
Guided GUI Testing of Android Apps with
Minimal Restart and Approximate Learning

Wontae Choi
EECS Department

University of California, Berkeley
wtchoi@cs.berkeley.edu

George Necula
EECS Department

University of California, Berkeley
necula@cs.berkeley.edu

Koushik Sen
EECS Department

University of California, Berkeley
ksen@cs.berkeley.edu

Abstract
Smartphones and tablets with rich graphical user interfaces
(GUI) are becoming increasingly popular. Hundreds of thou-
sands of specialized applications, called apps, are available
for such mobile platforms. Manual testing is the most pop-
ular technique for testing graphical user interfaces of such
apps. Manual testing is often tedious and error-prone. In
this paper, we propose an automated technique, called Swift-
Hand, for generating sequences of test inputs for Android
apps. The technique uses machine learning to learn a model
of the app during testing, uses the learned model to generate
user inputs that visit unexplored states of the app, and uses
the execution of the app on the generated inputs to refine the
model. A key feature of the testing algorithm is that it avoids
restarting the app, which is a significantly more expensive
operation than executing the app on a sequence of inputs.
An important insight behind our testing algorithm is that we
do not need to learn a precise model of an app, which is of-
ten computationally intensive, if our goal is to simply guide
test execution into unexplored parts of the state space. We
have implemented our testing algorithm in a publicly avail-
able tool for Android apps written in Java. Our experimental
results show that we can achieve significantly better cover-
age than traditional random testing and L∗-based testing in a
given time budget. Our algorithm also reaches peak coverage
faster than both random and L∗-based testing.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

General Terms Algorithm, Design, Experimentation

Keywords GUI testing, Learning, Automata, Android

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA..
Copyright c© 2023 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509552

1. Introduction
Smartphones and tablets with rich graphical user interfaces
(GUI) are becoming increasingly popular. Hundred of thou-
sands of specialized applications, called apps, are already
available for these mobile platforms. The complexity of
these apps lies often in the user interface, with data process-
ing either minor, or delegated to a backend component. A
similar situation exists in applications using software-as-a-
service architecture, where the client-side component con-
sists mostly of user interface code. Testing such applications
involves predominantly user interface testing.

We focus on user interface testing for Android apps, al-
though many of the same challenges exist on other mobile
and browser platforms. The only two tools that are widely
used in practice for testing Android apps are Monkeyrun-
ner [2], a framework for manually scripting sequences of
user inputs in Python, and Monkey [3], a random automatic
user input generation tool. A typical use of the Monkey tool
involves generating clicks at random positions on the screen,
without any consideration of what are the actual controls
shown on the screen, which ones have already been clicked,
and what is the sequence of steps taken to arrive at the cur-
rent configuration. It is not surprising then that such testing
has trouble exploring enough of the user interface, especially
the parts that are reached after a specific sequence of inputs.

In this paper, we consider the problem of automatically
generating sequences of test inputs for Android apps for
which we do not have an existing model of the GUI. The
goal is to achieve code coverage quickly by learning and ex-
ploring an abstraction of the model of the GUI of the app. We
discuss further in the paper various techniques that have been
explored previously to address different aspects of this prob-
lem. However, our experience shows that previous learning
techniques ignore a very significant practical constraint in
testing apps. All automatic exploration algorithms will occa-
sionally need to restart the app, in order to explore additional
states reachable from the initial state. The only reliable way
to restart an app is to remove and reinstall it. This is neces-
sary, for example, when the application has persistent data.
Our experiments show that the restart operation takes 30 sec-

onds, which is significantly larger than the time required to
explore any other transition, such as a user input. Currently,
our implementation waits for up to 5 seconds after sending
a user input, to ensure that all handlers have finished. We
expect that with more support from the operating system, or
a more involved implementation, we could reduce that wait
time to well under a second.

Since the cost of exploring a transition to the initial state
(a restart) is an order of magnitude more than the cost of any
other transition, we must use an exploration and learning
algorithm that minimizes the number of restarts. Standard
regular language learning algorithms are not appropriate in
this case. For example, Angluin’s L∗ [10] requires at least
O(n2) restarts, where n is the number of states in the model
of the user interface. Rivest and Schapire’s algorithm [38]
reduces the number of restarts to O(n), which is still high,
by computing homing sequences, and it also increases the
runtime by a factor of n, which is again not acceptable when
we want to achieve code coverage quickly.

In this paper we propose a testing algorithm based on two
key observations:

1. It is possible to reduce the use of app restarts, because
most user interface screens of an Android app can of-
ten be reached from other screens just by triggering a se-
quence of user inputs, e.g., using “back” or “home” but-
tons.

2. For the purpose of test generation, we do not need to
learn an exact model of the app under test. All we need
is an approximate model that could guide the generation
of user inputs while maximizing the code coverage. Note
that for real-world apps a finite state model of the GUI
may not even exist. Some apps may require push-down
model and others may require more sophisticated infinite
models.

Based on these two observations, we propose a testing al-
gorithm, called SwiftHand, that uses execution traces gen-
erated during the testing process to learn an approximate
model of the GUI. SwiftHand then uses the learned model to
choose user inputs that would take the app to previously un-
explored states. As SwiftHand triggers the newly generated
user inputs and visits new screens, it expands the learned
model, and it also refines the model when it finds discrepan-
cies between the model learned so far. The interplay between
on-the-fly learning of the model and generation of user in-
puts based on the learned model helps SwiftHand to quickly
visit unexplored states of the app. A key feature of Swift-
Hand is that, unlike other learning-based testing algorithms,
it minimizes the number of restarts by searching for ways to
reach unexplored states using only user inputs.

We have implemented SwiftHand for Android apps writ-
ten in Java. The tool is publicly available at https://

github.com/wtchoi/SwiftHand. We applied SwiftHand
to several free real-world Android apps and compared the ef-

fectiveness of SwiftHand with that of random testing andL∗-
based testing. Our results show that SwiftHand can achieve
significantly better coverage on these apps within a given
time budget. Moreover, SwiftHand achieves branch cover-
age at a rate faster than that of random and L∗-based testing.
We report the results of our investigation in the empirical
evaluation section.

2. Overview
In this section we introduce a motivating example, which we
will use first to describe several existing techniques for auto-
mated user interface testing. Then we describe SwiftHand at
a high level in the context of the same example. The formal
details of the SwiftHand algorithm are in Section 3.

We use part of Sanity, an Android app in our benchmark-
suite as our running example. Figure 1 shows the first four
screens of the app. The app starts with three consecutive end-
user license agreement (EULA) screens. To test the main
app, an automated testing technique must pass all the three
EULA screens.

License
Term #1

Yes No

License
Term #2

Yes No

License
Term #3

Yes No

Sanity
Action 1
Action 2
Action 3Yes Yes Yes

EULA 1 (q1) EULA 2 (q2) EULA 3 (q3) Main (qM)

Figure 1: The first four screens of Sanity App. The screen
names in parentheses are for cross-reference from the mod-
els of this app discussed later.

The first and the third EULA screens have four input
choices: (a) Yes button to accept the license terms, (b) No
button to decline the license terms, (c) ScrollUp the license
terms, and (d) ScrollDown the license terms. Pressing No at
any point terminates program. ScrollDown and ScrollUp do
not change the non-visual state of the program. The second
EULA screen doesn’t have the scrolling option. Pressing
Yes button three times leads the user to the main screen of
the app. For convenience, in the remainder of this paper we
are going to use short name q1, q2, q3, and qM , instead of
EULA1, EULA2, EULA2, and Main.

2.1 Goals and Assumptions
We want to develop an algorithm that generates sequences
of user inputs and feeds them to the app in order to achieve
high code coverage quickly.

The design of our testing algorithm is guided by the
following practical assumptions.

Testing Interface. We assume that it is possible to dynami-
cally inspect the state of the running app to determine the set
of user inputs enabled on a given app screen. We also assume
that our algorithm can restart the app under test, can send a

user input to the app, and can wait for the app to become
stable after receiving a user input.

Cost Model. We assume that restarting the app takes sig-
nificantly more time than sending a user input and waiting
for the app to stabilize. Note that a few complicated tasks are
performed when an app is restarted: initializing a virtual ma-
chine, loading the app package, verifying the app byte-code,
and executing the app’s own initialization code. Testing tools
have to wait until the initialization is properly done. Our ex-
periments show that the restart operation takes 30 seconds.
Sending a user input is itself very fast, but at the moment
our implementation waits for up to 5 seconds for the app to
stabilize. We expect that with a more complex implementa-
tion, or with some assistance from the mobile platform we
can detect when the handlers have actually finished running.
In this case we expect that the ratio of restart cost to the cost
of sending a user input will be even higher.

User-Interface Model. We assume that an abstract model
of the graphical user interface of the app under test is not
available a priori to our testing algorithm. This is a reason-
able assumption if we want to test arbitrary real-world An-
droid apps.

