Guided Learning of Control Graphs

for Physics-based Characters

LIBIN LIU and MICHIEL VAN DE PANNE
The University of British Columbia

and

KANGKANG YIN

National University of Singapore

The difficulty of developing control strategies has been a primary bot-
tleneck in the adoption of physics-based simulations of human motion. We
present a method for learning robust feedback strategies around given mo-
tion capture clips as well as the transition paths between clips. The output
is a control graph that supports real-time physics-based simulation of mul-
tiple characters, each capable of a diverse range of robust movement skills,
such as walking, running, sharp turns, cartwheels, spin-kicks, and flips. The
control fragments which comprise the control graph are developed using
guided learning. This leverages the results of open-loop sampling-based re-
construction in order to produce state-action pairs which are then trans-
formed into a linear feedback policy for each control fragment using linear
regression. Our synthesis framework allows for the development of robust
controllers with a minimal amount of prior knowledge.

1. INTRODUCTION

Designing controllers to realize complex human movements re-
mains a challenge for physics-based character animation. Diffi-
culties arise from non-linear dynamics, an under-actuated system,
and the obscure nature of human control strategies. There is also
a need to design and control effective transitions between motions
in addition to the individual motions. Since the early work on this
problem over two decades ago, controllers had been developed for
many simulated skills, including walking, running, swimming, nu-
merous aerial maneuvres, and bicycle riding. However, controller
design often relies on specific insights into the particular motion
being controlled, and the methods often do not generalize for wider
classes of motions. It also remains difficult to integrate motion con-
trollers together in order to produce a multi-skilled simulated char-
acter.

In this paper, we develop controllers for a wide variety of re-
alistic, dynamic motions, including walking, running, aggressive
turns, dancing, flips, cartwheels, and getting up after falls, as well
as transitions between many of these motions. Multiple simulated
characters can physically interact in real-time, opening the door to
the possible use of physics in a variety of sports scenarios.

Our method is designed around the use of motion capture clips as
reference motions for the control, which allows for existing motion
capture data to be readily repurposed to our dynamic setting. It also
helps achieve a high degree of realism for the final motion without
needing to experiment with objective functions and solution shap-
ing, as is often required by optimization approaches. The control
itself is broken into a sequence of control fragments, each typically
0.1s in length, and a separate linear feedback control strategy is

{libinliu, van} @cs.ubc.ca, kkyin@comp.nus.edu.sg

learned for each such fragment. An iterative guided learning pro-
cess is used for learning: a sampling-based control method serves
as a control oracle that provides high-quality solutions in the form
of state-acion pairs; linear regression on these pairs then provides
an estimated linear control policy for any given control fragment.
Importantly, successive iterations of the learning are coupled to-
gether by using the current estimated linear control policy to in-
form the construction of the solution provided by the control or-
acle; it provides the oracle with an estimated solution, which can
then be refined as needed. This coupling encourages the oracle and
the learned control policy to produce mutually compatable solu-
tions. The final control policies are compact in nature and have low
computational requirements.

Our work makes two principal contributions: (1) A guided-
learning algorithm that combines the use of a sampling-based con-
trol oracle and the full-rank linear regression for iteratively learn-
ing time-varying linear feedback policies that robustly track input
motion capture clips. The pipeline further supports motion retarget-
ing. (2) An overall clips-to-controllers framework that learns robust
controllers for a wide range of cyclic and non-cyclic human mo-
tions, including many highly dynamic motions, as well as learning
transitions between the controllers in order to produce flexible con-
trol graphs. Results demonstrate the integrated motion capabilities
on real-time simulations of multiple characters that are capable of
physics-based interactions with each other. Four different stand-up
strategies, each based on motion capture data, allow characters to
recover from falls voluntarily.

2. SYSTEM OVERVIEW

Figure 1 provides an overview of the system components and how
they interact. As input, the system takes individual motion clips and
the desired connectivity of these clips, as represented by a motion
graph. The output is then a control graph that is constructed from
a large set of control fragments, typically of short duration, e.g.,
0.1s, which afford the connectivity described by the desired motion
graph. Each control fragment is defined by a short target tracking
trajectory, 1, its duration, dt, and a related linear feedback policy,
7, as developed during an offline guided learning process.

The learning process begins with the application of a SAMpling-
based CONItrol strategy (SAMCON) that produces an open-loop
trajectory for the controls, and therefore each control fragment,
that does well at reproducing a given input motion clip or motion-
clip transition. This serves two purposes. First, it replaces the input
motion, which is often not physically feasible due to modeling er-
rors and possible retargeting, with a physically-realizable motion.
Second, it provides a nominal open-loop reference motion and the
associated control values, around which we will then learn linear
feedback control strategies to provide robust control. The reference

L. Liu et al.

motion and the control values are stored in the control fragments
that underly any given motion clip.

Next, iterative guided learning is used to learn linear feedback
policies for each control fragment. This involves the repeated use
of SAMCON in order to produce multiple new solutions (motions
and the control values underlying them) that each do well at re-
producing the reference motion. These then serve to provide state-
and-corresponding-action data for learning a local linear feedback
model for each control fragment, using linear regression. However,
the initial linear feedback policies learned in this fashion do not
work well in practice; when applied in simulation, the resulting mo-
tion quickly visits regions of the state-space that are far-removed
from the regions for which the original state-and-action data was
obtained. To remedy this, guided SAMCON uses the current lin-
ear control policy as an initial guess for computing its solutions,
thereby implicitly looking for control solutions that exhibit a degree
of compatibility with the current linear-feedback control policies.
Over multiple iterations of the guided learning loop, the process
converges towards robust linear feedback control policies for the
sequence of control fragments. In order for the described method
to also be able to robustly handle transitions between motion clips,
as modeled by the desired connectivity in the motion graph, the
motions for which we use SAMCON to collect the desired state-
and-action data will come from long random walks on the desired
motion graph. In this way, a control fragment that immediately
follows incoming transitions from multiple branches of a motion
graph will see state-and-action data from all of these different ar-
rival paths and will therefore be encouraged to produce a control
policy that is compatible with this possibly-diverse set of starting
states.

During online simulation, a motion planner or user input speci-
fies a desired path through the control graph, and thus provides a
desired sequence of control fragments. Linear feedback control is
applied once at the beginning of each control fragment based on
the current state at that time. The computed control action specifies
a constant offset from the reference controls that is then applied for
the duration of the control fragment. The linear feedback control
decisions are thus made at the time scale of the control fragments.
Finally, proportional-derivative (PD) controllers are used to con-
vert the control actions, which are target joint angles in our case,
into joint torques. The use of this final low-level control construct
at a fine time scale (milliseconds) allows for the rapid, adaptive
generation of torques upon ground contact or other collisions, and
helps enable the key control decisions to be made at the coarser
time scale of the control fragments.

3. RELATED WORK

Numerous approaches have been proposed for controlling the mo-
tion of physics-based characters, many of which are described in a
recent survey article [Geijtenbeek and Pronost 2012]. In what fol-
lows below, we review various approaches and categorize them ac-
cording to the features of relevance to our proposed method. Suit-
ably crafted phase structures, abstractions of state-and-action fea-
tures, and the use of optimization are important common features
across a majority of approaches.

