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GUIDED SURFACE WAVES ON ONE- AND TWO-DIMENSIONAL

ARRAYS OF SPHERES∗

I. THOMPSON† AND C. M. LINTON†

Abstract. Guided acoustic waves propagating along one- and two-dimensional arrays of rigid
spheres are studied semianalytically. The quasi-periodic wavefield is constructed as a superposition
of spherical wave functions, and then application of the boundary condition on the sphere surfaces
leads to an infinite system of real linear algebraic equations. The vanishing of the determinant of the
associated infinite matrix provides the condition for surface waves to exist, and these are determined
numerically. In the case of a two-dimensional array, we consider arbitrary skew lattices and compute
surface modes which are either symmetric or antisymmetric about the plane of the array. Our
numerical calculations make extensive use of previous work by the authors on the accurate and
efficient computation of lattice sums.
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1. Introduction. Wave interaction with infinite periodic arrays of spheres has
been studied extensively in a variety of physical settings. It is important to draw a
distinction between three-dimensional arrays which fill the whole of space and one-
and two-dimensional arrays which allow for wave propagation towards or away from
the spheres. It is these latter cases that we are concerned with here.

Acoustic scattering by a two-dimensional array of spheres was first considered
by Twersky [42, 40, 41], though no numerical results were presented in these papers.
The equivalent electromagnetic problem has also been considered in the context of
low energy electron diffraction [27, 34]. A theory for acoustic wave scattering by an
infinite linear array of identical obstacles was also developed by Twersky [39]. Twer-
sky’s approach to multiple scattering (described for the two-dimensional case in [23,
section 6.13]) is ingenious, but it does not lead to equations which are suitable for nu-
merical computation. Instead, Twersky focused on deriving analytic properties of the
solutions and approximate solutions for small scatterers or low frequencies, and these
in turn have been used to help validate other approximate solutions; see, e.g., [4]. It
should be noted that Twersky’s method applies to obstacles of quite general shape,
though there is considerable simplification if the scatterers are spherically symmetric.
Scattering of a longitudinal elastic wave by a doubly periodic array of spherical inclu-
sions in an infinite elastic solid was treated in [1] using a boundary integral equation
method (and used subsequently [2] as a building block in the computation of dispersion
curves for the propagation of waves in an elastic solid containing a three-dimensional
array of regularly spaced spherical cavities). The reflection and transmission of a
longitudinal plane wave by a distribution of spherical cavities situated in the interface
between two solids with different mechanical properties was investigated, again using
boundary integral equations, in [44]. A full vector formalism based on multipoles for
treating elastic scattering by periodic arrays of spherical scatterers was given in [22]
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2976 I. THOMPSON AND C. M. LINTON

and used to study scattering by a planar sheet of spheres, a problem also treated in
[30, 31]. Some experimental results on the diffraction of ultrasonic waves by a periodic
array of spherical inclusions in an elastic matrix are presented in [14, 24, 25].

In this article we consider both linear and two-dimensional arrays of spheres, but
rather than study how an incident wave is scattered by the array, we are interested
in the ability of the array to support guided wave modes that travel along the array
(in the absence of an incident field) and decay exponentially as one moves away from
the array. In fact the formulations for these two types of problem are very similar,
and much of our analysis could easily be modified for use in scattering problems.
Guided modes propagating along periodic structures have been studied extensively in
a number of different physical contexts in two dimensions and are known variously
as edge waves [8], Rayleigh–Bloch surface waves [28], array-guided surface waves [12],
and bound states [43]. These waves are distinct from guided waves which propagate
along surfaces introduced into photonic or phononic crystals, which have also been
studied in recent years (for example, in electromagnetism [7] and in elasticity theory
[37]). There have been previous studies of electromagnetic surface waves guided by
periodic arrays, but these have focused on situations where the spheres can be modeled
by some combination of electric and magnetic dipoles [32, 3, 16, 33].

The particular physical problem that we focus on is sound waves in the presence
of rigid spheres. We actually formulate the problem for penetrable spheres as this does
not increase the complexity of the problem in any significant way, but for the purposes
of numerical results we focus on the special case of Neumann boundary conditions
so as to keep the number of free parameters manageable. Our goal is to provide a
thorough study of the modes that exist in this case, both for the problem’s intrinsic
interest and as a first step towards the more challenging electromagnetic problem,
which will be the subject of a subsequent article. Our problem is a natural extension
of the equivalent two-dimensional problem involving cylinders [26] and, as in that
case, there is a cut-off frequency below which waves cannot radiate energy away from
the array. The modes that we seek have frequencies below this cut-off. We do not
address the far more difficult question of whether surface modes exist at frequencies
above the cut-off (in which case they are usually referred to as embedded modes); a
review of work on embedded modes in two dimensions can be found in [19].

In section 2 we formulate the general problem of acoustic scattering by a single
penetrable sphere, and in section 3 we use this to derive the equations appropriate to
an infinite one- or two-dimensional array. The specific case of a linear array is treated
in section 4, with numerical results presented in section 5, while the two-dimensional
array and associated numerical results are given in section 6 and section 7, respectively.
All of the wavefields considered in this article are time-harmonic, and a factor e−iωt

is assumed throughout. In addition, we will use the conventions that |v| = v and
v̂ = v/v for any vector v.

2. Acoustic wave interactions with spheres. We begin by considering a
single sphere of radius a centered at the origin; later this is used as a building block
for constructing modes in the presence of multiple spheres. In the region exterior to
the sphere, i.e., where r > a, the wavefield u(r) must satisfy the Helmholtz equation

(2.1)
(
∇2 + k2

)
u(r) = 0,

where k = ω/c, with c representing the speed of sound. In this section, circumflexed
symbols are used to refer to quantities inside the sphere. Thus, in the interior region
r < a, the wavefield is represented by û(r), and this must also satisfy the Helmholtz
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equation, but with k replaced by k̂ = ω/ĉ. General expansions for wavefields outside
and inside the sphere can be derived by separation of variables. For r ≥ a, we have

u(r) =
∑

n,m

(Cm
n Jm

n (r) +Am
n Hm

n (r)) ,(2.2)

whereas for r ≤ a,

û(r) =
∑

n,m

Âm
n Jm

n (rk̂/k).(2.3)