When learning a user interface model we have to compare
a user interface state with states that are already part of the
learned model. For this purpose, we consider two user inter-
face states equivalent if they have the same set of enabled
user inputs. An enabled user input is considered according
to its type and the bounding box of screen coordinates where
it is enabled. This means that we do not care about the ac-
tual content of user elements such as colors or text content.
This abstraction is similar to the one proposed by MacHiry
et al. [25].

Test Coverage Criteria. We assume that the app under test
is predominantly concerned with the user interface, and a
significant part of the app state is reflected in the state of
the user interface. Thus we assume that a testing approach
that achieves good coverage of the user interface states also
achieves good code coverage. This assumption is not always
entirely accurate, e.g., for apps that have significant internal
application state that is not exposed in the user interface.

2.2 Existing Approaches
Random Testing. Random testing [25] tests an app by
randomly selecting a user input from the set of enabled
inputs at each state and by executing the selected input.
Random testing also restarts the app at each state with some
probability. In Sanity case, after a restart, random testing has
a low probability (1

2∗
1
2∗

1
2 = 0.125) of reaching the main app

screen. User inputs that do not change the non-visual state,
for example ScrollUp and ScrollDown or clicking outside
the buttons, do not affect this probability. Expected number
of user inputs and restarts required to reach the main app

q1
q2 q3Yes Yes Yes

NoNo
No

Scroll Up
Scroll Down

Scroll Up
Scroll Down

Scroll Up
Scroll Down

qEND

qM

Action 1

Action 2

Action 3

Figure 2: A partial model of Android app Sanity.

screen are 24 and 7, respectively.1 This will take about 330
seconds according to our cost model. In summary, random
testing has a hard time in achieving good coverage if an
interesting screen is reachable only after executing a specific
sequence of user inputs. This is true for our example and is
common in real-world apps.

Note that this analysis, and our experiments, use a ran-
dom testing technique that is aware of the set of enabled user
inputs at each state and can make a decision based on this
set. A naı̈ve random testing technique, such as the widely-
used Monkey tester, which touches random coordinates on
the screen, will do nothing meaningful because most of the
screen coordinates have no associated event handler.

Model-based Testing. Model-based testing [8, 11, 28, 37,
39, 43] is a popular alternative to automatically test GUI pro-
grams and other event-driven programs. Model-based testing
assumes that a finite state model of the GUI is provided by
the user. The idea behind model-based testing is to create an
efficient set of user input sequences from the model of the
target program. The generated test cases could either try to
maximize coverage of states or try to maximize coverage of
short sequences of user inputs.

Figure 2 is a partial model for the Sanity app. The model
describes a finite state machine. A finite state machine ab-
stracts the infinite state space of the app into a finite number
of interesting states and describes equivalence classes of user
input sequences leading to those states. A key advantage of
using a finite state machine (FSM) model is that an optimal
set of test cases can be generated based on a given coverage
criterion.

1 Let R be the expected number of restarts. At the first EULA screen,
if No is chosen, the app will terminate and testing should be restarted.
This case happens with probability 1

4
. The expected number of restarts is

R1 = 1
4
(1 + R). If either ScrollUp or ScrollDown is picked, the app is

still in the first EULA screen. Therefore, the expected number of restarts
in this case is R2 = 1

2
R. After considering two more cases (Yes,No and

Yes,Yes,Scroll∗,No), we can construct an equation of R.

R = R1 +R2 +R3 +R4

= 1
4
(1 +R) + 1

2
R+ 1

8
(1 +R) + 1

16
(1 +R)

= 7
16

+ 15
16

R

Solving the equation, we have R = 7. We can perform a similar analysis
to get the expected number of all events including restarts, which is 31. The
number of events except restarts is 24.

For our running example, if we want to avoid a restart, a
model-based testing algorithm could generate the sequence
ScrollDown, ScrollUp, Yes, Yes, ScrollDown, ScrollUp,
Yes to obtain full coverage of non-terminating user inputs
and to lead the test execution to the main screen.

Model-based testing can generate optimal test cases for
GUI apps, if the model is finite and accurate. Unfortunately,
it is a non-trivial task to manually come up with a precise
model of the GUI app under test. For several real-world apps,
a finite model may not even exist. Some apps could require
a push-down automaton or a Turing machine as a model.
Moreover, manually generated models may miss transitions
that could be introduced by a programmer by mistake.

Testing with Active Learning. Testing with model learn-
ing [18, 34, 35] tries to address the limitations of model-
based testing by learning a model of the app as testing is
performed. An active learning algorithm is used in conjunc-
tion with a testing engine to learn a model of the GUI app
and to guide the generation of user input sequences based on
the model.

A testing engine is used as a teacher in active learning.
The testing engine executes the app under test to answer
two kinds of queries: 1) membership queries—whether a se-
quence of user inputs is valid from the initial state, i.e. if
the user inputs in the sequence can be triggered in order,
and 2) equivalence queries—whether a learned model ab-
stracts the behavior of the app under test. The testing engine
resolves equivalence queries by executing untried scenarios
until a counter-example is found. An active learning algo-
rithm repeatedly asks the teacher membership and equiva-
lence queries to infer the model of the app.

A case study: L∗. Angluin’s L∗[10] is the most widely
used active learning algorithm for learning finite state ma-
chine. The algorithm has been successfully applied to var-
ious problem domains from network protocol inference to
functional confirmation testing of circuits.

We applied L∗ to the running example. We observed that
L∗ restarts frequently. Moreover, L∗ made a large number of
membership queries to learn a precise and minimal model.
Specifically, testing with L∗ required 29 input sequences
(i.e. 29 restarts) consisting of 64 user inputs to fully learn
the partial model in Figure 2. This translates to spending
around 870 seconds to restart the app under test (AUT) and
320 seconds for executing the user inputs. 73% of running
time is spent on restarting the app. It is important to note that
L∗ has to learn the partial model completely and precisely
before it can explore the screens beyond the main screen.
We show in the experimental evaluation section that L∗ has
similar difficulties in actual benchmarks.

2.3 Our Testing Algorithm: SwiftHand
SwiftHand combines active learning with testing. However,
unlike standard learning algorithms such as L∗, SwiftHand
restarts the app under test sparingly. At each state, instead

of restarting, SwiftHand tries to extend the current execution
path by selecting a user input enabled at the state. SwiftHand
uses the model learned so far to select the next user input to
be executed.

Informally, SwiftHand works as follows. SwiftHand in-
stalls and launches the app under test and waits for the app
to reach a stable state. This is the initial app-state. For each
app-state, we compute a model-state based on the set of en-
abled user inputs in the app-state along with the bounding
boxes of screen coordinates where they are enabled. Initially
the model contains only one state, the model-state corre-
sponding to the initial app-state.

If a model-state has at least one unexplored outgoing
transition, we call it a frontier model-state. At each app-
state s, SwiftHand heuristically picks a frontier model-state
q that can be reached from the current model-state without a
restart.

Case 0. If such a state is not found, SwiftHand restarts the app.
This covers both the case when a frontier-state exists but
is not reachable from the current state with user inputs
alone, and also the case when there are no frontier-states,
in which case our algorithm restarts the app to try to find
inconsistencies in the learned model by exploring new
paths.

Otherwise, SwiftHand avoids restart by heuristically find-
ing a path in the model from the current model-state to q and
executes the app along the path. SwiftHand then executes
the unexplored enabled input of state q. Three scenarios can
arise during this execution.

Case 1. The app-state reached by SwiftHand has a corresponding
model-state that has not been encountered before. Swift-
Hand adds a fresh model-state to the model correspond-
ing to the newly visited app-state and adds a transition to
the model.

Case 2. If the reached app-state is equivalent based on enabled
user inputs to the screen of a previously encountered
app-state, say s′, then SwiftHand adds a transition from
q to the model-state corresponding to s′. This is called
state merging. If there are multiple model-states whose
corresponding app-states have equivalent screens, then
SwiftHand picks one of them heuristically for merging.

Case 3. During the execution of the user inputs to reached the
frontier state, SwiftHand discovers that an app-state vis-
ited during the execution of the path does not match the
corresponding model-state along the same path in the
model. This is likely due to an earlier merging operation
that was too aggressive. At this point, SwiftHand runs a
passive learning algorithm using the execution traces ob-
served so far, i.e. SwiftHand finds the smallest model that
can explain the app-states and transitions observed so far.