Implicit dynamics methods:

Many control strategies have been developed that do not require
the controller to have full knowledge of the equations of motion. In-
stead, these are taken into account implicitly during multiple simu-
lations that are used to evaluate the impact of parameter adaptations
that are made to the components of the control system. These meth-
ods are commonly characterized by proportional-derivative joint

Motion Clips

Online Simulation

Control
o, e 5 Fragment C;.
Control
1 1

Fragment

Linear Feedback
Regression Policy 1y, Simulation
State
Iterative
Learning
Process
Simulation Guided
Tuples {t}} SAMCON ---=> 8t, = 0.1s

——> Sty = 0.005s

Fig. 1: System Overview

control, force generation using the Jacobian tranpose, finite state
machines that model motion phases, and phase-specific feedback
laws that govern tasks such as hand and foot placement. Controllers
for many types of motion skills have been synthesized, including
walking, running, bicycling, and other agile motions, e.g., [Hod-
gins et al. 1995; Yin et al. 2007; Wang et al. 2009; Kwon and Hod-
gins 2010; Lee et al. 2010; Ha et al. 2012; Liu et al. 2012; Al Borno
et al. 2013; Tan et al. 2014]. Knowledge and insights about the de-
sired motions can be incorporated into the design of the control
system, an objective function to be used for optimization, or, most
commonly, using both of these. Realistic muscle models can also
be integrated into such approaches, i.e., [Wang et al. 2012; Geijten-
beek et al. 2013].

Optimized inverse dynamics methods: Another popular cate-
gory of approach combines knowledge of the equations of motion
with optimization in order to solve directly for the control actions,
typically joint torques. This can be done at various time scales.
Short time-horizon methods optimize for the controls, accelera-
tions, and ground contact forces for the current time step and are
commonly solved using quadratic programming, which allows for
ground contact constraints to be conveniently imposed. Knowledge
about the phase-based nature of the motion can be encoded into
phase-specific objective functions, and anticipatory knowledge can
be incorporated into simplified models that then participate in the
objective function. The approach has been successfully applied to a
wide range of motions, e.g., [Da Silva et al. 2008; Macchietto et al.
2009; de Lasa et al. 2010; Ye and Liu 2010; Zordan et al. 2014;
Al Borno et al. 2014]. Long-horizon methods optimize for the mo-
tion and the underlying controls for a finite-duration horizon into
the future, possibly encompassing the entire motion, e.g., [Popovi¢
and Witkin 1999; Sulejmanpasi¢ and Popovié¢ 2005; Wampler and
Popovi¢ 2009]. For interactive applications, model-predictive con-
trol is used, whereby only the immediate control actions are em-
ployed and the remainder of the time horizon is treated as a mo-
tion plan that is then extended and reoptimized at the next control
time step, e.g., [Tassa et al. 2012]. Recent work has further shown
that the phase structure can also be learned for a variety of mo-
tions [Mordatch et al. 2012].

Motion tracking: Motion capture data can be used as part
of controller design as a means of producing high-quality mo-
tions without needing to first fully decipher the many factors that
may influence how humans move. Motion capture clips had been
used as reference trajectories for passive simulation [Zordan et al.
2005] and spacetime optimization [Popovi¢ and Witkin 1999; Sule-
jmanpasi¢ and Popovié¢ 2005]. With the help of robust abstract feed-
back policies, it can be used to guide the creation of closed-loop
controllers for realistic walking [Sok et al. 2007; Yin et al. 2007;
Lee et al. 2010] and running [Kwon and Hodgins 2010] motions.
Model-based optimal control provides a general method for devel-
oping robust control about given reference trajectories [Muico et al.
2009; Muico et al. 2011]. In general, however, it remains unclear
how to adapt tracking-based control methods for complex contact
conditions and for a wide range of motions. The sampling-based
control strategy proposed in [Liu et al. 2010] has demonstrated the
ability to robustly track a wide variety of motions, including those
involving complex changing contacts. However, the solutions are
open-loop and require offline computation.

Compact linear feedback: Low-dimensional linear feedback
policies can performs surprisingly well in many circumstances,
suggesting that compact and simple solutions do often exist for pro-
ducing robust control for locomotion [Raibert and Hodgins 1991;
Yin et al. 2007]. Robust reduced-order linear feedback policies
can also be learned for a variety of motions using optimization in
the space of reduced-order linear policies [Ding et al. 2015]. This
method has further been demonstrated in the synthesis of control
for several parkour-like skills [Liu et al. 2012] and skeleton-driven
soft body characters [Liu et al. 2013]. However, using the same
reduced-order linear policy across all phases of a motion is insuffi-
cient for complex motions, and thus the work of Liu et al. [2012] re-
quires manually segmentation into motion phases, followed by the
optimization of separate feedback policies for each motion phase.
In this paper, we avoid the need for this manual segmentation by
allowing each short-duration control fragment to have its own lin-
ear feedback model for its fine-scale (approximately 0.1s) motion
phase. Our regression-based learning can efficiently learn the large
number of linear feedback parameters that result from the resulting
parameter-rich model.

Multiple controller integration: Kinematic approaches offer
easy-to-use graph structures for organizing and composing motion
clips. However, research on sequencing and interpolation of con-
trollers remains sparse. Given a set of existing controllers, oracles
can be learned to predict the basins of attraction for controllers, and
therefore to predict when transitions can safely be made between
controllers [Faloutsos et al. 2001]. Tracking multiple trajectories
simultaneously has been used to enhance the robustness of loco-
motion control [Muico et al. 2011]. Transitions between running
and obstacle clearing maneuvers are realized in [Liu et al. 2012]
using careful design of the structure and objectives of the transition
behaviors. In this paper, we systematically realize robust transitions
between many different skills.

Reinforcement learning: Reinforcement learning (RL) pro-
vides a convenient and well-studied framework for control and
planning. It seeks an optimal policy that maximizes the expected re-
turns given rewards that characterize a desired task. Value-iteration
RL methods have been used on kinematic motion models, e.g., for
boxing[Lee and Lee 2006] and flexible navigation [Lee and Lee
2006; Treuille et al. 2007; Lee et al. 2010], and for physics-based
models, e.g., terrain traversal with constraints [Coros et al. 2009]
and with highly dynamic gaits [Peng et al. 2015]. Policy search
methods are often applied to problems having continuous action
spaces, often searching the parameter space using stochastic op-

UBC Computer Science, Technical Report . 3

Symbol | Description

pose

target pose for PD-servos

offset on target poses

motion clip, i.e. a sequence of poses in time
reference motion capture clip

control clip / tracking target trajectory
reference motion graph

control graph

control fragment

duration of a control fragment

feedback policy of a control fragment

gain matrix and affine term of a feedback policy
variance of policy explorations

state vector

action vector

simulation tuple corresponds to Ci. T, = (Sg_1, @k, Sk)
random walk on the control graph W = {C. }
execution episode of the random walk, 7 = {7}
sample index for policy search

sample index for guided SAMCON

index for control fragments

>
S

3 TcaqI I3

g
=0 o Mo

<3

RS | §

Table I. : Symbols

timization algorithms such as policy gradient [Peters and Schaal
2008], related EM-based approaches [Peters and Schaal 2007], and
approaches with compact-but-adaptive policy representations [Tan
et al. 2014]. Despite such progress, policy search often suffers from
common issues related to optimization in high-dimensional spaces,
such as being sensitive to the policy representation, requiring large
number of samples, and convergence to local optima. Several re-
cent works make progress on this problem using forms of guided
policy search, an iterative process where new samples from a con-
trol oracle inform the construction of an improved policy, which
then informs the collection of new samples, and so forth, e.g., [Ross
et al. 2011; Levine and Koltun 2013; 2014; Mordatch and Todorov
2014].

Our learning pipeline has a similar guided-learning structure but
is unique in its use of: (1) the use of an implicit-dynamics, sample-
based motion reconstruction method as the control oracle; (2) the
use of simple time-indexed linear feedback policies and linear re-
gression to learn these policies; (3) a focus on difficult, dynamic,
and realistic 3D full-body human motion skills; and (4) the ability
to learn transitions between skills to yield integrated multiskilled
characters.