The regular and outgoing spherical wave functions J and H are defined in (A.4). Note
that the field inside the sphere does not involve outgoing wave functions; these are
singular at r = 0. Also, in view of (A.1), we have Hm

n (r) ≡ Jm
n (r) ≡ 0 for |m| > n,

and so we have introduced the shorthand notation

(2.4)
∑

n,m

≡
∞∑

n=0

n∑

m=−n

,

which will be used throughout. The first and second terms in (2.2) represent the
incident field and scattered response, respectively. Thus in a scattering problem the
coefficients Cm

n are known at the outset, whereas Am
n and Âm

n are to be determined.
The boundary conditions, representing continuity of pressure and normal velocity, are

(2.5) u = û and
1

ρ

∂u

∂r
=

1

ρ̂

∂û

∂r
on r = a,

in which ρ and ρ̂ are the densities of the exterior and interior media, respectively.
Applying these, and exploiting the orthogonality property (A.8), we eliminate Âm

n to
obtain

(2.6) Am
n + ZnC

m
n = 0,

where the scattering coefficient Zn is given by

(2.7) Zn =
q j′n(ka) jn(k̂a)− jn(ka) j

′
n(k̂a)

q h′n(ka) jn(k̂a)− hn(ka) j
′
n(k̂a)

.

Here, jn(·) and hn(·) represent spherical Bessel and spherical Hankel functions of
the first kind, respectively, and q = ρ̂ĉ/ρc. Note that setting q = 0 is equivalent
to imposing Dirichlet (sound-soft) boundary conditions (u = 0 on r = a), whereas
letting q → ∞ recovers the Neumann (rigid) case (∂u/∂r = 0 on r = a). Equation
(2.6) allows us to construct the scattered response without reference to the expansion
of the interior field (2.3). The scattering coefficients have the special property that
the quantity Wn, defined as

(2.8) Wn =
iZn

1− Zn
=

q j′n(ka) jn(k̂a)− jn(ka) j
′
n(k̂a)

q y′n(ka) jn(k̂a)− yn(ka) j
′
n(k̂a)

,

is real, the importance of which will become apparent later.
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3. Guided waves on d-dimensional arrays of spheres. In general, a lattice
of dimension d is the set of points with position vectors

(3.1) Rn =

d∑

i=1

nisi, ni ∈ Z,

where n = (n1, . . . , nd) is a multi-index. The set of all lattice vectors Rn is denoted
by Λ. In cases where d > 1, the basis vectors si are not necessarily orthogonal
(though they are linearly independent) and need not have the same length. We will
be concerned here only with the cases d = 1 and d = 2. The reciprocal lattice consists
of the points with position vectors

(3.2) R∗
n = 2π

d∑

i=1

nis
∗
i , ni ∈ Z,

where si · s∗j = δij , and the set of all reciprocal lattice vectors R∗
m is denoted by Λ∗.

Crucially, for any lattice vector Rn and any reciprocal lattice vector R∗
m,

(3.3) eiRn·R
∗

m = 1.

The Poisson summation formula for a d-dimensional lattice, which will be required
later, is given by

(3.4)
∑

Rn∈Λ

e−iK·Rn =
(2π)d

A
∑

R∗

n∈Λ∗

δ(K−R∗
n),

where A = s1 when d = 1, and A = |s1 × s2| (i.e., the area of a lattice cell) when
d = 2.

An array is constructed by centering identical spheres of radius a at each lattice
point. According to Bloch’s theorem [13, pp. 32–35], a guided wave that propagates
along such a structure satisfies the quasi-periodicity condition

(3.5) u(r+Rj) = eiβ·Rj (r), Rj ∈ Λ,

for some d-dimensional Bloch vector β. Thus, if we represent the mode as a sum of
contributions emanating from each sphere, then we have

(3.6) u(r) =
∑

Rj∈Λ

eiβ·Rj

∑

n,m

Am
n Hm

n (rj),

where rj = r−Rj is a position vector relative to the center of sphere j. In order to
be physically realizable, the mode (3.6) must not radiate energy away from the array
into the far field. In fact it is sufficient to check that

(3.7) u(r+ v) → 0 as v → ∞ for any v ⊥ si, i = 1, . . . , d,

since it will subsequently be shown that this actually implies exponential decay.
The complex coefficients Am

n are determined by applying the boundary conditions
on the surface of the sphere centered at the origin. Boundary conditions elsewhere
then follow by quasi-periodicity. To this end, we write

(3.8) u(r) =
∑

n,m

Am
n Hm

n (r) +
∑

n,m

Am
n

∑′

Rj∈Λ

eiβ·RjHm
n (rj),
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where the prime indicates that the term with Rj = 0 is to be omitted from the
summation. The first term on the right-hand side is the field emanating from the
central sphere, whereas the second is the field incident on that sphere, which consists
of contributions radiating from all of the other spheres. This latter term can be
expanded about r = 0 as a series of regular wave functions using the addition theorem
(A.13). In this way, we obtain an expression of the form (2.2), with

(3.9) Cm
n =

∑

ν,µ

Aµ
ν

∑′

Rj∈Λ

eiβ·RjSµm
νn (−Rj),

where the separation matrix [Sµm
νn ] is given by (A.14). This expansion is valid, pro-

vided that r < Rj for all nonzero Rj ∈ Λ. Applying the boundary conditions using
(2.6) now leads to the homogeneous linear system of equations

(3.10) Am
n + Zn

∑′

Rj∈Λ

eiβ·Rj

∑

ν,µ

Sµm
νn (−Rj)A

µ
ν = 0, n ≥ |m|.

The existence of guided waves along the array corresponds to values of k and β

for which (3.10) admits nontrivial solutions for the unknowns Am
n and for which the

radiation condition (3.7) is also satisfied. In fact, each such set of parameters reveals a
second solution that represents a wave traveling in the opposite direction. This second
solution can be obtained directly from the first by replacingRj, β, and Am

n with −Rj,
−β, and (−1)nAm

n , respectively, and applying the symmetry relation (A.16) (note that
Rj ∈ Λ ⇔ −Rj ∈ Λ).

4. Linear array. In the one-dimensional case we may dispense with the sub-
scripts for basis vectors (since there is now only one of these) and so s = |s| is the
spacing between the lattice points. Clearly we must have 2a ≤ s so that the spheres
do not overlap. The line of sphere centers is chosen as the axis of a spherical coordi-
nate system (r, θ, φ) so that z = r cos θ. If we denote the unit vector in the z-direction
by ez, we then have s = s ez, Rj = js ez, and β = β̃ ez (see Figure 1). In view of
(3.5), we may assume without loss of generality that

(4.1) −π/s < β̃ ≤ π/s.