Note that SwiftHand applies heuristics at three steps in the
above algorithm. We discuss these heuristics in Section 3.2.

q1.3 q1.3q1

Yes
No

Scroll
Down

Click
Yes

Click
Yesq2

q1

Yes
No

Yes

No q2

q1

Yes

No

q3Yes

No

Yes
No

q2
Yes

No

No

merge

Yes

(a) (b) (c) (d)

q2
Yes

No

ScrollUp

No
Yes

Yes

(e)

qM

Yes[] Yes, Yes Yes, Yes Yes, Yes, Yes

ScrollUp

Scroll
Down ScrollUp

Scroll
Down ScrollUp Scroll

Down ScrollUp
Scroll
Down

ScrollUp

Scroll
Down

Click
Yes

Action1
Action2
Action3

q1.4

q2

q1

Yes
No No

(g)

q3

qM

No
Yes

Yes

Yes, Yes, Yes, Restart

ScrollUp

Scroll
Down

ScrollUp

Scroll
Down

q2

q1

Yes
No No

(h)

q3

qM

No
Yes

Yes

Yes, Yes, Yes, Restart, Scroll

ScrollUp

q4Scroll
Down

ScrollUp

Scroll
Down

No
ScrollUp

Yes

ScrollDown

q2
Yes

No
No

(i)

q3

qM

No
Yes

Yes

ScrollUp
Scroll
Down

ScrollUp

Scroll
Down

Scroll
Down

merge

Action1
Action2

Action3

Action1
Action2
Action3

Action1
Action2
Action3

Yes, Yes, Yes, Restart, Scroll

passive
re-learning

of model

Restartq2

q1

Yes
No No

q3

qM

No
Yes

Yes

ScrollUp

Scroll
Down

ScrollUp

Scroll
Down

Action1
Action2

Action3

(f)
Yes, Yes, Yes

Figure 3: Progress of learning guided testing on Sanity example. A circle with solid line is used to denote a state in the model.
The initial state is marked with a short incoming arrow. A circle with double line denotes the current model-state.

If the target model is finite, SwiftHand will be able to learn
the target model irrespective of what heuristics we use at the
above three decision points. However, our goal is not nec-
essarily to learn the exact model, but to achieve coverage
quickly. Therefore, we apply heuristics that enable Swift-
Hand to explore previously unexplored states quickly. In or-
der to avoid SwiftHand from getting stuck in some remote
part of the app, we allow SwiftHand to restart when it has
executed a predefined number of user inputs from the initial
state.

Figure 3 illustrates how SwiftHand works on the running
example. For this example, we pick user inputs carefully
in order to keep our illustration short, yet comprehensive.
For this reason we do not pick the No user input to avoid
restart. In actual implementation, we use various heuristics
to make such decisions. A model-state with at least one
unexplored outgoing transition is called a frontier state. A
solid line with arrow denotes a transition in the model. The
input sequence shown below the diagram of a model denotes
an input sequence of the current execution from the initial
state.

• Initialization: After launching the app, we reach the ini-
tial app-state, where the enabled inputs on the state are
{Yes, No, ScrollUp, ScrollDown}. We abstract this app-
state as the model-state q1 (using the same terminology as
in Figure 1 and Figure 2). This initial state of the model
is shown in Figure 3(a).
• 1st Iteration: Starting from the initial state of the model,

SwiftHand finds that the state q1 is a frontier state and

chooses to execute a transition for the input Yes. The
resulting state has a different set of enabled inputs from
the initial state. Therefore, according to Case 1 of the
algorithm, SwiftHand adds a new model-state q2 to the
model. The modified model is shown in Figure 3(b).
• 2nd Iteration: The app is now at an app-state whose cor-

responding model-state is q2, as shown in Figure 3(b).
Both q1 and q2 have unexplored outgoing transitions.
However, if we want to avoid restart, we can only pick a
transition from q2 because according to the current model
there is no sequence of user inputs to get to q1 from the
current model state. SwiftHand chooses to execute a tran-
sition on Yes, and obtains a new app-state for which it
creates a new model-state q3, as shown in Figure 3(c).
However, the new app-state has the same set of enabled
inputs as the initial app-state q1. Therefore, SwiftHand
merges q3 with q1 according to Case 2. This results in the
model shown in Figure 3(d). If you compare the partial
model learned so far with the actual underlying model
shown in Figure 2, you will notice that the merging op-
eration is too aggressive. In the actual underlying model
the state reached after a sequence of two Yes clicks is dif-
ferent than the initial state. This will become apparent to
SwiftHand once it explores the app further.
• 3rd Iteration: The app is now at an app-state whose cor-

responding model-state is q1, as shown in Figure 3(d).
SwiftHand can now pick either q1 or q2 as the next fron-
tier state to explore. Assume that SwiftHand picks q2

as the frontier state to explore. A path from the cur-

rent model-state q1 to q2 consists of a single transition
Yes. After executing this input, however, SwiftHand en-
counters an inconsistency—the app has reached the main
screen after executing Yes,Yes,Yes sequence from the ini-
tialization (see Figure 2). In the current model learned
so far (Figure 3(d)), the abstract state after the same se-
quence of events ought to be q2. Yet the set of enabled in-
puts associated with this screen (Action1, Action2, and
Action3) is different from the set of enabled inputs asso-
ciated with q2.
We say that SwiftHand has discovered that the model
learned so far is inconsistent with the app, and the input
sequence Yes,Yes,Yes is a counter-example showing this
inconsistency. Figure 3(e) illustrates this situation; notice
that there are two outgoing transitions labeled Yes from
state q2. This is Case 3 of the algorithm. The inconsis-
tency happened because of the merging decision made at
the second iteration. To resolve the inconsistency, Swift-
Hand abandons the model learned so far and runs an off-
the-shelf passive learning algorithm to rebuild the model
from scratch using all execution traces observed so far.
Figure 3(f) shows the result of passive learning. Note that
this learning is done using the transitions that we have
recorded so far, without any transition in the actual app.
• 4th Iteration: SwiftHand is forced to restart the app when

it has executed a predefined number of user inputs from
the initial state. Assume that SwiftHand restarts the app in
the 4th iteration so that we can illustrate another scenario
of SwiftHand. After restart, q1 becomes the current state
(see Figure 3(g)). SwiftHand now has several options to
execute an unexplored transition. Assume that SwiftHand
picks ScrollDown transition out of q1 state for execution.
Since scrolling does nothing to the screen state and the
set of enabled inputs, we reach an app-state that has the
same screen and enabled inputs as q1 and q3. SwiftHand
can now merge the new model-state with either q1 or q3

(see Figure 3(h)). In practice, we found that the nearest
ancestor or the nearest state with the same set of enabled
inputs works better than other model states. We use this
heuristics to pick q1. The resulting model at this point is
shown in Figure 3(i).

After the first four iterations, SwiftHand will execute 4
restarts and 11 more user inputs, in the worst case, to learn
the partial model in Figure 2. The restarts are necessary to
learn the transitions to the terminal state, End. If SwiftHand
wants to explore states beyond the main screen after a restart,
it can consult the model and execute the input sequence Yes,
Yes, and Yes to reach the main screen. Random testing will
have a hard time reaching the main screen through random
inputs. In terms of our cost model, SwiftHand will spend
190 seconds or 60% of the execution time in restarting the
app. The percentage of time spent in restarting drops if the
search space becomes larger. In our actual benchmarks, we

observed that SwiftHand spent about 10% of the total time
in restarting.

3. Learning guided Testing Algorithm

In this sections, we describe formally the SwiftHand al-
gorithm. We first introduce a few definitions that we use in
our algorithm. Then we briefly describe the algorithm. Swift-
Hand uses a variant of an existing passive learning algorithm
to refine a model whenever it observes any inconsistency be-
tween the learned model and the app. We describe this pas-
sive learning algorithm to keep the paper self-contained.

Models as ELTS. We use extended deterministic labeled
transition systems (ELTS) as models for GUI apps. An ELTS
is a deterministic labeled transition system whose states are
labeled with a set of enabled transitions (or user inputs).
Formally, an ELTS M is a tuple

M = (Q, q0,Σ, δ, λ)

where

• Q is a set of states,
• q0 ∈ Q is the initial state,
• Σ is an input alphabet,
• δ : Q× Σ→ Q is a partial state transition function,
• λ : Q → ℘(Σ) is a state labeling function. λ(q) denotes

the set of inputs enabled at state q, and
• for any q ∈ Q and a ∈ Σ, if there exists a p ∈ Q such

that δ(q, a) = p, then a ∈ λ(q).

The last condition implies that if there is a transition from q
to some p on input a, then a is an enabled input at state q.

Arrow. We use q a−→ p to denote δ(q, a) = p.

Arrow∗. We say q
l−→ p where l = a1, . . . , an ∈

Σ∗ if there exists q1, . . . , qn−1 such that q a1−→ q1
a2−→

q2 . . . qn−1
an−→ p.

Trace. An execution trace, or simply a trace, is a sequence
of pairs of inputs and sets of enabled inputs. Formally, a trace
t is an element of (Σ× ℘(Σ))∗.

Trace Projection. We use π(t) to denote the sequence of
inputs in the trace t. Formally, if t = (a1,Σ1), . . . , (an,Σn),
then π(t) = a1, . . . , an.

Arrow Trace. We say q t−→ p if q
π(t)−→ p.