4. STRUCTURE OF CONTROLLERS

We model a virtual character as an under-actuated articulated rigid
body system, whose pose p = (o, qo,q;),j = 1,...,n is fully
determined by the position (a() and orientation (go) of the root and
the rotations of all n joints. We drive each DoF (degree of freedom)
with PD-servos:

T =kp(d—q) — kag M
where ¢ and ¢ represent the joint rotation and rotational speed re-
spectively, and the tracking target § is given by a target pose p. The
system is simulated with the open-source Open Dynamic Engine
(ODE). For better stability, we follow the idea of Stable-PD con-
trol [Tan et al. 2011] and replace the second term of Equation 1
with implicit damping in the same way as described in [Liu et al.
2013]. This allows us to use a large simulation time step (5ms),

4 . L. Liu et al.
0O---+@
C: {m,ét,m}

Fig. 2: A control fragment: when the simulate state sf, drifts away from
the reference start state sg, the feedback policy 7r is involved to compute
a compensation Ap that offsets the open-loop control clip 772 to 772/. By
tracking 777/ with PD-servos, the simulation can end near the reference end
state s in 0t seconds.

Fig. 3: A chain of control fragments

which significantly speeds up the learning process and improves
the online performance.

Control fragments, represented by the symbol C, are the basic
units of the controllers in our framework. A control fragment is a
tuple {dt,, 7} as indicated in Figure 2, where m = p(t) rep-
resents an open-loop control clip consists of a sequence of target
poses in time, which can be tracked by PD-servos to simulate a
character from a start state s to the end state s, in 6t seconds. sq
and s, are derived from the reference m. In practice, the simula-
tion state in effect when a control fragment begins, s;,, will not be
exactly at the expected starting state, g, due to perturbations. The
feedback policy, 7r, is therefore used to compute a corrective action,
a, which consists of an offset, Ap, that is added to the 1 in order
to eliminate the deviation. As illustrated in Figure 2, this offset re-
mains fixed during the whole control fragment, yielding a resulting
control clip m' = Ap @ 7n that is then tracked instead of 71 in
order to have the state end nearby the desired end state, s.. Here
the operator @ represents a collection of quaternion multiplications
between corresponding joint rotations.

Our framework employs a linear feedback policy for every con-
trol fragment:

a=m(s;M,a)
— Ms+a)

where M represents a feedback gain matrix, a is an affine term,
and s and a are vectors representing the simulation state and
feedback action, respectively. We use a selected subset of state
and action features in order to facilitate a compact control pol-
icy. For all the skills developed in this paper, we use s =
(gy, ho, ¢, é,dy, d,., L), consisting of the root orientation g, the
root height hg, the centroid position ¢ and velocity ¢, vectors point-
ing from the center of mass to the centers of both feet d;, d,., and
the angular momentum L. All these quantities are measured in a
coordinate frame that has one axis vertically aligned and another
aligned with the character’s facing direction. As the vertical com-
ponent of the root orientation gq is always zero in this reference
frame, g, contains only the two planar components of the corre-
sponding exponential map of go. s thus represents 18 degrees of
freedom (DoF). Similarly, we use an 11-DoF action vector a that

consists of the offset rotations of the waist, hips, and knees, repre-
sented in terms of exponential map. Knee joints have one DoF in
our model. The final compensation offset, Ap, is then computed
from a, where we set the offset rotations of all remaining joints to
zZero.

A controller can be defined as a cascade of control fragments, as
depicted in Figure 3, which can be executed to reproduce a given
motion clip. We also wish to be able to organize the control frag-
ments into a graph as shown in Figure 4(b), whereby multiple pos-
sible outgoing or incoming transitions are allowed at the boundaries
of the control fragments at transition states, such as s1, so, and s3.
We further define the chains of the control fragments between tran-
sition states as controllers and each controller is uniquely colored
in Figure 4(b). In practice, controllers need to produce particular
skills, e.g., running, and to perform dedicated transitions between
skills, e.g. speeding up to a run. In Figure 4(c) we then illustrate the
corresponding connectivity between controllers. Here, an arrow in-
dicates that the controller associated with the tail ends in a state
that is near to the expected starting state of the controller associ-
ated with the head. Based on this graph structure, the sequencing
of skills is simply achieved by walking on this graph while execut-
ing the encountered control fragments.

In our framework, the structure of a control graph is predefined
and fixed during the learning process. Given example motion clips
of desired skills, this is done by first building a reference motion
graph, and then converting it into a control graph. Figure 4(a) shows
a simple motion graph consisting of three motion clips and tran-
sitions between sufficiently similar frames, e.g. s1, 82, 83, which
define the transition states. Any portion of a motion clip that is be-
tween two transition frames is then converted to a chain of control
fragments, or equivalently, a controller, between the corresponding
transition states. In this conversion, the motion clip is segmented
into K identical-duration pieces, with K chosen to yield time inter-
vals 0t ~ 0.1s. We construct high-quality open-loop control trajec-
tories from the input motion clips using the improved SAMCON al-
gorithm and noise reduction and time scaling techniques [Liu et al.
2015; Liu et al. 2013], and initialize the control fragments with the
resulting open-loop controls. The feedback policies 7r are initial-
ized to zero,i.e. M = 0,a = 0.

The initial configuration of control fragements as described thus
far cannot produce robust execution of skills because of the lack
of feedback. In the next section, we introduce the details of our
learning pipeline that augment the control graph with a feedback
policy for each control fragment.

5. GUIDED LEARNING OF FEEDBACK POLICIES

We desire a control graph that supports random walks on the
graph for physics-based characters, analogous to the use of a mo-
tion graph for kinematic motion synthesis. For these physics-based
skills to be robust, feedback policies need to be developed for the
control fragments. Formally, given a control graph that consists of
K control fragments, {C;}, we need to learn feedback policies
for these control fragments that ensure successful random walks
W = {Ck,,Cry, ...}, ki € {1,... K} on the graph. To this end,
we first generate a long sequence)V via a random walk on the con-
trol graph, in which each control fragment C;, appears at least 200
times. We then formulate the learning process as a policy search
problem to be evaluated on W, and use an iteratively process to
develop suitable feedback policies.

Figure 5 provides a toy illustration of the guided learning pro-
cess. Given a random graph-walk, W, consisting of 9 control frag-
ments, a successful execution episode of W is generated using

S1 S2 ° 1
HHHH e

S3

(a) a motion graph

(b) a control graph

UBC Computer Science, Technical Report . 5

—i
re.... \
e X .- .
s2 s
SR TR () B - 7°
, S3 \ J/
-, A R —
Oennnn. hd %

(c) a compact representation of (b)

Fig. 4: Control graph: a control graph is created by (a) building a reference motion graph from example motion clips, then (b) converting
each clip of the motion graph to a chain of control fragments. (c) shows a compact representation of the control graph (b), where each node

represent a chain of control fragments, or rather, a controller.

Random Walk (W): {€4,€C3,C3,C3,€1,C41,C2,C3,C4}

> Guided SAMCON:

11’:

i & o)
C, @a{es o o}
C; @ {& &}

Linear Regression:

I

Fig. 5: A sketch of the guided learning process for a toy control graph.

Guided SAMCON, as will be discussed in further detail in §5.3.
This provides a sequence, T, of states and corresponding control
actions that does well at reproducing the desired reference motions
corresponding to V. In this toy example, we simply use four dis-
crete states as an abstract representation of a larger continuous state
space, and the actions are simply represented as the arrows that
transition to the state at the start of the next control fragment. Be-
cause each control fragment occurs multiple times in WV, multiple
state-action pairs, (s, a), are collected for each control fragment,
i.e., four for Cy, three for C,, and so forth. These are then used to
develop a linear (affine in practice) regression model for each con-
trol fragment that predicts a as a linear function of s. This resulting
predictive model then becomes the control policy, 7r, for the control
fragment. This control policy is then used to help inform the next
round of motion reconstruction using Guided SAMCON.

