
GUIDED SEARCH FOR DEADLOCKS
IN ACTOR-BASED MODELS

Steinar Hugi Sigurðarson

Master of Science

Software Engineering

June 2011

School of Computer Science

Reykjavík University

M.Sc. RESEARCH THESIS

ISSN 1670-8539

Guided Search for Deadlocks in Actor-Based Models

by

Steinar Hugi Sigurðarson

Research thesis submitted to the School of Computer Science

at Reykjavík University in partial fulfillment of

the requirements for the degree of

Master of Science in Software Engineering

June 2011

Research Thesis Committee:

Dr. Marjan Sirjani, Supervisor

Associate Professor, Reykjavik University, Iceland

Dr. Yngvi Björnsson, Co-Supervisor

Associate Professor, Reykjavik University, Iceland

Dr. Luca Aceto

Professor, Reykjavik University, Iceland

Prof.dr. Frank S. de Boer

Senior Researcher, Centrum Wiskunde & Informatica, Nether-

lands.

Professor, Leiden Institute of Advanced Computer Science,

Netherlands.

Copyright

Steinar Hugi Sigurðarson

June 2011

Guided Search for Deadlocks in Actor-Based Models

Steinar Hugi Sigurðarson

June 2011

Abstract

The success of model checking is based on its ability to uncover errors in

designs of software and protocols. Even a small reactive concurrent system

can exhibit complex behavior. Such systems may have state-spaces larger

than explicit state model checkers can verify. In practice, finding an er-

ror with a model checker is more useful than proving a property. Informed

search algorithms use heuristic strategies with problem-specific knowledge

to find solutions more efficiently than uninformed algorithms. Generally,

such heuristics estimate the distance from a given state to a goal state. We

present seven heuristics for guiding search algorithms through the state-space

of actor-based models to a deadlock. Our methods can find a deadlock

more efficiently than uninformed searches for some actor-based models. The

A* search algorithm guarantees an optimal solution and returns the short-

est counter-example. These methods are supported by a tool that performs

directed model checking of the deadlock property. The objective is to de-

tect difficult errors that might not be found by simulation or by conven-

tional model checkers before reaching an upper bound or state-space explo-

sion.

Keywords: Model Checking, Actor Model, Guided Search, Heuristic, Dead-

lock.

Stýrð leit að sjálfheldum í gerandabundnum
hugbúnaðarlíkönum

Steinar Hugi Sigurðarson

Júní 2011

Útdráttur

Árangur líkanaprófana liggur í hæfni þeirra til að sýna fram á villur í hönnun

hugbúnaðar og samskiptastaðla. Jafnvel lítil gagnverkandi kerfi geta haft

flókna hegðun. Sökum þess að vinnsluminni tölvunnar er takmarkað geta

slík kerfi haft stöðurými sem er stærra en það sem mögulegt er að prófa.

Þess vegna er ekki hægt að sannreyna réttmæti kerfisins með þeim hætti.

Líkanaprófun kemur að mestu gagni þegar hún sýnir fram á áður óþekkta

villu. Stýrðar leitaraðferðir nota brjóstvitsaðferðir til þess að stýra leitinni á

hagkvæmari hátt en óstýrðar aðferðir gera. Almennt veita brjóstvitsaðferðir

upplýsingar um fjarlægðina frá ákveðinni stöðu í þá markstöðu sem er næst

henni. Við kynnum sjö brjóstvitsaðferðir sem geta stýrt leit, í gegnum leitartré

gerandabundinna hugbúnaðarlíkana, að stöðu þar sem kerfið er í sjálfheldu.

Leitir sem eru stýrðar af þessum aðferðum finna sjálfheldur fyrir sum líkön

á hagkvæmari hátt en óstýrðar leitir. Með A* leit tryggjum við að ef lausn

finnst þá er engin styttri lausn til í leitartrénu. Aðferðirnar eru útfærðar í

hugbúnaði sem framkvæmir líkanaprófun fyrir sjálfheldur í gerandabundnum

líkönum. Markmiðið er að finna erfiðar villur sem koma sjaldan upp og

myndu hugsanlega ekki finnast með hermingu eða hefðbundnum líkana-

prófunum áður en leitin nær efri mörkum vinnsluminnis.

Lykilorð: Líkanaprófun, gerandabundið, stýrð leit, brjóstvitsaðferð,

sjálfhelda.

v

Acknowledgements

I would like to thank my supervisors, Dr. Marjan Sirjani and Dr. Yngvi Björnsson,
for guiding my way through the past year which has truly been remarkable. It has
been a privilege working with such eminent and enthusiastic researchers. I greatly
appreciate their patience and thank them for always being prepared to assist and share
their knowledge and experience with me.

My dear friend and study-partner, Árni Hermann Reynisson, has been invaluable for
the past ëve years at the Reykjavík University. I feel privileged for having been able to
share thoughts and ideas with such talented individual. I thank him for always being
interested in any problems which needed solving and his unconditional commitment
to helping his friends. He is truly a wizard and shall be referred to by his well deserved
nickname, Gandalf, from here on out. I thank all of my friends at the university who
have been a great support throughout my studies, both directly and indirectly.

My sincere and greatest thanks go tomy best friend and partner, María Sif Sigurðardót-
tir, for her unprecedented patience and support.

For proofreading this thesis, I thank Guðmundur Jósepsson and, my sister, Sólveig
Hrönn Sigurðardóttir. Special thanks go to my dear niece, Ísabella Sól Gunnarsdót-
tir, for preventing a proof copy of this thesis from being used a score-board for the
Eurovision Song Contest.

I thank the e Icelandic Research Fund for supporting this research.

vi

Contents

Contents vi

List of Figures viii

List of Tables x

List of Listings xi

1 Introduction 1
1.1 Model Checking . 2
1.2 Contribution . 3
1.3 Overview of the esis . 4

2 Background 5
2.1 Models of systems . 5
2.2 Model Checking . 5
2.3 e Actor Model . 9
2.4 e Rebeca Language . 9
2.5 State-Space Search . 11
2.6 Uninformed search . 13
2.7 Informed Search . 16
2.8 Directed Model Checking . 20

3 Guided-Modere 21
3.1 Heuristics . 21
3.2 Combining Heuristics . 29
3.3 Inverted Heuristics for Guidance Towards Queue Overìow 30
3.4 Implementation . 31

4 Experimental Results 33
4.1 Setup . 33

vii

4.2 Self-stabilizing Token Ring . 34
4.3 Dining Philosophers . 39
4.4 Needham-Schroeder Public-Key Protocol 42
4.5 Combined Heuristics . 46
4.6 When DFS is Faster . 47
4.7 Performance . 50

5 Related Work 55

6 Conclusion and Future Work 58

Bibliography 61

Appendices 65

A Terminology Overview 66

B Extended Results 68
B.1 Case studies . 68
B.2 Dual Heuristics . 70
B.3 Additional searches . 72
B.4 Errors where DFS is faster . 77

C Results for Queue Overîow Error 80

D Rebeca Models 86
D.1 Dijkstra’s Token Ring . 86
D.2 Dining Philosophers . 92
D.3 Needham-Schroeder . 107
D.4 Bridge Controller . 122

viii

List of Figures

2.1 Example LTL formula. Informally, it says p being ënally true and q glob-
ally true infers that p will remain true until r becomes true. 6

2.2 Notation for nodes used to demonstrate search algorithms. 13
2.3 Depth-ërst search, example exploration. Order of selection is shown in-

side the nodes. 14
2.4 Breadth-ërst search, example exploration. Order of selection is shown

inside the nodes. 15
2.5 Pure heuristic search, example exploration. Heuristic values of states (the

estimated distance to the nearest goal state) are shown inside the nodes. . 17
2.6 A* search, example exploration. Heuristic values (the estimated distance

to the nearest goal state) are shown inside the nodes and the evaluation
function values (the total path cost) outside of them. 18

3.1 Queue Size heuristic: Example of the evaluation of a node. 23
3.2 Empty Queue heuristic: Example of the evaluation of a node. Above the

brace is a string representation of the state. 23
3.3 Current Queue heuristic: Example of the evaluation of a node. e rebec

r3 was executed last and is the current rebec. 25
3.4 Reductive Queue heuristic: Example of the evaluation of a node. 26

4.1 Token ring: Illustration of algorithm 1 with 6 nodes where v0 is the leader.
Value of each node, S(v), is shown inside it. Edges lead from child to parent. 35

4.2 A deadlock conëguration in a token ring with two adjacent leaders, each
with a different value. 35

4.3 Results for a token ring with two leaders: Number of nodes expanded in
the search tree before ënding a deadlock. 36

4.4 Results for a token ring with two leaders: Length of counter-examples
returned, producing the deadlock error found. 38

4.5 Results for a token ring with two leaders: Execution time. 38

ix

4.6 e Dining Philosophers problem. 39
4.7 Forgetful Dining Philosophers: Number of nodes expanded in the search

tree before ënding a deadlock. 40
4.8 ForgetfulDining Philosophers: Length of counter-examples returned, pro-

ducing the deadlock error found. 41
4.9 Forgetful Dining Philosophers: Execution time. 42
4.10 Needham-Schroeder public key protocol with nonce error: Number of

nodes expanded in the search tree before ënding a deadlock. 44
4.11 Needham-Schroeder public key protocol with nonce error: Length of counter-

examples returned, producing the deadlock error found. 45
4.12 Needham-Schroeder public key protocol with nonce error: Execution time. 46
4.13 Token Ring with broken chain: Number of nodes expanded in the search

tree before ënding a deadlock. 49
4.14 Dining Philosophers without deadlock prevention: Number of nodes ex-

panded in the search tree before ënding a deadlock. 49
4.15 Bridge Controller with deadlock error: Number of nodes expanded in the

search tree before ënding a deadlock. 50
4.16 Token ring with 5 nodes: Execution time, with and without compiler

optimization. 52
4.17 Dining Philosophers with 4 philosophers: Execution time, with and with-

out compiler optimization. 52
4.18 Token ring with 5 nodes: States expanded per second (states/sec), with

and without compiler optimization. 53
4.19 Dining Philosophers with 4 philosophers: States expanded per second

(states/sec), with and without compiler optimization. 53

x

List of Tables

4.1 Expanded nodes before ënding a deadlock using the average of two heuris-
tics, compared to Modere. 47

B.1 Results of searches for models in case studies. 70
B.2 Results of searches with dual heuristics for models in the case studies. . . 72
B.3 Results of additional searches for models in the case studies. 76
B.4 Results for models where DFS outperformed the heuristic searches. . . . 79

C.1 Results for queue overìow experiments with inverted heuristics. 85

xi

List of Listings

2.1 Example Rebeca model: Dijkstra’s self-stabilizing token ring. 10

D.1 Dijkstra’s self-stabilizing token ring with 6 nodes. (Result: satisëed) . 86
D.2 Dijkstra’s self-stabilizing token ring with 6 nodes and two leaders (Re-

sult: deadlock) . 87
D.3 Dijkstra’s self-stabilizing token ring with 5 nodes and leader updating

its child twice. (Result: queue overìow) 88
D.4 Dijkstra’s self-stabilizing token ring with 5 nodes and a broken chain.

(Result: satisëed) . 90
D.5 Dining Philosophers with 4 philosophers. (Result: satisëed) 92
D.6 Forgetful Dining Philosophers with 5 philosophers. (Result: deadlock) 95
D.7 Forgetful Dining Philosophers with 5 philosophers and double re-

membering when temporarily forgetting. (Result: deadlock/queue
overìow) . 99

D.8 Dining Philosophers with 5 philosophers and no deadlock preven-
tion. (Result: deadlock) . 103

D.9 Needham-Schroeder Public Key Protocol. (Result: satisëed) 107
D.10 Needham-Schroeder Public Key Protocol with simultaneous conver-

sations. (Result: deadlock) . 111
D.11 Needham-Schroeder Public Key Protocol with simultaneous conver-

sations and dual retry. (Result: deadlock/queue overìow) 116
D.12 Bridge Controller with deadlock error (Result: deadlock) 122

1

Chapter 1

Introduction

is thesis is a study on the use of formal methods for ënding deadlocks in actor-based
models. We have developed heuristics for guiding search algorithms more efficiently
to deadlock states and present experimental results using pure heuristic and A* search.
For the research, we extendedModere (Jaghoori, Movaghar, & Sirjani, 2006), a model
checker for the actor-based language Rebeca (Sirjani, De Boer, &Movaghar, 2005), to
execute our experiments. is extension of Modere is limited to the deadlock-freedom
property.

Society is increasingly reliant on IT (Information Technology) systems in our daily
lives, even though we are not always aware of it when we browse the Internet, check
the weather forecast on our smart phones, make phone calls and when we watch tele-
vision. All of these tasks rely both on embedded systems and remote servers, providing
the user with the desired service. e requirement for correctness is increasing and,
although not life-threatening in these cases, errors can be very annoying and expensive
for the service provider or the client. For such systems, money is usually the main con-
cern. When your new mobile phone does not behave as expected, reacting incorrectly
upon your input, you would presumably return it. ese errors are inconvenient for
the customer and can, on a large scale, cause considerable ënancial damage for the
manufacturer. History has a few large-scale examples. In 1994, a bug was discovered
in Intel’s P5 Pentium ìoating point unit, causing the processors to produce incorrect
results for division in extremely rare cases (FDIV Replacement Program: Statistical Anal-
ysis of Floating Point Flaw, 2004). e bug left Intel with a 475 million US dollars
charge after replacing faulty processors, and a severely damaged image.

Sometimes, safety is the main concern. Digital ìight-control applications such as au-
topilot and ìy-by-wire systems, control software for nuclear power plants and traffic

Steinar Hugi Sigurðarson 2

control systems are safety-critical and even a minor defect can be catastrophic. On
June 4, 1996, the European Space Agency launched the ërst Ariane 5 rocket. Only
37 seconds into the ìight it veered of its ìight path and self-destructed, incurring a
loss of over 370 million US dollars (Dowson, 1997). e cause was an unhandled ex-
ception during conversion of 64-bit ìoating point to 16-bit signed integer value when
the size of the ìoating point value was greater than could be represented by the signed
integer. Since then it has become one of the most famous software bugs in history.
Although no humans were injured in this case, errors can be life threatening. Due to a
race condition in software controlling the erac–25 radio therapy machine between
1985 and 1987, three cancer patients died as a result of receiving approximately 100
times the intended dose of radiation and another three were seriously injured (Leveson,
1993).

Testing effort grows exponentially with complexity and even small reactive systems
can exhibit very complex behavior. Concurrency and non-determinism, as commonly
seen in reactive systems, are hard to cover with standard testing techniques. Formal
methods provide more effective veriëcation techniques for such systems. eir aim is
to assert that the system offers the described behavior and is correct with respect to
certain properties. Investigations have shown that such methods could have revealed
the errors in the systems described, Pentium FPU, Ariane 5 and erac–25, prior to
deployment and thus eliminating their impact.

An investigation report by the FAA andNASA on the use of formal methods concludes
(Rushby, 1995):

Formal methods should be part of the education of every computer
scientist and software engineer, just as the appropriate branch of applied
mathematics is a necessary part of the education of all other engineers.

1.1 Model Checking

Model checking is a formal veriëcation technique developed to automatically validate
properties of either hardware or software systems by exploring every reachable state in
the system. Difficult errors, affecting the system only under rare circumstances, often
go unnoticed through simulation and traditional testing methods. A model checker
will explore these states and thus might reveal the error before it causes damage. In
fact, model checking has been successfully applied to several systems, exposing previ-
ously unknown ìaws in some cases. For example, ëve previously unknown errors were

Steinar Hugi Sigurðarson 3

discovered in the controller of the Deep Space 1 spacecraft, one of which was a major
design ìaw (Havelund, Lowry, & Penix, 2001). Other similar examples exist.

However, this technique comes with its own set of problems. Even relatively simple
reactive systems may have wildly large state-spaces, many orders of magnitude larger
than the memory of conventional computers can store. is is referred to as the state-
space explosion problem. Several effective techniques have been developed to combat
this problem, while still models of real-world systems may be too large.

1.2 Contribution

is thesis is a research on model checking of actor-based systems using informed
search algorithms. e search is guided by heuristics, aiming to ënd a deadlock state, if
such a state exists in the model, before exhausting the computer’s memory. Moreover,
we wish to ënd the shortest, or a relatively short, counter-example reproducing the
error found.

e objective of this study is the following:

1. Developmethods for ënding deadlock errors in actor-basedmodels more efficiently
than with conventional search methods.

2. Develop methods for ënding the shortest possible counter-example (an optimal
solution), for such errors, more efficiently than with conventional search methods.

e contributions of the thesis are seven heuristic strategies for guiding search algo-
rithms through the state-space of actor-basedmodels towards deadlock states. Further-
more, we present Guided-Modere, a model checker for the Rebeca language (Sirjani
et al., 2005). Guided-Modere is an extension of Modere (Jaghoori et al., 2006), the
standard model checker for Rebeca, and is designed as a ìexible research framework
with interchangeable search algorithms and heuristics. e implementation includes
two of the most commonly used informed search algorithms in the ëeld of artiëcial in-
telligence and the contributed heuristics. Rebeca is an actor-based modeling language
with a formal foundation (Sirjani, Movaghar, & Shali, 2004).

Rebeca is event-driven and is designed for the veriëcation of distributed concurrent
systems. A Rebeca model consists of a ënite number of rebecs (actors) which com-
municate via asynchronous message passing. In general, such models are not meant
to terminate and thus do not contain terminal states. A deadlock in such a system
occurs when the complete system is in a terminal state while at least one component

Steinar Hugi Sigurðarson 4

is in a non-terminal state. Our heuristics provide information based on the message
queues of the rebecs in the model with the intention of guiding the search towards a
state in which none of the rebecs have an unprocessed message. Such as state will have
no events driving the system and is thus a deadlock state.

We present the following heuristics:

1. Queue Size. Uses the combined number of messages of rebecs in the system.

2. Current Queue. Relies on the number of messages in the queue of the rebec exe-
cuted in a given state.

3. Empty Queue. Counts the number of enabled rebecs, preferring states in which
the fewest rebecs have a message to process.

4. Reductive Queue. is heuristic detects reduction or increase of total messages in
the system and rewards states causing reduction.

5. Reductive Queue with Memory. Rewards states reducing the number of messages
with additional discount for the rebecs responsible for causing the reductions.

6. Queue Difference. Prefers a state sending the fewest messages.

7. Queue Difference with Memory. Prefers states sending the fewest messages with
additional discount for the rebecs responsible for causing reductions.

Experimental results show signiëcant reduction of expansions performed before ënd-
ing a deadlock state for some models and the guided searches often return shorter
counter-examples than depth-ërst search.

1.3 Overview of the esis

e thesis is divided into chapters as follows. Chapter 2 introduces the basic con-
cepts of actor-based models, model checking and state-space search, describing both
uninformed and informed search methods. Chapter 3 describes Guided-Modere. e
heuristic strategies are deëned and discussed in detail, followed by an overview of the
implementation. In Chapter 4 we present experimental results for the contributed
heuristics. ree case studies with results for the key search algorithms are discussed
in-depth. Chapter 5 brieìy discusses the related work. Chapter 6 presents conclusions
and perspectives followed by suggestions about future work. An overview of terminol-
ogy is provided in Appendix A. Appendix B contains extended results with additional
searches and models.

5

Chapter 2

Background

2.1 Models of systems

Models of systems describe the behavior of systems in an accurate and unambiguous
way (Baier, Katoen, & Others, 2008). ey are described using a modeling or a pro-
gramming language. Finite concurrent models can be presented as transition systems
with a ënite set of states and transitions, commonly described as a ínite-state automaton
or a directed graph. In explicit-state model checking, a state is identiëed by the cur-
rent values of variables, previously executed statements and other relevant information
about the system. e transitions represent actions which transform the system from
one state to another.

2.2 Model Checking

e process of verifying ënite-state reactive systems with respect to a property is re-
ferred to as model checking. e technique was originally developed by Clarke and
Emerson in 1981 (E. Clarke & Emerson, 1982) and Queille and Sifakis in 1982
(Queille & Sifakis, 1982). Speciëcations for the systems are expressed using temporal
logic. Typically, the model’s state-space is explored in a brute-force manner where each
reachable state is considered. at way it can be proven whether a given model satisëes
or violates a property with absolute certainty. Errors which remain undiscovered by
simulation and testing could potentially be revealed by model checking (Baier et al.,
2008; E. Clarke, 1997).

Steinar Hugi Sigurðarson 6

(((F p) ∧ (G q)) → (p U r)).

Figure 2.1: Example LTL formula. Informally, it says p being ënally true and q globally
true infers that p will remain true until r becomes true.

Typical properties checked with model checking are deadlock freedom, invariants and
request-response. As with the models, properties are described in a precise and ac-
curate manner. is is usually done using a property speciëcation language such as
temporal logic. Temporal logic is an extension of traditional propositional logic with
added operators which refer to the system’s behavior from one state to another. Two
commonly used languages are LTL and CTL (Pnueli, 1977; Vardi & Wolper, 1984;
E. Clarke & Emerson, 1982). ey allow speciëcations of properties regarding vari-
ous conditions such as functional correctness, safety, liveness, reachability and fairness
properties (E. M. Clarke, Emerson, & Sistla, 1986). An example LTL property is
shown in Figure 2.1.

A successful run of a traditional model checker on a model for a speciëc property can
have three outcomes: the property is valid, invalid or the model checker has exhausted
the computer’s memory. If the property was validated the model checker was able to
either explore the entire state-space or ënd a path such that it could be concluded that
the model satisëes the given property. On the other hand, if the outcome was invalid,
the model checker has reached a state in which the provided property is violated. Ide-
ally, the model checker will return some form of a counter-example showing a set of
reproducible actions which will result in the violation of the property. ere can be
various reasons for a property violation, such as inconsistency between the model and
the system design, error in the model, property speciëcation error or a design error.
In the case when execution is terminated prematurely because of the memory being
exhausted, no information about the validity of the model can be derived.

Fairness

Fairness is an important aspect of reactive systems. For a concurrent system with more
than one process we may wish to rule out inënite sequences that are considered unre-
alistic. For instance, we can consider only execution sequences where each process is
executed inënitely often. is is sometimes necessary to establish liveness properties.
An example of an unfair path is a path where only one process is executed in a system

Steinar Hugi Sigurðarson 7

consisting of two or more processes which are enabled inënitely often. is type of
fairness is also known as process fairness (E. M. Clarke et al., 1986).

A fair path is a path which fulëlls fairness constraints. ese are the three most com-
monly used types of fairness (Baier et al., 2008):

Unconditional fairness. Every process is allowed to execute inënitely often.

Strong Fairness. Every process that is enabled inënitely often is allowed to execute
inënitely often.

Weak fairness. Every process that is continuously enabled is allowed to execute in-
ënitely often.

We can speak of certain types of fairness with respect to speciëc parts of a system, such
as entering a critical section.