In fact, we need only consider β̃ ≥ 0, due to the symmetry of the system in the plane
z = 0 (see section 3 above). A great deal of simplification now occurs in the linear
system for the coefficients Am

n due to the axisymmetric nature of the geometry. Thus,

x

y

z

r

r2
a

s

Fig. 1. Schematic diagram showing a section of the linear array and the coordinate system in
use. The sphere centers are at r = Rj = js, and a position vector relative to sphere j is defined via
rj = r−Rj.
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on writing the separation matrix explicitly from (A.17), (3.10) becomes

(4.2) Am
n + 4πZn

∞∑

ν=|m|

Am
ν

n+ν∑

q=|n−ν|
n+ν−q even

i2m+n−q−ν G(ν,m;n,−m; q)σq(β̃) = 0, n ≥ |m|.

Here, G is a Gaunt coefficient (see the appendix), and we have defined the lattice sum

(4.3) σq(β̃) = λq0

∞∑

j=1

hq(kjs)
(
eijsβ̃ + (−1)qe−ijsβ̃

)
,

with λq0 given by (A.6). Note that the azimuthal modes have decoupled, leading to a
separate problem for each distinct value of m. Also, changing m to −m has no effect
on (4.2) in view of (A.19), and so we need only seek solutions in cases where m ≥ 0.
Once a solution to (4.2) has been obtained, the field is given by (3.6) with a fixed
value of m, that is,

(4.4) um(r) =

∞∑

j=−∞

eijsβ̃
∞∑

n=|m|

Am
n Hm

n (rj).

An alternative form for u(r) can be obtained by inserting the integral representation
(A.12) and then using the Poisson summation formula (3.4). We find that

(4.5) um(r) = eimφ
∞∑

j=−∞

Mm
j eiβ̃jz Km

(
k
√
x2 + y2 γj

)
,

where Km(·) is a modified Bessel function and the amplitude coefficient is given by

(4.6) Mm
j =

2i

ks
(−1)m+1

∞∑

n=|m|

i−nAm
n λnm Pm

n (β̃j/k).

Here, λmn and Pm
n (·) are defined in (A.6) and (A.1), respectively, and we have written

(4.7) β̃j = β̃ + 2jπ/s and γj = γ(β̃j/k),

where the function γ(·) is defined in (A.11). Equation (4.5) is an expansion in terms
of conical waves, and only those for which γj is imaginary radiate energy away from

the array. If there are no values of j such that |β̃j | ≤ k, which happens when

(4.8) k < β̃ ≤ π/s,

then γj > 0 for all j and the radiation condition (3.7) is satisfied. This is a sufficient

but not necessary condition. Another possibility is that |β̃j | ≤ k for one or more
integers j but that Mm

j = 0 for the same values, so that (3.7) is still satisfied.
Examples of these so-called embedded modes have been constructed in related two-
dimensional problems [10, 29], but we are not concerned with such phenomena here.
When (4.8) is satisfied, a final simplification of (4.2) occurs, because in this case [21]

(4.9) iqσq = iηq − δq0/
√
4π,
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where ηq is real. After substituting (4.9) into (4.2), using (A.19), and then dividing
the entire system by 1− Zn, we obtain

(4.10) (i−nAm
n ) + 4πWn

∞∑

ν=m

(i−νAm
ν )

n+ν∑

q=|n−ν|
n+ν−q even

(−1)m+q G(ν,m;n,−m; q)ηq(β̃) = 0,

n ≥ m ≥ 0,

where Wn is given by (2.8). This is a real homogeneous system of equations for the
unknowns (i−nAm

n ).
Now the lattice sum σq (and therefore ηq) has logarithmic singularities at points

where β̃j = ±k for some j ∈ Z. In particular, from [21], we have

(4.11) ηq(β̃) = η̂q(β̃) + (−1)q
λq0

ks
ln(β̃s− ks),

where η̂q remains bounded as β̃ → k. The other singularities of ηq are of no concern
here in view of (4.8). By substituting (4.11) into (4.10), we can separate the terms
that are singular in the limit β̃ → k from those that are regular. In the former case,
we can then evaluate the sum over q using the linearization formula for spherical
harmonics [23, Theorem 3.20]. We find that

(4.12)

(i−nAm
n ) + 4πWn

∞∑

ν=m

(i−νAm
ν )

[
amnν +

n+ν∑

q=|n−ν|
n+ν−q even

(−1)m+q G(ν,m;n,−m; q)η̂q(β̃)

]
= 0,

n ≥ m,

where

(4.13) amnν =
δm0

ks
λn0λν0 ln(β̃s− ks).

Thus, in cases where m �= 0, all of the terms in (4.12) are bounded for all values of β̃
and k permitted by (4.8).

5. Numerical results for one-dimensional arrays. Extensive numerical
searches for guided waves with azimuthal mode numbers m = 0, . . . , 10 that can
propagate along linear arrays were carried out using program code written in Fortran
2003. The infinite linear system (4.10) (which converges exponentially) was truncated
at n = ν = N , where N is chosen so that |WN+1| < ǫ|W0|, where ǫ ≈ 10−15 represents
machine precision. The Gaunt coefficients were computed using an updated version
of the Root-Rational-Fraction Package described in [35], and the lattice sums were
evaluated using the method in [21]. We present our results with the problem scaled
so that the spacing between consecutive sphere centers (s) is unity, and so a ≤ 0.5.

No solutions were found in the case of Dirichlet boundary conditions (which is
consistent with the fact that no such waves exist in the equivalent two-dimensional
problem of waves propagating along circular arrays of cylinders [5]). In the case of
Neumann boundary conditions, modes were found to exist, but only when m = 0.
Figure 2(a) shows the difference between the Bloch wavenumber β̃ and the free-space
wavenumber k for various sphere radii. Typically, β̃ − k increases with both k and a,
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(a)

k

β̃
−

k

a = 0.35
a = 0.40
a = 0.45
a = 0.49

.00

.01

.02

.03

2.8 2.9 3.0 3.1

(b)

k

lo
g
1
0
(β̃

−
k
)

a = 0.21
a = 0.25
a = 0.30

2.5 2.7 2.9 3.1

−4

−8

−12

−16

Fig. 2. (a) Difference between the Bloch wavenumber β̃ and the free-space wavenumber k for
selected values of the radius a. (b) Plot of log10(β̃−k) versus k for smaller spheres. In both figures,
the problem is scaled so that the array has unit spacing (s = 1), the azimuthal mode number is zero,
and Neumann boundary conditions are applied on the spheres’ surfaces.