In the following section, we describe how the iterative use of the
linear regression model can be understood as being an EM-based
(expectation maximization) policy search algorithm. Alternatively,
readers can choose to jump directly to the specific details of the
linear regression for our problem, as described in §5.2.

5.1 Guided Learning as EM-based Policy Search

Starting from a state s,_1, each execution of a control fragment Cy,
results in a simulation tuple 7 = (s_1, ax, Si). Given a reward
function R(7) that measures the goodness of this execution, policy
search seeks for the optimal policy that maximizes the expected
return

7(6) = / P(r;0)R(r) 3)

with respect to the feedback parameters 6. The probability density
of a simulation tuple is determined by:

P(7;0) = P(si|sk-1,ar)mr(ar|sk-1;0)P(sk-1) (4
where P(sy|sk_1,as) is the transition probability density and
7 (ag|sk—1;0) represents the probability density of the feedback
action given the start state and the feedback parameters. We model
7 (ag|sk—1;0) as Gaussian explorations superimposed onto the
deterministic feedback policy of Equation 2, i.e.:

Wk(ak|3k—1§0) = Wk(ak|3k—1§Mk7dk7 Ek)
~N(Mysk_1 + ar, i) ©)

The feedback parameters are then defined as @ = { M, ax, Xy }.
We use a diagonal covariance matrix 33, with the assumption that
each dimension of the action space is independent.

An EM-style algorithm offers a simple way to find the optimal
policy by iteratively improving the estimated lower-bound of the
policy’s expected return. [Peters and Schaal 2007] applies an EM
algorithm to episodic policy search for a linear policy and shows
that the iterative update procedure is just a weighted linear regres-
sion over the execution episodes of the current policy. Specifically,
let 8, be the current estimation of the policy parameters, EM-based
policy search computes a new estimation @ that maximizes:

7)/J(6o) (6)

log log/P 7;0)R
P(r;0)

> J 00 /P (1;600)R(T)log =———* Br:00) @)
/P 7100)R m(aklsk1i0) g

T(ak|sk-1;6o)
— 1(6:6,) + C ©)

where Equation 7 applies Jensen’s inequality to the concave loga-
rithm function, C' is a constant independent of 6 and

L(6:6,) ::/P(T;eo)R(T) log 7(ax|sk 1;0) (10)

Note that the optimal 6 must satisfies J(0) > J(6y) because Equa-
tion 7 is always zero when @ = 6. L(0;6,) can be further esti-
mated from a number of simulation tuples {r{ } sampled according
to the current policy 7y (a|sk—1,600) as:

L(6;60) ~ ZR)logmi(ai|si_1;0) (1)

L. Liu et al.

where Ny, is the number of such tuples. By letting 9L(0; 0,) /00 =
0 we can find the locally optimal estimation of @ by solving

P
0= =5 L(6:60)

Ny
x ZR(TZ)%logﬂk(az\sz_l;O) (12)
=1

With this maximization step in place (the M step), we then up-
date 0, with this optimal € and then recompute a new set of sam-
ples (the E step) and repeat the EM iteration until obtaining optimal
policies.

As we are learning the feedback policies against the random walk
W, the sample tuples {7} } for all the control fragments {C,} can
be collected simultaneously by generating a long successful execu-
tion of W, represented by T = {7, , Tk, - . - }, and then extracting
simulation tuples for each individual control fragment from it. Fig-
ure 5 provides a simple sketch of this procedure. Furthermore, we
assign a constant reward to all such tuples, which implies a special
reward function in the form of

1 tuple 7 is good enough in the long run so
that the random walk W can succeed. (13)
0 otherwise.

R(r) =

Solving Equation 12 against this reward function and the Gaus-
sian Explorations of Equation 5 leads to the linear regression that
we describe next.

5.2 Estimation of Linear Feedback Policy

The linear regression problem solved for control fragment k yields
a model to predict a as an affine function of s, as per equation 2,
where

. T
M = [(Si'Sk)™" (9 Ax)] (14)
ap = a — M5, (15)

. 1.
diag(3) = <~ diag [(A = SM)T (Ap — SM;)] (16)
where @y, and 31 are the averages of al and si_; respectively,

the Nj-row matrices Sy and Ay, represent the centered collections
of all the tuples, i.e.

T Ne _ 2 "
Si=[shoy = Su1 8 — 5] (17)

1 N T
Ak:[ak—ak,...7ak’“—dk} (18)

To prevent the regression from being underdetermined, the ran-
dom walk is generated to be long enough so that NV, > 200 for all
control fragments. We further regularize the Frobenius norm of the
feedback gain matrix My, so that

M, = [(ST S, + A1) (ST A)]" (19)
is used instead of Equation 14. The regularization coefficient

A = 107% in all our experiments.

‘We further use the observed prediction variances, as captured by
3k, to provide a stochastic version of the control policy (cf. §5.1)
that will be used to guide the sampling used by the search algorithm
(SAMCON) that serves as our control oracle:

i (ak|sk—1;0) := N (Mys,_1 + ar, Xi)

Algorithm 1 Guided SAMCON

Input:

1: arandom walk on the control graph W = {Cr. },k=1,..., N
2: the start state sq
Output: a successful execution of the sequence T

1: {s%} < initialize the starting set with N replicas of s¢
2: for k < 1to N do

3: for each sample j do

4: generate action @, ~ mw(ag|s]_,) ~N(Mys] | +éar,)
5: 87, + execute control fragment Cy, against a;,

6: rec}ord a simulation tuple 72 =(s},_,,a},s})

7: E, « evaluate end state s7,

8: end for)

9: {T}{*} « select 1, elite samples according to {E}}

10: {s3} < resample {s7"} to get a new starting set of size N

11: end for

12: 7 = {7, } < select the best path from all saved {TZX}

5.3 Guided SAMCON

A key to the success of the guided learning is that it learns
from useful examples, i.e., only those that result from successful
completions of the random walk in every iteration. Levine and
Koltun [2013; 2014] suggest that trajectory optimization can be
used to collect such useful examples for guided policy search. We
draw inspiration from this type of guided learning, to develop a
form of guided learning that relies on sampling-based motion con-
trol (SAMCON) methods, as proposed by [Liu et al. 2010; Liu et al.
2015] to provide successful executions of the target random walk.
SAMCON allows us to work with long sequences of complex mo-
tions, and has proved to be capable of generating the controls for
a wide variety of motion skills. We call this new method Guided
SAMCON.

We first begin by reviewing SAMCON. For this review, the exact
index of the control fragment is unimportant and thus we represent
the random walk according to their sequence index in the random
walk, i.e., W = {C1,Ca,...,Cn}, where N = 375 Ny is the
length of the random walk, and NN}, is the number of times a given
control fragment k appears in the random walk. Beginning from
the initial state of the first control fragment, C;, we utilize SAM-
CON to develop a sequence of actions {ay} that results in control
fragment end states, { sy}, that are nearby those of the desired ref-
erence motions. The set of simulation tuples {(sx_1, ax, Sx)} then
describes the samples from the same control fragment & that are
collected together for regression. Note that this represents a slight
abuse of notation in that we use s;_ to refer to the previous state
in the random walk sequence, rather than a true control fragment
index, whose identification numbering can be in an arbitrary order.
However, this significantly simplifies the notation for the remainder
of the paper.

Algorithm 1 outlines the main steps of SAMCON, and Figure 5
provides a simple example. SAMCON can be viewed as a type of
Sequential Monte Carlo algorithm [Doucet and Johansen 2011].
Specifically, for the first control fragment, SAMCON initializes an
initial set of states {s}} with j € 1...IV, replicas of the start state
8o, and samples an action a? for each s}, according to a sample dis-
tribution 7w (a1 |sp). It then advances the simulation from s} while
executing the control fragment with the corresponding compensa-
tion offset Ap] computed from a7 as described in Section 4. The
simulation results in a tuple 7{ = (s}, a’, s7) whose end state s/
is evaluated according to its similarity to the reference end state that
corresponds to the control fragment.

