essence means that

Ω stands for the process of applying the analysis transform

and Φ represents the sampling procedure. We stick to the

notations in the form of matrix-vector multiplications for

simplicity and consistency with others’ work [14].

3) Smoothness Term: The smoothness term is based upon

a prior that depth maps are piecewise smooth. Constraints

such as minimizing total variations (TV) are often used for

preserving smoothness [1]. In this work, we prefer to design

the term as follows:

ES(x) =
∑

i

∑

j∈N (i)

wij ||xi − xj ||
2
2, (9)

where xi is a pixel in x, and N (i) denotes the 4-connected

neighborhood of xi in the corresponding depth map DH .

wij is a weight that integrates color information for regular-

ization. It is defined by

wij = exp

(

−
||Ii − Ij ||

2
2

2σ2

)

, (10)

in which Ii and Ij are color or intensity values of the

pixels registered to xi and xj , and σ is a standard deviation.

This form is also the first-order smoothness constraint com-

monly used in the Markov Random Field framework [5].

It performs better than the TV norm [1], especially when

upsampling factor is large.

B. Numerical Scheme

As one may notice, the formulated problem in Eq.(6)

degenerates to a MRF-based energy function when λ1 = 0,

which can be solved efficiently by the well-known conjugate

gradient (CG) algorithm [5]. However, when λ1 is not

zero, the cosparse analysis term ||Ωx||0 leads the entire

problem to be a NP-complete one. One way to approxi-

mately solve it is turning it to ||Ωx||1, a L1-minimization

problem. Whereas, in this work, we adopt a simple approach,

the Greedy Analysis Pursuit (GAP) algorithm, to find the

optimized solution.

GAP imitates Orthogonal Matching Pursuit (OMP) [17]

with a form of Iterative Reweighted Least Squares

(IRLS) [22], [23]. It starts from a cosupport Λ̂0 that is

initialized to be the whole set. An initial estimation of the

depth map is obtained via

x̂0 = argmin
x

λ1||Ωx||22 + λ2ED(y,x) + λ3ES(x), (11)

which is a least square optimization problem solved by

conjugate gradient in this work. Some elements outside

the cosupport set are first detected according to the values

of Ωx̂0 and are removed from the set. With an updated

cosupport, x is re-estimated for removing more elements.

By this means, GAP iteratively reduces the cosupport set till

it reaches ℓ-cosparsity or another stop criterion is satisfied.

The details of GAP-based guided depth upsampling is

illustrated in Algorithm 1.

Algorithm 1: GAP for Guided Depth Upsampling

Input: The analysis operator Ω,

the sampling matrix Φ,

the sparse measurements y,

the target cosparsity ℓ,

and a selection factor t ∈ (0, 1].
Output: Optimized x̂ = x̂k.

Initialization:

k = 0;

Initialize cosupport: Λ̂0 = {1, 2, ..., p};

Initialize solution:

x̂0 = argmin
x

λ1||ΩΛ̂0
x||22+λ2ED(y,x)+λ3ES(x).

while k < p− ℓ do
k = k + 1;

Compute α = Ωx̂k−1;

Find largest entries: Γk = {i : |αi| ≥ tmaxj |αj |}
Update cosupport: Λ̂k = Λ̂k−1\Γk;

Update solution:

x̂k = argmin
x

λ1||ΩΛ̂k
x||22+λ2ED(y,x)+λ3ES(x).

end

IV. EXPERIMENTS

Extensive experiments have been conducted in order to

validate the proposed approach. In this section, we first

present sets of experiments performed on the Middlebury

stereo dataset [24] and provide both quantitative and qualita-

tive comparison to state-of-the-art algorithms. Experimental

settings, such as the chosen of analysis operators and the

assigned parameters, are also discussed. In the end, we apply

our approach to upsample real-world lidar data collected by

a Velodyne HDL 64E lidar.
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A. Depth Upsampling from Random Samples

This group of experiments is designed to investigate the

performance of the cosparse analysis model in contrast to

synthesis models. Therefore, we compare our approach to

the work done by Hawe et al. [1]. In order to achieve

quantitative evaluation, experiments are performed on the

Middlebury stereo dataset. Synthetic data are generated in

a way exactly the same as Hawe’s work. That is, we

randomly sample a certain percentage of points from known

depth maps, and include measurements on edges detected

by Canny filter as well. Aligned color images are taken as

guidance in both methods.