Consistency. A trace t = (a1,Σ1), . . . , (an,Σn) is consis-
tent with a model M = (Q, q0,Σ, δ, λ) if and only if

∃q1, . . . qn ∈ Q.
∧

i∈[1,n]

qi−1
ai−→ qi ∧ λ(qi) = Σi

Frontier State. A state in an ELTS is a frontier-state if
there is no transition from the state on some input that is
enabled on the state. Formally, a state q is a frontier-state if
there exists a a ∈ λ(q) such that q a−→ p is not true for any
p ∈ Q.

Terminal State. When the execution of an app terminates,
we assume that it reaches a state that has no enabled inputs.

3.1 Learning Guided Testing Algorithm
Interface with the App under Test. SwiftHand treats the
app state as a black box. However, it can query the set
of enabled inputs on an app state. We assume that λ(s)
returns the set of enabled inputs on an app state s. SwiftHand
can also ask the app to return a new state and trace after
executing a sequence of user inputs from a given app state.
Let s be an app state, t be a trace of executing the app from
the initial state s0 to s, and l be a sequence of user inputs.
Then EXECUTE(s, t, l) returns a pair containing the app state
after executing the app from state s on the input sequence l
and the trace of the entire execution from the initial state s0

to the new state.

Description of the Actual Algorithm. The pseudo-code
of the algorithm is shown in Algorithm 1. The algorithm
maintains five local variables: 1) s denotes the current app-
state and is initialized to s0, the initial state of the app, 2)
p denotes the current model-state, 3) t denotes the current
trace that is being executed, 4) T denotes the set of traces
tested so far, and 5) M denotes the ELTS model learned so
far.

At each iteration the algorithm tries to explore a new
app state. To do so, it finds a frontier-state q in the model,
then finds a sequence of transitions l that could lead to the
frontier-state from the current model-state, and a transition
a enabled at the frontier-state (lines 9–10). It then executes
the app on the input sequence l from the current app state
s and obtains a trace of the execution (line 11). If the trace
is not consistent with the model, then we know that some
previous merging operation was incorrect and we re-learn
the model using a passive learning algorithm from the set
of traces observed so far (lines 21–24). On the other hand, if
the trace is consistent with the model learned so far, the algo-
rithm executes the app on the input a from the latest app state
(lines 12–13) . If the set of enabled inputs on the new app
state matches with the set of enabled inputs on an existing
model-state (line 14), then it is possible that we are revisiting
an existing model-state from the frontier state q on input a.
The algorithm, therefore, merges the new model-state with
the existing model-state (line 15). Note that this is an ap-
proximate check of equivalence between two model-states,
but it helps to prune the search space. If the algorithm later
discovers that the two states are not equivalent, it will do a
passive learning to learn a new model, effectively undoing
the merging operation. Nevertheless, this aggressive merg-
ing strategy is key to prune similar states and guide the app

into previously unexplored state space. On the other hand,
if the algorithm finds that the set of enabled inputs on the
new app-state is not same as the set of enabled inputs of any
existing model-state, then we have visited a new app-state.
The algorithm then adds a new model-state corresponding
to the app-state to the model (line 18). In either case, that is
whether we merge or we add a new model-state, we update
our current model-state to the model-state corresponding to
the new app state and repeat the iteration (lines 16 and 19).

During the iteration if we fail to find a frontier state, we
know that our model is complete, i.e. every transition from
every model-state has been explored. However, there is a
possibility that some incorrect merging might have happened
in the process. We, therefore, need to now confirm that the
model is equivalent to the target model of the app. This is
similar to the equivalence check in the L∗ algorithm. The
algorithm picks a sequence of transitions l such that l is not
a subsequence of any trace that has been explored so far
(lines 28–30). Moreover, l should lead to a state q from the
current state in the model. If such a l is not found, we know
that our model is equivalent to the target model (lines 35–
36). On the other hand, if such an l exists, the algorithm
executes the app on l and checks if the resulting trace is
consistent with the model (lines 30–31). If an inconsistency
is found, the model is re-learned from the set of traces
executed so far (lines 32–33). Otherwise, we continue the
refinement process over any other existing l.

During the iteration, if the algorithm finds a frontier state,
but fails to find a path from the current state to the frontier
state in the model, it restarts the app (lines 25–26). We
observed that in most GUI apps, it is often possible to reach
most screen states from another screen state after a series of
user inputs while avoiding a restart. As such, this kind of
restart is rare in SwiftHand. In order to make sure that our
testing does not get stuck in some sub-component of an app
with a huge number of model states, we do restart the app
if the length of a trace exceeds some user defined limit (i.e.
MAX LENGTH) (lines 7–8).

3.2 Heuristics and Decision Points
The described algorithm has four decision points and we use
the following heuristics to resolve them. We came up with
these heuristics after extensive experimentation.

• If there are multiple frontier-states and if there are mul-
tiple enabled inputs on those frontier-states (lines 9–10),
then which frontier-state and enabled transition should
we pick? SwiftHand picks a random state from the set
of frontier-states and picks a random transition from the
frontier state. We found through experiments that effec-
tiveness of SwiftHand does not depend on what heuristics
we use for this case.
• If there are multiple transition sequences l from the cur-

rent model-state to a frontier state (line 10), which one
should we pick? We found that picking a short sequence

Algorithm 1 SwiftHand: Learning Guided Testing
1: procedure TESTING(s0) . s0 is the initial state of the app
2: M ← ({q0}, q0,Σ, ∅, {q0 7→ λ(s0)}) for some fresh state q0 . M is the current model
3: T ← ∅ . T accumulates the set of traces executed so far
4: p← q0 and s← s0 and t← ε

5: . p, s, and t are the current model-state, app-state, and trace, respectively
6: while ¬timeout() do . While time budget for testing has not expired
7: if |t| > MAX LENGTH then . Current trace is longer than a maximum limit
8: p← q0 and s← s0 and T ← T ∪ {t} and t← ε . Restart the app
9: else if there exists a frontier-state q in M then . Model is not complete yet

10: if there exists l ∈ Σ∗ and a ∈ Σ such that p l−→ q and a ∈ λ(q) then
11: (s, t)← EXECUTE(s, t, l)
12: if t is consistent with M then
13: (s, t)← EXECUTE(s, t, a)
14: if there exists a state r in M such that λ(r) = λ(s) then . Merge with an existing state
15: add q a−→ r to M
16: p← r . Update current model-state
17: else . Add a new model-state
18: add a fresh state r to M such that q a−→ r and λ(r) = λ(s)

19: p← r . Update current model-state
20: end if
21: else . Inconsistent model. Need to re-learn the model.
22: T ← T ∪ {t} and M ← PASSIVELEARN(T)

23: p← r where q0
t−→ r . Update current model-state

24: end if
25: else . A frontier-state cannot reached from the current state
26: p← q0 and s← s0 and T ← T ∪ {t} and t← ε . Restart the app
27: end if
28: else if there exists state q in M and l ∈ Σ∗ such that p l−→ q and l is not a subsequence of π(t) for any t ∈ T then
29: . Model is complete, but may not be equivalent to target model
30: (s, t)← EXECUTE(s, t, l)
31: if t is not consistent with M then . Inconsistent model. Need to re-learn the model.
32: T ← T ∪ {t} and M ← PASSIVELEARN(T)

33: p← r where q0
t−→ r . Update current model-state

34: end if
35: else . Model is complete and equivalent to target model
36: return T . Done with learning
37: end if
38: end while
39: return T
40: end procedure

is not necessarily the best strategy. Instead, SwiftHand
selects a sequence of transitions from the current model
state to the frontier state so that the sequence contains
a previously unexplored sequence of inputs. This helps
SwiftHand to learn a more accurate model early in the
testing process.
• If multiple states are available for merging (at line 14),

then which one should SwiftHand pick? If we pick the
correct model-state, we can avoid re-learning in future.
We experimented with a random selection strategy and

with a strategy that selects a nearby state. However, we
discovered after some experimentation that if we prefer
the nearest ancestor to other states, our merge operations
are often correct. Therefore, SwiftHand uses a heuristics
that first tries to merge with an ancestor. If an ancestor
is not available for merging, SwiftHand picks a random
state from the set of candidate states.
• If there are multiple transition sequences l available for

checking equivalence (line 28), which one should we
pick? In this case, we again found that none of the strate-

gies we tried make a difference. We therefore use random
walk to select such an l.
• We set the maximum length of a trace (i.e.

MAX LENGTH) to 50. We again found this num-
ber through trial-and-error.

3.3 Rebuilding Model using Passive Learning.
We describe the passive learning algorithm that we use for
re-learning a model from a set of traces. The algorithm is
a variants of Lambeau et al.’s [21] state-merging algorithm.
We have modified the algorithm to learn ELTS. We describe
this algorithm to keep the paper self-contained.