(a)

−

−
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−−−

0

0 11
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22 33
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(b)

−

−

−

−−−

0

0 11

2

2

22 33

4

4

2.12.1

z

x

Fig. 3. Contour plot showing a cross section of a guided wave (azimuthal mode number zero,
k = 3.1) propagating along an array of rigid spheres with unit spacing and radius (a) 0.30, (b) 0.45.
The computed values of β̃ are approximately 3.100019 in (a) and 3.114056 in (b).

but in the latter case the trend is reversed for large (a � 0.46) spheres. Numerical
evidence suggests that this wave exists for all sphere radii and all positive k up to
some a-dependent cut-off value kmax < π, which occurs when β̃ = π. However, β̃ − k
decreases rapidly with both k and a, to the point where the two wavenumbers cannot
be distinguished by a machine working in double precision, as shown in Figure 2(b).

Figure 3 shows contour plots of Re[u0(r)] in the plane y = 0 for two guided waves
with the same value for k but different values for a. In both cases, the coefficients

A0
n are scaled so that

∑∞
n=0

∣∣A0
n

∣∣2 = 1. Note that the exponential decay of the field
as |x| is increased is more rapid in Figure 3(b) than in 3(a). This corresponds to the
fact that the value of β̃ − k is greater in Figure 3(b) due to the size of the spheres.
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s1

s2

ψ

s
⊥

1

s
⊥

2

Fig. 4. The angle of skew ψ.

6. Two-dimensional array. In the two-dimensional case we write the sub-
scripts on lattice vectors explicitly, and we must have 2a ≤ min(j,p) �=(0,0) Rjp for all
j, p ∈ Z so that the spheres do not overlap. A two-dimensional lattice may be de-
scribed using any one of an infinite number of possible bases, but it has only a finite
number of primitive (shortest possible) bases. For the basis {s1, s2}, we define the
angle of skew ψ via

(6.1) s1 · s2 = s1s2 sinψ.

We also define unit vectors s⊥1 and s⊥2 perpendicular to s1 and s2, respectively, so
that s⊥i · sj ≥ 0; see Figure 4. Clearly, every lattice has bases for which

(6.2) s2 ≥ s1 and s2 sin |ψ| = |ŝ1 · s2| ≤ s1/2.

In fact, by writing the vector Rjp in terms of ŝ1 and s⊥1 one can easily show that these
are the primitive bases. Note that the maximum possible skew for any primitive basis
is π/6, and this can occur only when s1 = s2. Also, the vectors

(6.3) s∗1 =
s⊥2

s1 cosψ
and s∗2 =

s⊥1
s2 cosψ

form a primitive basis for the reciprocal lattice (see section 3), because s⊥1 · s⊥2 =
sin(−ψ).

The principal region for β, i.e., the two-dimensional analogue of the interval
(−π/s, π/s] in section 4, is known as the first Brillouin zone, and we will denote this
by B. It consists of the set of points whose position vectors q satisfy the inequality

(6.4) q ≤ |q+R∗
mn| for all m,n ∈ Z.

In view of (3.3), guided waves of the form (3.6) are unchanged with the addition of
an arbitrary reciprocal lattice vector to β, and so no generality is lost in restricting
our attention to β ∈ B. The method for constructing Brillouin zones is explained in
[6, pp. 102–107] (see also [13, Appendix B]). Essentially, it consists of dividing the
plane in two using the perpendicular bisector of the line from the origin to any other
reciprocal lattice point, and then observing that the points in the half plane that does
not contain the origin violate (6.4) and must therefore lie outside B. By repeating
this process for different reciprocal lattice points, one can eventually construct a
polygon whose area is equal to that of a single reciprocal lattice cell (4π2|s∗1 × s∗2|). It
turns out that, at most, six perpendicular bisectors are required in the construction
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2πs
∗

1

2πs
∗

2

O

a

b
B

Fig. 5. The first Brillouin zone, B. The dashed lines are the perpendicular bisectors used in
the construction of the zone.

of B, in which case it is a hexagonal region, as in Figure 5. Position vectors for the
corner points of B can be determined by locating the intersections of the appropriate
perpendicular bisectors. Assuming that {s1, s2} is a primitive basis, we find that

(6.5) r = ± [πs∗2 ± gŝ1] and r = ± [πs∗1 + h sgn(ψ)ŝ2] ,

where

(6.6) g =
π

cosψ
(s∗1 − s∗2 sin |ψ|) and h =

π

cosψ
(s∗2 − s∗1 sin |ψ|).

Note that if ψ = 0, then ŝ1 = ŝ∗1 and ŝ2 = ŝ∗2. In this case (6.5) defines only four
distinct points and B reduces to a rectangular region.

Returning to the system of equations (3.10), we write the separation matrix ex-
plicitly using (A.14) to obtain
(6.7)

Am
n + 4π(−1)mZn

∑

ν,µ

Aµ
ν

n+ν∑

q=|n−ν|
n+ν−q even

in−ν−qG(ν, µ;n,−m; q)σµ−m
q (β) = 0, n ≥ |m|.

Here we have defined the two-dimensional lattice sum

(6.8) σm
n (β) =

∑′

Rjp∈Λ

eiβ·Rjp hn(kRjp)Y
m
n (R̂jp),

where Ym
n (·) is a spherical harmonic (see the appendix). The properties of σm

n depend
upon the choice of coordinate system (see [21]), and these in turn affect the difficulty
of our subsequent calculations. The reduction of (6.7) to a real system is simplest if
the axis of the spherical polar coordinate system is chosen parallel to a basis vector,
but in all other respects the problem turns out to be significantly simpler if the axis
is perpendicular to the array. (Of course we can translate between the two systems
using rotation matrices [23, Appendix C], but this is a complication that we prefer to
avoid.) Therefore, we take the basis vectors to be

(6.9) s1 = s1ex and s2 = η1ex + η2ey

(see Figure 6) and employ spherical polar coordinates with ez as the polar axis, so
that z = r cos θ. In this case we have

(6.10) σm
n ≡ 0 if n+m is odd,
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x

y

z

r

r−1,0

s1

s2

Fig. 6. Schematic diagram of a section of the two-dimensional array showing the coordinate
system in use. The sphere centers are at r = Rjp = j s1 + p s2, and a position vector relative to the
center of sphere (j, p) is defined via rjp = r−Rjp.

which follows from (A.3) and the fact that Rjp lies in the plane of the lattice.
A modal expansion analogous to (4.5) can now be derived by substituting the

integral representation (A.10) into (3.6) and applying the Poisson summation formula
(3.4). This final step is only possible with the coordinates chosen so that the polar
axis is perpendicular to the array. We find that

(6.11) u(r) =
∑

R∗

jp
∈Λ∗

Mjpe
ir·βjpe−kγjp|z|,

where the mode amplitudes are given by

(6.12) Mjp = − 2πi

k2Aγjp

∑

n,m

inAm
n λnm(− sgn z)n−meimαjp Pm

n (iγjp).