Deadlocks

Many sequential programs have terminal states and are allowed or expected to termi-
nate. For concurrent systems, this is typically not the case. Such systems are usually
not expected to halt and terminal states represent a design error and are thus not de-
sired. If the complete system is in a terminal state with at least one component in a
non-terminal state a deadlock has occurred (Baier et al., 2008). A typical deadlock sce-
nario is where every component is waiting for another and the system cannot progress.
When two cars approach opposite sides of a single-lane bridge, one must pass ërst. If
both are waiting for the other to pass they will wait forever, even though both wish to
continue their travel. us, they are in a deadlock conëguration.

e State-space explosion problem

Traditional model checkers consider every reachable state in the model to prove that it
satisëes a particular property. A major disadvantage of model checking is how poorly
it scales. e state-space for a model can grow exponentially. For a complete explicit-
state model checking, every state has to be examined (Edelkamp, Schuppan, Bosnacki,
Wijs, & Aljazzar, 2009). A model with a branching factor of 10 has 105 states for the
ërst 5 levels. General state-of-the-art explicit-state model checkers are able to handle
up to 109 states (Baier et al., 2008). One can, however, easily think ofmodels exceeding
this limit. If we consider the game of chess, for example, a typical position has about

Steinar Hugi Sigurðarson 8

30 legal moves. Due to the 50 moves rule 1 we know that the game will eventually
end and thus the state-space is ënite. Each move has about 103 possibilities. A typical
game will last about 40 moves until the resignation of either player or a draw. Even if
we assume that we can predict when a party will resign, which we cannot, the state-
space has reached a size of 10120. If a model checker, which can handle one state
every microsecond, could be created it would still require 1090 years to play out all
possibilities for the ërst move (Shannon, 1950).

For our game of chess we would probably quickly exhaust the computer’s memory.
is is referred to as the state-space explosion problem and poses a major challenge to
state-space search algorithms and model checking. Even a relatively simple reactive
system can have a wildly large state-space.

A number of techniques have been introduced to attack this problem:

Symbolic model checking is amethod that represents the state-space symbolically rather
than explicitly. It uses Binary Decision Diagrams to represent relations and for-
mulas (Burch, Clarke, McMillan, Dill, & Hwang, 1986). is approach has
been used to verify systems with up to 10476 states (Lind-Nielsen, 1999).

Partial order reduction is an approach which exploits the commutativity of concur-
rently executed transitions by analyzing the independence of actions in order to
reduce the number of orderings that need to be analyzed for the veriëcation of
a speciëc property (Peled, 1994).

Model Abstraction is another approach which automatically constructs a reduced ab-
stract model, sufficient for a speciëc property. is approach has reportedly been
used to successfully model check a system of 101030 states (E. M. Clarke, Grum-
berg, & Long, 1994).

Directed Model Checking is a bug-hunting technique where selection from the enu-
merated successor states is prioritized in order to ënd short counter-examples
quickly. Model checking algorithms exploit the speciëcation of properties to
lead the search towards their falsiëcation. is approach is driven by the suc-
cess of directed state-space exploration in the ëeld of artiëcial intelligence and
is among the key technologies to overcome the state-space explosion problem in
model checking (Edelkamp et al., 2009).

Quantitative Model Checking returns quantitative information on the model. Prob-
abilistic model checking is an example of this approach, using approximations

1 A player can claim a draw if no capture has been made and no pawn has been moved in the last
ëfty consecutive moves.

Steinar Hugi Sigurðarson 9

such as Monte Carlo to decide whether a property is satisëed within a certain
probability (Grosu & Smolka, n.d.). Such a model checker for Rebeca is pro-
posed in (Behjati, Sirjani, & Nili Ahmadabadi, 2010).

Each approach has its strength in particular applications. For the remainder of this
thesis we will primarily discuss directed model checking.

2.3 e Actor Model

In the actor model actors are treated as the universal primitives of concurrency. Instead
of threads, the actor model uses objects as units of distribution and concurrency which
provides a simple and natural concurrency model. Actors are self-contained and com-
municate through asynchronous message passing. Actors can be created dynamically
and the topology of the system changes dynamically (Hewitt, 1977; Agha, Mason,
Smith, & Talcott, 1997; Sirjani et al., 2004).

Similar to pure object-oriented languages, everything is an actor in the actor model.
In a response to a message an actor has received it can send a ënite number of messages
to actors it knows, create a ënite number of new actors and designate the behavior for
the next message it will process. More importantly, all of the actors in the system can
perform these actions concurrently and no assumptions are made regarding the order
in which they occur.

While the actor model is a primitive model of computation it can easily express a wide
range of concurrent systems and provides a natural extension of functional program-
ming and object abstraction.

2.4 e Rebeca Language

Rebeca is an event-driven modeling language, based on the actor model, with a for-
mal foundation for modeling and veriëcation of concurrent and distributed systems
(Sirjani et al., 2004). It consists of reactive objects which communicate via asyn-
chronous message passing. Reactive classes are templates deëned by the programmers
from which they can instantiate any number of reactive objects called rebecs (Sirjani et
al., 2004). In an object-oriented environment, this would correspond to the relation-
ship between classes and objects. A reactive object consists of the following compo-
nents:

Steinar Hugi Sigurðarson 10

Message Queue. Each message sent to a rebec is pushed to the end of the queue.
Although unbounded in the actor model, an upper limit is deëned for model
checking.

Known Rebecs. A list of other rebecs a reactive object knows and is able to send mes-
sages to.

State variables. Variables which each rebec can read ormodify when processing ames-
sage.

Message servers. e behavior of rebecs is described by their message servers. A rebec
accepts messages from any rebec in the system to all its servers. Every rebec must
have an initial message server which corresponds to a constructor of an object.
ey accept parameters and support non-deterministic assignments. Reactive
classes have a deëned upper bound for the message queue size of modeling pur-
poses.

A Rebeca model consists of a set of reactive classes, rebecs and their initial conëgura-
tion. An example model, implementing Dijkstra’s self-stabilizing token ring for three
nodes (Dijkstra, 1974), is shown in Listing 2.1. Rebecs of the reactive class Node have
message queues with an upper bound of 5 messages.

reactiveclass Node(5) {

knownrebecs { Node child; }

statevars {

boolean isLeader;

int value;

}

msgsrv initial(boolean lead) {

value = ?(0, 1, 2, 3);

isLeader = lead;

child.update(value);

}

msgsrv update(int parentValue) {

if(isLeader && value == parentValue) {

value = ((value + 1) % 4);

child.update(value);

} else if(!isLeader && value != parentValue) {

value = parentValue;

child.update(value);

} } }

Steinar Hugi Sigurðarson 11

main {

Node n0(n2):(true);

Node n1(n0):(false);

Node n2(n1):(false);

}

Listing 2.1: Example Rebeca model: Dijkstra’s self-stabilizing token ring.

Rebeca is supported by front-end tools which translate Rebeca models into modeling
languages of existing model checkers and a tool which performs direct model checking,
described in the following section. Rebeca has been extended to support synchronous
message passing to enable modeling of locally synchronous and globally asynchronous
systems (Sirjani et al., 2005). is study will use the original version, without the
extension.

Modere

Modere (Jaghoori et al., 2006) is an explicit-state model checker for the Rebeca lan-
guage. It is inspired by SPIN (Holzmann, 1997), the model checker for Promela, and
uses nested depth-ërst search (Holzmann, Peled, & Yannakakis, 1996) for automata-
theoretic model checking. It stores local states of each rebec separately using a “never
release” memory management strategy. It is highly optimized regarding memory and
state-space exploration, implementing partial-order reduction to combat the state-
space explosion problem. It supports veriëcation of temporal logic properties written
in either LTL, which are automatically translated to Büchi automata, or CTL. Modere
consists of a Java compiler which generates intermediate C++ code. Compiling the
C++ code produces an executable ële performing the model checking of the system. If
a property violation is found a counter-example is returned in XML format. Modere
can be used either through a command-line interface or an Eclipse plug-in with GUI.
Different aspects of Modere are discussed throughout the remainder of the thesis when
compared with Guided-Modere.

2.5 State-Space Search

A state-space is a set of states. State-space search is the process of ënding a state in a
state-space satisfying a goal condition. e set of all states is not initially known, but

Steinar Hugi Sigurðarson 12

only a single initial state. Other states, the successors of known states, are generated as
needed. Such problems may be formalized by deëning its four components (Russell,
Norvig, Canny, Malik, & Edwards, 1995):

Initial state is the start state. In Rebeca, this would be the state where all rebecs are
ready to be initialized. From each state a successor function provides the reachable
successor states.

Actions available in a particular state. From each state in a Rebeca model the set
of actions consists of the currently enabled rebecs, i.e. the ones which have a
message to be processed.

Goal test which determines if a particular state is a goal state. is can be a set of
explicitly deëned states or an abstract property which needs to be evaluated with
respect to the current state in the search.

Path cost function which assigns a numerical value to each path. It should reìect the
performance measure of the search.

Each node represents a single state. Search algorithms start from the tree’s root node,
representing the initial state, with an empty fringe. When the algorithm expands a state
s, it removes s from the fringe and adds its successors.

If actions are reversible, the search may enter an inënite loop and the search tree be-
comes inënite. For some search trees, this problem will never come up while with
others it is unavoidable. us, a solvable problem can become unsolvable. We may
wish to prevent this by allowing the search to expand each state only once. By prun-
ing repeated states, generating only the portion of the tree which spans the state-space
graph, we can reduce the search tree to a ënite number of nodes. e only solution
is to keep the expanded states in memory. We can use a data structure, from here
on referred to as the closed list, which stores all the nodes of the tree which have been
expanded. We store the fringe, nodes we have not expanded yet, in the same fashion
using a data structure referred to as the open list. Worst case time and space require-
ments are proportional to the size of the state-space, O(bd) where b is the branching
factor and d is the height of the tree. However, these requirements may be much
smaller (Russell et al., 1995). For the following sections, nodes in the search tree are
illustrated as shown in Figure 2.2. Nodes on the fringe, or the open list, are identiëed
by a regular solid border, the current node by a thicker border and closed nodes, that
have already been expanded, by a dashed border. Unknown states, which are yet to be
discovered, are faded gray.

Steinar Hugi Sigurðarson 13

n0 n1 n2 n3

Unknown node Open node Closed node Current node

Figure 2.2: Notation for nodes used to demonstrate search algorithms.

2.6 Uninformed search

Uninformed search algorithms, also known as blind search algorithms, explore the
search tree in a brute-force manner. ey do not have additional information on the
states beyond what is provided in the problem description. ey only know how
to generate successors and determine whether or not a particular state is a goal state
(Russell et al., 1995).

Depth-First Search

Depth-ërst search is an uninformed search algorithm and is one of the most commonly
used for model checking. It always expands the deepest node in the fringe, progressing
deeper into the search tree until the nodes have no successor. Once such a node has
been expanded it is removed from the fringe and the search retracts up to the previous
level where the next sibling node is expanded. is is repeated until a goal state is
reached or there are no states left on the fringe, in which case the property is satisëed.
An example execution of depth-ërst search is illustrated in Figure 2.3.

Depth-ërst search is not complete as it may enter inënite loops and proceed down inë-
nite paths. By using a closed list, inënite loops are eliminated and the search algorithm
is complete for ënite state-spaces.

Depth-ërst search is often implemented using a stack data structure for the fringe,
obeying the LIFO (last-in, ërst-out) principle.

Nested depth-ërst search (NDFS) (Holzmann et al., 1996) is a variation of DFS
with cycle detection and has been successfully implemented in several model checkers
(Courcoubetis, Vardi, Wolper, & Yannakakis, 1992; Holzmann, 1997; Jaghoori et al.,
2006). First, it executes an outer depth-ërst search until it reaches a state which violates
the temporal property being veriëed. A second nested search, inner depth-ërst search,
continues from that state searching for backwards edges to matching a state, creating
a cycle. If the inner search does not ënd a satisfying backward edge, the outer search
will continue from where it left off. Cycle detection is required for the veriëcation of
properties when the violating sequence must contain the violating state inënitely of-

Steinar Hugi Sigurðarson 14

0

1

2 3

4

5 6

(a) Step 0

0

1

2 3

4

5 6

(b) Step 1

0

1

2 3

4

5 6

(c) Step 2

0

1

2 3

4

5 6

(d) Step 3

0

1

2 3

4

5 6

(e) Step 4

0

1

2 3

4

5 6

(f) Step 5

0

1

2 3

4

5 6

(g) Step 6

0

1

2 3

4

5 6

(h) Step 7

Figure 2.3: Depth-ërst search, example exploration. Order of selection is shown inside
the nodes.

ten. In this thesis we focus on deadlocks only, which are reached through ënite paths,
and thus do not address nested search and cycle detection further.

Breadth-First Search

Breadth-ërst search is another uninformed search algorithm commonly used for model
checking. Instead of going for the depth it expands all nodes on the fringe at a given
depth before proceeding to nodes at the next level. It will not expand a state at depth
n+ 1 unless it has explored all the states at depth n.

It is usually implemented in the same manner as depth-ërst search except instead of
using a stack for storing the fringe, new states are put in a FIFO (ërst-in, ërst-out)
queue. All newly generated successor states are added to the end of the queue while
the next state to expand is removed from the front.

Breadth-ërst search is complete for a ënite branching factor. If the search tree contains
a goal state, it will be found unless the search runs out of memory or reaches an upper
bound.

One of the key beneëts of using breadth-ërst search for model checking is that if a
counter-example is found, it is guaranteed that no shorter counter-example exists and
the solution is optimal. An example execution of the breadth-ërst search algorithm is
illustrated in Figure 2.4.

Steinar Hugi Sigurðarson 15

0

1

3 4

2

5 6

(a) Step 0

0

1

3 4

2

5 6

(b) Step 1

0

1

3 4

2

5 6

(c) Step 2

0

1

3 4

2

5 6

(d) Step 3

0

1

3 4

2

5 6

(e) Step 4

0

1

3 4

2

5 6

(f) Step 5

0

1

3 4

2

5 6

(g) Step 6

0

1

3 4

2

5 6

(h) Step 7

Figure 2.4: Breadth-ërst search, example exploration. Order of selection is shown
inside the nodes.

Several variations of the algorithm have been implemented with model checking in
mind, such as Parallel BFS (Barnat, Brim, & Chaloupka, 2003) and Distributed BFS
(Barnat & Černá, 2006).

Steinar Hugi Sigurðarson 16

2.7 Informed Search

In practice, ënding a bug with a model checker is more useful than proving a prop-
erty (Yang & Dill, 1998). Informed search algorithms use heuristic strategies with
problem-speciëc knowledge to ënd solutions more efficiently than uninformed algo-
rithms. Generally, such heuristics estimate the distance from a given state to a goal
state.

We consider two of the most commonly used informed search algorithms: pure heuris-
tic search and A* search. Both belong to a family of best-írst search algorithms. ey
use an evaluation function, denoted by f(n), to prioritize the fringe, that is, to decide
which node to expand next. Estimated cost of traversing from a node to a goal state is
provided by a heuristic function, denoted by h(n). e two algorithms have different
evaluation functions, f(n), and therefore different behavior, described in the following
sections.

Pure Heuristic

Pure heuristic search, also known as Greedy best-írst search, always expands the node
that is the closest to the goal ërst, regardless of its distance from the initial state (Russell
et al., 1995). e aim is to ënd a solution quickly even though it may not be an optimal
one. e algorithm evaluates nodes using only the heuristic function. at is,

f(n) = h(n).

Pure heuristic search is similar to depth-ërst search in the sense that in practice it tends
to follow the same path from the initial state to the goal but will retract as it hits a dead-
end. Like depth-ërst search, it is not optimal, and the search may run into inënite
loops and is thus not complete. However, by adding a closed list to the algorithm such
loops are eliminated and completeness guaranteed for ënite state-spaces.

Worst-case space and time complexity is O(bm) where b is the branching factor of
the tree and m is the maximum depth of the search tree. In practice, the number of
explored states may be much smaller with a good heuristic. Demonstration of pure
heuristic search on an example tree is shown in Figure 2.5.

Steinar Hugi Sigurðarson 17

h(n)

2

3 1

4

1 2

(a) Step 0

h(n)

2

3 1

4

1 2

(b) Step 1

h(n)

2

3 1

4

1 2

(c) Step 2

h(n)

2

3 1

4

1 2

(d) Step 3

h(n)

2

3 1

4

1 2

(e) Step 4

h(n)

2

3 1

4

1 2

(f) Step 5

h(n)

2

3 1

4

1 2

(g) Step 6

h(n)

2

3 1

4

1 2

(h) Step 7

Figure 2.5: Pure heuristic search, example exploration. Heuristic values of states (the
estimated distance to the nearest goal state) are shown inside the nodes.

A* Search

A* search (“A-star search”) is the most popular best-ërst search algorithm. It combines
the cost of reaching node n, the path cost function g(n), with the estimated distance
to the nearest goal state from n, the heuristic function h(n) (Russell et al., 1995). at
is, the evaluation function is the estimated length of a shortest path from the initial
state to a goal state going through node n. us,

f(n) = g(n) + h(n).

A* is complete, that is, if a solution exists it will eventually be found, unless the al-
gorithm runs out of memory and state-space explosion occurs. Furthermore, if the
heuristic function is admissible, that is, it never overestimates the true distance to the
goal, we are guaranteed to ënd the shortest solution ërst.

Weighted A* Search

Experience has shown that for some problems A* search spends a great amount of time
exploring paths with insigniëcant difference in cost. e requirement of optimality
causes the algorithm to spend time choosing between candidates with roughly the same
cost. We may wish to relax the requirement of optimality in exchange for a quicker
solution. We can do that by adding a weight factor to the two functions, the cost

Steinar Hugi Sigurðarson 18

h(n)

23

3

5

1

3

4 5

1

3

2

4

(a) Step 0

h(n)

23

3

5

1

3

4 5

1

3

2

4

(b) Step 1

h(n)

23

3

5

1

3

4 5

1

3

2

4

(c) Step 2

h(n)

23

3

5

1

3

4 5

1

3

2

4

(d) Step 3

h(n)

23

3

5

1

3

4 5

1

3

2

4

(e) Step 4

h(n)

23

3

5

1

3

4 5

1

3

2

4

(f) Step 5

h(n)

23

3

5

1

3

4 5

1

3

2

4

(g) Step 6

h(n)

23

3

5

1

3

4 5

1

3

2

4

(h) Step 7

Figure 2.6: A* search, example exploration. Heuristic values (the estimated distance
to the nearest goal state) are shown inside the nodes and the evaluation function values
(the total path cost) outside of them.

function g(n) and heuristic function h(n). e effect of g(n) in the evaluation function
f(n) is to add a breadth-ërst component to the search. In fact, if h(n) is removed the
resulting evaluation function f(n) = g(n) is that of breadth-ërst search. By removing
the g(n) component the search is a pure heuristic search (Pearl, 1984).

Weighted A* search has the evaluation function

f(n) = (1− w) g(n) + w h(n),

where w ∈ [0, 1] is the weight factor. By varying w the desired mixture can be achieved
to match the reliability attributed to the heuristic function being used. Higher value
of w will put more responsibility on the heuristic and reduce the requirement of an
optimal solution and vice versa. e factors 0, 1

2
and 1 would correspond to uniform-

cost, A* search and pure heuristic search, respectively. In this study, the algorithm
is used only to relax the requirement of optimality. us, our experiments will be
conëned to w ∈ [1

2
, 1].

Steinar Hugi Sigurðarson 19

Heuristic Functions

e efficiency of informed search is largely based on the quality of the heuristic func-
tion used. Traditionally, the returned evaluation of a heuristic function for a particular
state is the estimated distance to the nearest goal state. is estimate is denoted by
h(n).

h(n) = estimated distance to the nearest goal state.

A heuristic strategy is admissible (or optimistic) if it never overestimates the distance
from a given state to the nearest goal state. is is important if we want to guaran-
tee that the ërst solution found is an optimal path, i.e. that no shorter solution exists.
Model checkers using DFS search tend to return longer paths which makes it more dif-
ëcult for the user to identify the error. In practice, a path relatively short, compared to
an optimal path, will usually suffice. However, non-admissible heuristics can be useful
and are widely used (Dr, 2009). Consistent, or monotone, heuristics are monotonically
non-decreasing along the shortest path to a goal state. e estimated distance to a goal
state will never exceed the estimated distance of a successor state with the added cost
of traversing between them. Formally, heuristic function h(n) is consistent if and only
if for every node n and every successor q of n,

h(n) ≤ c(n, q) + h(q),

where c(n, q) is the cost of traversing from n to q. A consistent heuristic function is
always admissible, but an admissible strategy can be inconsistent (Pearl, 1984).

When searching with inconsistent but admissible heuristics we must be careful when
discarding previously expanded states if we wish to guarantee optimality. e node on
the closed list may have a greater estimated total distance to a goal state than the new
state, in which case we must re-open it. In theory, exponential increase in the num-
ber of expanded nodes may happen. However, this approach works well in practice
(Edelkamp et al., 2009).

Although the accuracy of a heuristic is important, one must also consider how efficient
it is computationally. After all, we could develop the perfect heuristic by performing a
breadth-ërst search and return the measured distance to the nearest goal state. How-
ever, there is no gain in using such a heuristic. In general, we consider heuristic h1

better than h2 if its effective branching factor is less than that of h2, it does not overesti-
mate and the computation time is not too large (Russell et al., 1995).

Steinar Hugi Sigurðarson 20

An algorithm A∗

2 is said to largely dominate A∗

1 if every node expanded by A∗

2 is also
expanded by A∗

1 except, perhaps, some nodes for which h1(n) = h2(n) = C∗ − g∗(n),
where C∗ is the cost of an optimal solution and g∗(n) is cost of an optimal path from
the initial state to node n. In other words, A* largely dominates its rivals if it performs
fewer or an equal number of expansions except, possibly, for some paths where both
heuristics return the cost of a shortest path (Pearl, 1984).

2.8 Directed Model Checking

Directed model checking is one of the key techniques developed to overcome the state-
space explosion problem. Algorithms reorder the states to be expanded so that states
more likely to violate the required property are expanded ërst. An evaluation function
estimates the cost of the shortest possible path from a state to a violating state. Both of
the informed search algorithms discussed have been used successfully for such model
checkers (Edelkamp, Lafuente, & Leue, 2001; Groce & Visser, 2004; Hoffmann,
Smaus, Rybalchenko, Kupferschmid, & Podelski, 2007; Edelkamp et al., 2009). ey
are discussed further under Related Work.

21

Chapter 3

Guided-Modere

Guided-Modere is an extension of Modere, the standard model checker for Rebeca,
and was developed over the course of this research. e goal is to create a ìexible re-
search framework to experiment with different search algorithms and heuristics. Fur-
thermore, we wish to study the efficiency of heuristic search for Rebeca models with
respect to execution time, expanded nodes and length of counter-examples.

e implementation includes several variations of our heuristics, pure heuristic search
algorithm, three A* search algorithms and three blind search algorithms. It is our
platform for experimenting with, and measuring the performance of, different search
algorithms and heuristics.

3.1 Heuristics

In this section, we describe the heuristic functions h(n) used to inform search algo-
rithms. Each strategy accepts a state as input and returns a non-negative integer which
is the estimated distance to the nearest deadlock state.

ARebecamodel is expressed semantically as a labeled transition systemM = 〈S,A, T, s0〉

where S is the set of global states, A is the set of actions, T ⊆ S × A× S is the set of
transitions and s0 is the set of initial states. A state in Rebeca is deëned as the com-
bination of the local states of all rebecs in the system, s = Π

j∈J
sj, where I is the set

of rebecs and s ∈ S is the global state. e local state sj of a rebec rj is identiëed
by the values assigned to its local variables, vj, and its message queue, mj, including
information about the sender, destination message server and parameters. We say that

Steinar Hugi Sigurðarson 22

rebec rj is enabled when the number of messages in its queue, |mj|, is greater than
zero.

In general, a deadlock is a situation where two or more actions are waiting for each
other ënish. e actor model is event-driven and Rebeca only allows asynchronous
message passing. us, the system cannot deadlock as long as there are events driving
it. A rebec will never wait for a process to ënish, gaining access to a mutual resource
or a reply from another rebec. e system will run into a deadlock state if and only
if there are no enabled rebecs, that is,

∑

j∈J |mj| = 0, assuming the model has no
terminal states. All of our heuristics exploit this fact and share the intention of driving
the search towards states which are more likely to result in a deadlock.