Prefix Tree Acceptor. A prefix tree acceptor [9] (or a PTA)
is an ELTS whose state transition diagram is a tree with the
initial state of the ELTS being the root of the tree. Given a
set of traces T , we build a prefix tree acceptor PTAT whose
states are the set of all prefixes of the traces in T . There is a
transition with label a from t to t′ if t can be extended to t′

using the transition a. The λ(t) is Σ′ if the last element of t
has Σ′ as the second component.

Partitioning and Quotient Model. Π ⊆ ℘(Q) is a partition
of the state space Q if all elements of Π are disjoint, all
elements of Q are a member of some element of Π, and
λ of all elements of a given element of Π are the same.
An element of Π is called a partition and is denoted by π.
element(π) denotes a random single element of π. M/Π
is a quotient model of M obtained by merging equivalent
states with respect to Π:

π0 is the partition containing q0

δ′
def
= {(π, a) 7→ π′ | ∃q ∈ π and ∃q′ ∈ π′ .(q, a) 7→ q′ ∈ δ}

∀π ∈ Π.λ′(π)
def
= λ(element(π))

M/Π = (Π, π0,Σ, δ
′, λ′)

Note that a quotient model can be non-deterministic even
though the original model is deterministic.

The Algorithm. Algorithm 2 describes the state-merging
based learning algorithm. Conceptually, the algorithm starts
from a partial tree acceptor PTAT and repeatedly general-
izes the model by merging states. The merging procedure
first checks whether any two states agree on the λ function,
and then tries to merge them. If merging results in a non-
deterministic model, the algorithm tries to eliminate non-
determinism by merging target states of non-deterministic
transitions provided that the merged states have the same λ.
This is applied recursively until the model is deterministic.
If at some point of the procedure, merging of two states fails
because λs of the states are different, the algorithm unrolls
the entire merging process for the original pair of states.

The ChoosePair function decides the order of state
merging. The quality of the learned model solely depends
on the implementation of this function. Our implementation

Algorithm 2 Passive Learning Algorithm
1: procedure REBUILD(T)
2: Π← {{q} | q ∈ QPTAT

}
3: while (πi, πj)← ChoosePair(PTAT) do
4: Try
5: Π← MERGE(Π, πi, πj)

6: CatchAndIngnore
7: end while
8: return PTAT /Π
9: end procedure

10: procedure MERGE(Π, πi, πj)
11: M ← PTAT /Π

12: if λM (πi) 6= λM (πj) then
13: throw exception
14: end if
15: πpivot ← πi ∪ πj

16: Π← (Π \ {πi, πj}) + πpivot

17: while (πk, πl)← FINDNONDETER(Π, πpivot) do
18: Π← MERGE(Π, πk, πl)

19: end while
20: return Π
21: end procedure

22: procedure FINDNONDETER(Π, π)
23: M ← PTAT /Π

24: S ← {(πi, πj) | ∃a ∈ λM (π).π
a→M πi ∧ π

a→M πj ∧ πi 6= πj}
25: return pick(S)
26: end procedure

uses BlueFringe [22] ordering, which is considered as the
best known heuristics.

Our algorithm differs from the original algorithm on
two fronts. First, the original algorithm [21] aims to learn
DFA with mandatory merging constraints and blocking con-
straints. Our algorithm learns an ELTS and only uses the idea
of blocking constraints. We use the λ function or the set of
enabled transitions at any state to avoid illegal merging. Sec-
ond, DFA learning requires both positive and negative exam-
ples. ELTS has no notion of negative examples.

4. Implementation
We have implemented SwiftHand for Android apps written
in Java. The tool is publicly available at https://github.
com/wtchoi/SwiftHand. The tool itself is implemented
using Java and Scala. SwiftHand uses asmdex [31], a Dalvik
byte code instrumentation library, axml [4], an xml encoded
binary manipulation library, and chimpchat, an Android
app remote control library. SwiftHand can test an Android
app either on an emulator or an Android phone connected to
a computer using ADB (Android Debug Bridge). SwiftHand
expects a target app package file (Apk), a testing strategy, a
time budget for testing, and a device on which the target app
will be tested as input. It currently supports three strategies:
Random, L∗, and SwiftHand.

For basic app control, such as restarting, sending a user
input, installing and removing the app, SwiftHand uses the
chimpchat library. The same library has been used to im-
plement the monkeyrunner remote testing framework. The
chimpchat library is able to control any device connected
to the computer through ADB.

License
Term #1

Yes No

(a) EULA screen

DecorView(1)
+ LinearLayout(2)
| + ScrollableLayout(3)
| | + TextBox(4)
| | LinearLayout(5)
| | + Button[Yes](6)
| | | Button[No](7)

(b) GUI Component Tree

{
Touch(6),
Touch(7),
ScrollDown(3),
ScrollUp(3)

}

(c) Enabled Inputs

Figure 4: Enabled Input Inference Example

Local clean restart can be implemented by sequentially
uninstalling, reinstalling, and starting a target app. Note that
the Android file system is sandboxed. Removing an app
is enough to cleanse the majority of local persistent data.
The only exception is an SD card. SD cards are treated as
a shared storage. Therefore, removing an application will
not remove persistent data from SD card. For simplicity,
we choose to use devices without an SD card. A full local
cleaning may require checkpointing and restoring the SD
card content.

chimpchat has two limitations. First, chimpchat can
only send device level events: to touch a specific coordi-
nate of the screen, to tilt the device, etc. Thus, SwiftHand
has to infer coordinates from screen information to construct
the chimpchat requests. Second, chimpchat can only send
events without waiting for the results. It will never tell pro-
grammers that an event-handling is done or an app is termi-
nated.

SwiftHand overcomes these limitations by binary instru-
mentation. The binary instrumentation basically does two
things: First, an app is modified to record necessary run-
time information throughout its execution. Second, the in-
strumented app launches an observer thread when the app
is starting. The observer thread periodically checks recorded
information and reports to the SwiftHand tool running on a
separate computer.

The remainder of this section explains how specific infor-
mation —such as the end of a state transition —is collected
through binary instrumentation, how binary instrumentation
is implemented, and what limitations remain in the current
SwiftHand implementation.

4.1 Inferring Enabled Inputs
The exact information about an app’s screen is available at
runtime as a GUI component tree. The GUI component tree
represents the hierarchical structure of GUI components on
the screen of the app. Coordinates, size, and type informa-
tion of each GUI component is also available. SwiftHand
instruments the target apps to obtain the GUI component
tree and computes a representative set of enabled inputs by
traversing the tree. If a leaf in the GUI component tree has
an event handler, a touch input corresponding to the event
handler is added to the set of enabled inputs. If the GUI
component has type EditText, then a user input capable of

generating a pre-defined or random string is added to the set
of enabled inputs. The input events for a given GUI compo-
nent remain the same across executions. For scrollable com-
ponents, scroll inputs are added to the set of enabled inputs.
Inputs corresponding to pressing Back and Menu buttons,
are always added to the enabled input set.

Figure 4 shows an EULA screen from the Sanity exam-
ple, its simplified GUI component tree, and the correspond-
ing enabled inputs. In the GUI component tree, each compo-
nent is described with its type and identifier. ScrollableLay-
out can be scrolled. Therefore, we add ScrollDown(3) and
ScrollUp(3) to the enabled input set. TextBox is a view com-
ponent without any event handler. We add touch events for
Buttons with id 6 and 7 to the enabled input set because they
are leaf components and each one has an associated event
handler.

To actually fire an event, SwiftHand gets the coordinate
and size information of the target GUI component from
the GUI component tree, and passes this information to the
chimpchat library.

4.2 App State Detection
The SwiftHand algorithm needs to detect the end of a state
transition and the termination of the app.

Detecting App Termination. An Android app is composed
of a set of activities. Each activity implements a single ap-
plication screen and its functionality. When an app is termi-
nated, all activities are stopped. Thus, the problem of check-
ing app termination boils down to the problem of tracking
the status of app’s activities. The observer thread has an
activity-state tracking mechanism and can detect the app ter-
mination by periodically checking tracked activity states.

Our activity state tracking mechanism is based on the
Android Activity Lifecycle document [1]. According to
the Activity Lifecycle, activities have six conceptual states:
created, started, resumed, paused, stopped, and destroyed.
When an activity state is changing, the Android framework
triggers a fixed group of event-handlers in a fixed order.
SwiftHand tracks the current activity state using a finite state
machine. There is a separate state machine for each activity-
class instance. Event handlers involved in the Activity Life-
cycle are instrumented to trigger a state transition of a corre-
sponding state machine.

Detecting the End of a State Transition. When a state
transition happens in Android apps a number of event han-
dlers are executed and the screen content is modified. Af-
ter sending a command, SwiftHand must wait until all event
handler executions and screen modifications are finished.