The parameters of our algorithm are experimentally as-

signed throughout all experiments as follows. The weighting

factors in Eq.(6) are λ1 = 0.01, λ2 = 1, and λ3 = 0.1. The

standard deviation in Eq.(10) is determined to σ = 30. Con-

sidering that depth discontinuities co-occur with intensity

changes, we take the cosparsity of an aligned intensity edge

map as the target cosparsity ℓ, and set the selection factor t =
0.6 in Algorithm 1. Moreover, we investigate two different

types of analytic analysis operators, which are Daubechies

wavelets (db2-wavelets) and the finite difference operators.

For the Daubechies wavelets, decomposition levels from one

to four are tested. We denote the corresponding operators,

respectively, by ΩWT1, ΩWT2, ΩWT3, and ΩWT4. A finite

difference operator that concatenates the horizontal and

vertical derivatives and the other extra concatenating the

diagonal derivatives are examined as well, which are denoted

as ΩDIFF and ΩDIFF DIAG respectively. Table I illustrates

the dimensions of all the operators for each depth map. As

introduced in Section II, an operator is of p× d dimension.

d is the same as the resolution of an image and p is

different from case to case. Regarding to the extremely high

dimensionality, we implement the operators by functions

instead of matrices.

Tsukuba Venus Teddy, Cones
d = 110592 d = 166222 d = 168750

ΩWT1 111940 168296 170856

ΩWT2 112963 169342 171918

ΩWT3 113311 169762 172342

ΩWT4 113491 169978 172620

ΩDIFF 220512 331627 336675

ΩDIFF DIAG 440354 662439 672527

Table I
THE DIMENSION p× d OF EACH ANALYSIS OPERATOR. d IS THE SAME

AS THE RESOLUTION OF AN IMAGE AND IS LISTED ON THE TOP. THE

REMAINING VALUES ARE p, WHICH VARIES FROM CASE TO CASE.

To obtain quantitative evaluation, we assess all experimen-

tal results in terms of the root mean square error (RMSE)

of the upsampled depth maps against to ground truth. As

in [16], each depth map is first scaled to a certain disparity

range that is required in the Middlebury website for evalua-

tion. Table II reports the evaluation results for experiments

upsampling from 5%, 15%, and 25% randomly sampled

measurements. In the table, ’CSC’ stands for the synthesis

model based upsampling method as explained in [1]. The

others are our approaches while using different analysis

operators. The results of ’CSC’ are obtained by running

the code released by the authors, with a large number of

iterations to make sure that each case converges. All other

parameters are set as reported in their paper. Table II shows

that, except for the ΩWT1 operator which fails in some cases,

all other analysis operators perform better than the synthesis

model (CSC). Among all, the ΩWT4 operator performs best,

followed closely by ΩDIFF DIAG and ΩDIFF . The results

also tell us that, for the same type of operators, the better

performance is obtained if the operator is more redundant.

Fig. 1 illustrates some comparative results upsampled

from 5% measurements, in which the columns (a) and (b)

are the aligned color images and ground truth depth maps,

the column (c) shows the sampled data, (d) are the results

of CSC, and the last column are obtained by our approach

using the ΩWT4 operator. From the results we observe that

our approach preserves depth edges better. This superiority

not only benefits from our color guided smoothness term, but

also from the cosparse analysis term to a great extent. The

advantage of the cosparse analysis term will be demonstrated

further in the next experiment.

B. Depth Upsampling from Uniform Samples

Although random sampling together with edge samples

can improve performance, it is not able to obtain these

measurements in applications such as super-resolution of

depth maps captured by Kinects or ToF cameras. Therefore,

in this experiment, we explore the performance of our

approach when applied to uniformly sampled low-resolution

depth maps. Synthetic data are generated as the way in [16].