‘We measure this similarity by a cumulative cost function:

E=w,E, +w.E, +w.E, + w,E
+wele +w, By +wr B +w, (20)

where the terms for pose control E,,, root control E,., end-effector
control E., and balanced control E;, are identical to the origi-
nal work [Liu et al. 2010]. We additionally regularize the differ-
ences between the simulation and the reference in terms of cen-
troid position E., centroid velocity E,,, and the angular momentum
E,. The last term, E,, simply serves to regularize the Euclidean
norm of the actions. We use (wy,, Wy, We, Wy, We, Wy, Wp,, We) =
(4.0,4.0,10.0,1.0,3.0,0.1,0.03, 0.5) for all our experiments. Our
results are not sensitive to the exact values of these weights so other
values within the same order of magnitude may be used as well.

After executing all sample actions and obtaining N simulation
tuples {77 }, guided SAMCON selects and saves the ns best tuples
{7{"}, as measured by the lowest cumulative costs, and then sys-
tematically resamples the corresponding end states {s]"} according
to their costs to obtain a new starting set {s} of size N, for the
successive control fragment. This is akin to the resampling proce-
dure used in particle filtering, i.e., better samples produce more suc-
cessors. This sampling procedure is repeated for each stage of the
motion, i.e., once per control fragment, until the end of the random
walk is reached. Finally, the resultant execution episode 7 = {71}
is chosen to be the best path of all saved tuples {73 "}.

Guided SAMCON uses the current policy of every control frag-
ment Cj, as the distribution to sample from, i.e., w(ay|sx-1) =
ﬂk(ak|sk_1; Mk, dk, Ek) ~ N(Mksk_l + dk, Ek) This can
be viewed as an enhancement of the original SAMCON algo-
rithm [Liu et al. 2010] that employed a fixed sampling distribution,
w(ag|sp_1) ~ N(0,%)), and also of the improved SAMCON al-
gorithm [Liu et al. 2015] that evolves the mean and covariance of
the sample distributions iteratively in a state-independent fashion,
ie., w(ag|sk-1) ~ N(ax, Xx). The guided sample selection and
resampling implicitly focuses the exploration on regions of the state
space that are both relevant to the current policy as well as regions
of the action space that are known to yield desired motions.

Voluntarily including noise in optimization has been shown to
be useful to prevent over-fitting and allows the learned policy to
deal with larger uncertainty [Wang et al. 2010; Liu et al. 2012].
We build on this idea by further adding a Gaussian noise vector
er, ~ N(0,021) to the action samples. We thus compute the com-
pensation offset Aﬁ{c from ai, + €. The noise vector is assumed
to be unknown to the feedback policies, and is not recorded or in-
cluded in regression. We find that a uniform setting o. = 3° is
enough to allow all of our motions to be robustly executed.

5.4 Learning Control Graphs

Algorithm 2 summarizes the whole guided learning framework of
control graphs. Given several example motion clips of the target
skills as input, the pipeline builds a control graph that synthe-
sizes robust dynamic motions from arbitrary random walks over
the graph. This allows for motion planners, which are beyond the
scope of this paper, to work with the graph as a simple high-level
abstraction of the motion capabilities. The whole pipeline consists
of the following sub-procedures:

Building control graphs: A reference motion graph is firstly
built (line 1 of Algorithm 2), and then converted to a control graph
(line 2) as described in Section 4. Building high-quality motion
graphs can be a non-trivial task, even with the help of automated
techniques such as the one proposed by [Kovar et al. 2002]. Manual

UBC Computer Science, Technical Report . 7

Algorithm 2 Guided Learning Pipeline

Input: example motion clips of skills
Output: a control graph G

. build a reference motion graph G from input motion clips
: initialize a control graph G = {C}, } according to G
. generate a random walk W = {Cy, , . . . Crpyr }
: refine the open-loop control clip 1, for every Cy,
. initialize M = 0, a, = 0, X = JSI for every Cy,
. for every EM iteration do > policy search
generate a successful execution 7 of WV with Guided SAMCON
for each control fragment Cj, do
{7}:} < extract sample simulation tuples of Cy, from
10: update M, @, 3§ by linear regression on {'r,l}
11: end for
12: end for

COIRUN R LI~

tuning is often necessary to achieve natural-looking transitions and
to remove artifacts such as foot-skating. Fortunately, the usage of
simulation naturally offers the ability to produce physically plausi-
ble motions for the control graph. Therefore, the reference motion
graph does not necessarily need to be carefully tuned. In this pa-
per, we simply specify the connectivity of the motion graphs for
our control graphs manually. We kinematically blend a few frames
of the relevant motion clips near the transition points. Our learning
procedure is robust to kinematic flaws due to blending or noise, and
is able to generate high-quality simulated motions.

Refining open-loop control clips: The initial control clips of
every control fragment are directly computed from the individual
motion capture example clips, which are not necessary physically
plausible for the transitions in the control graph. To facilitate the
graph learning process, we further refine these open-loop controls
as indicated on line 4. Specifically, this is done by performing the
original SAMCON on the motion sequence corresponding to the
random walk W, and then replacing the initial open-loop control
clip ™, and the reference end states with the average of all sim-
ulation instances of the control fragment C;, in W. The averaging
not only reduces the noise due to random sampling as suggested
by [Liu et al. 2015], but also maximizes the possibility of finding a
robust feedback policy that can deal with all possible transitions.

Learning Feedback Policies: In line 5, the feedback policies are
initialized, as well as the default exploration covariances. We find
that oo = 5° works for all the skills that we have tested. The EM-
based policy search is performed in line 6-12, where the guided
SAMCON trials and the linear regressions are alternated to improve
the feedback policies iteratively. In all our experiments, this policy
search process can converge to robust feedback policies in at most
20 iterations. Guided SAMCON can occasionally fail when gener-
ating a long sequence of random walk, especially in the first iter-
ation where the initial policy is applied. To mitigate this problem,
we generate more samples (/N, = 1000) per stage during the first
iteration than for the successive iterations (Ng = 200). If the algo-
rithm fails to complete the designated graph walk, we roll back the
execution of the latest three controllers (25-50 control fragments)
and then restart guided SAMCON from that point.

6. RESULTS

We have implemented our framework in C++. We augment the
Open Dynamic Engine (ODE) v0.12 with an implicit damping
scheme [Liu et al. 2013] to simulate the character faster and more
stably. On a desktop with an Intel Core i5 @ 2.67GH z CPU, our
single threaded implementation runs at 10 x real-time using a simu-
lation time step of Sms. Except for the retargeting experiments, all
our experiments are performed with a human model that is 1.7m

L. Liu et al.

400
—&—StridingRun
350 —m-Kick

~A—DanceSpin
300 =< Catwalk
= Backflip

250 ~o-Waltz

200

150

100

Average Resisting Time (s)

50

o L.
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Learning Iterations

Fig. 6: The relationship between the number of learning iterations and the
controller robustness as indicated by the resisting duration before failure
under random pushes of growing magnitude.

. PD-Gains T;: cle tlearning te

Skills Set (Z) (min)é ()
Catwalk (a) 0.7 40.3 107
StridingRun (a) 0.45 21.1 370
Waltz (a) 5.0 314 67.2
Kick (b) 1.6 93.8 280
DanceSpin (b) 1.6 102 139
Backflip (b) 2.5 153 73.7

Table II. : Performance statistics for cyclic motions. Teycle represents the
length of a reference cycle. tjcaming is the learning time for each skill on a
20-core computer. tf represents the average resisting duration before failure
under random pushes of growing magnitude.

tall and weights 62kg. It has 45 DoFs in total, including 6 DoFs
for the position and orientation of the root. Two sets of PD-gains
are used in our experiments: (a) for basic locomotion, we simply
set k, = 500, kg = 50 for all joints; (b) for highly dynamic
stunts, a stronger waist (k, = 2000,k; = 100) and leg joints
(k, = 1000, kg = 50) are necessary.