We deëne and implement seven heuristics, presented in the following sections. All of
the heuristics are admissible. In the literature, admissible heuristics are often assumed
consistent, implying that consistency is desirable. Only two of the heuristics above are
consistent: Queue Size and Empty Queue. Although generally considered worse for
A* search, recent studies have shown that inconsistency can be beneëcial. Inconsistent
heuristics are able to escape regions of poor heuristic values before incurring signië-
cant cost (Zahavi, Felner, Schaeffer, & Sturtevant, 2007). Due to the relatively small
values returned by our inconsistent heuristics, compared to the path cost, they are not
expected to perform well with A* search as it will explore the state-space similar to
breadth-ërst search. Additionally, due the reopening of states, A* searches using those
heuristics may expand more nodes than breadth-ërst search. us, they are intended
for pure heuristic search only.

e state of the system at node n in the search tree is referred to as nstate and the parent
state of nstate as nparent.

Queue Size

If we think of a reduction of a system where no new messages can be sent, only the
messages rebecs have in their queues already will be processed. e number of actions
required to drive a system to a deadlock state from a given state s is never less than the
number of unprocessed messages in s so even with this reduction the system will not
run into a deadlock state until they have all been processed. e Queue Size heuristic
uses the total number of unprocessed messages in the system as the estimated distance
to a goal state, preferring states with few messages to states with many. e Small

Steinar Hugi Sigurðarson 23

r0

|m0|= 3

r1

|m1|= 2

r2

|m2|= 5

r3

|m3|= 1

h1(n) = ∑
j∈nstate

|m j|= 11

Figure 3.1: Queue Size heuristic: Example of the evaluation of a node.

r0

|m0|= 0

D

r1

|m1|= 2

E

r2

|m2|= 5

E

r3

|m3|= 1

E

h5(n) = 4−1 = 3

Figure 3.2: Empty Queue heuristic: Example of the evaluation of a node. Above the
brace is a string representation of the state.

Queue heuristic is illustrated in Figure 3.1 and formally deëned in Equation 3.1.

h(n) =
∑

j∈nstate

|mj|. (3.1)

Between every node n and its successor node q exactly 1 message has been removed
from the message queue of an enabled rebec. We know the cost of reaching q from n

is c(n, q) = g(q)− g(n) = 1. erefore, we can show that h(n) ≤ c(n, q) + h(q) holds
for every n in the search tree. Since a goal state will have no messages, h(n) = 0 where
n is a goal state. Given the above we know that h(n) is consistent and, therefore, also
admissible and will return an optimal solution when used with A* search.

is heuristic largely dominates all the others andwill perform better with A* search.

Empty Queue

e Empty Queue heuristic counts the number of rebecs with no messages and assigns
better heuristic values to states with higher values. is drives the search towards paths
closer to a deadlock state and possibly with less branching factors, depending on the
number of non-deterministic choices made by the enabled rebecs. is heuristic is
identical to Hap presented in (Edelkamp et al., 2001) for Promela models and the
deadlock heuristic of PROVAT presented in (Lin, Chu, & Liu, 1988).

Steinar Hugi Sigurðarson 24

is strategy can be described as the Hamming distance between a state and a goal
state for a property in which all rebecs are disabled. We can think of a state with
three enabled rebecs as the string “EEEDD” where E means enabled and D disabled.
Using the same notation we can easily deëne a deadlock state, “DDDDD” and see that
the Hamming distance between the two strings, in this case 3, is equal to the value
returned by the Empty Queue heuristic. is strategy is illustrated in Figure 3.2 and
formally deëned in Equation 3.2.

h5 = |nstate| −
∑

j∈nstate

0 if |mj| > 0,

1 otherwise.
(3.2)

Initial states will receive heuristic values equal to the number of rebecs in the system,
since all of them are enabled. For every n and every successor q of n, we know n can
have at most one more enabled rebec than q because of a transition. In other words, at
most one more rebec has become disabled. us, this heuristic is consistent and will
not require reopening of states when guiding an A* search.

Current Queue

e branching factor of a node n is affected by two attributes of the state:

1. e number of enabled rebecs in nstate.

2. e number of non-deterministic choices made in nstate.

We refer to the last executed rebec as the current rebec of a state. e Current Queue
heuristic aims to “drain” rebecs by favoring nodes whose current rebec has the smallest
message queue. e intention is to make the execution less fair, focusing on rebecs
becoming disabled and thus potentially reducing the branching factor along the path.
Potentially isolated parts of the system could become disabled, if the model has any.
e behavior is illustrated in Figure 3.3 and formally deëned in Equation 3.3.

h(n) = |mcurrent|. (3.3)

In Equation 3.3, mcurrent is the message queue of the most recently executed rebec in
state nstate. A search path using this heuristic function should empty out rebecs with
the smallest queues before proceeding to those with more messages whichmight reacti-
vate the rebec again. Once a rebec has become disabled the node will receive a heuristic
value equal to the second smallest queue (which has now become the smallest). Be-

Steinar Hugi Sigurðarson 25

r0

|m0|= 3

r1

|m1|= 2

r2

|m2|= 5

r3

|m3|= 1

h2(n) = |mcurrent |= 1

Figure 3.3: Current Queue heuristic: Example of the evaluation of a node. e rebec
r3 was executed last and is the current rebec.

tween such nodes the condition for consistent heuristics is broken. is heuristic never
overestimates the distance to the nearest goal and is, therefore, admissible.

Reductive Queue

Essentially, message servers that do not send any messages can cause deadlocks in Re-
beca models. e Reductive Queue heuristic utilizes this fact by comparing the total
number of messages of a state and its parent. States are categorized as follows:

1. Number of messages has been reduced.

2. Number of messages has not changed.

3. Number of messages has increased.

States in each category receive the best, neutral and worst heuristic value, respectively.
e initial states do not have a valid parent and are all assigned a value equal to the
number of rebecs in the system.

p =
∑

k∈nparent

|mk|

q =
∑

j∈nstate

|mj|

h(n) =











best if q < p

neutral if q = p

worst otherwise

(3.4)

e values chosen for best, neutral and worst in Equation 3.4 are 0, ⌊1

2

∑

|m|⌋ and
∑

|m|, respectively. e heuristic is not consistent as the difference between resulting
heuristic values of two consecutive states can be greater than the added cost (which is
1) if the two states are in distinct categories. Since the size of the message queue is the
upper limit it will never return a value greater than the path cost to the nearest goal.

Steinar Hugi Sigurðarson 26

r0 r1 r2 r3

r0 r1 r2 r3

(Single action in which no message is sent)

p = ∑
k∈r

|mk|= 11

q = ∑
j∈r

|m j|= 10

h3(n) = best (because q < p)

Figure 3.4: Reductive Queue heuristic: Example of the evaluation of a node.

erefore, we know that the Reductive Queue heuristic is admissible. e heuristic is
illustrated in Figure 3.4 and formally deëned in Equation 3.4.

Reductive Queue with Memory

A deadlock error is often related to a single rebec in the system. In some cases, it will
reduce the number of messages periodically, for example, in every other execution.
e Reductive Queue heuristic strategy will only identify and favor a state immediately
after performing such an execution. is variant of the heuristic keeps track of how
often a rebec has reduced or increased the number of messages in the past. When no
reduction or increase has taken place, the state will receive the neutral heuristic value,
as before, but with a discount based on how likely executions of this rebec are to reduce
the number of messages.

A state receiving maximum discount would get the heuristic value 1

2
neutral which,

in this case, is equal to best. However, that can only happen if a state reduces the
number of messages on every execution and the discount would not apply. Should a
rebec reduce number of messages on every other execution, the value of a non-reducing
state would be 3

4
neutral. To maintain admissibility no penalty is given to rebecs which

are likely to increase the size of the message queue. is heuristic is deëned formally
in Equation 3.5.

Steinar Hugi Sigurðarson 27

p =
∑

k∈nparent

|mk|,

q =
∑

j∈nstate

|mj|,

h(n) =











best if q < p,
1

2
worst+ 1

2
(1− reductionsr

executionsr
)worst if q = p,

neutral otherwise.

(3.5)

e discount is meant to serve as a tie-breaker between two non-reducing and non-
increasing states. For the same reason as Reductive Queue, this heuristic is not consis-
tent.

Queue Difference

is heuristic strategy is identical to the Reductive Queue strategy except for the re-
turned values. Instead of returning best, neutral and worst it relies on the number of
messages created by the last action. is strategy will assign different values to states
sending three or more messages, whereas the Reductive Queue heuristic will not. e
heuristic is deëned formally in Equation 3.6.

h(n) = 1 +
∑

j∈nstates

|mj| −
∑

k∈nparent

|mk|. (3.6)

is strategy will violate the requirement for consistency when
∑

j∈nstate
|mj| > 1 +

∑

k∈nsuccessor
|mk|. is will happen every time a message server sends more than one

message. us, this heuristic is not consistent. As the path cost from a state to a goal
state will never be less than the number of messages created, the strategy is admissible.
e number of messages sent is usually far smaller than the total number of messages
left to be processed. is causes the A* search to behave similar to breadth-ërst search
and expand more nodes than better informed search algorithms. is behavior could
be overcome by multiplying the heuristic value by a factor greater than 1, but doing so
would sacriëce the admissibility. us, the heuristic strategy is not expected to return
satisfying results with A* search but has good potentials with pure heuristic search and,
perhaps, weighted A* search with a sufficiently small factor.

Steinar Hugi Sigurðarson 28

Initial states receive a value of 1, as if no difference took place. Should we count each
initialization as a sent message, returning a heuristic value equal to the number of
rebecs, chances are that only one rebec would ever be expanded at level 1 since the
successor states would almost certainly have lower values.

Queue Difference with Memory

e Queue Difference strategy suffers from the same problem as Reductive Queue when
it comes to states which have not affected the total number of messages. is heuristic
is very similar to Reductive Queue with Memory except it keeps track of the difference
in the number of messages instead of only incrementation and reduction. A rebec
sending as many messages as it consumes will have a memory value of 0 while a rebec
only consuming messages but sending none would have a memory value of 1. e
heuristic is deëned formally in Equation 3.7.

p =
∑

k∈nparent

|mk|

q =
∑

j∈nstate

|mj|

h(n) =

{

1 + q − p− (1− reductionsr
executionsr

) if q = p

1 + q − p otherwise
(3.7)

When the difference in messages is 0, a state will receive a discount based on the mem-
ory value. e maximum discount has the same effect on the heuristic value as half
a message. However, that can only happen when a rebec has a negative difference,
i.e. −1, on every execution and, therefore, the discount would not apply. us, the
discount range is equal to 0 to 0.5 messages.

As before, the discount is only used as a tie-breaker for equal states. e aim is to favor
rebecs which have a history of decreasing the total number of messages when the model
checker has two or more otherwise equally-valued states. To maintain admissibility,
no penalty is given to rebecs having, on average a positive difference, and, of course,
no discount either. For the same reasons as the Queue Difference heuristic, this one is
not consistent.

Steinar Hugi Sigurðarson 29

As with the non-memory version, due to the extreme under-estimating of the heuristic,
it is not expected to perform well with A* search but has good potential with pure
heuristic search.

3.2 Combining Heuristics

Our heuristics provide information regarding different aspects of the message queue.
In fact, we may wish to consider them as individual functions and combine them
for improved results. We propose combining the two consistent heuristics with the
inconsistent lower-value heuristics as follows:

1. Queue Size and Empty Queue. Both heuristics provide valuable estimates while
their values can become signiëcantly different for the same state. Balancing
between those two could potentially be valuable for some models.

2. Queue Size and Current Queue. Combined, the two will favor states with a near-
disabled rebec while reducing the total number of messages at the same time.

3. Queue Size and Reductive Queue. While the Queue Size strategy is a good esti-
mate for the distance to the nearest goal state it will not distinguish between a
path increasing the number of messages and one reducing them. By combin-
ing it with Reductive Queue we have added this information.

4. Queue Size and Queue Difference. Similarly, the Queue Difference will provide
the Queue Size strategy with information on the number of sent messages.

5. Empty Queue and Current Queue. e Empty Queue heuristic aims to decrease
the total number of enabled rebecs and the Current Queue focuses on how
close the system is to having another disabled rebec. us, this pair could
potentially provide more valuable information than either heuristic could in-
dividually.

6. Empty Queue and Reductive Queue Size. is combinationwill reward states with
the fewest enabled rebecs and those reducing the total number of messages.

7. Empty Queue and Queue Difference. e Empty Queue lacks the detection of
message server sending multiple messages. Queue Difference can provide that
information.

Steinar Hugi Sigurðarson 30

e general formula for combined heuristics is their average with the possibility of
altering the weight of either one. us,

ha+b(n) = w ha(n) + (1− w) hb(n),

where ha and hb are the heuristic functions to be combined and w ∈ [0, 1] is the weight
factor. e upper bound is the weighted average of the upper bounds of the heuristics.
If both are admissible then the resulting heuristic is admissible as well and if both are
consistent, the resulting heuristic is consistent as well.

In this study we only consider the combinations listed above with w = 1

2
. Exploring

the potentials of other combinations and different factors between the heuristic is left
to future research.

3.3 Inverted Heuristics for Guidance Towards Queue
Overîow

As previously mentioned, the actors in the actor model have an unbounded queue.
However, Modere has an upper bound deëned by the model designer for modeling
purposes (Jaghoori et al., 2006). Queue overìow occurs when a message is sent to
a rebec with a full message queue. Here, we present a general approach to adapt our
heuristics to guide the search towards such a state by inverting the heuristic with respect
to its upper bound. us,

hinv(n) = hmax(n)− h(n).

An inverted heuristic is denoted by [heuristic name]inv.

By applying the inverted heuristic, the search will avoid deadlocks. Since we need only
one of the rebecs to overìow, most of the heuristics are over-estimating. In fact, of
the inverted heuristics only Current Queueinv is admissible. e other inversions use
the messages queue of all of the rebecs and are thus evaluating states as if all of the
queues need to overìow. erefore, Queue Sizeinv is the more likely to provide good
information than the others. Its deënition is virtually identical to the channel overìow
heuristic proposed in (Lin et al., 1988).

Since queue overìow is outside the scope of this study, the topic will not be discussed
further. Experimental results for the inverted heuristics are listed in Appendix C.

Steinar Hugi Sigurðarson 31

3.4 Implementation

StandardModere generates C++ code which implements Nested-DFS search (NDFS),
with partial-order reduction, to traverse the state-space of the system. e program
code is highly coupled to other parts of the code, which is presumably a result of op-
timization. Although performance is of great importance when it comes to model
checkers, a researching developer will ënd it difficult to modify Modere to implement
other algorithms for two reasons: Identifying and fully understanding the search re-
lated code is time-consuming and chances of introducing errors while modifying it are
high.

In Guided-Modere, the entire search implementation was thus abstracted and sepa-
rated from other parts of the code. Search algorithms implement the template method
pattern (Johnson, Gamma, Helm, & Vlissides, 1995) which enables the developer to
extend pre-existing search algorithms and re-implement only the parts that have dif-
ferent behaviors. Furthermore, the state-space search is encapsulated so that other
parts of the model checker require no knowledge of the inner behavior of the search.
Most of the commonly seen explicit state search algorithms share the same skeleton
and, in many cases, parts of their behavior. e template method pattern is applica-
ble for such algorithms. Additionally, the lists used by search algorithms for storing
states are abstracted with the template method pattern for reusability and to simplify
implementation of new search algorithms.

A search algorithm can optionally use a heuristic function. Heuristic functions in
Guided-Modere implement the strategy pattern, also known as policies. e strategy
pattern is applicable to classes which vary only in their behavior, sharing the same
skeleton and interface. Essentially, all heuristic functions share the same interface,
accepting a state as input and returning a single estimate in the form of a number.
e search algorithm has no further interest in the heuristic and, therefore, its inner
behavior can be encapsulated. Our heuristics must be interchangeable; any strategy
should be usable with any search algorithm, regardless of whether that search algorithm
will use it or not. In such cases, the strategy pattern is applicable.

Each search algorithm and each heuristic needs to be registered with the search reg-
istry and heuristic registry, respectively, in order to become available to the user. Both
registries implement the singleton pattern and all registrations must take place before
execution begins. In addition to the NDFS algorithm provided by standard Modere,
we implemented and added four new state-space search algorithms to Guided-Modere
using the aforementioned interface and three types of node lists.

Steinar Hugi Sigurðarson 32

e following search algorithms are supported:

• Modere’s NDFS

• Breadth-ërst search, using FIFO node list.

• Depth-ërst search, using LIFO node list.

• Pure heuristic, using priority node list.

• A* search, using priority node list.

• Weighted A*, with run-time conëgurable weight factor.

• A* LIFO, with ties handled in a LIFO manner, instead of FIFO.

e informed search algorithms, pure heuristic and A* algorithms, can be used with
all of the heuristics.

33

Chapter 4

Experimental Results

Guided-Modere is supported by two front-end command-line tools: a runner and a
counter-example viewer. e runner handles the process of compiling a Rebeca model,
performing the requested executions, collecting relevant data and generating a report.
e second tool, counter-example viewer, conveniently displays the counter-examples
for debugging and analysis.

We ran our experiments on various problems and protocols from the literature. Each
of them was modeled in Rebeca and veriëed for deadlock freedom before adding errors
occurring at different places in the state-spaces. Many commonly experienced mod-
eling errors will be discovered at certain depth in the search tree, regardless of state
variable conëguration and order of events. Such errors did not yield interesting results
besides showing the well-known difference between depth-ërst search and breadth-ërst
search. More interesting in the context of this study are errors which occur only in rare
situations, preferably in models with a relatively large state-space. Moreover, we are
interested in difficult errors that might not be found by simulation or by conventional
model checkers, implementing depth-ërst or breadth-ërst search, before reaching an
upper bound or state-space explosion.

4.1 Setup

Experiments were executed on machines with Dual Core Intel(R) Xeon(TM) CPU
3.20GHz processors and 2GB RAM.emachines ran Rocks release 5.0 (V)/CentOS
release 5 (Final) with Linux kernel 2.6.18–53.1.14.el5. Java code was built with Sun
Java version 1.6.0–22 and C++ code using G++ (GCC) 4.1.2 20070626 without com-
piler optimization. Results concerning execution time are the average of either 10 or

Steinar Hugi Sigurðarson 34

20 consecutive executions, as noted. Modere’s bound for maximum depth the default
10,000. Guided-Modere had no such limit implemented.

4.2 Self-stabilizing Token Ring

Edsger W. Dijkstra presented a self-stabilizing token ring using guarded commands in
an article on self-stabilization (Dijkstra, 1974). Starting from an arbitrary initial state,
the token ring will converge to a legitimate state in a ënite number of steps, such that
exactly one node holds the token. Each node v in the graph knows its clockwise, or
left hand, neighbor as its parent p and node v0 is the leader. e value of node v is
denoted S(v) and is eventually in {0, . . . , n−1} where n is the number of nodes in the
graph. In a legitimate state, a single node in the token ring holds the token allowing
access to a mutual resource. e token is then passed on from a parent node to its
child. Pseudo-code for the algorithm run by each node is shown as Algorithm 1.

Algorithm 1 Edsger W. Dijkstra’s token ring
1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 mod n

4: end if
5: else
6: if S(v) 6= S(p) then
7: S(v) := S(p)
8: end if
9: end if

e implementation of the algorithm in Rebeca has one reactive class, Node, and a
rebec for each node in the graph. Instead of having the nodes knowing their parent
we invert the relations such that each node knows its child. Every time a node changes
its value it will send the new value to its child. In order to verify the model from every
initial state we initialize the value with a non-deterministically selected value in the
range {0, . . . , n− 1}. e model is shown in Listing D.4.

e token ring model with 6 nodes is veriëed deadlock-free with 7,180,795 states. An
example execution showing a single round of a stabilized token ring is illustrated in
Figure 4.1.

Steinar Hugi Sigurðarson 35

1v0

0

v5

0

v4

0 v3

0

v2

0

v1

Token

(a) v0 (leader) has token

1v0

0

v5

0

v4

0 v3

0

v2

1

v1

Token

(b) v1 has token

1v0

0

v5

0

v4

0 v3

1

v2

1

v1

Token

(c) v2 has token

1v0

0

v5

0

v4

1 v3

1

v2

1

v1

Token

(d) v3 has token

1v0

0

v5

1

v4

1 v3

1

v2

1

v1

Token

(e) v4 has token

1v0

1

v5

1

v4

1 v3

1

v2

1

v1

Token

(f) v5 has token

Figure 4.1: Token ring: Illustration of algorithm 1 with 6 nodes where v0 is the leader.
Value of each node, S(v), is shown inside it. Edges lead from child to parent.

0v0

0

v5

0

v4

0 v3

0

v2

1

v1

Leaders

Figure 4.2: A deadlock conëguration in a token ring with two adjacent leaders, each
with a different value.

Token Ring with Two Leaders

e token ring requires a unique leader. Should there be either no leader or more than
one leader, the system may deadlock. A token ring without a leader will converge to a
state in which all of the nodes have the same value, S(v1) = . . . = S(vn−1), in a ënite
number of steps. In such a conëguration, no updates will take place and the system is
in a deadlock state. If there is more than one leader in the token ring, each of them
will eventually have a different value from the next. Once the new value of one leader
reaches the next, the leader will refuse the value as it does not match its own. Such a
deadlock conëguration, for two adjacent leaders, is illustrated in Figure 4.2.

e objective of this model is to experiment with errors that only occur when the entire
system is in one of the relatively few conëgurations. Adding another leader to the token

Steinar Hugi Sigurðarson 36

Figure 4.3: Results for a token ring with two leaders: Number of nodes expanded in
the search tree before ënding a deadlock.

ring produces this kind of error. With the added leader, adjacent to the previous one,
the search tree contains 5,453,017 nodes with maximum depth of 56.

e number of nodes each search algorithm and heuristic expanded before ënding a
deadlock state is illustrated in Figure 4.3. e range is quite big, with breadth-ërst
exploring 4,147,805 nodes (76% of the state-space) and pure heuristic search with
Queue Size and Reductive Queue with Memory heuristics ënding the deadlock after
only 29 nodes (0.0005% of the state-space).

All of the pure heuristic searches, except when using Current Queue, found a deadlock
after fewer than 150 expansions. e initial branching factor in this model is quite
large and, therefore, it is important for a depth-seeking algorithm like pure heuristic
search to make a good initial choice. In this case, the number of disabled rebecs is
a good measurement since a stable system will have only one enabled rebec, making
pure heuristic search with Empty Queue heuristic ideal. Since every message sent in
the system is conditional, all of the heuristics depending on the total size of the message
queue have a positive effect on the search. e Current Queue depends only on the
queue of the rebec being executed, aiming to empty out the rebecs closest to becoming
disabled and to make isolated parts of the system entirely disabled. Since each node

Steinar Hugi Sigurðarson 37

is either directly or indirectly connected to each other such isolation is impossible and
the status of individual rebecs is not a good indicator in this model.

e branching factor for the initialization of each node is 6 and in each of the initial-
izations the rebec will send exactly one message. Note that there is no requirement
made that all rebecs are initialized before processing other messages of initialized re-
becs.

Due to all of the rebecs sending the same number of messages, the evaluation function
of A* search, f(n) = g(n) + h(n), returns a worse value for a node reducing the
number of messages at depth 3, than for node any non-reducing node at level 1. A
non-reducing node at depth 2 will receive the same evaluation as a reducing node at
level 3. Simply put, this creates an initial threshold for A*. erefore, A* explores a
great amount of nodes which have equal evaluation at low depth before proceeding
deeper. After crossing this threshold the algorithm shows its strength over breadth-
ërst search and ënds a solution relatively quickly when used with the higher-value
heuristics. As expected, A* search with the lower-value heuristics, Reductive Queue
and Queue Difference performed similar to breadth-ërst search.