That is, we first smooth a high-resolution depth map [25]

and then downsample it through bicubic interpolation at a

certain sampling factor. Considering that bicubic interpola-

tion has edge effect near occlusion, the occluded regions are

inpainted by our approach before downsampling.

Among the developed depth map super-resolution tech-

niques, some [5], [16] use guidance information and the

others [26] do not. In our evaluation, only those methods

using guidance, for instance, bilateral filtering and MRF

based techniques, are chosen for comparison. Besides these

two typical techniques, we also compare our work to a

state-of-the-art method [16], which is based on a cosparse

analysis model as well. In contrast to us, it relies on

analysis operators learned from a training set. The results

of the bilateral filtering method are produced from our own

implementation. To achieve the results of MRF, we simply

set λ1 = 0, λ2 = 1, and λ3 = 1 in our model. The

quantitative results of Kiechle et al.’s [16] work are from

their paper.
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❵
❵
❵

❵
❵

❵
❵
❵
❵
❵

Method
Scenario

Tsukuba Venus Teddy Cones

5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25%

CSC [1] 0.423 0.455 0.442 0.703 0.603 0.545 2.469 2.070 2.121 2.633 2.266 2.113

ΩWT1 0.425 5.019 0.317 7.343 4.852 0.171 24.335 22.144 1.271 5.092 27.015 1.536

ΩWT2 0.406 0.257 0.187 0.116 0.134 0.105 1.427 1.001 0.967 1.594 1.080 0.886

ΩWT3 0.399 0.243 0.194 0.127 0.041 0.042 1.326 0.918 0.844 1.276 0.909 0.769

ΩWT4 0.395 0.251 0.195 0.094 0.040 0.041 1.115 0.883 0.804 1.042 0.884 0.749

ΩDIFF 0.420 0.248 0.181 0.049 0.041 0.047 1.362 1.019 0.945 1.112 0.954 0.845

ΩDIFF DIAG 0.451 0.383 0.217 0.105 0.057 0.048 1.057 0.867 0.794 1.060 0.891 0.715

Table II
RMSE OF EXPERIMENTAL RESULTS THAT ARE UPSAMPLED FROM RANDOMLY SAMPLED DATA PLUS EDGE POINTS. FOR ΩWT1 , UNDERLINED

VALUES ARE THE FAILED CASES.

(a) Color image (b) Depth map (c) Sampled data (d) CSC [1] (e) ΩWT4

Figure 1. Visual comparison of experimental results upsampled from 5% measurements plus edge points. The four scenarios are ’Tsukuba’, ’Venus’,
’Teddy’, and ’Cones’ respectively. The results show that our approach preserve depth edges better. (Zoom in for better view.)
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(a) Ground truth (b) Bilateral Filter (c) MRF (d) ΩWT4 (e) ΩDIFF DIAG

Figure 2. Visual comparison of experiments that are upsampled with a scaling factor 8. (Zoom in for better view.)

❵
❵

❵
❵

❵
❵
❵
❵
❵
❵

Method
Scenario

Tsukuba Venus Teddy Cones

2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×

Kiechle et al. [16] 0.255 0.487 0.753 0.075 0.129 0.156 0.702 1.347 1.662 0.680 1.383 1.871

Bilateral Filter [8] 0.392 0.540 0.830 0.129 0.195 0.342 0.486 0.682 0.987 0.691 0.944 1.419

MRF [5] 0.479 0.646 0.855 0.142 0.181 0.255 0.461 0.580 0.780 0.664 0.851 1.263

ΩWT4 0.147 0.390 0.708 0.089 0.121 0.171 0.310 0.456 0.664 0.347 0.681 1.159

ΩDIFF 0.154 0.385 0.738 0.045 0.118 0.175 0.234 0.474 0.710 0.282 0.676 1.166

ΩDIFF DIAG 0.074 0.339 0.722 0.029 0.113 0.172 0.213 0.478 0.769 0.247 0.659 1.167

Table III
RMSE OF EXPERIMENTS THAT ARE UPSAMPLED WITH A SCALING FACTOR OF 2, 4, AND 8 RESPECTIVELY.