6.1 Cyclic Skills

The simplest non-trivial control graphs are those built from individ-
ual cyclic skills. A variety of cyclic skills have been tested to fully
evaluate the capability of the proposed learning framework, in-
cluding basic locomotion gaits, dancing elements, flips, and kicks.
The example motion clips for these skills are from various sources
and were captured from different subjects. We simply apply them
onto our human model, and kinematically blend the beginning and
end of the clips to obtain cyclic reference motions. Errors due to
model mismatches and blending are automatically handled by our
physics-based framework. The animation sequences shown in Fig-
ure 7 demonstrate the executions of several learned skills. We en-
courage readers to watch the supplemental video to better evaluate
the motion quality and robustness of the controllers.

The offline learning is performed on compute clusters with tens
of cores. The performance of the learning pipeline is determined by
the number of necessary runs of guided SAMCON, whose compu-
tational cost scales linearly with respect to the length of the clip,
the number of samples IV, and inversely with the number of cores
available. Table II lists the learning time for several cyclic skills,

measured on a small cluster of 20 cores. Note that here we run
the learning pipeline with the same configuration for all motions
for ease of comparison, i.e., 20 iterations of guided learning, with
N, = 1000 in the first iteration and Ny = 200 for the remaining
iterations. In practice, the required SAMCON samples can be much
lower, e.g. to N; = 50 ~ 100, after the first few learning iterations,
as the feedback policies usually converge quickly under the guided
learning.

The learned skills are robust enough to enable repeated execu-
tions even under external perturbations. In the supplemental video
we show that 400N x0.2s impulses can be applied to the charac-
ter’s trunk during the flight phase of kicking without causing the
motion to fail. To more systematically test the robustness of the
learned controllers, we apply a sequence of horizontal pushes in
random directions to the character’s trunk, and measure the time
that the motion skill can last before the character falls. The mag-
nitude of the perturbation force is generated from a normal distri-
bution with increasing variance. This experiment is performed 100
times, and the average performance is computed as an indication of
robustness as shown in the last column of Table II. Figure 6 further
illustrates how the robustness improves as a function of the num-
ber of guided policy iterations. Generally speaking, faster motions
such as running and kicking take less learning iterations to achieve
stable cyclic skills that can execute indefinitely, as well as tolerate
larger perturbations. In contrast, slow motions such as the catwalk
and the waltz are more sensitive to perturbations.

All the test skills can be learned with the standard settings as
described in the previous sections, while special treatment is ap-
plied for walking and running in order to achieve symmetric gaits.
Specifically, we pick one stride (half step) from the example clip
and concatenate its mirror stride to generate a symmetric reference
motion. In addition, we only learn the feedback policies for the
first stride, and mirror the states and actions for the second stride
so that the feedback policies are symmetric too. We further em-
ploy contact-aligned phase-resetting for walking and running con-
trollers, which improves the robustness to large perturbations. In-
terestingly, we found the contact-aligned phase-resets not helpful
for learning controllers for complex skills such as kicks and back-
flips, which may indicate that the contact events are not informative
phase indicators for such motions. Another interesting observation
of the learned walking and running controllers is that the character
turns when gentle sideways pushes are applied. This offers a sim-
ple way to parameterize these locomotion skills, as we can record
the corresponding actions under external pushes and add them vol-
untarily to the action vectors in order to make the character turn
in moderate speed. We use this simple parameterization method to
achieve basic steering behaviors in our demos. For rapid turns we
still need to use controllers learned from relevant motion capture
examples.

The robustness of the learning framework enables additional in-
teresting applications. For example, in the supplemental video we
show that two significantly different backflips can be learned from a
single motion capture example, where one is learned from a shorter
reference cycle than the other. The guided learning process auto-
matically finds a physically feasible movement that fills in the miss-
ing segment of the shorter reference trajectory. Our framework also
supports retargeting controllers onto characters with significantly
different morphology from the motion captured subjects. We sim-
ply re-run the pipeline on the new character, with the open-loop
clip refinement step warm-started from the results built for our de-
fault character. Figure 8 shows several examples where we retarget
the cyclic kick and the dance spin to characters with modified body

UBC Computer Science, Technical Report e 9

Fig. 9: Applications of the control graph. Top: random walk with external perturbations. Bottom: steering.

10

L. Liu et al.

O ’/’ 77777777 g
i
PETEE TN

==
41
)

PEEN
——

5

[l
La
—
1 1
1 1
-
[
1Y
Lt

Learning Order: (1102 3
Ly

1 { H
—: Stand Kip Up
-7 . __1___'
: —_—E -y I
_:I Slow Run : 180-Turn 1 I
|
-
Striding Run 180-Turn 2 I
rl Slow Down | r-s- ;ed-U--\ :
i & Turn e P P
________ Y ——— y
[Y [
| Cartwheel ! | GetUp
| &Backflip I ‘---I---
| PP J

_______ b, N

Slow (=== N r___!_ -

Cartwheel I Action2 :3 Prone '
\

. ==
Learning Order: l_l_E 2 3

Fig. 10: Two porototype control graphs progressively learned in the order marked in different colors. Only major controllers are shown in
the graph for clarity. The rising skills pointed by dashed arrows will be triggered automatically once the character falls. Left: Locomotion
and gymnastic graph. Right: Bollywood dancing graph. Actionl—arm hip shake; Action2—chest pump+swag throw; Action3—pick and throw;

Action4-hand circular pump.

segment lengths. The retargeted controllers are robust to external
perturbations as before.

6.2 Control Graphs

Figure 10 shows two prototype control graphs, one consisting of
runs, turns, gymnastic movements, and balancing, and the other
consisting of Bollywood dancing elements, get-up motions, and
balancing. Only major controllers are shown in the graphs for clar-
ity. The two control graphs can be further composed into a larger
one through the standing behavior. Learning the controllers for the
entire control graphs all at once can be inefficient because differ-
ent controllers converge in different speed, i.e., some controllers
quickly become robust, while others may cause SAMCON to fail
and restart constantly. This disparity results in excessive samples
being used for the easy controllers and excessive restarts for the dif-
ficult ones, if the entire control graph were to be learned all at once.
To mitigate this problem, we learn the control graph progressively.
Figure 10 illustrates the example learning orders we use. Specifi-
cally, we start from learning controllers for a few cyclic skills, us-
ing the process described in the last subsection. Non-cyclic skills
are then gradually incorporated into the latest subgraph by rerun-
ning the whole learning pipeline. This progressive process skips
the learned skills from guided SAMCON by merely executing the
learned policies instead of generating additional exploratory sam-
ples for their learning. Another scheme we employ to improve
learning efficiency is to generate random walks that visit each skill
with approximately equal probability. Some connections between
the learned skills are temporarily neglected to achieve this condi-
tion. Our experiments show that both control graphs can be learned
within one night in the fashion described above.

We further include a few rising skills in the control graphs that
will be automatically executed when the character falls. These ris-
ing skills have only one-way connections with the graph and we
learn them in a separate procedure. We create learning cycles by
pushing the character on the trunk in suitable directions and then

invoke a ragdoll controller that tracks the starting pose of the target
rising skill. When the difference between the simulated pose and
this starting pose is small enough, the rising skill is activated and
the character gets up and once again transitions to the beginning of
the learning cycle. We currently use a simple fall detection algo-
rithm that monitors the magnitude of the action vector as computed
by the feedback policies. Once this exceeds a fixed threshold, we
activate the ragdoll control followed by an appropriate rising skill.