Here, λnm and Pm
n (·) are given by (A.6) and (A.1), respectively, and we have defined

(6.13) βjp = β +R∗
jp = βjp(cosαjpex + sinαjpey) and γjp = γ(βjp/k);

the function γ is defined in (A.11). If βjp > k, then γjp > 0, and if this is true for all
pairs of integers j and p, which holds for β ∈ B when β > k, then (6.11) shows that
u(r) decays exponentially as |z| → ∞, meaning that the radiation condition (3.7) is
satisfied. In this case, we use the identity [21]

(6.14) 2σm
n = σm

n − σ−m
n − δn0δm0/

√
π,

along with (A.19), to simplify the system (6.7) to

(6.15)

Am
n − 2πi(−1)mWn

∑

ν,µ

Aµ
ν

n+ν∑

q=|n−ν|
n+ν−q even

in−ν−qG(ν, µ;n,−m; q)
(
σµ−m
q − σm−µ

q

)
= 0,

n ≥ |m|,
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where Wn is the quantity defined in (2.8). If we now replace m and µ by −m and −µ,
respectively, take the complex conjugate, and apply the symmetry relation (A.18),

we obtain exactly the same system of equations for A−m
n , since Wn is real. We can

therefore discard the equations with m < 0 and set A−m
n = Am

n . Writing

(6.16) Am
n = Um

n + iV m
n

and defining

(6.17) Xmµ
nν + iY mµ

nν = 2π(−1)m
n+ν∑

q=|n−ν|
n+ν−q even

in−ν−qG(ν, µ;n,−m; q)
(
σµ−m
q − σm−µ

q

)

with Um
n , V m

n , Xµm
νn , and Y µm

νn real, we obtain the real system of equations
(6.18)

Um
n +

Wn

2

∞∑

ν=0

ν∑

µ=0

ǫµ
[
Uµ
ν

(
Y mµ
nν + Y m,−µ

nν

)
+ V µ

ν

(
Xmµ

nν −Xm,−µ
nν

)]
= 0, n ≥ m ≥ 0,

V m
n − Wn

2

∞∑

ν=0

ν∑

µ=0

ǫµ
[
Uµ
ν

(
Xmµ

nν +Xm,−µ
nν

)
− V µ

ν

(
Y mµ
nν − Y m,−µ

nν

)]
= 0, n ≥ m ≥ 0,

where ǫn = 2−δn0. Now (6.10) and (6.17) show that Xmµ
nν ≡ Y mµ

nν ≡ 0 if n+m+ν+µ
is odd, meaning that (6.18) can be decoupled into two subsystems, one in which n+m
and ν + µ are even and another in which n +m and ν + µ are odd. Equation (A.9)
shows that solutions to these are symmetric and antisymmetric about the plane of
the array, respectively. Note that the symmetric problem is equivalent to the case of
a rigid plane embossed with a periodic array of hemispherical bumps.

As in the one-dimensional case, the lattice sums are singular when β = k. Thus,
from [21], we have

(6.19) σm
n = σ̂m

n +
2πin−1 Ym

n

(
β̂
)

kA
√

β2 − k2
,

where σ̂m
n remains bounded as β → k. Making use of (A.7), (6.17) becomes

(6.20)

Xmµ
nν + iY mµ

nν = amµ
nν + 2π(−1)m

n+ν∑

q=|n−ν|
n+ν−q even

in−ν−qG(ν, µ;n,−m; q)
(
σ̂µ−m
q − σ̂m−µ

q

)
,

where

(6.21) amµ
nν =

8π2in−ν+2m−1

kA
√

β2 − k2
Y−m

n

(
β̂
)
Yµ

ν

(
β̂
)
.

Here we have again used the linearization formula for spherical harmonics [23, Theo-
rem 3.20] to simplify the expression for the coefficient of the singular term. Note that
amµ
nν vanishes identically from the antisymmetric subsystem (in which n+m is odd)

because β lies in the plane z = 0 (see (A.3)).
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7. Numerical results for two-dimensional arrays. There are a number of
parameters that determine the geometry, and some care must be taken so as to ensure
that all possibilities are included but none repeated. Clearly, we can assume without
loss of generality that s1 = [1, 0] and s2 ≥ 1 and η2 = ey · s2 > 0. Moreover, since
the existence of a mode at β = β0 implies the existence of a mode with β = −β0,
we may restrict our attention to cases where η1 = ex · s2 ≥ 0 (i.e., the lattice has
nonnegative skew), provided we consider all possible values for β ∈ B. Under these
assumptions, each lattice has a unique primitive basis that satisfies (6.2). Compared
with the linear array example, the idea of a cut-off (i.e., a maximum value for k) is
now more subtle, because modes may propagate in some directions but not others.
In particular, if we write β = β[cosα, sinα], then we clearly must have

(7.1) k < β ≤ b(α),

where b(α) is the distance to the edge of the Brillouin zone in the α-direction. The
absolute cut-off, at which the circular region β ≤ k completely covers the Brillouin
zone, occurs at

(7.2) k =
π

cos2 ψ

√
1

s21
+

1

s22
− 2 sin |ψ|

s1s2
,

which is the distance from the origin to the corners of B (see (6.5)).
The basic configuration of the numerical code used to search for modes is the same

as in the linear array case except that the method of reduction in lattice dimension
described in [21] is now used to compute the lattice sums. Comprehensive searches
for this case are rather demanding due to the number of variables and the complexity
of the lattice sums. Nevertheless, by using multiple machines simultaneously, we were
able to systematically run parameter sweeps across the full ranges of the bounded
parameters ψ, a, k, and α for 1 ≤ s2 ≤ 5. No modes were found in the Dirichlet case,
again consistent with known results in two dimensions.