The end of a single event-handler execution can be de-
tected by observing when the call-stack of the event handler
becomes empty. However, a single event can trigger multi-
ple event handlers. Therefore, SwiftHand waits a while af-
ter detecting the end of a single event handler execution to

make sure that no event handler is waiting. In experiments
we found that 200 milliseconds are enough for real phones
and 1000 milliseconds are enough for emulators.

In the Android framework an event handler could modify
the screen content using animation effects. Since SwiftHand
needs coordinate information of GUI components to trigger
events through chimpchat, it must wait for the screen coor-
dinates to stabilize. This can be done by periodically check-
ing coordinate and size information of GUI components. If
there is no change for a while, SwiftHand concludes that the
screen is stable. In experiments we use 1100 milliseconds
for real phones and 1800 milliseconds for emulators.

The overall 5 seconds wait interval that we use in the cost
model is the result of having to wait for one or more event
handlers and the animations that these handlers may start.
With a more complex implementation, and perhaps some as-
sistance from the platform, we could detect more accurately
when a user input has been fully processed, without such
long conservative wait intervals.

4.3 Instrumentation
To instrument the app byte code, we use the asmdex library.
The library provides only parsing and byte code generation
functionalities. We implemented all other intermediate steps:
control-flow graph (CFG) construction, live register anal-
ysis, register type inference, and code injection with free-
register acquisition. The CFG construction and live regis-
ter analysis are standard. Type inference is based on Leroy’s
Java bytecode verification [24].

Code Injection and Free Registers. The Dalvik virtual
machine (VM) is a register based machine. The biggest
hurdle for code injection is acquiring free registers.

Dalvik VM has following policies to manage registers:

1. Registers are identified by a number from 0 to 65535.

2. Each method has to declare the upper bound of register
identifiers.

3. When a method is invoked, arguments are assigned to the
higher most registers.

4. Each instruction can accept only a limited range of reg-
isters as operands; some accept registers 0 to 15, another
accepts 0 to 255, and the others accept the entire range of
registers.

5. Registers must have a consistent type through the pro-
gram’s control flow, i.e., at every control flow join point,
a register should have a consistent type.

Code injection requires free registers. Free registers are
not always available due to the second policy and the fact
that live registers at the target injection point cannot be used.
To relax this situation, SwiftHand increases the upper bound
of register range and adds a few instructions to move the
argument registers to their original position. This creates a
number of free registers at the highest position of the regis-

ter range. Note that the second step is crucial due to the third
and the fourth policies: Assume a method with register upper
bound 15 and two arguments. Arguments are originally as-
signed to register 14 and 15. If the upper bound is increased
by one, the register assigned to the arguments become 15,
16. Unfortunately, some binary instructions cannot accept
the last argument register. Method call instruction, one of the
most frequently used instructions, is in this category. Restor-
ing argument registers to their original position solve this
particular problem without seriously modifying the method
body.

However, having a free register is not enough due to the
fourth policy. If a method has the upper bound larger then 15,
for example, the acquired free resisters are useless for certain
classes of instructions. SwiftHand solves this problem by
register swapping: adding instructions to swap out a content
of low registers to free high registers, injecting the main
code utilizing the newly acquired free low registers, and
adding instructions to restore the original content of the low
registers after after the main code.

More interestingly, not all registers can be swapped out
due to the fifth policy and the exception mechanism. Dalvik
VM supports a try/catch style exception mechanism. Dalvik
VM considers that every instruction in a try block can raise
an exception. In terms of program control flow, the first in-
struction of a catch block is a direct successor for all in-
structions in the related try block. Thus, registers used in
the catch block should have a single type throughout the en-
tire try block. They are not reusable. SwiftHand considers
that these registers are constrained and avoids using them.
We modified the live-register analysis to additionally calcu-
late groups of constrained registers. This heuristic will not
work if all registers in an instruction’s operand range are
constrained. Fortunately, we have not faced such an extreme
situation.

Note that instrumentation can be performed even with a
single unconstrained register. This can be done in four steps:
(a) Swap out the unconstrained register. (b) Move all values
to be used into a globally shared data structure one by one.
A static method moving one value at a time, which requires
only one low low register to invoke, could be used. (c) Invoke
the static method containing the actual instructions to be
injected. At the beginning of the method, values should be
loaded from the globally shared data structure and casted
into their original types. (d) Restore the original content of
the unconstraint register.

APK Management. Android apps are distributed as a sin-
gle Apk package file. To perform instrumentation, SwiftHand
needs to extract a program binary from a package file and in-
ject the modified binary to the package file.

Apk file is a zip archive having a predefined direc-
tory structure. The archive contains a class.dex file, a
Manifest.xml file, a META-INF directory, and other re-
source files. class.dex file contains Dalvik byte code to be

executed. Manifest.xml is a binary encoded xml file de-
scribing various parameters such as main activity and priv-
ilege setting. META-INF directory includes signature of the
app.

Install

Instrument

Device

Zip

Instrument

Unzip

Manifest.xml

Other Resources

classes.dex

Signature

Instrumented
Apk

Original
Apk

Instrumented
&Signed Apk

Sign

Figure 5: Flow of App Modification Process

Figure 5 shows the flow of the app modification process.
First, the app package is unpacked. Then class.dex and
Manifest.xml files are instrumented. The Manifest.xml

file has to be modified because the observer thread in the
instrumented app needs network access privilege to commu-
nicate with the SwiftHand tool. META-INF directory is re-
moved since the original signature conflicts with the mod-
ified package. After the modification, the app is repacked,
signed, and delivered to experiment devices. For testing pur-
pose, the key for the resigned signature does not need to be
identical to the key for the original signature.

4.4 Limitations
The current SwiftHand implementation has three limita-
tions. First, the current implementation does not support
apps whose main entry routine is native. Several games fall
under this category and we have excluded them from our
benchmark-suite.

Second, the current implementation works correctly only
with devices with Android 4.1 or higher versions.

Third, SwiftHand cannot handle apps that use internet
connectivity to store data on a remote server. This is a limita-
tion of our algorithm. Our algorithm needs to reset apps oc-
casionally. However, after a reset a previously feasible trace
could become infeasible depending on the content stored on
a remote server. This violates a key requirement of our al-
gorithm. This limitation could be eliminated by sandboxing
the remote server or by mocking the remote server.

5. Empirical Evaluation
In this section, we evaluate SwiftHand on several real-world
Android apps. We first compare SwiftHand with random
testing andL∗-based testing. Then we discuss the results and
shortcomings of SwiftHand.

5.1 Experimental Setup
We use branch coverage to compare the effectiveness and
performance of the three testing strategies. We use binary
instrumentation to obtain code coverage information.

Our benchmark-suite consists of 10 apps from F-Droid
(https://f-droid.org) open app market. The apps were
randomly selected initially, then apps with a native entry
routine or frequent internet access are excluded.

name category #inst. #method #branch
music note educational game 1345 72 245

whohas lent item tracker 2366 146 464
explorer JVM status lookup 6034 252 885
weight weight tracker 4283 222 813
tippy tip calculator 4475 303 1090

myexpense finance manager 11472 482 1948
mininote text viewer 13892 680 2489
mileage car management 44631 2583 3761
anymemo flash card 72145 832 4954
sanity system management 21946 1415 5723

Table 1: Benchmark Apps

Table 1 lists these apps. #inst, #method, and #branch
columns report number of bytecode instructions in the app
binary, number of methods, and number of branches (exclud-
ing framework libraries), respectively.

We performed the experiment on a 8-core Intel Xeon
2.0Ghz (E5335) linux machine with 8Gb RAM using 5 em-
ulators. We use 3 hours as our testing budget per app for ev-
ery strategy. For unknown reasons, sanity and anymemo did
not work smoothly on emulators. We used a Google Galaxy
Nexus phone to test those apps and used a time budget of 1
hour. Android version 4.1.2 (Jelly Bean) was used on both
emulators and phone.

In random testing, we restart an app with probability 0.1
and pick an input from a set of enabled inputs uniformly at
random. We have implemented all three strategies as a part
of the SwiftHand implementation.

5.2 Comparison with Random and L∗-based Testing
Table 2 summarizes the results of applying the three testing
strategies to the ten Android apps. In the table we use SH
to denote SwiftHand. % Branch Coverage column reports
branch coverage percentage for each strategy. % Time Spent
on Reset columns show percentage of execution time spent
on restarting app. #Reset/#Input columns report the ratio of
the number restarts and the number of inputs generated for
each strategy. #Unique Prefixes columns report the number
of unique input prefixes tried in each testing strategy. # States
in Model columns report number of unique states learned
within the given time budget.

Figure 6 and Figure 7 plots percentage branch coverage
progress against testing time.