We show several applications of the prototype control graphs in
the supplemental video. The learned skills in the graph are quite
robust: a random walk on the graph can always succeed when no
perturbations are applied. With the help of a simple greedy planner,
we can easily achieve interactive navigation in the scene. The char-
acters can also robustly perform the desired motions in the presence
of moderate external perturbations such as pushes on the trunk and
ball-impacts as shown in Figure 9. The character will fall if it is
disturbed too much, which automatically activates the rising con-
trollers that return the character to performing desired motions des-
ignated by the high-level planner.

Figure 11 demonstrates two simulated characters, steered by a
high-level planner, to always try to run into each other. They repeat
the overall behaviors of colliding, falling, and getting up. The com-
plex contacts and interactions between the characters would be too
difficult to synthesize via kinematic approaches, while our frame-
work can easily generate these motions in real-time thanks to the
physics-based nature of the simulations and the robustness of the
control graphs. In the video, we further show another example in-
volving four characters, all simultaneously simulated in real-time,
that perform the same overall interaction behaviors.

7. DISCUSSION

We have introduced a general framework that learns and organizes
physics-based motion skills from example motion capture clips.
Key to achieving the results is the use of control graphs composed
of control fragments, the use of random walks on the control graphs

UBC Computer Science, Technical Report . 11

Fig. 11: Two simulated characters try to run into each other. Both of them are controlled by the same control graph.

for learning, and the use of guided policy search for developing lin-
ear feedback policies for the control fragments. To the best of our
knowledge, this is the first time that a very diverse range of mo-
tions, including locomotion, highly dynamic kicks and gymnastics,
standing, and rising motions, can be synthesized in real time for 3D
physics-based characters and controlled and integrated together in a
uniform framework. We believe the proposed method can be easily
applied to a variety of other skilled motions. This offers a potential
solution to the difficulties in developing general control methods
that still prevent the more widespread adoption of physics-based
methods for character animation.

A primary finding of our work is that sequences of linear feed-
back policies based on a fixed set of state features and action fea-
tures, as implemented by the control fragments, do well at con-
trolling many skills, including not only the basic locomotion, but
also rising skills and complex highly-agile movements. It is further
interesting to note that these linear policies can be learned from
a suitable data stream using standard linear regression methods.
Two components of the success are: (a) the ability to generate high-
quality open-loop motion reconstructions using SAMCON; and (b)
the use of guided learning which effectively selects samples in the
vicinity of the states and actions produced by the policy and there-
fore encourages convergence between the developed offline solu-
tions and the learned linear policies.

In practice, every run of the learning pipeline on a given skill
usually results in different policies, which suggests that the feed-
back policies may have a low-rank structure that admits multi-
ple solutions. This has been proven to be true for basic locomo-
tion [Ding et al. 2015; Liu et al. 2012]. Learning phase-specific
reduced-order policies for complex skills is an interesting topic for
future work.

Our current state features and action features were selected with
skills in mind such as locomotion, kicks, and dancing, these all be-
ing skills where the character’s legs are extensively used for bal-
ance. However, these features proved to be suitable for a wider
range of skills, including those where the arms play an important
role, e.g., cartwheels and rising up motions. For motions that are
dominated by the control applied to the arms, such as a hand-stand
or a hand-stand walk, we expect that some new state features and
action features may need to be introduced.

A sequence of control fragments, or a controller, implicitly de-
fines an time-indexed piece-wise linear feedback policy, with an ap-
proximate 0.1s time interval, as inherited from the original SAM-
CON algorithm [Liu et al. 2010]. The feedback is therefore de-
pendent on both the current simulation state and the time index
in the reference motions. This scheme mitigates many difficulties
in learning the feedback policies, but makes the learned policies
less flexible. As future work, we wish to develop state-based feed-
back policies from executions of the time-indexed policies by lever-
aging more complex policy representations, such as neural net-
works [Levine and Koltun 2013; Mordatch and Todorov 2014; Tan
et al. 2014].

We wish to develop and integrate parameterized versions of the
motions and their feedback controllers. Parameterization is also an-
other form of generalization, and an appropriate learning process
can likely be bootstrapped from the initial unparameterized mo-
tions. Currently, our ability to steer the character is developed in
an ad hoc fashion. Parameterization with continuous optimization
[Yin et al. 2008; Liu et al. 2012] and interpolations between con-
trollers [da Silva et al. 2009; Muico et al. 2011] may help enrich
the variance of learned skills. It may also be possible to integrate
the use of abstract models, such as the inverted pendulum model
[Coros et al. 2010] or feature-based control [Mordatch et al. 2010]
in support of generalization with respect to larger perturbations or
motion parameterization.

The efficiency of our current learning pipeline could potentially
be improved in several respects as many sample simulations are dis-
carded without being fully exploited. For example, guided SAM-
CON discards all the simulation tuples except those belong to the
best path, and even the saved simulation tuples are discarded af-
ter their use in the linear regression for the current iteration of
the guided learning. These samples could likely be further utilized
to reduce the necessary duration of random walk and to enhance
the robustness of the learned policies as they offer extra informa-
tion about the policy space. Reusing these samples with importance
weights [Hachiya et al. 2009] offers one possible path forward to
developing a more efficient learning process.

After the initialization procedures, the current framework is
largely automated, with uniform parameter settings being used to
develop most of the motions. However, manually designing the
reference motion graph is still necessary at the beginning of the
pipeline. Developing good open-loop control clips for difficult
skills or from poor-quality reference motions remains the part of
the learning pipeline that still requires some manual intervention.
For future work, we would like to create a fully automated pipeline.

ACKNOWLEDGMENTS

This project is partially supported by NSERC Discovery Grants
Program RGPIN-2015-04843 and Singapore Ministry of Education
Academic Research Fund, Tier 2 (MOE2011-T2-2-152).

REFERENCES

AL BORNO, M., DE LASA, M., AND HERTZMANN, A. 2013. Tra-
jectory optimization for full-body movements with complex contacts.
TVCG 19, 8, 1405-1414.

AL BORNO, M., FIUME, E., HERTZMANN, A., AND DE LASA, M. 2014.
Feedback control for rotational movements in feature space. Computer
Graphics Forum 33, 2.

COROS, S., BEAUDOIN, P, AND VAN DE PANNE, M. 2009. Robust
task-based control policies for physics-based characters. ACM Trans.
Graph. 28, 5 (Dec.), 170:1-170:9.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Generalized
biped walking control. ACM Trans. Graph. 29, 4 (July), 130:1-130:9.

12 o L. Liu et al.

DA SILVA, M., ABE, Y., AND PoPOVIC, J. 2008. Simulation of human
motion data using short-horizon model-predictive control. In Computer
Graphics Forum. Vol. 27. Wiley Online Library, 371-380.

DA SILVA, M., DURAND, F., AND PoPoVIC, J. 2009. Linear bellman
combination for control of character animation. ACM Trans. Graph. 28, 3
(July), 82:1-82:10.

DE LASA, M., MORDATCH, I., AND HERTZMANN, A. 2010. Feature-
based locomotion controllers. ACM Trans. Graph. 29, 4 (July), 131:1-
131:10.

DING, K., Liu, L., VAN DE PANNE, M., AND YIN, K. 2015. Learning
reduced-order feedback policies for motion skills. In Proceedings of the
14th ACM SIGGRAPH / Eurographics Symposium on Computer Anima-
tion. SCA ’15. ACM, New York, NY, USA, 83-92.

DOUCET, A. AND JOHANSEN, A. M. 2011. A tutorial on particle filtering
and smoothing: Fifteen years later. In Handbook of Nonlinear Filtering.
Oxford, UK: Oxford University Press.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 2001.
Composable controllers for physics-based character animation. In Pro-
ceedings of SIGGRAPH 2001. 251-260.