Weighted A* search with weight factor of 0.8 is sufficiently more willing to explore
deeper to overcome this problem. However, by doing so the guaranteed optimality of
A* is sacriëced (Pearl, 1984).

e difference betweenModere and pure depth-ërst search is likely a result of different
order of handling non-deterministic choices.

Most of the searches returned either an optimal or a near optimal counter-example,
with a few exceptions. As expected, all A* searches returned optimal solutions. e
length of each solution is shown in Figure 4.4. Depth-ërst and pure heuristic search
returned longer paths than the other algorithms, while still shorter than the longest
observed counter-example of 26 actions for this model. Modere returned an optimal
solution.

Figure 4.5 illustrates the average execution times, of 20 consecutive executions, for
all algorithms. ey are closely related to the number of nodes expanded with the
exception that uninformed searches are relatively faster than the heuristic searches.
ere is an insigniëcant difference between the pure heuristic searches, all of which
returned a counter-example in less than 60 ms, with the exception of the Current
Queue heuristic which required considerably more time as it expandedmore nodes. A*
search with the lower-value heuristics holds the records for longest executions, having

Steinar Hugi Sigurðarson 38

Figure 4.4: Results for a token ring with two leaders: Length of counter-examples
returned, producing the deadlock error found.

Figure 4.5: Results for a token ring with two leaders: Execution time.

Steinar Hugi Sigurðarson 39

explored nearly as many nodes as breadth-ërst search with the added overhead of the
heuristics.

A* search with Empty Queue heuristic performed best of the searches guaranteeing
optimal solution. is is due to the small overhead and the fact it expanded the fewest
nodes of the optimal algorithms.

e best Guided-Modere search found a deadlock after expanding 29 nodes compared
to 26,205 nodes for the best Modere search. Both found optimal solutions.

4.3 Dining Philosophers

e dining philosophers is another well-known problem in computer science, origi-
nally presented by Edsger W. Dijkstra as ëve computers competing for access to ëve
shared drives. C. A. R. Hoare later presented the problem as ëve philosophers sharing
a dinner around a circular table. e table has ëve plates, ëve forks and a large bowl
of spaghetti in the middle (Hoare, 1978). As philosophers do, they are either thinking
or eating. Each philosopher needs two forks to eat and always starts by picking up the
fork on his left side and then the one on his right side. One can easily see that if all
philosophers enter the table at the same time and pick up their left fork, they will all
starve to death while waiting for the fork on their right side. e dining philosophers
problem is illustrated in Figure 4.6

Various approaches have been proposed for solving the problem. Our model is based
on the implementation used in (Jaghoori et al., 2006) and has one of the philoso-
phers pick up the fork to his right ërst. is is sufficient to break the symmetry and
no philosopher will starve. We have veriëed our model to be correct and deadlock
free.

p0

R

L

∈

p1R L

∈

p2

R

L

∈

p3

R

L

∈

p4

R

L

∈

Figure 4.6: e Dining Philosophers problem.

Steinar Hugi Sigurðarson 40

Figure 4.7: Forgetful Dining Philosophers: Number of nodes expanded in the search
tree before ënding a deadlock.

Forgetful Dining Philosophers

Now we may consider the possibility that one or more philosophers do not show up
and what effect that may have on the system. e extended problem grants each
philosopher the ability to remember the dinner and arrive as expected, to forget it
temporarily and potentially remember it later or to forget the dinner completely and
thus never arriving. Choice between the options is non-deterministic.

If a philosopher does not arrive the other two around him will beneët by gaining
unconditional access to his forks. Should a philosopher arrive, but neither of those
adjacent to him, he will be granted access to both of his forks each time requested
and will never need to wait for longer than the time it may take each fork to respond.
e model requires at least one philosopher to arrive, otherwise there will be no events
driving the system and it deadlocks.

e heuristics will detect whether a philosopher has forgotten the dinner completely
or not and evaluate the state accordingly. If a philosopher has forgotten it temporarily,
the non-deterministic choice is made again in the same way as before. e heuristics
manage to exploit this behavior and drive the search relatively quickly to a deadlock.
e philosophers will be evaluated equally for the ërst three levels of the search tree,

Steinar Hugi Sigurðarson 41

Queue Size
Empty Queue

Current Queue
Reductive Queue

Reductive Queue w/memory
Queue Difference

Queue Difference w/memory

Pure Heuristic

Breadth-First
Depth-First

Modere w/o PO
Modere w/PO

Queue Size
Empty Queue

Current Queue
Reductive Queue

Reductive Queue w/memory
Queue Difference

Queue Difference w/memory
Queue Size

Empty Queue
Current Queue

Reductive Queue
Reductive Queue w/memory

Queue Difference
Queue Difference w/memory

Weighted A* (w=0.8)

A*

Se
arc

h a
lgo

rit
hm

(Bound reached)

Worst resultBest result Other results

Figure 4.8: Forgetful Dining Philosophers: Length of counter-examples returned, pro-
ducing the deadlock error found.

creating a threshold forcing A* search to expand a signiëcant amount of similar nodes,
which is clearly visible in Figure 4.7. Once the optimality requirement has been re-
laxed, namely in weighted A*, this threshold is proven quite useful as the cost of pro-
ceeding down a path with one or more non-forgetting philosophers is expensive. Due
to bad initial choices the depth-ërst searches are expanding a large amount of nodes
before eventually ënding a deadlock state.

Weighted A* search with ReductiveQueue and ReductiveQueue withMemory heuris-
tics performed well with 328 and 30 expanded nodes, respectively. is is lower than
observed for this heuristic with similar models and thus luck may be involved. All of
the pure heuristic searches expanded relatively few nodes with both of the Reductive
Queue heuristics, Empty Queue and Queue Size under 100 nodes.

ere is a signiëcant difference between Modere, expanding over 3 million nodes,
and the heuristic searches, all of which expanded fewer than 1 million nodes. e
best heuristic search expanded 16 nodes, only 0.0005% of the 3,057,182 nodes that
Modere, with partial order reduction, expanded. With Modere’s default upper bound
of 10,000 for the search depth, it did not return a result without the partial order
reduction. Once the limit had been increased sufficiently, the deadlock was found
after 3,323,899 node expansions.

Steinar Hugi Sigurðarson 42

Figure 4.9: Forgetful Dining Philosophers: Execution time.

ere is only a small difference in the length of counter-examples returned, listed in
Figure 4.8. All informed searches found an optimal or a near optimal solution of
16 and 17 states. e depth-ërst searches returned a slightly longer solution of 20
states.

As shown in Figure 4.9, Guided-Modere found the deadlock after less time than stan-
dard Modere for all searches (average of 20 executions). e fastest guided search had
a total execution time of only 36 ms, compared to 338,532 ms (5 min. and 38 sec.)
for Modere. e fastest search with guaranteed optimality was A* with Queue Size
heuristic, ënding the deadlock in 26,973 ms (26 sec).

For this problem, Guided-Modere dominates Modere with shorter counter-examples,
fewer expanded nodes and shorter execution times.

4.4 Needham-Schroeder Public-Key Protocol

eNeedham-Schroeder Public-Key Protocol is a well-known communication proto-
col, proposed by Roger Needham and Michael Schroeder, providing mutual authen-
tication of two clients communicating over an insecure network using a trusted server
for key exchange (Needham & Schroeder, 1978).

Steinar Hugi Sigurðarson 43

We modeled the protocol using a multiplication of the value and the key as encryp-
tion, and division as decryption, requiring the public and private keys to be the same.
Although not recommended for practical use, this was sufficient to verify the com-
munication. Unfortunately, the initial protocol suffered from a man-in-the-middle
vulnerability, identiëed by Gavin Lowe who proposed a ëxed version (Lowe, 1995).
However, we chose to implement the original protocol.

e protocol has seven steps which can be described as follows:

1. A → S: A,B

2. S → A: {Kb, B}K−1
s

3. A → B: {Na, A}Kb

4. B → S: B,A

5. S → B: {Ka, A}K−1
s

6. B → A: {Na, Nb}Ka

7. A → B: {Nb}Kb

Where A is the initiating client, or initiator, B responding client, or responder, and S

the trusted key exchange server. Ka and Kb are the respective keys of clients A and
B and K−1

s is the signature of the key server S. Na and Nb are the respective nonces
generated by A and B. Nonce is a single-use generated key used to prevent replay
attacks. We refer to a single execution of this protocol as a conversation.

Needham-Schroeder Protocol with Nonce error

is experiment focuses on errors triggered only when events occur in a particular
order.

Clients generate nonces on two separate occasions. e ërst is before the initiating
client sends its ërst message to the responding client and the second is before the re-
sponding client replies directly to the initiating client, sent in steps 3 and 6 respectively.
By using a single state variable for storing nonces, regardless of where they were cre-
ated, we have introduced an interesting deadlock error which is produced only when
both clients initiate communication at the same time and the rebecs executed in a spe-
ciëc order. When both clients have an incorrect nonce for each other the system will
deadlock.

Steinar Hugi Sigurðarson 44

Figure 4.10: Needham-Schroeder public key protocol with nonce error: Number of
nodes expanded in the search tree before ënding a deadlock.

e initiator sends the responder its nonce in step 3 and receives it again in step 6. If
the initiator has, in another conversation as the responder, overwritten the nonce in
between, the veriëcation will fail.

Another similar scenario is when the responder sends his nonce to the initiator in
step 6 and receives it in step 7. If the reponder has executed step 3 as the initiator in
another communication the veriëcation in step 7 will fail. However, due to the use
of ordered message queues (instead of unordered bags) this cannot occur when both
communications are initialized simultaneously.

e state-space contains 5456 nodes with maximum depth of 912.

e number of nodes each search expanded before ënding a deadlock state is illus-
trated in Figure 4.10. All the informed search methods required fewer nodes than the
uninformed searches. Interestingly, breadth-ërst search expanded fewer nodes than
depth-ërst search. e reason is the relatively small branching factor and a deadlock
state is found at depth of 18 in the much deeper search tree.

Pure Heuristic search with the Empty Queue heuristic expanded the fewest nodes,
ënding a counter-example after only 108 nodes and is closely followed by Queue Dif-
ference with Memory which expanded 120 nodes. A plausible explanation for the

Steinar Hugi Sigurðarson 45

Queue Size
Empty Queue

Current Queue
Reductive Queue

Reductive Queue w/memory
Queue Difference

Queue Difference w/memory

Pure Heuristic

Breadth-First
Depth-First

Modere w/o PO
Modere w/PO

Queue Size
Empty Queue

Current Queue
Reductive Queue

Reductive Queue w/memory
Queue Difference

Queue Difference w/memory
Queue Size

Empty Queue
Current Queue

Reductive Queue
Reductive Queue w/memory

Queue Difference
Queue Difference w/memory

Weighted A* (w=0.8)

A*

Se
arc

h a
lgo

rit
hm

Worst resultBest result Other results

Figure 4.11: Needham-Schroeder public key protocol with nonce error: Length of
counter-examples returned, producing the deadlock error found.

success of Queue Difference with Memory is its tendency to favor a single rebec over
others, in this case, the server. e memory discount will provide the server with the
beneët of the doubt as it is the only rebec causing negative difference in message num-
bers, before the two failed veriëcations which cause the deadlock. is will make the
execution more fair, allowing both clients to replace their nonces in step 5, as respon-
ders, one after the other. Once one of the two conversations has failed, it will expand
that branch and discover the second conversation failing as well. Exploration of the
Empty Queue heuristic was quite similar, allowing the rebecs to go hand in hand until
both reached deadlock in the same manner. Overall, pure heuristic search proved to
be useful for this problem.

A* search expanded considerable more nodes compared to pure heuristic search, with
a relatively similar number for most of the heuristics. A* search with the higher-value
heuristics expanded much fewer nodes than breadth-ërst search, while the lower-value
heuristic explored similar amount of nodes.

Counter-examples returned by the informed searches are signiëcantly shorter than
those from both depth-ërst searches, illustrated in Figure 4.11. All the informed
searches return an optimal solution of 18 actions. Modere and pure depth-ërst search
generated much longer counter-examples containing 450 and 514 actions, respec-

Steinar Hugi Sigurðarson 46

Figure 4.12: Needham-Schroeder public key protocol with nonce error: Execution
time.

tively, 25.5 and 28.5 times the optimal solution. is is partly explained by the height
of the search tree and the two concurrent conversations.

Figure 4.12 illustrates the execution time before a deadlock is found (average of 20 ex-
ecutions). e best pure heuristic searches were notably faster than the others, which
was expected, knowing that they expanded the fewest nodes. Difference between exe-
cution times of the best A* and breadth-ërst search was 35%.

4.5 Combined Heuristics

Table 4.1 lists results for pairs of heuristics. For reference, results from Modere are
appended to the table.

In comparison to the results of individual heuristics, the average of expanded nodes
was signiëcantly lower for the combination heuristics. e average was lower for all
searches except for Needham-Schroeder model (deadlock version) with A* search algo-
rithm. On the other hand, an individual heuristic had the fewest expanded nodes for
7 of the groups (model and search algorithm) compared to only 2 groups for the com-
bined heuristics. us, the results indicate that the combination of heuristics will result

Steinar Hugi Sigurðarson 47

Search Algorithm Heuristic A Heuristic B Token Ring
w/2 leaders

Forgetful
Philosophers

Needham
Schroeder

Pure Heuristic

Empty Queue Queue Size 52 16 108
Empty Queue Current Queue 241 33 409
Empty Queue Reductive Queue 30 24 974
Empty Queue Queue Difference 83 33 331
Queue Size Current Queue 33 33 87
Queue Size Reductive Queue 20 24 974
Queue Size Queue Difference 56 33 331

A*

Empty Queue Queue Size 605,553 104,934 794
Empty Queue Current Queue 3,236,580 545,081 1174
Empty Queue Reductive Queue 2,149,159 553,891 1016
Empty Queue Queue Difference 3,053,137 542,811 998
Queue Size Current Queue 2,377,881 501,939 1013
Queue Size Reductive Queue 1,686,553 419,156 1016
Queue Size Queue Difference 2,381,821 613,367 995

A* w=0.8

Empty Queue Queue Size 366 6436 850
Empty Queue Current Queue 13,489 72 789
Empty Queue Reductive Queue 218 155 695
Empty Queue Queue Difference 4434 150 624
Queue Size Current Queue 256 72 690
Queue Size Reductive Queue 152 155 695
Queue Size Queue Difference 91 150 624

Modere without PO 244,673 3,323,899 1691
Modere with PO 26,205 3,057,183 1668

Table 4.1: Expanded nodes before ënding a deadlock using the average of two heuris-
tics, compared to Modere.

in more stable heuristics and better average performance while individually they may
perform better for speciëc models and errors. However, further experiments would be
required to draw such a conclusion. Spikes in expansions with pure heuristic search
as seen for individual heuristics were not observed for the combined heuristics. e
Current Queue heuristic, which was not performing well on its own, proves valuable
when paired with both the Queue Size and Empty Queue heuristics.

Further details on these results with length of counter-examples and execution times
are provided in Appendix B.

4.6 When DFS is Faster

As mentioned earlier, DFS will perform similarly or better for errors which occur at a
certain depth or a relatively small depth range in the search tree, regardless of the path
chosen. In other cases, the heuristics may not detect error paths and, in the worst case,
focus on error-free sections of the state-space and run out of memory before ënding a
violating state.

Steinar Hugi Sigurðarson 48

If optimal solutions are required, either breadth-ërst or A* search must be used. A*
search with an admissible and consistent heuristic should expand fewer nodes than
breadth-ërst search. erefore, comparing the performance between the two is impor-
tant, even though plain depth-ërst searchmay outperform the pure heuristic search.

is section is dedicated to the study of models where the depth-ërst search expands
similar or fewer nodes than the heuristic searches. Only the number of expansions are
illustrated while length of solutions and execution times are provided in Appendix B
(Table B.4).

Token Ring

A token ring where the required relation between two of the nodes is broken is in fact
no longer a ring. As a result, the token will eventually not be passed on, and the system
deadlocks. Results for this model, with 5 nodes, are illustrated in Figure 4.13. e
optimal path to a deadlock state consists of 11 actions and the maximum depth of the
search tree is 96. e best heuristic search found a solution after expanding 14 states
and the best blind search after only 15 states. For this kind of a problem, heuristic
search is only beneëcial if an optimal solution is required. e best A* search found
an optimal solution after 15,595 node expansions while breadth-ërst search expanded
236,769 nodes.

Dining Philosophers

Standard Modere outperformed all other searches for the Dining Philosophers prob-
lem, when no measures had been taken to prevent deadlocking. e results are il-
lustrated in Figure 4.14. Modere expanded only 31 nodes, executing the minimal
set of actions required to produce the error. e best search of Guided-Modere ex-
panded 224 nodes. Most of the searches returned optimal solutions, including those
of Modere. Some of the A* searches outperform breadth-ërst search while others ex-
panded more nodes, due to reopening of states. A* search with Queue Size heuristic
and Reductive Queue with Memory heuristic return a guaranteed optimal path af-
ter 198,596 and 200,510 expansions, respectively. Compared to the 388,234 nodes
breadth-ërst search expanded, that is a reasonably good performance.

Steinar Hugi Sigurðarson 49

Figure 4.13: Token Ring with broken chain: Number of nodes expanded in the search
tree before ënding a deadlock.

Figure 4.14: Dining Philosophers without deadlock prevention: Number of nodes
expanded in the search tree before ënding a deadlock.

Steinar Hugi Sigurðarson 50

Figure 4.15: Bridge Controller with deadlock error: Number of nodes expanded in
the search tree before ënding a deadlock.

Bridge Controller

e Bridge Controller is a neat Rebeca model presented in (Sirjani et al., 2005). If we
remove the send statement where a train announces it has left the bridge, the model
will deadlock at depth 13 for all paths in the search tree. us, none of the heuristic
search algorithms can outperform depth-ërst search, always ënding the deadlock state
in 13 expansions. e results for this model are listed in Figure 4.15. All searches
return an optimal path since all deadlock paths are of the same length. Breadth-ërst
search expanded all but one node in the 107 node search tree. Of the heuristic searches,
pure heuristic search using the Queue Size heuristic performed the best, expanding 17
nodes before ënding a deadlock state.

4.7 Performance

Modere is highly optimized with regard to CPU usage and memory consumption,
for example, by using custom-written data structures. No such optimizations have
been done in Guided-Modere as the emphasis has mainly been on building a ìexi-
ble research framework. e code was written with readability and extendability in

Steinar Hugi Sigurðarson 51

mind rather than performance and it uses data structures from the standard library.
Regardless, comparing the computational cost of each heuristic is necessary.

Due to the above-mentioned code optimizations in standard Modere we were unable
to compile it successfully with compiler optimization. Regardless of the optimiza-
tion level used, the resulting executable terminated with segmentation fault. Guided-
Modere could, however, be compiled with full compiler optimization without issues.
Experiments showed signiëcant decrease in execution time as optimization levels were
increased and showed execution times comparable with standard Modere expanding
the same number of nodes. To avoid bias in the results, all experimental executions
were compiled without optimization, unless otherwise noted.

Comparison tests were performed for executions that were guaranteed to expand the
same exact number of nodes. is requirement was intended to prevent overhead
caused by initialization and report generation from affecting the results. To accomplish
this we model checked two models: Token ring with 5 nodes and dining philosophers
with 4 philosophers, both of which were veriëed deadlock free. Algorithms included
in the comparison are Modere without partial order reduction, depth-ërst search,
breadth-ërst search and pure heuristic search with each of the heuristics. Modere with
partial order reduction expanded fewer nodes and, due to re-opening of states, A*
search with inconsistent heuristics expanded more nodes. erefore, they were not
included in the comparison.

e state-space of the token ring model, with 5 nodes, is 175,226 states and the dining
philosopher model, with 4 philosophers, 46,010 states. Each pair of model and search
algorithm was executed 10 times in a row, with and without compiler optimization.
Comparison chart with average execution times of the token ring is shown in Figure
4.16 and dining philosophers problem in Figure 4.17. Comparison of average nodes
expanded per second for the token ring in shown in Figure 4.18 and dining philoso-
phers in Figure 4.19. Execution times discussed in this section are the average of 10
consecutive executions.

e rate of exploration, measured in nodes expanded per second, varies between one
model to the other based on the models’ complexity. Simple models will generally
have higher rates than complex ones. e impact of compiler optimization is quite
impressive, increasing the rate by a minimum of 27% (Token Ring, Queue Difference)
and up to 59% (Dining Philosophers, Queue Difference with Memory).

As expected, Standard Modere has a higher rate of exploration than Guided-Modere
when compiled with the same settings. Interestingly, the informed search algorithm

Steinar Hugi Sigurðarson 52

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

·104

Modere without PO

Depth First

Breadth First

Queue Size

Current Queue

Reductive Queue

Queue Difference

Queue Difference Memory

Reductive Queue Memory

Empty Queue

13,009

11,113

10,926

13,085

12,086

14,398

14,561

15,129

16,367

13,407

8,588

8,673

9,946

9,113

11,140

11,243

11,275

12,515

10,251

Milliseconds (ms)

S
ea

rc
h

al
g

o
ri

th
m

Without compiler optimization With compiler optimization

Figure 4.16: Token ring with 5 nodes: Execution time, with and without compiler
optimization.

0 1,000 2,000 3,000 4,000 5,000

Modere without PO

Depth First

Breadth First

Queue Size

Current Queue

Reductive Queue

Queue Difference

Queue Difference Memory

Reductive Queue Memory

Empty Queue

3,270

3,270

3,144

3,706

3,406

4,003

4,070

4,212

4,541

3,730

2,098

2,078

2,443

2,198

2,768

2,765

2,819

3,101

2,477

Milliseconds (ms)

S
ea

rc
h

al
g

o
ri

th
m

Without compiler optimization With compiler optimization

Figure 4.17: Dining Philosophers with 4 philosophers: Execution time, with and
without compiler optimization.

Steinar Hugi Sigurðarson 53

0.0 0.5 1.0 1.5 2.0 2.5

·104

Modere without PO

Depth First

Breadth First

Queue Size

Current Queue

Reductive Queue

Queue Difference

Queue Difference Memory

Reductive Queue Memory

Empty Queue

13,469

15,769

16,038

13,391

14,499

12,170

12,034

11,582

10,706

13,069

20,403

20,204

17,617

19,228

15,730

15,585

15,541

14,002

17,095

States/sec

S
ea

rc
h

al
g

o
ri

th
m

Without compiler optimization With compiler optimization

Figure 4.18: Token ring with 5 nodes: States expanded per second (states/sec), with
and without compiler optimization.

0.0 0.5 1.0 1.5 2.0 2.5

·104

Modere without PO

Depth First

Breadth First

Queue Size

Current Queue

Reductive Queue

Queue Difference

Queue Difference Memory

Reductive Queue Memory

Empty Queue

14,070

14,070

14,634

12,416

13,507

11,495

11,306

10,924

10,131

12,335

21,929

22,144

18,832

20,937

16,621

16,643

16,321

14,839

18,575

States/sec

S
ea

rc
h

al
g

o
ri

th
m

Without compiler optimization With compiler optimization

Figure 4.19: Dining Philosophers with 4 philosophers: States expanded per second
(states/sec), with and without compiler optimization.