• In all cases, SwiftHand achieves more coverage than both
random and L∗-based testing. Random and L∗-based

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

music_note

SwiftHand random lstar
 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

whohas

SwiftHand random lstar

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

weight

SwiftHand random lstar
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

explorer

SwiftHand random lstar

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

tippy

SwiftHand random lstar
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

myexpense

SwiftHand random lstar

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

mininote

SwiftHand random lstar
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

mileage

SwiftHand random lstar

Figure 6: Comparison between SwiftHand, random and L∗, #1

App
% Branch Coverage % Time Spent on Reset #Resets / #Inputs Ratio #Unique Input Prefixes #State in Model
SH Rand L∗ SH Rand L∗ SH Rand L∗ SH Rand L∗ SH L∗

music note 72.2 68.6 56.7 10.5 36.9 43.0 0.05 0.24 0.33 1419 712 275 46 15
whohas 59.3 54.7 54.3 10.0 26.2 41.6 0.05 0.14 0.33 1481 983 289 97 73

explorer 74.0 73.4 65.5 2.1 18.2 42.0 0.02 0.11 0.40 1271 1047 305 195 150
weight 62.1 57.6 48.2 8.3 25.6 42.4 0.04 0.12 0.24 1341 855 271 109 94
tippy 68.5 60.3 32.9 17.6 49.2 81.6 0.02 0.11 0.54 1435 812 162 71 17

myexpense 41.8 38.4 23.6 4.0 32.3 46.1 0.02 0.15 0.25 1740 926 281 149 63
mininote 34.1 27.2 16.8 9.8 25.7 49.1 0.19 0.13 0.37 1562 1051 334 169 72
mileage 34.6 28.5 23.3 12.7 32.4 58.8 0.03 0.18 0.55 1109 599 160 130 72
anymemo 52.9 37.9 26.6 3.45 34.6 50.8 0.01 0.19 0.33 1366 632 247 169 50
sanity 19.6 17.0 13.1 15.2 32.5 46.3 0.06 0.16 0.27 1012 501 230 78 99

Table 2: Summary of Comparison Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

anymemo

SwiftHand random lstar
 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60

b
ra

n
ch

 c
o

v
er

ag
e

(%
)

time (in minutes)

sanity

SwiftHand random lstar

Figure 7: Comparison between SwiftHand, random, and L∗, #2

testing performs relatively well for simple apps such as
whohas and explorer. However, for more complex apps,
such as anymemo, SwiftHand outperforms both random
and L∗-based testing.
• For all apps, SwiftHand achieves branch coverage at a

rate that is significantly faster than that of random and
L∗-based testing. For example, in explorer SwiftHand
reached almost 65% branch coverage within 10 min-
utes whereas both random and L∗-based testing failed
to reach 45% coverage in 10 minutes. This implies that
SwiftHand is a far better choice when the time budget for
testing is limited.
• Random testing restarts more frequently than SwiftHand.

Android apps, in comparison with desktop apps, have
fewer GUI components on screen. Therefore, the prob-
ability of random testing to terminate an app, by acci-
dentally pushing Back button or some other quit button,
is relatively high. SwiftHand can avoid this by merging
states and by avoiding input sequences that lead to a ter-
minal state.

• Random testing catches up with the coverage of Swift-
Hand given an additional period of time for some small
apps; musicnote, explorer, and tippy. However, ran-
dom testing fails to close the coverage gap for compli-
cated apps; mininote, mileage, anymemo, and sanity.
• Our experiments confirm inadequacy of L∗ as a testing

strategy when restart is expensive. L∗ spent about half of
its execution time in restarting the app under test (Table
2). This resulted in the low branch coverage over time
(Figure 6, Figure 7). Furthermore, note that L∗ has rela-
tively small numbers in the #Unique Input Prefixes col-
umn compared to random testing and SwiftHand. This in-
dicates that L∗ executes the same prefix more often than
random testing and SwiftHand do.

5.3 What Restricts Test Coverage?
We manually analyzed apps with a coverage lower than
40% to understand the cause behind low branch coverage.
We discovered the following three key reasons behind low
branch coverage.

Combinatorial State Explosion. mileage is a vehicle
management app. The app has a moderately complex GUI.
The app provides tab bar for easy context switching be-
tween different tasks. In this app, tab bar creates a combina-
torial state-explosion problem. Conceptually, each tab view
is meant for a different independent task. Most actions on a
tab view affect only the local state of the tab and few actions
may affect the app’s global state. SwiftHand does not under-
stand this difference. As a result a slight change on one tab
view makes all other tabs to treat the change as a new state in
the model. The following diagram illustrates this situation:

A B C

CheckBox

A' B C

CheckBox

A B C

A B C A' B C

A' B C

CheckBox

CheckBox

Figure 8: Model state explosion with tab view

The app sanity has a similar problem. This is an inher-
ent limitation of our current model. We believe that this lim-
itation can be overcome by considering a framework where
each model is a cross-product of several independent mod-
els. We can then perform compositional machine learning to
learn the sub models independent of each other. However, at
this point it is not clear how this compositional learning can
be made online.

Network Connection. anymemo is a flash card app with
dictionary support. The user can access a number of reposi-
tory to download dictionaries and wordlists. We cannot test
this part of the app, because we disable internet connections
to ensure clear restart.

Inter-app Communication. mininote uses intent to open
a text file from file system navigation. When an intent is cap-
tured, the Android system pops a system dialog for confir-
mation. The confirmation dialog box is not a part of the app.
SwiftHand simply waits for the app to wake up and termi-
nates the app when it fails to respond. As a result the viewer
part of the app is never tested. 35% code coverage solely
comes from testing file system navigation part.

6. Related Work
Automated GUI Testing. Model-based testing approaches
are often applied to testing graphical user interfaces [8, 11,
28, 37, 39, 43]. Such approaches model the behavior of the
GUI abstractly using a suitable formalism such as event-flow
graphs [28], finite state machines [32, 39], or Petri nets [37].
The models are then used to automatically generate a set of
sequences of inputs (or events), called a test-suite.

Memon et al. [28, 46] have proposed two-staged auto-
matic model-based GUI testing idea. In the first stage, a

model of the target application is extracted by dynamically
analyzing the target program. In the second stage, test cases
are created from the inferred model. This approach differs
from our work in two ways: (a) in our work, model cre-
ation and testing forms a feedback loop, (b) we use ELTS,
a more richer model than Event Flow Graph (EFG). Yuan
and Memon [47] also investigated a way to reflect runtime
information on top of EFG model to guide testing.

Crawljax [29] is an online model-leaning based testing
technique for Javascript programs. Crawljax tries to learn
a finite state model of the program under test using state-
merging. State-merging is based on the edit distance be-
tween DOMs. Crawljax can be seen as a learning-based GUI
testing technique that uses ad-hoc criteria for state-merging.
Recently, a number of model-learning based testing tech-
niques targeting Android application [6, 33, 36, 40, 45] have
been proposed. Nguyen et al.’s approach [33] combines of-
fline model-based testing and combinatorial testing to refine
created test cases. Yang et al. [45] take online model-based
testing approach similar to Crawljax [29]. They use static
pre-analysis to refine the search space. Takala et al. [40] re-
port a case study using online model-based testing. Rastogi
et al. [36] proposed a testing technique based on learning
a behavioral model of target application. All of these tech-
niques use some form of heuristic state-merging and are not
based on formal automata learning. The main difference is in
the treatment of counter-examples. Online automata learning
techniques try to learn an exact model reflecting counter-
examples. On the contrary, none of the above approaches
learn from counter-examples. Therefore, these techniques
may fail to learn the target model even for a finite state sys-
tem, unlike online automata learning techniques. As far as
we know, SwiftHand is the first GUI testing technique based
on automata learning.

The Android development kit provides two testing tools,
Monkey and MonkeyRunner. Monkey is an automated fuzz
testing tool creates random inputs without considering appli-
cation’s state. Hu and Neamtiu [20] developed an useful bug
finding and tracing tool based on Monkey. MonkeyRunner is
a remote testing framework. A user can control application
running on the phone from the computer through USB con-
nection.

MacHiry et al.[25] suggest a technique to infer represen-
tative set of events and perform event aware random testing.
The idea is similar to the random strategy used in our exper-
iment. Their event inference technique targets a larger event
space including tilting and long-touching while our tech-
nique only considers touching and scrolling events. Also,
their tool acquires more runtime information by modifying
Android framework to prune out more events at the expense
of being less portable. On the contrary, SwiftHand modifies
only the target app binary. Finally, they provide comparison
with Monkey. The result shows that Monkey needs signifi-

cantly more time to tie the branch coverage of event aware
random testings.

Anand et al. [7] applied concolic execution [16] to guide
Android app testing. They use state subsumption check to
avoid repeatedly visiting equivalent program states. Their
technique is relatively sound than our approach, since con-
colic execution engine creates an exact input to find new
branches in each iteration. In Mirzaei et al. [30]’s compiles
Android apps to Java byte code and applies JPF with a mock
Android framework to explore the state-space.

Learning Algorithms. Angluin’s L∗ [10] is the most well-
known active learning algorithm. The technique has been
successfully applied to modular verification [13] and API
specification inference [5]. These techniques try to learn a
precise model of the target application.