A two-dimensional array of spheres is a more substantial structure than a linear
array and, perhaps unsurprisingly, it is much easier to find guided modes in this
case (in the sense that the difference between β and k is typically much greater
than in the examples considered in section 5). In particular, there is no difficulty in
finding a Neumann mode symmetric about the plane of the array for small a and/or
small k. The situation appears to be much more akin to the two-dimensional problem
of surface waves propagating along an array of rigid circular cylinders, as can be seen
by comparing the results presented in Figure 7(a), which shows dispersion curves
relating k and β for a square lattice and various values of a, to those of Figure 10
of [9]. Nevertheless, the trends observed in the linear array case (i.e., increasing β−k
with both a and k) are again visible here. However, the simple behavior evident in
Figure 7(a) (i.e., a single solution for each α and k below the cut-off) is not ubiquitous.
A number of “exotic” effects can occur when k ≈ b(α), especially in situations with
low symmetry. An example is given in Figure 7(b). Here there is a single mode for
small k, but this disappears before β reaches b(α). At a slightly higher frequency a
second mode cuts on and a third enters via the Brillouin zone edge. These finally
come together and cut off at k ≈ 3.298.

We have also found modes that are antisymmetric about the plane of the array,
but only when a � 0.467. The range of lattices for which these occur increases with
a; when a = 0.467, modes were found only when s2 = s1 and ψ = π/6 (the densest
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(a)
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a = 0.45

a = 0.49
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3.27
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Fig. 7. (a) Plots showing the Bloch wavenumber β and the free-space wavenumber k for s2 =
[0, 1] and α = 0 at selected radii. (b) Plot showing the Bloch wavenumber β and the free-space
wavenumber k for s2 = 1.8, ψ ≈ 0.08960π, and α = 0.18π with a = 0.49. In both cases, the dotted
vertical line marks the edge of the Brillouin zone.

possible packing of the spheres having fixed s1 = 1 and assumed that s2 ≥ s1). The
fact that antisymmetric modes do not exist for smaller spheres is consistent with the
the two-dimensional cylinder problem [9], though there is a distinction between these
problems that should be noted. In the two-dimensional case, as the radius increases,
the symmetric and antisymmetric modes coalesce due to the fact that when adjacent
cylinders touch, the two sides of the array become disconnected (see, for example,
Figure 2.2 of [20]). This is clearly not the case for an array of spheres.

Figures 8(a)–(d) display a sequence of plots showing dispersion curves relating the
frequency k and the Bloch vector β for symmetric surface modes. The geometry is
that of a skew lattice with s2 = 1.2, ψ = π/10, and a = 0.45. These parameters were
chosen because they lead to relatively large values of β−k, but the qualitative behavior
is fairly typical. The dots at the center of the shaded circles are points in the reciprocal
lattice. The difference between the figures is the value of k, which ranges from 2.45
in Figure 8(a) to 3.45 in Figure 8(d). The central shaded circle shows the region
β ≤ k, which is excluded by virtue of (7.1), and the dashed line shows the boundary
of the Brillouin zone. The dispersion curves therefore lie between this circle and the
dashed line, repeated throughout the plane via periodicity. Although the dispersion
curves lie close to the boundary of the shaded circles, the general trend for β − k to
increase with k is still visible. For this particular lattice the absolute cut-off occurs at
k ≈ 3.772. Isofrequency diagrams such as these can be used to determine the direction
in which the energy associated with a particular mode propagates along the array. As
described in [13, pp. 40 and 223] the energy propagates in the direction of the group
velocity, which is normal to the dispersion curves (in the direction of increasing k).
The quantity α (= argβ), on the other hand, has no simple physical interpretation.
Thus, in Figures 8(a), (b), and (d), due to the closed nature of the dispersion curves,
modes which propagate in any direction are possible, but for k = 2.75 as in Figure 8(b)
this is not the case. Here, modes with group velocity predominantly in the y-direction
are forbidden. We have observed the pattern in Figure 8(b) only for stretched lattices
(i.e., those with s2 > 1). In fact, from (6.3) and Figure 5 it is clear that increasing
s2 squeezes the Brillouin zone down to a thin strip aligned with the x-axis, and so
if we let s2 → ∞, we can cut off all modes except those with group velocity in the
x-direction.
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Fig. 8. Contour plots showing the location of the Bloch wavevector β for symmetric modes
(solid lines) in the plane of the reciprocal lattice, with s2 = 1.2, ψ = π/10, a = 0.45, and
(a) k = 2.45, (b) k = 2.75, (c) k = 3.15, (d) k = 3.45. The dotted line shows the boundary of
the Brillouin zone, and the shaded circles (which have radius k) cover the regions in which βjp ≤ k
for some j, p ∈ Z.

A situation similar to that shown in Figure 8(b) is shown in Figure 9. The sphere
radius is smaller than in the previous figure as this leads to more informative contour
plots. Figure 9(a) is an isofrequency diagram showing the dispersion curves for an
array with s2 = 1.2, ψ = π/10, a = 0.25, and k = 3.0. The magnitude of β − k
is very small along the whole dispersion curve in this case. Figures 9(b)–(d) show
contour plots of Re[u(r)] in the plane z = 0 (the coefficients are normalized so that∑

n,m |Am
n |2 = 1) for the modes corresponding to the three points marked in the first

figure. The normals to the dispersion curve at (b) and at (c) are parallel, and so the
corresponding modes propagate in the same direction (parallel to the x-axis). This
is clearly seen from the accompanying mode plots. On the other hand Figures 9(c)
and (d) illustrate two modes propagating at markedly different angles, despite the
minimal change in α. This is related to the superprism effect discussed in [13, p. 225].

Figure 10 shows isofrequency contours for antisymmetric modes for an array with
s2 = 1, ψ = π/6, a = 0.50, so that the spheres are as closely packed as possible with
each sphere in contact with six others. The fact that the spheres are touching each
other does not have a significant qualitative effect (one might guess that this is the
case because the spheres touch in the plane z = 0, where u = 0 for an antisymmetric



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2990 I. THOMPSON AND C. M. LINTON

(a)

β cos α

β
si

n
α

(b)

(c)

(d)

−4

−4

−2

−2

0

0

2

2

4

4

(b)

−

−

−

−−−

0

0

1

1

11

2

2

22

3

3
33

−2.4 2.4

x

y

(c)

−

−

−

−−−

0

0

1

1

11

2

2

22

3

3
33

−3.5 3.5

x

y

(d)

−

−

−

−−−

0

0

1

1

11

2

2

22

3

3
33

−2.8 2.8

x

y

Fig. 9. Contour plots with s2 = 1.2, ψ = π/10, a = 0.25, and k = 3.0. (a) shows the
location of the Bloch wavevector β for symmetric modes (solid lines) in the plane of the reciprocal
lattice. (b)–(d) show Re[u(r)] with z = 0 for the values of β indicated by crosshairs in (a); thus
(b) β ≈ [3.004, 0], (c) β ≈ [1.275, 2.753], (d) β ≈ [1.449, 2.635].

mode). The frequencies illustrated range from k = 3.5 to k = 3.8, and the dispersion
curves shown are typical for antisymmetric modes. The directions in which surface
waves can propagate in this case change significantly as k is varied, and in Figure 10(d)
the permitted propagation directions are predominantly in a direction that is parallel
to a lattice vector.