Steinar Hugi Sigurðarson 54

exceeds the blind search algorithms for some heuristics. is indicates that the addi-
tional overhead caused by those heuristics is small, although other factors may have
an impact on this. Search algorithms in Guided-Modere use the following Standard
Library and Standard Template Library data structures to achieve the required behav-
ior:

• double ended queue for FIFO and LIFO node lists,

• priority queue for the node lists of Pure Heuristic and A* and,

• hashmap, which all of the algorithms use for faster ënding and removal of nodes.

e standard library priority queue has worst-case of O(n) for adding a new node,
O(log(n)) amortized. us, the rate of the informed search algorithms can vary be-
tween models depending on the order in which the nodes are expanded and their
heuristic values. As the blind search algorithms depend only on the order in which the
nodes are created this does not apply to them.

e heuristics can be categorized as follows: heuristics depending on the node’s state,
depending on the node’s state and its parent, and heuristics depending on the parent
and an external data structure for memory. Note that the information could be coded
into the states; not doing so is mainly for practical purposes. e computational cost
increases between each category. is is clearly visible in the comparison charts in
Figures 4.18 and 4.19. Queue Size, Current Queue and Empty Queue depend only
on the node itself and have the highest exploration rate. Reductive Queue and Queue
Difference depend on the parent node as well, which requires additional computation
and is visible in the reduced rate. In the third and computationally most expensive
category are both memory algorithms which have a rate considerably lower than other
heuristics.

Measurements indicated that the memory required for each node in Guided-Modere
is on average 83 bytes greater than for standard Modere, the total size depending on
the model being veriëed. e additional memory footprint is a result of nodes be-
ing stored as objects and the additional information required by the informed search
algorithms. Without a doubt, this number can be decreased by refactoring and opti-
mization. However, no such optimizations were attempted as they were outside the
scope of the study.

55

Chapter 5

Related Work

Some form of directed model checking has been present from the beginning of model
checking. Jan Hajek’s Approver, ërst implemented in 1977, is assumed to be the ërst
automated veriëcation tool for communication protocols and used directed search
for veriëcation of safety properties (Edelkamp et al., 2009). In addition to classic
communication protocols it was also capable of verifying other concurrent systems
such as mutual exclusion algorithms. It used techniques dedicated to bug-ënding
instead of depth-ërst or breadth-ërst search, which have usually been applied to model
checking.

In 1998 Yang and Dill published a paper on validation with guided search presenting
a strategy called Target Enlargement which was very effective for some models (Yang
& Dill, 1998). e idea was to make the target states bigger by computing their pre-
image, the states that in one cycle can reach an error state, until the computer’s memory
limitation was reached. If the heuristics found problems, they usually did so in fewer
states than breadth-ërst and depth-ërst search. ey also show that their approach is
more likely to ënd an error before state-space explosion occurs. In addition to Target
Enlargement they propose a heuristic using Hamming distance as search metric. eir
third technique, called Tracks, is similar to Target Enlargement except it uses approx-
imate pre-images of error states based on subsets of the state variables, focusing the
main state variables which control the behavior of the system. e fourth technique,
Guideposts, relies on hints provided by the designer. e number of guideposts a path
passes through is used as guidance for the search.

Edelkamp, Leue, and Lluch-Lafuente coined the term directed model checking in their
paper on HSF-SPIN (Edelkamp et al., 2001). Based on SPIN and its Promela model-
ing language, HSF-SPIN used A*, best-ërst search (referred to as pure heuristic search

Steinar Hugi Sigurðarson 56

in this thesis) and an improved NFDS algorithm to establish safety and a large class of
LTL-speciëed liveness properties. ey present a formula-based heuristics for differ-
ent classes of properties. One of them, called Hap, is used for ënding deadlocks and is
virtually identical to our Empty Queue heuristic. Other heuristics aim at violation of
liveness properties, safety properties and they allow designer-devised heuristics where
the protocol designer can alter the deënition of heuristics and explicitly deëne which
states are dangerous. Without designer intervention, all reads, sends and conditions
are considered dangerous. e paper includes test results for variety of protocols.

In (Hoffmann et al., 2007) predicate abstraction is used to generate heuristics for the
veriëcation of networks of extended timed automata in Uppaal. ey build the entire
abstract state-space before starting the search. During the search, states are mapped to
their counterpart in the abstracted state-space and the error distance of the counterpart
used as a heuristic estimate.

Groce and Visser present heuristic-guided model checking of Java programs in (Groce
& Visser, 2004) using Java PathFinder. ey present seven different heuristics, in
short, based on the number executions of branches and byte-code instructions, branch
coverage, number of blocked threads, amount of interleaving, thread preference and
non-determinism avoidance (choose-free). Additionally, they allow the developer to
deëne his own heuristic function or declare certain states “boring” or “interesting” by
adding certain statements to model in question.

e PROVAT strategy presented in (Lin et al., 1988) has several heuristics, all of which
depend only on the send and receive operations as in this study. ey cover the selec-
tion of states from the open list, selection between actions available from a speciëc state
and deciding whether to discard particular states. e heuristic proposed for ënding
deadlocks is somewhat similar to our EmptyQueue heuristic. When selecting between
transitions the deadlock heuristic always selects a transition performing a receive op-
eration, choosing the one with the fewest messages among those. is corresponds to
the behavior of our Current Queue heuristic, but in a different context. eir channel
overìow strategy corresponds to our inverted version of Current Queue for guidance
towards queue overìow, presented in Appendix C.

In 1996 Clarke and Wing proposed an external storage, distributed and directed on-
the-ìy model checker (Edelkamp & Jabbar, 1994).

Other studies have focused on attacking the state-space explosion problem for Rebeca
models. Slicing-based reductions for Rebeca, with respect to a given property, are
presented in (Sabouri & Sirjani, 2010). is approach can reduce the state-space for

Steinar Hugi Sigurðarson 57

some models and thus verify them before state-space explosion occurs. In (Behjati et
al., 2010), a bounded rational veriëcation approach is proposed using a Monte Carlo
controlled reinforcement learning agent to model check large or inënite Rebeca mod-
els. e search is optimized for ënding counter-examples and returns an approximate
upon reaching the upper-bound for exploration.

58

Chapter 6

Conclusion and Future Work

In this thesis, we have presented seven heuristics which guide actor-based models to-
wards deadlock states. Our experimental results indicate that they can signiëcantly
reduce the number of node expansions required before ënding an error state. We
have shown their ability to produce shorter counter-examples than the conventional
depth-ërst search and in fewer node expansions than the optimal breadth-ërst search.
For models with larger state-spaces than those considered in this study, blind searches
could exhaust the computer’s memory before reaching a goal, failing to ënd a dead-
lock error if one exists. e guided searches presented might reach that deadlock state
before the state-space explosion occurs.

e requirement of optimality causes considerable overhead and pure heuristic search
returned relatively short solutions for most of our experiments, expanding only a frac-
tion of the states A* search explored. Weighted A* with w = 0.8 was a good balance
between the two objectives, returning near-optimal counter-examples with fewer ex-
pansions than traditional A* search.

Two of the heuristics, Queue Size and Empty Queue, showed the best overall perfor-
mance regarding node expansion and execution time. For A* search we recommend
the Queue Size heuristic as it largely dominates the others and will thus perform better,
as visible in the results. Since A* is an optimal search algorithm and all of the heuristics
admissible, the counter-example returned is always optimal.

Further experiments can be done with Guided-Modere using the implemented heuris-
tics. Other combinations of heuristics with different factors between them could po-
tentially result in better performance. One could even create combinations targeting
speciëc deadlock scenarios. Additionally, the inverted versions driving the search to-
wards queue overìow require further research.

Steinar Hugi Sigurðarson 59

Heuristics based on information provided by the designer have been implemented in
(Groce & Visser, 2004) and (Edelkamp et al., 2001), for example. Such a heuristic
could be implemented for Guided-Modere. e model designer could tag message
servers as either interesting or boring. en the heuristic would guide the search such
that states processing interesting messages are chosen over those processing a boring
one. is strategy could be implemented by enabling either ìags or annotations in the
Rebeca code or by the identiëcation of speciëc message servers at run-time.

Our research was limited to A* and pure heuristic search. IDA* search (Iterative-
Deepening A*) (Korf, 1985) has been successfully applied tomodel checking (Edelkamp,
Leue, & Lluch-Lafuente, 2004) and has been demonstrated to perform well in general
with inconsistent heuristics (Zahavi et al., 2007). K-beam search and the non-pruning
alternative k-best search (Felner, 2001) have been successfully applied to model check-
ers (Groce & Visser, 2004; Wijs & Lisser, 2007). MA* (Memory-bounded A*) and
SMA* (Simpliëed-MA*) are designed to overcome the impractical memory require-
ments of A*. Simply put, once the search runs out of memory it expands the best node
on the open list and prunes off the worst node (Russell, 1992).
All of these algorithms would make an interesting addition to Guided-Modere. e
Weighted A* search could potentially be improved by dynamic weighting. Rather than
keeping the weight constant throughout the search the heuristics could have the most
weight initially, reducing it as the search gets deeper into search tree (Pearl, 1984). is
approach provides an upper bound for the length of solution with respect to the op-
timal solution. us, the requirement for optimality could be relaxed up to a speciëc
point, with regard to an optimal solution. In other words, the number of actions in
the counter-example returned would never be more than, say, twice that of an optimal
solution.

Modere implements partial-order reduction. Such a reduction would beneët the in-
formed search algorithms and further reduce the required node expansions.

e study focuses only on the message queue and its relation to the deadlock prop-
erty. e next big step would be developing property-based heuristics and performing
heuristic search for violations of safety properties for actor-based models. Further-
more, applying the hybrid A*+Improved-Nested-DFS search algorithm presented in
(Edelkamp et al., 2004) would enable the veriëcation of liveness properties as well. e
Target Enlargement technique proposed in (Yang & Dill, 1998) or predicate abstrac-
tion such as proposed in (Hoffmann et al., 2007) could result in reduced exploration.
Both of these approaches could be of beneët in the search for violations of the deadlock
property as well.

Steinar Hugi Sigurðarson 60

While outside of the scope of this study, the overhead of model checking with Modere
could be reduced. In order to model check any model with either Modere or Guided-
Modere the Rebeca code must be compiled to C++ code, which is then compiled to
native code. Considerable portion of the native code, which is non-speciëc to the
model in question, does not change from one model to the other and could be cached.
Such optimization would reduce the time before the state-space search begins.

e methods presented in this thesis provide the ability to guarantee shortest counter-
examples for deadlocks more efficiently than the conventional breadth-ërst search.
Without the requirement of optimality theymay ënd deadlock errors in models, where
standard depth-ërst search would suffer state-space explosion, by exploring the state-
space more efficiently.

61

Bibliography

Agha, G. a., Mason, I. a., Smith, S. F., & Talcott, C. L. (1997, January). A foundation
for actor computation. Journal of Functional Programming, 7 (1), 1–72. Available
from http://www.journals.cambridge.org/abstract_S095679689700261X

Baier, C., Katoen, J., & Others. (2008). Principles of model checking. e MIT
Press. Available from http://mitpress.mit.edu/catalog/item/default.asp

?ttype=2&tid=11481

Barnat, J., Brim, L., & Chaloupka, J. (2003). Parallel breadth-ërst search LTL model-
checking. 18th IEEE International Conference on Automated Software Engineer-
ing, 2003. Proceedings., 106–115. Available from http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=1240299

Barnat, J., & Černá, I. (2006). Distributed breadth-ërst search LTL model checking.
Formal Methods in System Design, 29(2), 117–134. Available from http://www

.springerlink.com/index/94376Q360325P688.pdf

Behjati, R., Sirjani, M., & Nili Ahmadabadi, M. (2010). Bounded Rational Search
for On-the-Fly Model Checking of LTL Properties. Fundamentals of Software
Engineering, 292–307. Available from http://www.springerlink.com/index/

Q22174422J82W260.pdf

Burch, J., Clarke, E., McMillan, K., Dill, D., & Hwang, L. (1986). Symbolic model
checking: 10/sup 20/ states and beyond. [1990] Proceedings. Fifth Annual IEEE
Symposium on Logic in Computer Science(4976), 428–439. Available from http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=113767

Clarke, E. (1997). Model checking. In Foundations of software technology and theoretical
computer science (p. 54). Springer. Available from http://www.springerlink

.com/index/xmq77a6tejwdc7nr.pdf

Clarke, E., & Emerson, E. (1982). Design and synthesis of synchronization skeletons
using branching time temporal logic. Logics of Programs, 52–71. Available from
http://www.springerlink.com/index/w1778u28166t2677.pdf

http://www.journals.cambridge.org/abstract_S095679689700261X
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11481
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11481
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1240299
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1240299
http://www.springerlink.com/index/94376Q360325P688.pdf
http://www.springerlink.com/index/94376Q360325P688.pdf
http://www.springerlink.com/index/Q22174422J82W260.pdf
http://www.springerlink.com/index/Q22174422J82W260.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=113767
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=113767
http://www.springerlink.com/index/xmq77a6tejwdc7nr.pdf
http://www.springerlink.com/index/xmq77a6tejwdc7nr.pdf
http://www.springerlink.com/index/w1778u28166t2677.pdf

Steinar Hugi Sigurðarson 62

Clarke, E. M., Emerson, E. A., & Sistla, A. P. (1986, April). Automatic veriëcation of
ënite-state concurrent systems using temporal logic speciëcations. ACM Trans-
actions on Programming Languages and Systems, 8(2), 244–263. Available from
http://portal.acm.org/citation.cfm?doid=5397.5399

Clarke, E. M., Grumberg, O., & Long, D. E. (1994, September). Model check-
ing and abstraction. ACM Transactions on Programming Languages and Sys-
tems, 16 (5), 1512–1542. Available from http://portal.acm.org/citation.cfm

?doid=186025.186051

Courcoubetis, C., Vardi, M., Wolper, P., & Yannakakis, M. (1992). Memory-efficient
algorithms for the veriëcation of temporal properties. Formal methods in system
design, 1(2), 275–288. Available from http://www.springerlink.com/index/

p1706rk8030252r3.pdf

Dijkstra, E. (1974). Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM , 17 (11), 643–644. Available from http://portal.acm.org/

citation.cfm?id=361202

Dowson, M. (1997, March). e Ariane 5 software failure. ACM SIGSOFT Software
Engineering Notes, 22(2), 84.

Dr, K. (2009, February). Directed model checking with distance-preserving abstrac-
tions. International Journal on Software Tools for Technology Transfer, 1(9), 10–37.

Edelkamp, S., & Jabbar, S. (1994). Large-Scale Directed Model Checking LTL.
Edelkamp, S., Lafuente, A., & Leue, S. (2001). Directed explicit model checking

with HSF-SPIN. In Proceedings of the 8th international spin workshop on model
checking of software (pp. 57–79). Springer-Verlag New York, Inc. Available from
http://portal.acm.org/citation.cfm?id=380921.380930

Edelkamp, S., Leue, S., & Lluch-Lafuente, A. (2004). Directed explicit-state model
checking in the validation of communication protocols. International Journal
on Software Tools for Technology Transfer (STTT), 5(2), 247–267. Available from
http://www.springerlink.com/index/k7kgd4thktmyf7k1.pdf

Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., & Aljazzar, H. (2009). Survey
on Directed Model Checking. Artiícial Intelligence, 5348(April 2006).

FDIV Replacement Program: Statistical Analysis of Floating Point Flaw. (2004). Available
from http://www.intel.com/support/processors/pentium/sb/cs-013005.htm

Felner, A. (2001). Improving search techniques and using them on different environ-
ments. Science(February). Available from http://www.ise.bgu.ac.il/faculty/

felner/research/phd_thesis.ps

Groce, A., & Visser, W. (2004, October). Heuristics for model checking
Java programs. International Journal on Software Tools for Technology Transfer,

http://portal.acm.org/citation.cfm?doid=5397.5399
http://portal.acm.org/citation.cfm?doid=186025.186051
http://portal.acm.org/citation.cfm?doid=186025.186051
http://www.springerlink.com/index/p1706rk8030252r3.pdf
http://www.springerlink.com/index/p1706rk8030252r3.pdf
http://portal.acm.org/citation.cfm?id=361202
http://portal.acm.org/citation.cfm?id=361202
http://portal.acm.org/citation.cfm?id=380921.380930
http://www.springerlink.com/index/k7kgd4thktmyf7k1.pdf
http://www.intel.com/support/processors/pentium/sb/cs-013005.htm
http://www.ise.bgu.ac.il/faculty/felner/research/phd_thesis.ps
http://www.ise.bgu.ac.il/faculty/felner/research/phd_thesis.ps

Steinar Hugi Sigurðarson 63

6 (4), 260–276. Available from http://www.springerlink.com/index/10.1007/

s10009-003-0130-9

Grosu, R., & Smolka, S. (n.d.). Quantitative model checking. In Proc. of isola
(Vol. 4, pp. 165–174). Citeseer. Available from http://citeseerx.ist.psu

.edu/viewdoc/download?doi=10.1.1.117.4967&rep=rep1&type=pdf

Havelund, K., Lowry, M., & Penix, J. (2001). Formal analysis of a space-
craft controller using SPIN. IEEE Transactions on Software Engineering,
749–765. Available from http://www.computer.org/portal/web/csdl/doi/10

.1109/32.940728

Hewitt, C. (1977). Viewing control structures as patterns of passing messages. Artií-
cial Intelligence, 8(3), 323–364.

Hoare, C. a. R. (1978, August). Communicating sequential processes. Communications
of the ACM , 21(8), 666–677. Available from http://portal.acm.org/citation

.cfm?doid=359576.359585

Hoffmann, J., Smaus, J., Rybalchenko, A., Kupferschmid, S., & Podelski, A.
(2007). Using predicate abstraction to generate heuristic functions in Up-
paal. Model Checking and Artiícial Intelligence, 51–66. Available from http://

www.springerlink.com/index/j3724375q6q3t804.pdf

Holzmann, G. (1997, May). e model checker SPIN. IEEE Transactions on Software
Engineering, 23(5), 279–295. Available from http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=588521

Holzmann, G., Peled, D., & Yannakakis, M. (1996). On nested depth ërst
search. American Mathematical Society, 51(12), 1336–1338. Available from
http://books.google.com/books?hl=en&lr=&id=b2bvLuMILZkC&

oi=fnd&pg=PA23&dq=On+nested+depth+first+search&ots=

SsNvE2EM4n&sig=5gJnlT17zoCjJ2EPoXUaehnOui4

Jaghoori, M., Movaghar, A., & Sirjani, M. (2006). Modere: e model-checking
engine of Rebeca. Proceedings of the 2006 , 1810–1815. Available from http://

portal.acm.org/citation.cfm?id=1141704

Johnson, R., Gamma, E., Helm, R., & Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1(February), 1–2. Avail-
able from http://www.best-seller-books.com/design-patterns-elements-of

-reusable-object-oriented-software.pdf

Korf, R. (1985, September). Depth-ërst iterative-deepening: An optimal admissi-
ble tree search. Artiícial Intelligence, 27 (1), 97–109. Available from http://

linkinghub.elsevier.com/retrieve/pii/0004370285900840

http://www.springerlink.com/index/10.1007/s10009-003-0130-9
http://www.springerlink.com/index/10.1007/s10009-003-0130-9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.4967&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.4967&rep=rep1&type=pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/32.940728
http://www.computer.org/portal/web/csdl/doi/10.1109/32.940728
http://portal.acm.org/citation.cfm?doid=359576.359585
http://portal.acm.org/citation.cfm?doid=359576.359585
http://www.springerlink.com/index/j3724375q6q3t804.pdf
http://www.springerlink.com/index/j3724375q6q3t804.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=588521
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=588521
http://books.google.com/books?hl=en&lr=&id=b2bvLuMILZkC&oi=fnd&pg=PA23&dq=On+nested+depth+first+search&ots=SsNvE2EM4n&sig=5gJnlT17zoCjJ2EPoXUaehnOui4
http://books.google.com/books?hl=en&lr=&id=b2bvLuMILZkC&oi=fnd&pg=PA23&dq=On+nested+depth+first+search&ots=SsNvE2EM4n&sig=5gJnlT17zoCjJ2EPoXUaehnOui4
http://books.google.com/books?hl=en&lr=&id=b2bvLuMILZkC&oi=fnd&pg=PA23&dq=On+nested+depth+first+search&ots=SsNvE2EM4n&sig=5gJnlT17zoCjJ2EPoXUaehnOui4
http://portal.acm.org/citation.cfm?id=1141704
http://portal.acm.org/citation.cfm?id=1141704
http://www.best-seller-books.com/design-patterns-elements-of-reusable-object-oriented-software.pdf
http://www.best-seller-books.com/design-patterns-elements-of-reusable-object-oriented-software.pdf
http://linkinghub.elsevier.com/retrieve/pii/0004370285900840
http://linkinghub.elsevier.com/retrieve/pii/0004370285900840

Steinar Hugi Sigurðarson 64

Leveson, N. (1993, July). An investigation of the erac-25 accidents. Computer,
26 (7), 18–41.

Lin, F. J., Chu, P. M., & Liu, M. T. (1988). Protocol veriëcation using reachabil-
ity analysis: the state space explosion problem and relief strategies. Proceedings
of the ACM workshop on Frontiers in computer communications technology - SIG-
COMM ’87 , 126–135. Available from http://portal.acm.org/citation.cfm

?doid=55482.55496

Lind-Nielsen, J. (1999). Stepwise CTL model checking of state/event systems. Com-
puter Aided Veriícation, 316–327. Available from http://www.springerlink

.com/index/0V4VLHJK5DHX9QFB.pdf

Lowe, G. (1995). An attack on the Needham-Schroeder public-key authentication
protocol. Information processing letters, 56 (3), 131–133. Available from http://

linkinghub.elsevier.com/retrieve/pii/0020019095001442

Needham, R. M., & Schroeder, M. D. (1978, December). Using encryption for
authentication in large networks of computers. Communications of the ACM ,
21(12), 993–999. Available from http://portal.acm.org/citation.cfm?doid=

359657.359659

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solv-
ing. Addison-Wesley. Available from http://www.osti.gov/energycitations/

product.biblio.jsp?osti_id=5127296

Peled, D. (1994). Combining partial order reductions with on-the-ìy model-
checking. In Computer aided veriícation (pp. 377–390). Springer. Available
from http://www.springerlink.com/index/73348Q774295W8T2.pdf

Pnueli, A. (1977). e temporal logic of programs. Foundations of Computer Science,
Annual IEEE Symposium on, 0, 46–57.

Queille, J., & Sifakis, J. (1982). Speciëcation and veriëcation of concurrent systems
in CESAR. In International symposium on programming (pp. 337–351). Springer.
Available from http://www.springerlink.com/index/7X327643572334RW.pdf

Rushby, J. (1995). Formal methods and their role in the certiícation of critical sys-
tems (No. March). Citeseer. Available from http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.48.3999&rep=rep1&type=pdf

Russell, S. (1992). Efficient memory-bounded search methods. Proceedings of the 10th
European conference on Artiícial intelligence.