❵
❵
❵
❵
❵

❵
❵

❵
❵

❵

Method
Scenario

Tsukuba Venus Teddy Cones

2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×

Kiechle et al. [16] 0.47 1.73 3.53 0.09 0.25 0.33 1.41 3.54 6.49 1.81 5.16 9.22

Bilateral Filter [8] 0.89 1.19 1.87 0.15 0.21 0.43 1.58 3.21 5.40 1.39 1.88 3.31

MRF [5] 3.35 5.83 9.23 0.44 0.73 1.51 2.44 3.80 8.00 3.93 6.24 11.69

ΩWT4 0.31 1.78 4.54 0.31 0.22 0.40 1.26 2.18 5.76 1.23 3.15 7.45

ΩDIFF 0.19 1.32 4.75 0.03 0.13 0.30 0.57 2.16 5.79 0.66 2.55 7.39

ΩDIFF DIAG 0.04 0.79 3.17 0.01 0.07 0.16 0.53 2.48 5.82 0.42 2.05 6.27

Table IV
THE PERCENTAGE OF BAD PIXELS OF THE EXPERIMENTS THAT ARE UPSAMPLED WITH A SCALING FACTOR OF 2, 4, AND 8 RESPECTIVELY.
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Figure 3. Results of the guided depth upsampling performed on a Velodyne 64E Lidar dataset. The first two rows, respectively, are high-resolution color
images and sparse 3D lidar points. The third row contains low-resolution maps obtained by registering 3D points to the images. The fourth row presents
upsampled depth maps, and the fifth shows the rendered dense 3D point clouds obtained from our upsampling results (sky regions are removed). For
comparison, the sparse rendered 3D point clouds are also provided in the last row.

Visual comparison of these methods behaved with a

upscaling factor of 8 are illustrated in Fig. 2. RMSE of

more experiments are listed in Table III. Moreover, Table IV

reports the percentage of bad pixels, whose error is greater

than one pixel. Considering the performance of our analysis

operators, we only report the results of ΩWT4 ΩDIFF ,

ΩDIFF DIAG here. The comparisons show that, with the

cosparse analysis term, we achieve sharper depth edges

than the MRF based technique and comparable to Bilateral

filtering. Among all, our approach with the ΩDIFF DIAG

operator performance best, followed by ΩWT4.

C. Experiments on Lidar Data

Finally, we apply our approach to upsample lidar data

in order to finally achieve dense 3D reconstruction. Ex-

periments are conducted on the KITTI vision benchmark

suite [27]. This dataset consists of sparse lidar data and high-

resolution color images, which are simultaneously collected

by a Velodyne HDL 64E lidar and a video camera in real

road scenarios. With known sensor parameters, lidar points

are first registered to images so that low-resolution depth

maps are obtained, as shown in the first three rows of

Fig. 3. Our approach is then applied to upsample these low-

resolution depth maps. The upsampled results are demon-

strated in the fourth row, followed by the rendered high-

resolution 3D point clouds. Meanwhile, we also provide

the sparse rendered 3D point clouds in the last row for

visual comparison. From the results we see that our approach

increases the resolution of 3D point clouds successfully.

V. CONCLUSIONS

In this paper, we have presented a new approach for

guided depth upsampling. It relies on the cosparse analysis

models and makes use of analytic operators. Different well

known operators have been investigated. The experimental

results show that, as opposed to the synthesis cases, more

redundant operators are preferred.

Benefitted from the use of analytic operators, the ap-

proach requires no training data. It can be applied to either
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randomly or uniformly sampled low-resolution depth maps,

and achieves high performance even with very low sampling

rate. Numerous experiments have been conducted on both

synthetic and real data, while comparing to a synthesis

model based method [1], an analysis operator learning based

one [16], and two other typical guided depth upsampling

techniques. Experiments have shown that our approach out-

performs these state-of-the-art algorithms. Moreover, due to

the underline scheme, our approach can also be applied to

guided depth inpainting and denoising directly.
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