8. Conclusion. In this article we have studied guided acoustic waves propagat-
ing along one- and two-dimensional arrays of rigid spheres. In each case these modes
correspond to quasi-periodic solutions to the appropriate boundary-value problem.
The quasi-periodicity introduces a cut-off frequency, below which waves cannot radi-
ate away from the array, and we search below this cut-off for the existence of guided
modes.

In the case of a one-dimensional array we find that modes which are axisymmetric
do exist, though the difference between the frequency parameter k and the Bloch
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Fig. 10. Contour plots showing the location of β for antisymmetric modes (solid lines) in the
plane of the reciprocal lattice, with s2 = 1, ψ = π/6, a = 0.50, and (a) k = 3.5, (b) k = 3.6,
(c) k = 3.7, (d) k = 3.8. The dotted line shows the boundary of the Brillouin zone, and the shaded
circles (which have radius k) cover the regions in which βjp ≤ k for some j, p ∈ Z.

parameter β̃ is very small and can be difficult to determine numerically, particularly
when the spheres are small. Previous work on the excitation of surface modes in a
related two-dimensional problem [38] suggests that, as a consequence, these modes
will be difficult to excite.

For two-dimensional arrays, we have computed modes that are either symmetric
or antisymmetric about the plane of the array (the symmetric case is equivalent to
hemispherical protrusions on a rigid plane), and we have considered arbitrary skew
lattices. The dispersion curves have an extremely rich structure as a function of the
various parameters which govern the problem. One of our key findings is that the
possible directions in which modes can propagate vary with frequency. This suggests
the possibility of constructing periodically embossed surfaces which channel energy
to infinity in some directions but not in others.

We have not attempted to provide a mathematical proof of the existence of the
modes which we have computed, nor to prove that in the case of sound-soft spheres
modes do not exist. These proofs do exist for related two-dimensional problems (see,
for example, [15, 5, 36, 18]), and we are currently working on extending these to cover
the problems treated in this article.
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Appendix. Spherical harmonics and wave functions. The associated Leg-
endre function is defined here, for nonnegative order and |x| ≤ 1, by
(A.1)

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x) =

(1− x2)m/2

2nn!

dm+n

dxm+n
(x2 − 1)n, n ≥ m ≥ 0.

This is the convention adopted in [23]. Some authors include an extra factor of (−1)m

(often referred to as the Condon–Shortley phase). If m > n, then Pm
n (x) ≡ 0. The

extension to negative order is accomplished via

(A.2) P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pm
n (x), n ≥ |m|,

and we note that

(A.3) Pm
n (0) = 0 for n+m odd.

We refer to a solution of the Helmholtz equation as a wave function. In particular
we use the notation

(A.4) Jm
n (r) = jn(kr)Y

m
n (r̂) and Hm

n (r) = hn(kr)Y
m
n (r̂)

for, respectively, regular and outgoing spherical wave functions. Here jn(·) and

hn(·) ≡ h(1)n (·) are, respectively, spherical Bessel functions of the first kind and spher-
ical Hankel functions of the first kind, and Ym

n are spherical harmonics defined by

(A.5) Ym
n (r̂) ≡ Ym

n (θ, φ) = (−1)mλnm Pm
n (cos θ) eimφ, n ≥ |m| ≥ 0,

where

(A.6) λnm =

√
(2n+ 1)(n−m)!

4π(n+m)!
.

We note that

Ym
n (r̂) = (−1)m Y−m

n (r̂), Ym
n (−r̂) = (−1)nYm

n (r̂),(A.7)

and

(A.8)

∫

Ω

Ym
n Yµ

ν dΩ = δnνδmµ,

the integral being over the surface of the unit sphere. Also,

(A.9) Ym
n (θ, φ) = (−1)n+mYm

n (π − θ, φ).

Wave functions may be represented as Fourier integrals, and these representations are
often useful in conjunction with the Poisson summation formula (3.4). Using spherical
polar coordinates with z = r cos θ as in sections 4 and 6, we have [17]
(A.10)

hn(kr) P
m
n (cos θ)eimφ =

(sgn z)n−m

2πin+1

∫ ∞

−∞

∫ ∞

−∞

eimαeikr·qe−kγ(q)|z| Pm
n (iγ(q))

dq1dq2
γ(q)

,

where q1 = q cosα and q2 = q sinα, and we have introduced the function

(A.11) γ(z) = (z2 − 1)1/2, γ(0) = −i,
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with infinite branch cuts placed along z = ±(1 + iu), u > 0. For real argument
γ is either positive real or negative imaginary. Note that this definition serves to
analytically continue (A.1) (i.e., by writing (1 − z2)1/2 = iγ(z)), but the resulting
function which appears in (A.10) differs from the usual associated Legendre function
found in books since the branch cut is normally taken along the interval (−1, 1).
Alternatively, in cylindrical polar coordinates [17]

(A.12) hn(kr) P
m
n (cos θ) =

(−i)n+1

π

∫ ∞

−∞

eikzt Km

(
k
√
x2 + y2 γ(t)

)
Pm
n (t) dt,

in which Km(·) is a modified Bessel function.
It is possible to expand an outgoing wave function as a series of regular wave

functions with a different origin. Thus, from [23, Theorem 3.27] we have, for |a| < |b|,

(A.13) Hm
n (c) =

∑

ν,µ

Smµ
nν (b)J µ

ν (a),

in which c = a+ b, and

(A.14) Smµ
nν (b) = 4πiν−n(−1)m

n+ν∑

q=|n−ν|
n+ν−q even

iq hq(kb)Y
µ−m
q (b̂)G(n,m; ν,−µ; q).