Russell, S., Norvig, P., Canny, J., Malik, J., & Edwards, D. (1995). Artiícial intelli-
gence: a modern approach (2nd editio ed., Vol. 74). Prentice hall EnglewoodCliffs,
NJ. Available from http://www.cis.uab.edu/courses/cs760/Spring-660-2007/

7A-660-PLUS-SYLLABUS-DRAFT.pdf

http://portal.acm.org/citation.cfm?doid=55482.55496
http://portal.acm.org/citation.cfm?doid=55482.55496
http://www.springerlink.com/index/0V4VLHJK5DHX9QFB.pdf
http://www.springerlink.com/index/0V4VLHJK5DHX9QFB.pdf
http://linkinghub.elsevier.com/retrieve/pii/0020019095001442
http://linkinghub.elsevier.com/retrieve/pii/0020019095001442
http://portal.acm.org/citation.cfm?doid=359657.359659
http://portal.acm.org/citation.cfm?doid=359657.359659
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5127296
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5127296
http://www.springerlink.com/index/73348Q774295W8T2.pdf
http://www.springerlink.com/index/7X327643572334RW.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.3999&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.3999&rep=rep1&type=pdf
http://www.cis.uab.edu/courses/cs760/Spring-660-2007/7A-660-PLUS-SYLLABUS-DRAFT.pdf
http://www.cis.uab.edu/courses/cs760/Spring-660-2007/7A-660-PLUS-SYLLABUS-DRAFT.pdf

Steinar Hugi Sigurðarson 65

Sabouri, H., & Sirjani, M. (2010, January). Slicing-based Reductions for Rebeca.
Electronic Notes in eoretical Computer Science, 260, 209–224. Available from
http://linkinghub.elsevier.com/retrieve/pii/S1571066109005210

Shannon, C. (1950). Programming a computer for playing chess. Philosophical
magazine, 41(7), 256–275. Available from http://www.iis.sinica.edu.tw/

~{}tshsu/tcg2010/slides/slide6.pdf

Sirjani, M., De Boer, F., & Movaghar, A. (2005). Modular veriëcation of
a component-based actor language. Journal of Universal Computer Science,
11(10), 1695–1717. Available from http://www.jucs.org/jucs_11_10/modular

_verificatin_of_a/jucs_11_10_1695_1717_sirjani.pdf

Sirjani, M., Movaghar, A., & Shali, A. (2004). Modeling and veriëcation of reactive
systems using Rebeca. Fundamenta, 63, 1–26. Available from http://portal

.acm.org/citation.cfm?id=1227084

Vardi, M., & Wolper, P. (1984). Automata theoretic techniques for modal logics
of programs. In Proceedings of the sixteenth annual acm symposium on theory of
computing (Vol. 32, pp. 446–456). ACM. Available from http://portal.acm

.org/citation.cfm?id=808711

Wijs, A., & Lisser, B. (2007). Distributed extended beam search for quantitative
model checking. Model Checking and Artiícial Intelligence, 166–184. Available
from http://www.springerlink.com/index/9J01M10731380455.pdf

Yang, C. H., & Dill, D. L. (1998). Validation with guided search of the state space.
Proceedings of the 35th annual conference on Design automation conference - DAC ’98,
599–604. Available from http://portal.acm.org/citation.cfm?doid=277044

.277201

Zahavi, U., Felner, A., Schaeffer, J., & Sturtevant, N. (2007). Inconsistent heuristics.
In Proceedings of the national conference on artiícial intelligence (Vol. 22, p. 1211).
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
Available from http://www.aaai.org/Papers/AAAI/2007/AAAI07-192.pdf

http://linkinghub.elsevier.com/retrieve/pii/S1571066109005210
http://www.iis.sinica.edu.tw/~{}tshsu/tcg2010/slides/slide6.pdf
http://www.iis.sinica.edu.tw/~{}tshsu/tcg2010/slides/slide6.pdf
http://www.jucs.org/jucs_11_10/modular_verificatin_of_a/jucs_11_10_1695_1717_sirjani.pdf
http://www.jucs.org/jucs_11_10/modular_verificatin_of_a/jucs_11_10_1695_1717_sirjani.pdf
http://portal.acm.org/citation.cfm?id=1227084
http://portal.acm.org/citation.cfm?id=1227084
http://portal.acm.org/citation.cfm?id=808711
http://portal.acm.org/citation.cfm?id=808711
http://www.springerlink.com/index/9J01M10731380455.pdf
http://portal.acm.org/citation.cfm?doid=277044.277201
http://portal.acm.org/citation.cfm?doid=277044.277201
http://www.aaai.org/Papers/AAAI/2007/AAAI07-192.pdf

66

Appendix A

Terminology Overview

Action. Actions transform the system from one state to another. A single action is
represented by an edge between two states in a search tree. In Rebeca an action
is the execution of one message server of a single rebec.

Admissible Heuristic. A heuristic is admissible if it never over-estimates the distance
to the nearest goal.

Consistent heuristic. Heuristic which are monotonically non-decreasing along the
shortest path to a goal state.

Counter-example. A set of actions, starting from the initial state, which produce a
violation of a property or an error. e length of a counter-example is the num-
ber of actions it contains and is equal to the depth at which the node containing
the violating state is in the search tree. A counter-example is also referred to as a
solution.

Goal state. A state which satisëes the goal test of a search. In this study we refer to
a goal state as either a node in the search tree or a state in a system where the
system is in a deadlock conëguration.

Heuristic. A strategy which estimates the distance from a particular node in the search
tree to the nearest goal. e estimate of a heuristic is delivered via its heuristic
function.

Largely dominate. A2∗ largely dominates A1∗ if always requires less or equal number
of expansions before ënding a goal state.

Model. A higher level speciëcation of a system written in a modeling language.

Steinar Hugi Sigurðarson 67

Node. A node exists in a search tree and and represents exactly on state. Every node
except for the root node has a parent and possibly children.

Optimal Solution. ere exists no shorter solution than an optimal solution. In the
context of this thesis, it represents the minimal set of actions which can produce
the behavior in question.

Optimal Search. An optimal search is guaranteed to return an optimal solution, if a
solution exists.

Search. We refer to a search as the execution of a search algorithm, with or without a
heuristic, on a search tree.

Search Algorithm. An algorithm which searches a tree of nodes with or without in-
formation from a heuristic function.

Search tree. A collection of nodes forming a tree with a single root node.

State. A state is a snapshot of the system, identiëed by the values of variables, messages,
previously executed statements and other relevant information.

System. e execution of amodel or some other structure which has a certain behavior
and is transformed from one state to another via actions.

68

Appendix B

Extended Results

B.1 Case studies

Results for the case studies discussed in Chapter 4 are presented on table format in
Table B.1. Execution times are averages of 20 consecutive executions.

Task Data To
ke
n
rin

g
w
/2

le
ad
er
s

Ph
ilo
so
ph

er
s,

fo
rg
et
fu
l

N
ee
dh

am
,

de
ad
lo
ck

Modere with PO
Expanded states 26,205 3,057,183 1576
Counter-example 13 21 450
Execution time (ms) 795 338,532 269

Modere without PO
Expanded states 244,673 - 1691
Counter-example 13 - 450
Execution time (ms) 19,215 - 278

Depth First
Expanded states 147 1,251,392 2727
Counter-example 18 20 514
Execution time (ms) 30 161,907 346

Breadth First
Expanded states 4,147,805 911,149 1203
Counter-example 13 16 18
Execution time (ms) 359,106 169,271 82

Pure Heuristic / Queue Size
Expanded states 29 16 973
Counter-example 17 16 18
Execution time (ms) 30 36 81

Continued on next page

Steinar Hugi Sigurðarson 69

Continued from previous page

Pure Heuristic / Empty Queue
Expanded states 31 16 108
Counter-example 18 16 18
Execution time (ms) 29 36 35

Pure Heuristic / Current
Queue

Expanded states 5882 2119 238
Counter-example 23 16 18
Execution time (ms) 1062 302 40

Pure Heuristic / Reductive
Queue

Expanded states 31 86 974
Counter-example 15 16 18
Execution time (ms) 28 60 87

Pure Heuristic / Reductive
Queue Memory

Expanded states 29 30 973
Counter-example 17 16 18
Execution time (ms) 32 44 94

Pure Heuristic / Queue
Difference

Expanded states 131 873 335
Counter-example 17 16 18
Execution time (ms) 55 211 51

Pure Heuristic / Queue
Difference Memory

Expanded states 131 1777 120
Counter-example 17 16 18
Execution time (ms) 56 379 38

A* / Queue Size
Expanded states 262,355 94,074 788
Counter-example 13 16 18
Execution time (ms) 58,043 26,973 74

A* / Empty Queue
Expanded states 834,609 105,076 784
Counter-example 13 16 18
Execution time (ms) 164,134 30,446 74

A* / Current Queue
Expanded states 4,155,059 856,882 1191
Counter-example 13 16 18
Execution time (ms) 444,532 189,782 89

A* / Reductive Queue
Expanded states 2,506,248 701,359 1012
Counter-example 13 16 18
Execution time (ms) 350,852 187,483 91

A* / Reductive Queue
Memory

Expanded states 277,375 181,544 778
Counter-example 13 16 18
Execution time (ms) 75,055 59,778 83

A* / Queue Difference
Expanded states 3,967,745 904,134 996
Counter-example 13 16 18
Execution time (ms) 506,529 237,255 91

Continued on next page

Steinar Hugi Sigurðarson 70

Continued from previous page

A* / Queue Difference
Memory

Expanded states 4,085,625 908,452 994
Counter-example 13 16 18
Execution time (ms) 550,395 243,839 92

A* w=0.8 / Queue Size
Expanded states 86 2305 830
Counter-example 17 17 18
Execution time (ms) 41 362 76

A* w=0.8 / Empty Queue
Expanded states 1588 6436 850
Counter-example 20 16 18
Execution time (ms) 254 890 76

A* w=0.8 / Current Queue
Expanded states 92,885 176,763 926
Counter-example 13 16 18
Execution time (ms) 13,604 36,736 95

A* w=0.8 / Reductive Queue
Expanded states 150 328 695
Counter-example 17 16 18
Execution time (ms) 54 115 72

A* w=0.8 / Reductive Queue
Memory

Expanded states 64 30 829
Counter-example 16 16 18
Execution time (ms) 53 43 86

A* w=0.8 / Queue Difference
Expanded states 15,921 490,640 620
Counter-example 13 16 18
Execution time (ms) 5107 136,590 68

A* w=0.8 / Queue Difference
Memory

Expanded states 2,515,064 792,733 756
Counter-example 13 16 18
Execution time (ms) 370,005 205,890 78

Table B.1: Results of searches for models in case studies.

B.2 Dual Heuristics

Results for dual heuristic searches discussed in Chapter 4 are presented on table format
with additional details in Table B.2. Execution times are averages of 20 consecutive
executions.

Steinar Hugi Sigurðarson 71

Task Data To
ke
n
rin

g
w
/2

le
ad
er
s

Ph
ilo
so
ph

er
s,

fo
rg
et
fu
l

N
ee
dh

am
,

de
ad
lo
ck

Pure Heuristic / Empty
Queue- Queue Size

Expanded states 52 16 108
Counter-example 24 16 18
Execution time (ms) 33 38 36

Pure Heuristic / Empty
Queue- Current Queue

Expanded states 241 33 409
Counter-example 18 16 18
Execution time (ms) 63 39 51

Pure Heuristic / Empty
Queue- Reductive Queue

Expanded states 30 24 974
Counter-example 17 16 18
Execution time (ms) 31 39 93

Pure Heuristic / Empty
Queue- Queue Difference

Expanded states 83 33 331
Counter-example 23 16 18
Execution time (ms) 45 43 52

Pure Heuristic / Queue Size-
Current Queue

Expanded states 33 33 87
Counter-example 16 16 18
Execution time (ms) 28 39 35

Pure Heuristic / Queue Size-
Reductive Queue

Expanded states 20 24 974
Counter-example 13 16 18
Execution time (ms) 27 39 93

Pure Heuristic / Queue Size-
Queue Difference

Expanded states 56 33 331
Counter-example 18 16 18
Execution time (ms) 39 39 51

A* / Empty Queue- Queue
Size

Expanded states 605,553 104,934 794
Counter-example 13 16 18
Execution time (ms) 134,871 32,691 79

A* / Empty Queue- Current
Queue

Expanded states 3,236,580 545,081 1174
Counter-example 13 16 18
Execution time (ms) 425,287 142,598 93

A* / Empty Queue- Reductive
Queue

Expanded states 2,149,159 553,891 1016
Counter-example 13 16 18
Execution time (ms) 350,190 168,276 128

A* / Empty Queue- Queue
Difference

Expanded states 3,053,137 542,811 998
Counter-example 13 16 18
Execution time (ms) 455,191 166,279 97

Continued on next page

Steinar Hugi Sigurðarson 72

Continued from previous page

A* / Queue Size- Current
Queue

Expanded states 2,377,881 501,939 1013
Counter-example 13 16 18
Execution time (ms) 318,612 130,784 87

A* / Queue Size- Reductive
Queue

Expanded states 1,686,553 419,156 1016
Counter-example 13 16 18
Execution time (ms) 280,724 129,534 97

A* / Queue Size- Queue
Difference

Expanded states 2,379,654 613,367 995
Counter-example 13 16 18
Execution time (ms) 372,277 181,395 96

A* w=0.8 / Empty Queue-
Queue Size

Expanded states 366 6436 850
Counter-example 20 16 18
Execution time (ms) 91 975 82

A* w=0.8 / Empty Queue-
Current Queue

Expanded states 13,489 72 789
Counter-example 15 16 18
Execution time (ms) 3075 49 75

A* w=0.8 / Empty Queue-
Reductive Queue

Expanded states 218 155 695
Counter-example 17 16 18
Execution time (ms) 80 76 75

A* w=0.8 / Empty Queue-
Queue Difference

Expanded states 4434 150 624
Counter-example 15 16 18
Execution time (ms) 1396 78 108

A* w=0.8 / Queue Size-
Current Queue

Expanded states 256 72 690
Counter-example 17 16 18
Execution time (ms) 78 49 69

A* w=0.8 / Queue Size-
Reductive Queue

Expanded states 152 155 695
Counter-example 13 16 18
Execution time (ms) 51 75 75

A* w=0.8 / Queue Size- Queue
Difference

Expanded states 91 150 624
Counter-example 13 16 18
Execution time (ms) 54 77 72

Table B.2: Results of searches with dual heuristics for models in the case studies.

B.3 Additional searches

Table B.3 lists expanded states (above) and length of counter-examples (below) for the
three case studies discussed in Chapter 4, for all of the deadlock seeking algorithms

Steinar Hugi Sigurðarson 73

implemented in Guided-Modere. Execution times are averages of 10 consecutive ex-
ecutions.

By default, ties in A* search are broken in FIFO manner (ërst-in, ërst-out). In table
B.3 we refer to searches in which ties are broken in LIFO manner (last-in, ërst out), as
A LIFO. For these searches, A behaves like DFS for equal states. e random heuristic
is non-admissible and, thus, A* is not optimal with this heuristic.

Algorithm Heuristic To
ke
n
rin

g
w
/2

le
ad
er
s

Ph
ilo
so
ph

er
s,

fo
rg
et
fu
l

N
ee
dh

am
,

de
ad
lo
ck

Pure Heuristic / Random
Expanded states 12,589 2,447,970 704
Counter-example 14 21 18
Execution time (ms) 1471 405,343 63

A* / Random
Expanded states 317,758 404,948 612
Counter-example 13 18 18
Execution time (ms) 39,159 84,939 60

A* LIFO / Queue Size
Expanded states 263,752 89,833 783
Counter-example 13 16 18
Execution time (ms) 60,130 26,597 72

A* LIFO / Empty Queue
Expanded states 837,125 98,299 783
Counter-example 13 16 18
Execution time (ms) 169,728 29,483 72

A* LIFO / Current Queue Size
Expanded states 4,128,874 897,985 1196
Counter-example 13 16 18
Execution time (ms) 464,172 196,620 88

A* LIFO / Reductive Queue
Expanded states 2,539,630 707,399 1011
Counter-example 13 16 18
Execution time (ms) 365,172 194,751 90

A* LIFO / Reductive Queue
Memory

Expanded states 262,633 168,231 783
Counter-example 13 16 18
Execution time (ms) 75,253 57,582 82

A* LIFO / Queue Difference
Expanded states 3,885,799 905,945 995
Counter-example 13 16 18
Execution time (ms) 513,644 246,303 89

A* LIFO / Queue Difference
Memory

Expanded states 4,085,188 908,883 996
Counter-example 13 16 18
Execution time (ms) 561,434 252,652 91

Continued on next page

Steinar Hugi Sigurðarson 74

Continued from previous page

A* LIFO w=0.8 / Queue Size
Expanded states 31 106 824
Counter-example 13 18 18
Execution time (ms) 25 50 74

A* LIFO w=0.8 / Empty
Queue

Expanded states 209 106 827
Counter-example 14 18 18
Execution time (ms) 75 50 74

A* LIFO w=0.8 / Current
Queue Size

Expanded states 53,725 282,457 902
Counter-example 13 16 18
Execution time (ms) 10,612 59,191 73

A* LIFO w=0.8 / Reductive
Queue

Expanded states 47 648 719
Counter-example 17 17 18
Execution time (ms) 38 178 72

A* LIFO w=0.8 / Reductive
Queue Memory

Expanded states 55 35 828
Counter-example 14 16 18
Execution time (ms) 52 42 84

A* LIFO w=0.8 / Queue
Difference

Expanded states 7971 476,309 609
Counter-example 13 16 18
Execution time (ms) 3468 125,092 65

A* LIFO w=0.8 / Queue
Difference Memory

Expanded states 2,533,642 789,086 753
Counter-example 13 16 18
Execution time (ms) 378,597 202,297 74

A* w=0.9 / Queue Size
Expanded states 68 27 169
Counter-example 16 16 18
Execution time (ms) 49 39 38

A* w=0.75 / Queue Size
Expanded states 63 46 588
Counter-example 13 17 18
Execution time (ms) 39 40 60

A* w=0.7 / Queue Size
Expanded states 114 78 663
Counter-example 14 17 18
Execution time (ms) 68 48 64

A* w=0.6 / Queue Size
Expanded states 777 1483 682
Counter-example 13 16 18
Execution time (ms) 375 391 66

A* w=0.9 / Empty Queue
Expanded states 59 27 311
Counter-example 18 16 18
Execution time (ms) 31 37 45

Continued on next page

Steinar Hugi Sigurðarson 75

Continued from previous page

A* w=0.75 / Empty Queue
Expanded states 1976 46 569
Counter-example 15 17 18
Execution time (ms) 442 39 57

A* w=0.7 / Empty Queue
Expanded states 3621 78 761
Counter-example 13 17 18
Execution time (ms) 1022 48 70

A* w=0.6 / Empty Queue
Expanded states 119,226 1223 749
Counter-example 13 16 18
Execution time (ms) 32,383 356 69

A* w=0.9 / Current Queue
Size

Expanded states 144,890 442,278 353
Counter-example 17 16 18
Execution time (ms) 25,179 77,358 45

A* w=0.75 / Current Queue
Size

Expanded states 427,593 204,032 890
Counter-example 13 16 18
Execution time (ms) 49,374 38,586 74

A* w=0.7 / Current Queue
Size

Expanded states 1,328,083 238,702 765
Counter-example 13 16 18
Execution time (ms) 135,712 43,839 67

A* w=0.6 / Current Queue
Size

Expanded states 4,159,812 201,919 870
Counter-example 13 16 18
Execution time (ms) 456,246 38,492 72

A* w=0.9 / Reductive Queue
Expanded states 110 282 293
Counter-example 15 16 18
Execution time (ms) 50 83 47

A* w=0.75 / Reductive Queue
Expanded states 1266 1770 813
Counter-example 14 16 18
Execution time (ms) 271 419 77

A* w=0.7 / Reductive Queue
Expanded states 86,260 43,710 590
Counter-example 15 16 18
Execution time (ms) 17,141 10,445 63

A* w=0.6 / Reductive Queue
Expanded states 1,395,616 255,467 797
Counter-example 13 16 18
Execution time (ms) 215,434 66,037 77

A* w=0.9 / Reductive Queue
Memory

Expanded states 58 30 994
Counter-example 16 16 18
Execution time (ms) 54 43 91

Continued on next page

Steinar Hugi Sigurðarson 76

Continued from previous page

A* w=0.75 / Reductive Queue
Memory

Expanded states 73 30 817
Counter-example 16 16 18
Execution time (ms) 54 43 83

A* w=0.7 / Reductive Queue
Memory

Expanded states 116 28 817
Counter-example 14 16 18
Execution time (ms) 62 41 83

A* w=0.6 / Reductive Queue
Memory

Expanded states 36,950 3567 791
Counter-example 13 16 18
Execution time (ms) 12,812 1197 81

A* w=0.9 / Queue Difference
Expanded states 262,481 1,248,955 241
Counter-example 18 16 18
Execution time (ms) 66,313 286,281 44

A* w=0.75 / Queue Difference
Expanded states 831,652 670,971 755
Counter-example 14 16 18
Execution time (ms) 157,897 169,804 74

A* w=0.7 / Queue Difference
Expanded states 3,315,432 869,952 608
Counter-example 13 16 18
Execution time (ms) 443,438 213,873 65

A* w=0.6 / Queue Difference
Expanded states 3,300,044 771,059 767
Counter-example 13 16 18
Execution time (ms) 442,805 193,303 75

A* w=0.9 / Queue Difference
Memory

Expanded states 276,903 281,272 777
Counter-example 13 16 18
Execution time (ms) 66,935 79,264 78

A* w=0.75 / Queue Difference
Memory

Expanded states 3,245,379 928,105 759
Counter-example 13 16 18
Execution time (ms) 460,999 234,911 76

A* w=0.7 / Queue Difference
Memory

Expanded states 3,289,511 893,905 754
Counter-example 13 16 18
Execution time (ms) 471,028 228,942 76

A* w=0.6 / Queue Difference
Memory

Expanded states 3,889,076 909,852 993
Counter-example 13 16 18
Execution time (ms) 537,296 232,333 91

Table B.3: Results of additional searches for models in the case studies.

Steinar Hugi Sigurðarson 77

B.4 Errors where DFS is faster

Table B.4 lists detailed results for models where depth-ërst search succeed heuristic
guided search with regard to expanded nodes and execution time. Execution times are
averages of 10 consecutive executions.

Task Data To
ke
n
rin

g,
br
ok
en

ch
ai
n

Ph
ilo
so
ph

er
s,

no
in
ve
rt

Tr
ai
n,

no
ne

ca
n
pa
ss

Modere with PO
Expanded states 35 31 13
Counter-example 15 31 13
Execution time (ms) 42 66 44

Modere without PO
Expanded states 35 31 13
Counter-example 15 31 13
Execution time (ms) 43 66 48

Depth First
Expanded states 15 499 13
Counter-example 15 499 13
Execution time (ms) 22 350 25

Breadth First
Expanded states 236,769 388,234 106
Counter-example 11 31 13
Execution time (ms) 13,678 40,918 27

Pure Heuristic / Queue Size
Expanded states 31 230 17
Counter-example 14 31 13
Execution time (ms) 28 61 25

Pure Heuristic / Empty Queue
Expanded states 14 863 29
Counter-example 11 76 13
Execution time (ms) 21 121 26

Pure Heuristic / Current
Queue Size

Expanded states 315 1205 31
Counter-example 14 31 13
Execution time (ms) 61 155 26

Pure Heuristic / Reductive
Queue

Expanded states 191 213 18
Counter-example 18 31 13
Execution time (ms) 35 64 25

Pure Heuristic / Reductive
Queue Memory

Expanded states 31 609 21
Counter-example 14 76 13
Execution time (ms) 27 118 25

Continued on next page

Steinar Hugi Sigurðarson 78

Continued from previous page

Pure Heuristic / Queue
Difference

Expanded states 54 748 56
Counter-example 11 31 13
Execution time (ms) 30 133 26

Pure Heuristic / Queue
Difference Memory

Expanded states 54 540 58
Counter-example 11 31 13
Execution time (ms) 30 115 26

A* /Queue Size
Expanded states 15,595 198,596 104
Counter-example 11 31 13
Execution time (ms) 2461 27,574 27

A* /Empty Queue
Expanded states 113,340 232,372 104
Counter-example 11 31 13
Execution time (ms) 9768 32,039 27

A* /Current Queue
Size

Expanded states 231,916 388,408 106
Counter-example 11 31 13
Execution time (ms) 16,664 49,808 27

A* /Reductive
Queue

Expanded states 169,443 289,376 104
Counter-example 11 31 13
Execution time (ms) 14,901 43,710 27

A* /Reductive
Queue Memory

Expanded states 15,192 200,510 105
Counter-example 11 31 13
Execution time (ms) 3035 34,091 27

A* /Queue
Difference

Expanded states 211,565 270,378 104
Counter-example 11 22 13
Execution time (ms) 17,902 41,617 27

A* /Queue
Difference Memory

Expanded states 218,856 0.0 105
Counter-example 11 0.0 13
Execution time (ms) 19,190 5 27

A* w=0.8 / Queue Size
Expanded states 63 1724 23
Counter-example 14 31 13
Execution time (ms) 29 303 25

A* w=0.8 / Empty Queue
Expanded states 372 5156 81
Counter-example 11 31 13
Execution time (ms) 47 579 27

A* w=0.8 / Current Queue
Size

Expanded states 4308 257,403 44
Counter-example 13 31 13
Execution time (ms) 535 33,460 26

Continued on next page

Steinar Hugi Sigurðarson 79

Continued from previous page

A* w=0.8 / Reductive Queue
Expanded states 238 46,548 22
Counter-example 13 31 13
Execution time (ms) 52 6971 25

A* w=0.8 / Reductive Queue
Memory

Expanded states 75 5635 37
Counter-example 11 31 13
Execution time (ms) 42 838 26

A* w=0.8 / Queue Difference
Expanded states 2941 243,326 80
Counter-example 11 31 13
Execution time (ms) 720 37,598 27

A* w=0.8 / Queue Difference
Memory

Expanded states 77,679 293,570 80
Counter-example 11 31 13
Execution time (ms) 8872 47,521 27

Table B.4: Results for models where DFS outperformed the heuristic searches.