GEUTENBEEK, T. AND PRONOST, N. 2012. Interactive character anima-
tion using simulated physics: A state-of-the-art review. In Computer
Graphics Forum. Vol. 31. Wiley Online Library, 2492-2515.

GEIJTENBEEK, T., VAN DE PANNE, M., AND VAN DER STAPPEN, A. F.
2013. Flexible muscle-based locomotion for bipedal creatures. ACM
Transactions on Graphics (TOG) 32, 6, 206.

HA, S., YE, Y., AND LIuU, C. K. 2012. Falling and landing motion control
for character animation. ACM Trans. Graph. 31, 6 (Nov.), 155:1-155:9.

HACHIYA, H., PETERS, J., AND SUGIYAMA, M. 2009. Efficient sample
reuse in EM-based policy search. In Machine Learning and Knowledge
Discovery in Databases. Lecture Notes in Computer Science, vol. 5781.
Springer Berlin Heidelberg, 469—484.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O’BRIEN, J. F.
1995. Animating human athletics. In Proceedings of SSIGGRAPH. ACM,
New York, NY, USA, 71-78.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. ACM, New York, NY, USA, 473-
482.

KWON, T. AND HODGINS, J. 2010. Control systems for human running
using an inverted pendulum model and a reference motion capture se-
quence. In SCA. Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 129-138.

LEE, J. AND LEE, K. H. 2006. Precomputing avatar behavior from human
motion data. Graphical Models 68, 2, 158—174.

LEE, Y., KiM, S., AND LEE, J. 2010. Data-driven biped control. ACM
Trans. Graph. 29, 4 (July), 129:1-129:8.

LEE, Y., WAMPLER, K., BERNSTEIN, G., POPOVIC, J., AND POPOVIC,
Z.2010. Motion fields for interactive character locomotion. ACM Trans.
Graph. 29, 6 (Dec.), 138:1-138:8.

LEVINE, S. AND KOLTUN, V. 2013. Guided policy search. In ICML ’13:
Proceedings of the 30th International Conference on Machine Learning.

LEVINE, S. AND KOLTUN, V. 2014. Learning complex neural network
policies with trajectory optimization. In ICML ’14: Proceedings of the
31st International Conference on Machine Learning.

Liu, L., YIN, K., AND GUO, B. 2015. Improving Sampling-based Motion
Control. Computer Graphics Forum 34, 2.

Liu, L., YIN, K., VAN DE PANNE, M., AND GUO, B. 2012. Terrain runner:

control, parameterization, composition, and planning for highly dynamic
motions. ACM Trans. Graph. 31, 6, Article 154.

Liu, L., YIN, K., VAN DE PANNE, M., SHAO, T., AND XU, W. 2010.
Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 4,
Article 128.

Liu, L., YIN, K., WANG, B., AND GUO, B. 2013. Simulation and control
of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6, Article
215.

MACCHIETTO, A., ZORDAN, V., AND SHELTON, C. R. 2009. Momentum
control for balance. ACM Trans. Graph. 28, 3.

MORDATCH, I., DE LASA, M., AND HERTZMANN, A. 2010. Robust
physics-based locomotion using low-dimensional planning. ACM Trans.
Graph. 29, 4 (July), 71:1-71:8.

MORDATCH, I. AND TODOROV, E. 2014. Combining the benefits of
function approximation and trajectory optimization. In Proceedings of
Robotics: Science and Systems. Berkeley, USA.

MORDATCH, 1., TODOROV, E., AND PoPOVIC, Z. 2012. Discovery of
complex behaviors through contact-invariant optimization. ACM Trans.
Graph. 31, 4 (July), 43:1-43:8.

Muico, U., LEE, Y., PoPovIC, J., AND PoPOVIC, Z. 2009. Contact-
aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3.

Muico, U., POPOVIC, J., AND POPOVIC, Z. 2011. Composite control of
physically simulated characters. ACM Trans. Graph. 30, 3 (May), 16:1-
16:11.

PENG, X. B., BERSETH, G., AND VAN DE PANNE, M. 2015. Dynamic
terrain traversal skills using reinforcement learning. ACM Transactions
on Graphics (to appear).

PETERS, J. AND SCHAAL, S. 2007. Reinforcement learning by reward-
weighted regression for operational space control. In Proceedings of the
24th International Conference on Machine Learning. ICML 07. ACM,
New York, NY, USA, 745-750.

PETERS, J. AND SCHAAL, S. 2008. Reinforcement learning of motor skills
with policy gradients. NEURAL NETWORKS 21, 4 (MAY), 682-697.
PoPOVIC, Z. AND WITKIN, A. 1999. Physically based motion transforma-
tion. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,

11-20.

RAIBERT, M. H. AND HODGINS, J. K. 1991. Animation of dynamic
legged locomotion. In ACM SIGGRAPH Computer Graphics. Vol. 25.
ACM, 349-358.

RosSs, S., GORDON, G., AND BAGNELL, J. A. D. 2011. A reduction of
imitation learning and structured prediction to no-regret online learning.
In Proceedings of the 14th International Conference on Artifical Intelli-
gence and Statistics (AISTATS).

Sok, K. W., KiM, M., AND LEE, J. 2007. Simulating biped behaviors
from human motion data. ACM Trans. Graph. 26, 3, Article 107.

SULEIMANPASIC, A. AND PoPOVIC, J. 2005. Adaptation of performed
ballistic motion. ACM Transactions on Graphics (TOG) 24, 1, 165-179.

TAN,J., GU, Y., L1U, C. K., AND TURK, G. 2014. Learning bicycle stunts.
ACM Trans. Graph. 33, 4 (July), 50:1-50:12.

TAN, J., L1u, C. K., AND TURK, G. 2011. Stable proportional-derivative
controllers. IEEE Comput. Graph. Appl. 31, 4, 34-44.

TASSA, Y., EREZ, T., AND TODOROV, E. 2012. Synthesis and stabilization
of complex behaviors through online trajectory optimization. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on. IEEE, 4906—4913.

TREUILLE, A., LEE, Y., AND POPOVIC, Z. 2007. Near-optimal character
animation with continuous control. ACM Trans. Graph. 26, 3 (July).

WAMPLER, K. AND POPOVIC, Z. 2009. Optimal gait and form for animal
locomotion. ACM Trans. Graph. 28, 3, Article 60.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Optimizing
walking controllers. ACM Trans. Graph. 28, 5, Article 168.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2010. Optimizing
walking controllers for uncertain inputs and environments. ACM Trans.
Graph. 29, 4 (July), 73:1-73:8.

WANG, J. M., HAMNER, S. R., DELP, S. L., AND KOLTUN, V. 2012. Op-
timizing locomotion controllers using biologically-based actuators and
objectives. ACM Trans. Graph. 31, 4, 25.

YE, Y. AND Liu, C. K. 2010. Optimal feedback control for character
animation using an abstract model. ACM Trans. Graph. 29, 4 (July),
74:1-74:9.

YIN, K., CORrROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2008.
Continuation methods for adapting simulated skills. ACM Trans.
Graph. 27, 3, Article 81.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBICON: Simple
biped locomotion control. ACM Trans. Graph. 26, 3, Article 105.

ZORDAN, V., BROWN, D., MACCHIETTO, A., AND YIN, K. 2014. Control
of rotational dynamics for ground and aerial behavior. Visualization and
Computer Graphics, IEEE Transactions on 20, 10 (Oct), 1356-1366.

ZORDAN, V. B., MAJKOWSKA, A., CHIU, B., AND FAST, M. 2005. Dy-

namic response for motion capture animation. ACM Trans. Graph., 697—
701.

UBC Computer Science, Technical Report

13