Here G is a Gaunt coefficient defined by

(A.15) G(n,m; ν, µ; q) =

∫

Ω

Ym
n Yµ

ν Y
m+µ
q dΩ,

the integration being over the surface of the unit sphere. The matrix [Smµ
nν ] is known

variously as the separation matrix, the translation matrix, or the propagator matrix.
In view of (A.7), this satisfies the symmetry relationship

(A.16) Sµm
νn (−b) = (−1)n+νSµm

νn (b).

For the special case in which b = b̃ ez lies along the axis of the spherical coordinate
system, we have [23, eqn. 3.88]
(A.17)

Smµ
nν (b̃ ez) =

√
4πδmµi

ν−n(−1)m
n+ν∑

q=|n−ν|
n+ν−q even

√
2q + 1(i sgn b̃)q hq(k|b̃|)G(n,m; ν,−m; q).

A number of properties of the Gaunt coefficients follow directly from the definition
(A.15) and (A.7) (see [23, p. 84]). In particular, G is real, and

(A.18) G(n,m; ν, µ; q) = G(n,−m; ν,−µ; q).

For certain combinations of parameters, G takes a simple form (see [23, Chapter 3]
and [11]). In particular, when q = 0 we can evaluate the integral using (A.8), to
obtain

(A.19) G(n,m; ν,−µ; 0) = (−1)mδnνδmµ/
√
4π.
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L. Päivärinta and E. Somersalo, eds., Springer-Verlag, Berlin, 1993, pp. 87–102.

[16] A. F. Koenderink and A. Polman, Complex response and polariton-like dispersion splitting
in periodic metal nanoparticle chains, Phys. Rev. B, 74 (2006), article 033402.

[17] C. M. Linton, Lattice sums for the Helmholtz equation, SIAM Rev., 52 (2010), pp. 630–674.
[18] C. M. Linton and M. McIver, The existence of Rayleigh–Bloch surface waves, J. Fluid Mech.,

470 (2002), pp. 85–90.
[19] C. M. Linton and P. McIver, Embedded trapped modes in water waves and acoustics, Wave

Motion, 45 (2007), pp. 16–29.
[20] C. M. Linton, R. Porter, and I. Thompson, Scattering by a semi-infinite periodic array and

the excitation of surface waves, SIAM J. Appl. Math., 67 (2007), pp. 1233–1258.
[21] C. M. Linton and I. Thompson, One- and two-dimensional lattice sums for the three-

dimensional Helmholtz equation, J. Comput. Phys., 228 (2009), pp. 1815–1829.
[22] Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, Elastic wave scattering by

periodic structures of spherical objects: Theory and experiment, Phys. Rev. B, 62 (2000),
pp. 2446–2457.

[23] P. A. Martin, Multiple Scattering. Interaction of Time-Harmonic Waves with N Obstacles,
Cambridge University Press, Cambridge, UK, 2006.

[24] K. Maslov and V. K. Kinra, Acoustic response of a periodic layer of nearly rigid spherical
inclusions in an elastic solid, J. Acoust. Soc. Amer., 106 (1999), pp. 3081–3088.

[25] K. Maslov, V. K. Kinra, and B. K. Henderson, Elastodynamic response of a coplanar
periodic layer of elastic spherical inclusions, Mech. Mater., 32 (2000), pp. 785–795.

[26] P. McIver, C. M. Linton, and M. McIver, Construction of trapped modes for wave guides
and diffraction gratings, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998),
pp. 2593–2616.

[27] A. Modinos, Scattering of electromagnetic waves by a plane of spheres—formalism, Phys. A,
141 (1987), pp. 575–588.

[28] R. Porter and D. V. Evans, Rayleigh–Bloch surface waves along periodic gratings and their
connection with trapped modes in waveguides, J. Fluid Mech., 386 (1999), pp. 233–258.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SURFACE WAVES ON ARRAYS OF SPHERES 2995

[29] R. Porter and D. V. Evans, Embedded Rayleigh–Bloch surface waves along periodic rectan-
gular arrays, Wave Motion, 43 (2005), pp. 29–50.

[30] I. E. Psarobas, N. Stefanou, A. Modinos, and V. Yannopapas and, Scattering of elastic
waves by periodic arrays of spherical bodies, Phys. Rev. B, 62 (2000), pp. 278–291.

[31] R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, Scattering of elastic waves by
a periodic monolayer of spheres, Phys. Rev. B, 66 (2002), article 024303.

[32] R. A. Shore and A. D. Yaghjian, Travelling electromagnetic waves on linear periodic arrays
of lossless spheres, Electron. Lett., 41 (2005), pp. 578–579.

[33] R. A. Shore and A. D. Yaghjian, Traveling waves on two- and three-dimensional periodic
arrays of lossless scatterers, Radio Sci., 42 (2007), article RS6S21.

[34] N. Stefanou and A. Modinos, Scattering of light from a two-dimensional array of spherical
particles on a substrate, J. Phys. Condens. Matter, 3 (1991), pp. 8135–8148.

[35] A. J. Stone and C. P. Wood, Root-rational-fraction package for exact calculation of vector-
coupling coefficients, Comput. Phys. Comm., 21 (1980), pp. 195–205.

[36] S. V. Sukhinin, The whispering surface effect, J. Appl. Math. Mech., 63 (1999), pp. 863–876.
[37] Y. Tanaka and S.-I. Tamura, Surface acoustic waves in two-dimensional periodic elastic

structures, Phys. Rev. B, 58 (1998), pp. 7958–7965.
[38] I. Thompson and C. M. Linton, On the excitation of a closely spaced array by a line source,

IMA J. Appl. Math., 72 (2007), pp. 476–497.
[39] V. Twersky, Multiple scattering of sound by a periodic line of obstacles, J. Acoust. Soc. Amer.,

53 (1973), pp. 96–112.
[40] V. Twersky, Lattice sums and scattering coefficients for the rectangular planar array, J. Math.

Phys., 16 (1975), pp. 644–657.
[41] V. Twersky, Low frequency coupling in the planar rectangular lattice, J. Math. Phys., 16

(1975), pp. 658–666.
[42] V. Twersky, Multiple scattering of waves by the double periodic planar array of obstacles,

J. Math. Phys., 16 (1975), pp. 633–643.
[43] J. Y. Vaishnav, J. D. Walls, M. Apratim, and E. J. Heller, Matter-wave scattering and

guiding by atomic arrays, Phys. Rev. A, 76 (2007), article 013620.
[44] Y. Xu, Reflection and transmission of a plane wave by an array of cavities in the interface of

two solids, J. Appl. Mech., 59 (1992), pp. 102–108.