80

Appendix C

Results for Queue Overîow Error

In this appendix we present experimental results for models with queue overìow.
Guided searches are using inverted heuristics. Executions times are the average of 10
consecutive searches. An inverted heuristic is denoted by [heuristic name]inv.

Experiments are executed on the following models:

1. Producer Consumer A send statement should be in an else block, but is executed
unconditionally instead.

2. Forgetful Philosophers If a philosopher forgets temporarily, he will try to remem-
ber twice. Eventually the model may either deadlock or queue overìow, de-
pending on which is reached ërst.

3. Needham with dual retry. If the veriëcation of a nonce fails in step 7, the respon-
der will attempt open a new conversion and ask the initiator to do so as well.
Eventually the model may either deadlock or queue overìow, depending on
which is reached ërst.

4. Token Ring with overîow. Token ring where a leader will update his child twice.
Eventually the model will deadlock.

Results are listed in Table C.1. Execution times are averages of 10 consecutive execu-
tions.

Steinar Hugi Sigurðarson 81

Task Data Pr
od
uc
er
C
on

su
m
er

w
/o
ve
rì
ow

D
in
in
g
Ph

ilo
so
ph

er
s

w
/o
ve
rì
ow

N
ee
dh

am
-S
ch
ro
ed
er

w
/o
ve
rì
ow

an
d
de
ad
lo
ck

To
ke
n
R
in
g

w
/o
ve
rì
ow

Modere with PO
Expanded states 72 151,022 462 316
Counter-example 72 38 117 9
Execution time (ms) 50 8955 91 30

Modere without PO
Expanded states 72 323,947 471 1728
Counter-example 72 37 117 9
Execution time (ms) 50 29,401 91 95

Depth First
Expanded states 25 2,816,138 10,318 1325
Counter-example 25 3628 2623 16
Execution time (ms) 33 315,658 1680 72

Breadth First
Expanded states 1130 53,312 1203 6663
Counter-example 21 7 18 6
Execution time (ms) 62 14,406 82 857

Pure Heuristic /
Queue Sizeinv

Expanded states 49 68 13,653 762
Counter-example 23 23 76 12
Execution time (ms) 34 64 1161 70

Pure Heuristic /
Empty Queueinv

Expanded states 62 403 1977 21,594
Counter-example 27 14 155 13
Execution time (ms) 35 161 285 1740

Pure Heuristic /
Current Queue
Sizeinv

Expanded states 258 42 2637 5425
Counter-example 81 7 139 8
Execution time (ms) 54 42 334 520

Pure Heuristic /
Reductive Queueinv

Expanded states 55 106 41,321 108
Counter-example 23 17 80 11
Execution time (ms) 34 78 3768 35

Pure Heuristic /
Reductive Queue
Memoryinv

Expanded states 45 109 328,101 555
Counter-example 23 22 136 12
Execution time (ms) 34 77 36,000 68

Continued on next page

Steinar Hugi Sigurðarson 82

Continued from previous page

Pure Heuristic /
Queue Differenceinv

Expanded states 83 396 23,637 2482
Counter-example 23 11 85 17
Execution time (ms) 35 158 2530 220

Pure Heuristic /
Queue Difference
Memoryinv

Expanded states 57 1601 7797 3982
Counter-example 21 19 83 7
Execution time (ms) 33 558 912 351

A* / Queue Sizeinv
Expanded states 1087 4192 1506 4091
Counter-example 21 7 18 6
Execution time (ms) 70 1555 114 713

A* / Empty
Queueinv

Expanded states 1340 12,749 1506 14,522
Counter-example 21 7 18 6
Execution time (ms) 80 4676 115 1830

A* / Current
Queueinv

Expanded states 1386 1992 1281 6189
Counter-example 21 7 18 6
Execution time (ms) 81 740 94 961

A* / Reductive
Queueinv

Expanded states 1259 161,118 1363 1892
Counter-example 21 7 18 6
Execution time (ms) 81 62,566 111 429

A* / Reductive
Queue Memory

Expanded states 1086 6939 1506 4066
Counter-example 21 7 18 6
Execution time (ms) 79 3193 134 866

A* / Queue
Difference

Expanded states 1181 108,503 1380 3285
Counter-example 21 7 18 6
Execution time (ms) 76 42,357 111 648

A* / Queue
Difference Memory

Expanded states 1179 132,562 1380 3285
Counter-example 21 7 18 6
Execution time (ms) 79 52,594 113 665

A* w=0.8 / Queue
Sizeinv

Expanded states 74 66 4721 454
Counter-example 23 17 18 6
Execution time (ms) 34 55 381 90

A* w=0.8 / Empty
Queueinv

Expanded states 216 6170 2978 38,459
Counter-example 23 8 18 8
Execution time (ms) 40 2190 247 3423

Continued on next page

Steinar Hugi Sigurðarson 83

Continued from previous page

A* w=0.8 / Current
Queue Sizeinv

Expanded states 607 52 530 11,682
Counter-example 21 7 18 7
Execution time (ms) 54 47 58 1237

A* w=0.8 /
Reductive Queueinv

Expanded states 611 765 1209 2712
Counter-example 23 25 18 7
Execution time (ms) 57 303 107 371

A* w=0.8 /
Reductive Queue
Memoryinv

Expanded states 69 98 10,532 109
Counter-example 23 23 18 6
Execution time (ms) 35 81 1060 41

A* w=0.8 / Queue
Differenceinv

Expanded states 746 8283 1283 2902
Counter-example 21 7 18 6
Execution time (ms) 60 3272 111 386

A* w=0.8 / Queue
Difference
Memoryinv

Expanded states 1159 359,963 2092 1938
Counter-example 21 7 18 6
Execution time (ms) 81 145,591 171 447

Pure Heuristic /
Empty Queue-
Queue Sizeinv

Expanded states 51 92 733 233
Counter-example 23 19 91 14
Execution time (ms) 34 69 146 48

Pure Heuristic /
Empty Queue-
Current Queue
Sizeinv

Expanded states 75 36 2202 4370
Counter-example 27 7 98 13
Execution time (ms) 36 42 326 435

Pure Heuristic /
Empty Queue-
Reductive Queueinv

Expanded states 50 301 1687 607
Counter-example 23 25 101 7
Execution time (ms) 34 151 268 100

Pure Heuristic /
Empty Queue-
Queue Differenceinv

Expanded states 54 1520 2273 2796
Counter-example 23 17 83 14
Execution time (ms) 34 612 362 303

Pure Heuristic /
Queue Size- Current
Queue Sizeinv

Expanded states 61 43 1101 2070
Counter-example 31 7 88 14
Execution time (ms) 37 45 177 204

Pure Heuristic /
Queue Size-
Reductive Queueinv

Expanded states 53 202 68,862 100
Counter-example 23 22 124 12
Execution time (ms) 34 114 7813 36

Continued on next page

Steinar Hugi Sigurðarson 84

Continued from previous page
Pure Heuristic /
Queue Size- Queue
Differenceinv

Expanded states 51 54 49,967 198
Counter-example 23 20 76 13
Execution time (ms) 34 57 5107 47

A* / Empty Queue-
Queue Sizeinv

Expanded states 1319 9332 1508 9811
Counter-example (actions) 21 7 18 6
Execution time (ms) 84 3891 125 1524

A* / Empty Queue-
Current Queueinv

Expanded states 1421 4251 1329 10,892
Counter-example (actions) 21 7 18 6
Execution time (ms) 88 1763 106 1584

A* / Empty Queue-
Reductive Queueinv

Expanded states 1209 95,093 1363 6040
Counter-example (actions) 21 7 18 6
Execution time (ms) 84 41,943 120 1138

A* / Empty Queue-
Queue Difference

Expanded states 1411 56,559 1380 10,363
Counter-example (actions) 21 7 18 6
Execution time (ms) 91 25,043 121 1781

A* / Queue Size-
Current Queueinv

Expanded states 1031 3579 1380 6836
Counter-example (actions) 21 7 18 6
Execution time (ms) 70 1450 110 1135

A* / Queue Size-
Reductive Queueinv

Expanded states 1361 105,782 1362 1895
Counter-example (actions) 21 7 18 6
Execution time (ms) 88 45,801 119 468

A* / Queue Size-
Queue Difference

Expanded states 986 11,511 1382 3269
Counter-example (actions) 21 7 18 6
Execution time (ms) 71 5210 120 702

A* w=0.8 / Empty
Queue- Queue
Sizeinv

Expanded states 183 392 3807 12,031
Counter-example 23 18 18 12
Execution time (ms) 39 189 347 1323

A* w=0.8 / Empty
Queue- Current
Queue Sizeinv

Expanded states 524 61 1876 11,157
Counter-example 21 7 18 7
Execution time (ms) 53 54 157 1305

A* w=0.8 / Empty
Queue- Reductive
Queueinv

Expanded states 164 2806 1990 4583
Counter-example 21 13 18 7
Execution time (ms) 38 1319 179 811

Continued on next page

Steinar Hugi Sigurðarson 85

Continued from previous page
A* w=0.8 / Empty
Queue- Queue
Differenceinv

Expanded states 696 6979 2093 10,453
Counter-example 21 8 18 6
Execution time (ms) 63 3221 182 1633

A* w=0.8 / Queue
Size- Current Queue
Sizeinv

Expanded states 179 38 937 9220
Counter-example 25 7 18 12
Execution time (ms) 39 43 90 1200

A* w=0.8 / Queue
Size- Reductive
Queueinv

Expanded states 102 177 1277 1140
Counter-example 23 21 18 6
Execution time (ms) 36 113 122 216

A* w=0.8 / Queue
Size- Queue
Differenceinv

Expanded states 88 195 1294 601
Counter-example 21 18 18 6
Execution time (ms) 35 105 121 136

Table C.1: Results for queue overìow experiments with inverted heuristics.

86

Appendix D

Rebeca Models

is appendix contains the key models used in this study.

D.1 Dijkstra’s Token Ring

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Djikstraᾱs self-stabilizing token ring

*

* Source: Dijkstra EW. Self-stabilizing Systems in Spite of Distributed Control

* An On-Site Data Management System Application in. Communications of

* the ACM. 1974;17(11).

*

*/

reactiveclass Node(6) {

knownrebecs {

Node child;

}

statevars {

boolean isLeader;

int value;

}

msgsrv initial(boolean lead) {

Steinar Hugi Sigurðarson 87

value = ?(0, 1, 2, 3, 4); // Indexes of the nodes

isLeader = lead;

child.update(value);

}

msgsrv update(int parentValue) {

if(isLeader && value == parentValue) {

value = ((value + 1) % 5); // Last number should be the number of nodes

child.update(value);

}

if(!isLeader && value != parentValue) {

value = parentValue;

child.update(value);

}

}

}

main {

Node n0(n4):(true);

Node n1(n0):(false);

Node n2(n1):(false);

Node n3(n2):(false);

Node n4(n3):(false);

Node n5(n4):(false);

}

Listing D.1: Dijkstra’s self-stabilizing token ring with 6 nodes. (Result: satisëed)

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Djikstraᾱs self-stabilizing token ring with added deadlock

* Deadlock error: Two leaders.

*

* Source: Dijkstra EW. Self-stabilizing Systems in Spite of Distributed Control

An On-Site Data Management

* System Application in. Communications of the ACM. 1974;17(11).

*

*/

Steinar Hugi Sigurðarson 88

reactiveclass Node(6) {

knownrebecs {

Node child;

}

statevars {

boolean isLeader;

int value;

}

msgsrv initial(boolean lead) {

value = ?(0,1,2,3,4,5); // Indexes of the nodes

isLeader = lead;

child.update(value);

}

msgsrv update(int parentValue) {

if(isLeader && value == parentValue) {

value = ((value + 1) % 6); // Last number should be the number of nodes

child.update(value);

}

if(!isLeader && value != parentValue) {

value = parentValue;

child.update(value);

}

}

}

main {

Node n0(n5):(true);

Node n1(n0):(true);

Node n2(n1):(false);

Node n3(n2):(false);

Node n4(n3):(false);

Node n5(n4):(false);

}

Listing D.2: Dijkstra’s self-stabilizing token ring with 6 nodes and two leaders (Result:
deadlock)

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

Steinar Hugi Sigurðarson 89

*

* Djikstraᾱs self-stabilizing token ring

*

* Source: Dijkstra EW. Self-stabilizing Systems in Spite of Distributed Control

An On-Site Data Management

* System Application in. Communications of the ACM. 1974;17(11).

*

*/

reactiveclass Node(5) {

knownrebecs {

Node child;

}

statevars {

boolean isLeader;

int value;

}

msgsrv initial(boolean lead) {

value = ?(0, 1, 2, 3, 4); // Indexes of the nodes

isLeader = lead;

child.update(value);

}

msgsrv update(int parentValue) {

if(isLeader && value == parentValue) {

value = ((value + 1) % 5); // Last number should be the number of nodes

child.update(value);

}

if(!isLeader && value != parentValue) {

value = parentValue;

child.update(value);

}

}

}

main {

Node n0(n4):(true);

Node n1(n0):(false);

Node n2(n1):(false);

Node n3(n2):(false);

Node n4(n3):(false);

Steinar Hugi Sigurðarson 90

}

Listing D.3: Dijkstra’s self-stabilizing token ring with 5 nodes and leader updating its
child twice. (Result: queue overìow)

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Djikstraᾱs self-stabilizing token ring with added deadlock

* Deadlock: Ring is broken around node n3

*

* Source: Dijkstra EW. Self-stabilizing Systems in Spite of Distributed Control

An On-Site Data Management

* System Application in. Communications of the ACM. 1974;17(11).

*

*/

reactiveclass Node(6) {

knownrebecs {

Node child;

}

statevars {

boolean isLeader;

int value;

}

msgsrv initial(boolean lead) {

value = ?(0, 1, 2, 3, 4); // Indexes of the nodes

isLeader = lead;

child.update(value);

}

msgsrv update(int parentValue) {

if(isLeader && value == parentValue) {

value = ((value + 1) % 5); // Last number should be the number of nodes

child.update(value);

}

if(!(isLeader) && value != parentValue) {

value = parentValue;

child.update(value);

}

Steinar Hugi Sigurðarson 91

}

}

main {

Node n0(n4):(true);

Node n1(n0):(false);

Node n2(n3):(false);

Node n3(n2):(false);

Node n4(n3):(false);

}

Listing D.4: Dijkstra’s self-stabilizing token ring with 5 nodes and a broken chain.
(Result: satisëed)

Steinar Hugi Sigurðarson 92

D.2 Dining Philosophers

/*

* 2011 Reykjavik University

* Author (of this version): Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Dining Philosophers (with 4 philosophers)

*

* Source: C.a. Hoare, Communicating sequential processes, Communications of

* the ACM, vol. 21, 1978, pp. 666-677.

*

* Original problem due to E.W. Dijkstra.

*

* Original implementation: M. Jaghoori, A. Movaghar, and M. Sirjani, ᾶModere:

* The model-checking engine of Rebeca,ᾶ Proceedings of the 2006, 2006,

* pp. 1810-1815.

*

*/

reactiveclass Philosopher(7)

{

knownrebecs {

Fork leftFork;

Fork rightFork;

}

statevars {

boolean isEating;

boolean hasLeftFork;

boolean hasRightFork;

}

msgsrv initial() {

hasLeftFork = false;

hasRightFork = false;

isEating = false;

self.arrive();

}

msgsrv arrive() {

leftFork.request();

}

Steinar Hugi Sigurðarson 93

msgsrv permit() {

if (sender == leftFork) {

if (!hasLeftFork) {

hasLeftFork = true;

rightFork.request();

}

} else {

if (hasLeftFork && !(hasRightFork)) {

hasRightFork = true;

self.eat();

}

}

}

msgsrv eat() {

isEating = true;

self.leave();

}

msgsrv leave() {

hasLeftFork = false;

hasRightFork = false;

isEating = false;

rightFork.release();

leftFork.release();

self.arrive();

}

}

reactiveclass Fork(7) {

knownrebecs {

Philosopher philLeft;

Philosopher philRight;

}

statevars {

boolean leftIsUsing;

boolean rightIsUsing;

boolean leftHasRequested;

boolean rightHasRequested;

}

Steinar Hugi Sigurðarson 94

msgsrv initial() {

leftIsUsing = false;

rightIsUsing = false;

leftHasRequested = false;

rightHasRequested = false;

}

msgsrv request() {

if (sender == philLeft) {

if (!leftHasRequested) {

leftHasRequested = true;

if (!rightIsUsing) {

leftIsUsing = true;

philLeft.permit();

}

}

} else {

if (!rightHasRequested) {

rightHasRequested = true;

if (!leftIsUsing) {

rightIsUsing = true;

philRight.permit();

}

}

}

}

msgsrv release() {

if (sender == philLeft && leftIsUsing){

leftHasRequested = false;

leftIsUsing = false;

if (rightHasRequested) {

rightIsUsing = true;

philRight.permit();

}

}

if (sender == philRight && rightIsUsing){

rightIsUsing = false;

rightHasRequested = false;

if (leftHasRequested) {

leftIsUsing = true;

Steinar Hugi Sigurðarson 95

philLeft.permit();

}

}

}

}

main {

Philosopher phil0(fork0, fork3):(); // Inverted

Philosopher phil1(fork0, fork1):();

Philosopher phil2(fork1, fork2):();

Philosopher phil3(fork2, fork3):();

Fork fork0(phil0, phil1):();

Fork fork1(phil1, phil2):();

Fork fork2(phil2, phil3):();

Fork fork3(phil3, phil0):();

}

Listing D.5: Dining Philosophers with 4 philosophers. (Result: satisëed)

/*

* 2011 Reykjavik University

* Author (of this version): Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Dining Philosophers (with added ability to forget)

* This version contains a deadlock error.

*

* Source: C.a. Hoare, Communicating sequential processes, Communications of

* the ACM, vol. 21, 1978, pp. 666-677.

*

* Original problem due to E.W. Dijkstra.

*

* Original implementation: M. Jaghoori, A. Movaghar, and M. Sirjani, ᾶModere:

* The model-checking engine of Rebeca,ᾶ Proceedings of the 2006, 2006,

* pp. 1810-1815.

*

*/

reactiveclass Philosopher(7)

{

Steinar Hugi Sigurðarson 96

knownrebecs {

Fork leftFork;

Fork rightFork;

}

statevars {

boolean isEating;

boolean hasLeftFork;

boolean hasRightFork;

int memory;

}

msgsrv initial(){

hasLeftFork = false;

hasRightFork = false;

isEating = false;

memory = ?(0,1,2);

self.remember();

}

msgsrv remember() {

if(memory == 0) {

// Forgot it completely...

} else if(memory == 1) {

// Forgot it temporarily

memory = ?(0,1,2);

self.remember();

} else if(memory == 2) {

// Remembered

self.arrive();

}

}

msgsrv arrive() {

leftFork.request();

}

msgsrv permit() {

if (sender == leftFork) {

if (!hasLeftFork) {

hasLeftFork = true;

rightFork.request();

}

Steinar Hugi Sigurðarson 97

} else {

if (hasLeftFork && !(hasRightFork)) {

hasRightFork = true;

self.eat();

}

}

}

msgsrv eat() {

isEating = true;

self.leave();

}

msgsrv leave() {

hasLeftFork = false;

hasRightFork = false;

isEating = false;

rightFork.release();

leftFork.release();

self.arrive();

}

}

reactiveclass Fork(7) {

knownrebecs {

Philosopher philLeft;

Philosopher philRight;

}

statevars {

boolean leftIsUsing;

boolean rightIsUsing;

boolean leftHasRequested;

boolean rightHasRequested;

}

msgsrv initial() {

leftIsUsing = false;

rightIsUsing = false;

leftHasRequested = false;

rightHasRequested = false;

}

Steinar Hugi Sigurðarson 98

msgsrv request() {

if (sender == philLeft) {

if (!leftHasRequested) {

leftHasRequested = true;

if (!rightIsUsing) {

leftIsUsing = true;

philLeft.permit();

}

}

} else {

if (!rightHasRequested) {

rightHasRequested = true;

if (!leftIsUsing) {

rightIsUsing = true;

philRight.permit();

}

}

}

}

msgsrv release() {

if (sender == philLeft && leftIsUsing){

leftHasRequested = false;

leftIsUsing = false;

if (rightHasRequested) {

rightIsUsing = true;

philRight.permit();

}

}

if (sender == philRight && rightIsUsing){

rightIsUsing = false;

rightHasRequested = false;

if (leftHasRequested) {

leftIsUsing = true;

philLeft.permit();

}

}

}

}

Steinar Hugi Sigurðarson 99

main {

Philosopher phil0(fork0, fork3):(); // Inverted

Philosopher phil1(fork0, fork1):();

Philosopher phil2(fork1, fork2):();

Philosopher phil3(fork2, fork3):();

Philosopher phil4(fork3, fork4):();

Fork fork0(phil0, phil1):();

Fork fork1(phil1, phil2):();

Fork fork2(phil2, phil3):();

Fork fork3(phil3, phil4):();

Fork fork4(phil4, phil0):();

}

Listing D.6: Forgetful Dining Philosophers with 5 philosophers. (Result: deadlock)

/*

* 2011 Reykjavik University

* Author (of this version): Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Dining Philosophers (with added ability to forget)

* This version contains deadlock and queue overflow errors.

*

* Source: C.a. Hoare, Communicating sequential processes, Communications of

* the ACM, vol. 21, 1978, pp. 666-677.

*

* Original problem due to E.W. Dijkstra.

*

* Original implementation: M. Jaghoori, A. Movaghar, and M. Sirjani, ᾶModere:

* The model-checking engine of Rebeca,ᾶ Proceedings of the 2006, 2006,

* pp. 1810-1815.

*

*/

reactiveclass Philosopher(7)

{

knownrebecs {

Fork leftFork;

Fork rightFork;

}

Steinar Hugi Sigurðarson 100

statevars {

boolean isEating;

boolean hasLeftFork;

boolean hasRightFork;

int memory;

}

msgsrv initial(){

hasLeftFork = false;

hasRightFork = false;

isEating = false;

memory = ?(0,1,2);

self.remember();

}

msgsrv remember() {

if(memory == 0) {

// Forgot it completely...