Passive learning techniques [15, 23] do not assume the
presence of a teacher and uses positive and negative ex-
amples to learn a model. François et al. [14] have intro-
duced ideas of exploiting domain knowledge to guide pas-
sive learning. The technique was subsequently improved by
Lambeau et al. [21].

Learning based Testing. Machine learning has previously
been used to make software testing effective and effi-
cient [12, 17–19, 26, 34, 35, 41, 42, 44]. Meinke and Walkin-
shaw’s survey [27] provides a convenient introduction to the
topic. In general, classic learning based testing techniques
aim to check whether a program module satisfies a prede-
fined functional specification. Also, they use a specification
and a model checker to resolve equivalence queries. On the
contrary, SwiftHand tries to maximize a test coverage and
actually executes a target program to resolve equivalence
queries.

Meinke and Sindhu [26] reported that learning algorithms
similar to L∗ are inadequate as a testing guide. They pro-
posed an efficient active learning algorithm for testing re-
active systems, which uses a small number of membership
queries.

7. Conclusion
We showed that a straight-forward L∗-based testing algo-
rithm is not effective for testing GUI applications. This is
because L∗-based testing requires a lot of expensive restarts
and it spends a lot of time in re-exploring the same execution
prefixes. We proposed a novel learning-based testing algo-
rithm for Android GUI apps, which tries to maximize branch
coverage quickly. The algorithm avoids restarts and aggres-
sively merges states in order to quickly prune the state space.
Aggressive state-merging could over-generalize a model and
lead to inconsistency between the app and the learned model.
Whenever the algorithm discovers such an inconsistency, it
applies passive learning to rectify the inconsistency. Our ex-
periments show that for complex apps, our algorithm outper-
forms both random and L∗-based testing. Our algorithm also

achieves branch coverage at a much faster rate than random
and L∗-based testing.

Acknowledgement
This research is supported in part by NSF Grants CCF-
1017810, CCF-0747390, CCF-1018729, and CCF-1018730,
and a gift from Samsung. The last author is supported in part
by a Sloan Foundation Fellowship. We would like to thank
Cindy Rubio Gonzalez and Wonchan Lee for insightful com-
ments on a previous draft of the paper.

References
[1] Managing the Activity Lifecycle. http://

developer.android.com/training/basics/

activity-lifecycle/index.html.

[2] MonkeyRunner. http://developer.android.com/

tools/help/monkeyrunner_concepts.html.

[3] UI/Application Exerciser Monkey. http://developer.

android.com/tools/help/monkey.html.

[4] axml, read and write Android binary xml files. http://

code.google.com/p/axml/, 2012.

[5] R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis
of interface specifications for java classes. In POPL, pages
98–109, 2005.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine,
and A. M. Memon. Using GUI ripping for automated testing
of Android applications. In ASE, pages 258–261, 2012.

[7] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Auto-
mated concolic testing of smartphone apps. In SIGSOFT FSE,
page 59, 2012.

[8] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing web
applications by modeling with FSMs. Software and System
Modeling, 4(3):326–345, 2005.

[9] D. Angluin. Inference of reversible languages. J. ACM,
29(3):741–765, July 1982.

[10] D. Angluin. Learning regular sets from queries and counterex-
amples. Inf. Comput., 75(2):87–106, 1987.

[11] F. Belli. Finite-state testing and analysis of graphical user
interfaces. In 12th International Symposium on Software
Reliability Engineering (ISSRE’01), page 34. IEEE Computer
Society, 2001.

[12] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt,
and B. Steffen. On the correspondence between conformance
testing and regular inference. In FASE, pages 175–189, 2005.

[13] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu.
Learning assumptions for compositional verification. In
TACAS, pages 331–346, 2003.

[14] F. Coste, D. Fredouille, C. Kermorvant, and C. de la Higuera.
Introducing domain and typing bias in automata inference. In
ICGI, pages 115–126, 2004.

[15] J. N. Departarnento and P. Garcia. Identifying regular lan-
guages in polynomial. In Advances in Structural and Syntac-
tic Pattern Recognition, volume 5 of Series in Machine Per-

ception and Artificial Intelligence, pages 99–108. World Sci-
entific, 1992.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, pages 213–223, 2005.

[17] A. Groce, D. Peled, and M. Yannakakis. AMC: An adaptive
model checker. In CAV, pages 521–525, 2002.

[18] A. Groce, D. Peled, and M. Yannakakis. Adaptive model
checking. Logic Journal of the IGPL, 14(5):729–744, 2006.

[19] R. Groz, M.-N. Irfan, and C. Oriat. Algorithmic improvements
on regular inference of software models and perspectives for
security testing. In ISoLA (1), pages 444–457, 2012.

[20] C. Hu and I. Neamtiu. A GUI bug finding framework for
Android applications. In SAC, pages 1490–1491, 2011.

[21] B. Lambeau, C. Damas, and P. Dupont. State-merging DFA
induction algorithms with mandatory merge constraints. In
ICGI, pages 139–153, 2008.

[22] K. Lang, B. Pearlmutter, and R. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-
driven state merging algorithm, 1998.

[23] K. J. Lang. Random DFA’s can be approximately learned
from sparse uniform examples. In COLT, pages 45–52, 1992.

[24] X. Leroy. Java bytecode verification: algorithms and formal-
izations. Journal of Automated Reasoning, 30(3–4):235–269,
2003.

[25] A. MacHiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for Android apps. In SIGSOFT FSE, pages
224–235, 2013.

[26] K. Meinke and M. A. Sindhu. Incremental learning-based
testing for reactive systems. In TAP, pages 134–151, 2011.

[27] K. Meinke and N. Walkinshaw. Model-based testing and
model inference. In ISoLA (1), pages 440–443, 2012.

[28] A. M. Memon. An event-flow model of GUI-based applica-
tions for testing. Softw. Test., Verif. Reliab., 17(3):137–157,
2007.

[29] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-
based web applications through dynamic analysis of user in-
terface state changes. TWEB, 6(1):3, 2012.

[30] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and
R. Mahmood. Testing Android apps through symbolic execu-
tion. ACM SIGSOFT Software Engineering Notes, 37(6):1–5,
2012.

[31] J. Nevo and P. Crégut. ASMDEX. http://asm.ow2.org/

asmdex-index.html, 2012.

[32] W. M. Newman. A system for interactive graphical program-
ming. In Proc. of the spring joint computer conference (AFIPS
’68 (Spring)), pages 47–54. ACM, 1968.

[33] C. D. Nguyen, A. Marchetto, and P. Tonella. Combining
model-based and combinatorial testing for effective test case
generation. In ISSTA, pages 100–110, 2012.

[34] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box check-
ing. In FORTE, pages 225–240, 1999.

[35] H. Raffelt, B. Steffen, and T. Margaria. Dynamic testing via
automata learning. In Haifa Verification Conference, pages
136–152, 2007.

[36] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: auto-
matic security analysis of smartphone applications. In CO-
DASPY, pages 209–220, 2013.

[37] H. Reza, S. Endapally, and E. Grant. A model-based ap-
proach for testing GUI using hierarchical predicate transition
nets. In International Conference on Information Technology
(ITNG’07), pages 366–370. IEEE Computer Society, 2007.

[38] R. L. Rivest and R. E. Schapire. Inference of finite automata
using homing sequences (extended abstract). In STOC, pages
411–420, 1989.

[39] R. K. Shehady and D. P. Siewiorek. A methodology to auto-
mate user interface testing using variable finite state machines.
In FTCS, pages 80–88, 1997.

[40] T. Takala, M. Katara, and J. Harty. Experiences of system-
level model-based GUI testing of an Android application. In
ICST, pages 377–386, 2011.

[41] N. Walkinshaw, K. Bogdanov, J. Derrick, and J. Paris. Increas-
ing functional coverage by inductive testing: A case study. In
ICTSS, pages 126–141, 2010.

[42] N. Walkinshaw, J. Derrick, and Q. Guo. Iterative refinement
of reverse-engineered models by model-based testing. In FM,
pages 305–320, 2009.

[43] L. White and H. Almezen. Generating test cases for GUI
responsibilities using complete interaction sequences. In 11th
International Symposium on Software Reliability Engineering
(ISSRE’00), page 110. IEEE Computer Society, 2000.

[44] T. Xie and D. Notkin. Mutually enhancing test generation and
specification inference. In FATES, pages 60–69, 2003.

[45] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for
automated GUI-model generation of mobile applications. In
FASE, pages 250–265, 2013.

[46] X. Yuan, M. Cohen, and A. M. Memon. Covering array
sampling of input event sequences for automated GUI testing.
In ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering,
pages 405–408, New York, NY, USA, 2007. ACM.

[47] X. Yuan and A. M. Memon. Iterative execution-feedback
model-directed GUI testing. Information & Software Tech-
nology, 52(5):559–575, 2010.