} else if(memory == 1) {

// Forgot it temporarily

memory = ?(0,1,2);

self.remember();

// Queue overflow!

self.remember();

} else if(memory == 2) {

// Remembered

self.arrive();

}

}

msgsrv arrive() {

leftFork.request();

}

msgsrv permit() {

if (sender == leftFork) {

if (!hasLeftFork) {

hasLeftFork = true;

rightFork.request();

}

} else {

if (hasLeftFork && !(hasRightFork)) {

Steinar Hugi Sigurðarson 101

hasRightFork = true;

self.eat();

}

}

}

msgsrv eat() {

isEating = true;

self.leave();

}

msgsrv leave() {

hasLeftFork = false;

hasRightFork = false;

isEating = false;

rightFork.release();

leftFork.release();

self.arrive();

}

}

reactiveclass Fork(7) {

knownrebecs {

Philosopher philLeft;

Philosopher philRight;

}

statevars {

boolean leftIsUsing;

boolean rightIsUsing;

boolean leftHasRequested;

boolean rightHasRequested;

}

msgsrv initial() {

leftIsUsing = false;

rightIsUsing = false;

leftHasRequested = false;

rightHasRequested = false;

}

msgsrv request() {

Steinar Hugi Sigurðarson 102

if (sender == philLeft) {

if (!leftHasRequested) {

leftHasRequested = true;

if (!rightIsUsing) {

leftIsUsing = true;

philLeft.permit();

}

}

} else {

if (!rightHasRequested) {

rightHasRequested = true;

if (!leftIsUsing) {

rightIsUsing = true;

philRight.permit();

}

}

}

}

msgsrv release() {

if (sender == philLeft && leftIsUsing){

leftHasRequested = false;

leftIsUsing = false;

if (rightHasRequested) {

rightIsUsing = true;

philRight.permit();

}

}

if (sender == philRight && rightIsUsing){

rightIsUsing = false;

rightHasRequested = false;

if (leftHasRequested) {

leftIsUsing = true;

philLeft.permit();

}

}

}

}

main {

Philosopher phil0(fork0, fork3):(); // Inverted

Steinar Hugi Sigurðarson 103

Philosopher phil1(fork0, fork1):();

Philosopher phil2(fork1, fork2):();

Philosopher phil3(fork2, fork3):();

Philosopher phil4(fork3, fork4):();

Fork fork0(phil0, phil1):();

Fork fork1(phil1, phil2):();

Fork fork2(phil2, phil3):();

Fork fork3(phil3, phil4):();

Fork fork4(phil4, phil0):();

}

Listing D.7: Forgetful Dining Philosophers with 5 philosophers and double
remembering when temporarily forgetting. (Result: deadlock/queue overìow)

/*

* 2011 Reykjavik University

* Author (of this version): Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Dining Philosophers (without any deadlock solution)

*

* Source: C.a. Hoare, Communicating sequential processes, Communications of

* the ACM, vol. 21, 1978, pp. 666-677.

*

* Original problem due to E.W. Dijkstra.

*

* Original implementation: M. Jaghoori, A. Movaghar, and M. Sirjani, ᾶModere:

* The model-checking engine of Rebeca,ᾶ Proceedings of the 2006, 2006,

* pp. 1810-1815.

*

*/

reactiveclass Philosopher(7)

{

knownrebecs {

Fork leftFork;

Fork rightFork;

}

statevars {

boolean isEating;

Steinar Hugi Sigurðarson 104

boolean hasLeftFork;

boolean hasRightFork;

}

msgsrv initial() {

hasLeftFork = false;

hasRightFork = false;

isEating = false;

self.arrive();

}

msgsrv arrive() {

leftFork.request();

}

msgsrv permit() {

if (sender == leftFork) {

if (!hasLeftFork) {

hasLeftFork = true;

rightFork.request();

}

} else {

if (hasLeftFork && !(hasRightFork)) {

hasRightFork = true;

self.eat();

}

}

}

msgsrv eat() {

isEating = true;

self.leave();

}

msgsrv leave() {

hasLeftFork = false;

hasRightFork = false;

isEating = false;

rightFork.release();

leftFork.release();

self.arrive();

Steinar Hugi Sigurðarson 105

}

}

reactiveclass Fork(7) {

knownrebecs {

Philosopher philLeft;

Philosopher philRight;

}

statevars {

boolean leftIsUsing;

boolean rightIsUsing;

boolean leftHasRequested;

boolean rightHasRequested;

}

msgsrv initial() {

leftIsUsing = false;

rightIsUsing = false;

leftHasRequested = false;

rightHasRequested = false;

}

msgsrv request() {

if (sender == philLeft) {

if (!leftHasRequested) {

leftHasRequested = true;

if (!rightIsUsing) {

leftIsUsing = true;

philLeft.permit();

}

}

} else {

if (!rightHasRequested) {

rightHasRequested = true;

if (!leftIsUsing) {

rightIsUsing = true;

philRight.permit();

}

}

}

}

Steinar Hugi Sigurðarson 106

msgsrv release() {

if (sender == philLeft && leftIsUsing){

leftHasRequested = false;

leftIsUsing = false;

if (rightHasRequested) {

rightIsUsing = true;

philRight.permit();

}

}

if (sender == philRight && rightIsUsing){

rightIsUsing = false;

rightHasRequested = false;

if (leftHasRequested) {

leftIsUsing = true;

philLeft.permit();

}

}

}

}

main {

Philosopher phil0(fork4, fork0):(); // Injected error: These should be inverted

Philosopher phil1(fork0, fork1):();

Philosopher phil2(fork1, fork2):();

Philosopher phil3(fork2, fork3):();

Philosopher phil4(fork3, fork4):();

Fork fork0(phil0, phil1):();

Fork fork1(phil1, phil2):();

Fork fork2(phil2, phil3):();

Fork fork3(phil3, phil4):();

Fork fork4(phil4, phil0):();

}

Listing D.8: Dining Philosophers with 5 philosophers and no deadlock prevention.
(Result: deadlock)

Steinar Hugi Sigurðarson 107

D.3 Needham-Schroeder

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

*

* Rebeca implementation of the Needham-Schroeder Public Key Protocol

* with two clients and one server.

*

* The encryption is value*key and decryption value/key. Due to this

* simplification the private and public key must be the same.

*

*

* Source

* Needham RM, Schroeder MD. Using encryption for authentication

* in large networks of computers. Communications of the ACM.

* 1978;21(12):993-999.

*

*/

reactiveclass Client(5) {

knownrebecs {

Server server;

Client friend;

}

statevars {

int id;

int public;

int private;

int nonce;

int idOther;

int nonceOther;

int pkOther;

int pkServer;

}

Steinar Hugi Sigurðarson 108

msgsrv initial(int _id, int _idOther, int _public, int _private, int

_pkServer) {

id = _id;

public = _public;

private = _private;

nonce = 0;

pkServer = _pkServer;

idOther = _idOther;

nonceOther = 0;

pkOther = 0;

self.open();

}

msgsrv open() {

nonceOther = 0;

pkOther = 0;

// Reset nonce

nonce = ?(1,2,3);

nonce = nonce + id;

// Go to step 1: A,B -> S

if(idOther > 0) {

server.step_1(id, idOther);

}

}

// Step 1 is on server

// Come to Step 2: {pkb, B}_skas

msgsrv step_2(int _pkb_skas, int _id_skas)

{

if(sender == server) { // Check sender

if((_id_skas/pkServer) == idOther) { // Check decryption

pkOther = _pkb_skas/pkServer;

// Go to step 3: {Ia, A}_pkServer -> B

Steinar Hugi Sigurðarson 109

friend.step_3(nonce*pkServer, id*pkServer);

} // else: decryption error

} // else: incorrect sender

}

msgsrv step_3(int _ia_pkServer, int _id_pkServer) {

if(sender == friend) {

nonceOther = _ia_pkServer/pkServer;

idOther = (_id_pkServer/pkServer);

// Go to step 4: B, A -> S

server.step_4(id, idOther);

} // else: incorrect sender

}

// Step 4 is on server

// Come to Step 5: {pka, A}_skas

msgsrv step_5(int _pka_skas, int _ida_skas) {

if(sender == server) {

// Go to step 6: {Ia, Ib}_pka -> A

pkOther = _pka_skas/pkServer;

idOther = _ida_skas/pkServer;

// Reset nonce

nonce = ?(1,2,3);

nonce = nonce + id;

friend.step_6(nonceOther*pkOther, nonce*pkOther);

} // else: incorrect sender

}

msgsrv step_6(int _ia_pka, int _ib_pka) {

if(sender == friend) {

if((_ia_pka/private) == nonce) { // Check encryption

nonceOther = (_ib_pka/private);

// Go to step 7: {Ib}_pkb -> B

friend.step_7(nonceOther*pkOther);

} // else: decryption error

} // else: incorrect sender

Steinar Hugi Sigurðarson 110

}

msgsrv step_7(int _ib_pkb) {

if(sender == friend) {

if((_ib_pkb)/private == nonce) { // Check encryption

// Done

self.open(); // Repeat

} // else: decryption error

} // else: incorrect sender

}

}

reactiveclass Server(6) {

knownrebecs {

Client client_a;

Client client_b;

}

statevars {

int id;

int idA;

int idB;

int public;

int private;

int pka;

int pkb;

}

msgsrv initial(int _id, int _idA, int _idB, int _public, int _private, int

_pka, int _pkb) {

id = _id;

public = _public;

private = _private;

pka = _pka;

pkb = _pkb;

idA = _idA;

idB = _idB;

Steinar Hugi Sigurðarson 111

}

// Step 1 and step 4

msgsrv step_1(int _idSender, int _id) {

// Go to Step 2: {pkb, B}_skas

if(sender == client_a) {

client_a.step_2(pkb*private, _id*private);

}

else if(sender == client_b) {

client_b.step_2(pka*private, _id*private);

}

}

msgsrv step_4(int _idSender, int _idReceiver) {

// Go to Step 5: {pka, A}_skas

if(sender == client_a) {

client_a.step_5(pkb*private, _idReceiver*private);

}

else if(sender == client_b) {

client_b.step_5(pka*private, _idReceiver*private);

}

}

}

main {

// NOTE: Due to the simplicity of the encryption/decryption pub must be equal

to prv

// ID, ID_A, ID_B, pub, prv, pka, pkb

Server server (a,b) :(1, 2, 3, 10, 10, 20, 30);

// ID, ID_other, pub, prv, pkServer

Client a (server,b):(2, 3, 20, 20, 10);

Client b (server,a):(3, 0, 30, 30, 10);

}

Listing D.9: Needham-Schroeder Public Key Protocol. (Result: satisëed)

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

*

Steinar Hugi Sigurðarson 112

* Rebeca implementation of the Needham-Schroeder Public Key Protocol

* with two clients and one server.

*

* This version contains a deadlock error.

*

* The encryption is value*key and decryption value/key. Due to this

* simplification the private and public key must be the same.

*

*

* Source

* Needham RM, Schroeder MD. Using encryption for authentication

* in large networks of computers. Communications of the ACM.

* 1978;21(12):993-999.

*

*/

reactiveclass Client(5) {

knownrebecs {

Server server;

Client friend;

}

statevars {

int id;

int public;

int private;

int nonce;

int idOther;

int nonceOther;

int pkOther;

int pkServer;

}

msgsrv initial(int _id, int _idOther, int _public, int _private, int

_pkServer) {

id = _id;

public = _public;

Steinar Hugi Sigurðarson 113

private = _private;

nonce = 0;

pkServer = _pkServer;

idOther = _idOther;

nonceOther = 0;

pkOther = 0;

self.open();

}

msgsrv open() {

nonceOther = 0;

pkOther = 0;

// Reset nonce

nonce = ?(1,2,3);

nonce = nonce + id;

// Go to step 1: A,B -> S

if(idOther > 0) {

server.step_1(id, idOther);

}

}

// Step 1 is on server

// Come to Step 2: {pkb, B}_skas

msgsrv step_2(int _pkb_skas, int _id_skas)

{

if(sender == server) { // Check sender

if((_id_skas/pkServer) == idOther) { // Check decryption

pkOther = _pkb_skas/pkServer;

// Go to step 3: {Ia, A}_pkServer -> B

friend.step_3(nonce*pkServer, id*pkServer);

} // else: decryption error

} // else: incorrect sender

}

Steinar Hugi Sigurðarson 114

msgsrv step_3(int _ia_pkServer, int _id_pkServer) {

if(sender == friend) {

nonceOther = _ia_pkServer/pkServer;

idOther = (_id_pkServer/pkServer);

// Go to step 4: B, A -> S

server.step_4(id, idOther);

} // else: incorrect sender

}

// Step 4 is on server

// Come to Step 5: {pka, A}_skas

msgsrv step_5(int _pka_skas, int _ida_skas) {

if(sender == server) {

// Go to step 6: {Ia, Ib}_pka -> A

pkOther = _pka_skas/pkServer;

idOther = _ida_skas/pkServer;

// Reset nonce

nonce = ?(1,2,3);

nonce = nonce + id;

friend.step_6(nonceOther*pkOther, nonce*pkOther);

} // else: incorrect sender

}

msgsrv step_6(int _ia_pka, int _ib_pka) {

if(sender == friend) {

if((_ia_pka/private) == nonce) { // Check encryption

nonceOther = (_ib_pka/private);

// Go to step 7: {Ib}_pkb -> B

friend.step_7(nonceOther*pkOther);

} // else: decryption error

} // else: incorrect sender

}

msgsrv step_7(int _ib_pkb) {

Steinar Hugi Sigurðarson 115

if(sender == friend) {

// In the deadlock version situation check will fail since the

if((_ib_pkb)/private == nonce) { // Check encryption

// Done

self.open(); // Repeat

} // else: decryption error

} // else: incorrect sender

}

}

reactiveclass Server(6) {

knownrebecs {

Client client_a;

Client client_b;

}

statevars {

int id;

int idA;

int idB;

int public;

int private;

int pka;

int pkb;

}

msgsrv initial(int _id, int _idA, int _idB, int _public, int _private, int

_pka, int _pkb) {

id = _id;

public = _public;

private = _private;

pka = _pka;

pkb = _pkb;

idA = _idA;

idB = _idB;

}

// Step 1 and step 4

Steinar Hugi Sigurðarson 116

msgsrv step_1(int _idSender, int _id) {

// Go to Step 2: {pkb, B}_skas

if(sender == client_a) {

client_a.step_2(pkb*private, _id*private);

}

else if(sender == client_b) {

client_b.step_2(pka*private, _id*private);

}

}

msgsrv step_4(int _idSender, int _idReceiver) {

// Go to Step 5: {pka, A}_skas

if(sender == client_a) {

client_a.step_5(pkb*private, _idReceiver*private);

}

else if(sender == client_b) {

client_b.step_5(pka*private, _idReceiver*private);

}

}

}

main {

// NOTE: Due to the simplicity of the encryption/decryption pub must be equal

to prv

// ID, ID_A, ID_B, pub, prv, pka, pkb

Server server (a,b) :(1, 2, 3, 10, 10, 20, 30);

// ID, ID_other, pub, prv, pkServer

Client a (server,b):(2, 3, 20, 20, 10);

// Since ID_other of both clients > 0 they will run at the same time. The

implementation cannot handle that and will eventually deadlock.

Client b (server,a):(3, 2, 30, 30, 10);

}

Listing D.10: Needham-Schroeder Public Key Protocol with simultaneous
conversations. (Result: deadlock)

/*

* 2011 Reykjavik University

* Author: Steinar Hugi Sigurdarson, steinar@steinar.is

Steinar Hugi Sigurðarson 117

*

* Rebeca implementation of the Needham-Schroeder Public Key Protocol

* with two clients and one server.

*

* This version contains both a queue-overflow error and deadlock error.

*

* The encryption is value*key and decryption value/key. Due to this

* simplification the private and public key must be the same.

*

*

* Source

* Needham RM, Schroeder MD. Using encryption for authentication

* in large networks of computers. Communications of the ACM.

* 1978;21(12):993-999.

*

*/

reactiveclass Client(5) {

knownrebecs {

Server server;

Client friend;

}

statevars {

int id;

int public;

int private;

int nonce;

int idOther;

int nonceOther;

int pkOther;

int pkServer;

}

msgsrv initial(int _id, int _idOther, int _public, int _private, int

_pkServer) {

id = _id;

public = _public;

Steinar Hugi Sigurðarson 118

private = _private;

nonce = 0;

pkServer = _pkServer;

idOther = _idOther;

nonceOther = 0;

pkOther = 0;

self.open();

}

msgsrv open() {

nonceOther = 0;

pkOther = 0;

// Reset nonce

nonce = ?(1,2,3);

nonce = nonce + id;

// Go to step 1: A,B -> S

if(idOther > 0) {

server.step_1(id, idOther);

}

}

// Step 1 is on server

// Come to Step 2: {pkb, B}_skas

msgsrv step_2(int _pkb_skas, int _id_skas)

{

if(sender == server) { // Check sender

if((_id_skas/pkServer) == idOther) { // Check decryption

pkOther = _pkb_skas/pkServer;

// Go to step 3: {Ia, A}_pkServer -> B

friend.step_3(nonce*pkServer, id*pkServer);

} // else: decryption error

} // else: incorrect sender

}

Steinar Hugi Sigurðarson 119

msgsrv step_3(int _ia_pkServer, int _id_pkServer) {

if(sender == friend) {

nonceOther = _ia_pkServer/pkServer;

idOther = (_id_pkServer/pkServer);

// Go to step 4: B, A -> S

server.step_4(id, idOther);

} // else: incorrect sender

}

// Step 4 is on server

// Come to Step 5: {pka, A}_skas

msgsrv step_5(int _pka_skas, int _ida_skas) {

if(sender == server) {

// Go to step 6: {Ia, Ib}_pka -> A

pkOther = _pka_skas/pkServer;

idOther = _ida_skas/pkServer;

// Reset nonce

nonce = ?(1,2,3);

nonce = nonce + id;

friend.step_6(nonceOther*pkOther, nonce*pkOther);

} // else: incorrect sender

}

msgsrv step_6(int _ia_pka, int _ib_pka) {

if(sender == friend) {

if((_ia_pka/private) == nonce) { // Check encryption

nonceOther = (_ib_pka/private);

// Go to step 7: {Ib}_pkb -> B

friend.step_7(nonceOther*pkOther);

} // else: decryption error

} // else: incorrect sender

}

msgsrv step_7(int _ib_pkb) {

Steinar Hugi Sigurðarson 120

if(sender == friend) {

if((_ib_pkb)/private == nonce) { // Check encryption

// Done

self.open(); // Repeat

} // else: decryption error

else {

// Added queue-overflow error

friend.open();

self.open();

}

} // else: incorrect sender

}

}

reactiveclass Server(6) {

knownrebecs {

Client client_a;

Client client_b;

}

statevars {

int id;

int idA;

int idB;

int public;

int private;

int pka;

int pkb;

}

msgsrv initial(int _id, int _idA, int _idB, int _public, int _private, int

_pka, int _pkb) {

id = _id;

public = _public;

private = _private;

pka = _pka;

pkb = _pkb;

idA = _idA;

Steinar Hugi Sigurðarson 121

idB = _idB;

}

// Step 1 and step 4

msgsrv step_1(int _idSender, int _id) {

// Go to Step 2: {pkb, B}_skas

if(sender == client_a) {

client_a.step_2(pkb*private, _id*private);

}

else if(sender == client_b) {

client_b.step_2(pka*private, _id*private);

}

}

msgsrv step_4(int _idSender, int _idReceiver) {

// Go to Step 5: {pka, A}_skas

if(sender == client_a) {

client_a.step_5(pkb*private, _idReceiver*private);

}

else if(sender == client_b) {

client_b.step_5(pka*private, _idReceiver*private);

}

}

}

main {

// NOTE: Due to the simplicity of the encryption/decryption pub must be equal

to prv

// ID, ID_A, ID_B, pub, prv, pka, pkb

Server server (a,b) :(1, 2, 3, 10, 10, 20, 30);

// ID, ID_other, pub, prv, pkServer

Client a (server,b):(2, 3, 20, 20, 10);

Client b (server,a):(3, 2, 30, 30, 10);

}

Listing D.11: Needham-Schroeder Public Key Protocol with simultaneous
conversations and dual retry. (Result: deadlock/queue overìow)

Steinar Hugi Sigurðarson 122

D.4 Bridge Controller

/**

* Source: Sirjani, M., De Boer, F., & Movaghar, A. (2005). Modular verification

of a component-based actor language. Journal of Universal Computer Science,

11(10), 1695-1717

* Modifications: Line 90: Commented out send statement, introducing a deadlock

error.

*/

reactiveclass BridgeController(5)

{

knownrebecs

{

Train t1;

Train t2;

}

statevars

{

boolean isWaiting1;

boolean isWaiting2;

boolean signal1;

boolean signal2;

}

msgsrv initial()

{

signal1 = false; /* red */

signal2 = false; /* red */

isWaiting1 = false;

isWaiting2 = false;

}

msgsrv Arrive(){

if (sender == t1){

if (signal2 == false){

signal1 = true; /* green */

t1.YouMayPass();

}

else{

Steinar Hugi Sigurðarson 123

isWaiting1 = true;

}

}

else{

if (signal1 == false){

signal2 = true; /* green */

t2.YouMayPass();

}

else{

isWaiting2 = true;

}

}

}

msgsrv Leave(){

if (sender == t1){

signal1 = false; /* red */

if (isWaiting2){

signal2 = true;

t2.YouMayPass();

isWaiting2 = false;

}

}

else{

signal2 = false; /* red */

if (isWaiting1){

signal1 = true;

t1.YouMayPass();

isWaiting1 = false;

}

}

}

}

reactiveclass Train(3)

{

knownrebecs

{

BridgeController controller;

}

Steinar Hugi Sigurðarson 124

statevars

{

boolean onTheBridge;

}

msgsrv initial()

{

onTheBridge = false;

self.Passed();

}

msgsrv YouMayPass(){

onTheBridge = true;

//self.Passed();

}

msgsrv Passed(){

onTheBridge = false;

controller.Leave();

self.ReachBridge();

}

msgsrv ReachBridge(){

controller.Arrive();

}

}

main

{

Train train1(theController):();

Train train2(theController):();

BridgeController theController(train1, train2):();

}

Listing D.12: Bridge Controller with deadlock error (Result: deadlock)

School of Computer Science

Reykjavík University

Menntavegi 1

101 Reykjavík, Iceland

Tel. +354 599 6200

Fax +354 599 6201

www.reykjavikuniversity.is

ISSN 1670-8539

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Model Checking
	Contribution
	Overview of the Thesis

	Background
	Models of systems
	Model Checking
	The Actor Model
	The Rebeca Language
	State-Space Search
	Uninformed search
	Informed Search
	Directed Model Checking

	Guided-Modere
	Heuristics
	Combining Heuristics
	Inverted Heuristics for Guidance Towards Queue Overflow
	Implementation

	Experimental Results
	Setup
	Self-stabilizing Token Ring
	Dining Philosophers
	Needham-Schroeder Public-Key Protocol
	Combined Heuristics
	When DFS is Faster
	Performance

	Related Work
	Conclusion and Future Work
	Bibliography
	Appendices
	Terminology Overview
	Extended Results
	Case studies
	Dual Heuristics
	Additional searches
	Errors where DFS is faster

	Results for Queue Overflow Error
	Rebeca Models
	Dijkstra's Token Ring
	Dining Philosophers
	Needham-Schroeder
	Bridge Controller

