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Abstract.—Increasingly, large data sets pose a challenge for computationally intensive phylogenetic methods such as
Bayesian Markov chain Monte Carlo (MCMC). Here, we investigate the performance of common MCMC proposal dis-
tributions in terms of median and variance of run time to convergence on 11 data sets. We introduce two new Metropolized
Gibbs Samplers for moving through “tree space.” MCMC simulation using these new proposals shows faster average run
time and dramatically improved predictability in performance, with a 20-fold reduction in the variance of the time to es-
timate the posterior distribution to a given accuracy. We also introduce conditional clade probabilities and demonstrate
that they provide a superior means of approximating tree topology posterior probabilities from samples recorded during
MCMC. [Bayesian inference; Gibbs sampling; Markov chain Monte Carlo; phylogenetics; posterior probability distribution;
tree topology proposals.]

The Markov chain Monte Carlo (MCMC) algorithm
has been known in statistics for many decades (Metropo-
lis et al. 1953; Hastings 1970); however, the full poten-
tial of the algorithm was slow to be appreciated. The
MCMC algorithm samples a parameter state Ψ (e.g.,
a phylogenetic tree) from a Markov chain, where new
states Ψ′ (e.g., new phylogenetic trees) are proposed
by proposal distribution p(Ψ′|Ψ) and accepted with

probability αH =
π(Ψ′)×p(Ψ|Ψ′)
π(Ψ)×p(Ψ′|Ψ) . Here, π(Ψ) denotes the

posterior probability of Ψ. The transition matrix defines
the probabilities of a jump from state Ψ to Ψ′ and be-
ing accepted for any discrete parameter. For continuous
parameters, the transition kernel, which is the proposal
distribution combined with the acceptance probability,
describes moves in the parameter space. In this paper,
we do not distinguish between transition of discrete
parameters and continuous parameters and simply call
the mechanism to propose a new state an operator.

MCMC has now been applied to many problems, es-
pecially those that require approximations of difficult
high-dimensional distributions, such as the posterior
distribution of phylogenetic trees. Many other applica-
tions for the MCMC algorithm are known, such as sta-
tistical physics, molecular simulation, dynamic system
analysis, and computer vision. MCMC transition ker-
nels need to be adapted for the specific problem domain
to achieve a high efficiency. In 1996, Markov chains were
first introduced for sampling among phylogenetic trees
(Rannala and Yang 1996; Mau and Newton 1997; Li et al.
2000). Since that time, tree proposal distributions have
not changed much, although the literature is full of more
complex concepts of transition kernels for other appli-
cations (e.g., Gilks et al. 1996; Brooks 1998; Liu 2001).

Bayesian phylogenetic inference is inherently diffi-
cult because the state space increases superexponen-
tially with the number of taxa under study. In addition,
current MCMC approaches propose trees by random

perturbations of the current tree, both leading to unnec-
essarily small effective sample sizes and large variance
between runs. An ideal MCMC run would converge
fast with a high degree of reproducibility. Although
there are many other parameters in a typical MCMC
run, the tree topology has a crucial role in phyloge-
netic analysis. Designing a good proposal kernel for tree
topologies is the most challenging aspect of implement-
ing Bayesian MCMC algorithms. Furthermore, samples
from the full posterior distribution of other parameters
can often only be accurately estimated if the posterior
distribution on tree topologies is sampled accurately.
Hence, a transition kernel that moves effectively around
the space of tree topologies is very desirable.

The current tree proposal distributions implemented
in software packages such as BEAST (Drummond and
Rambaut 2007) and MrBayes (Ronquist and Huelsen-
beck 2003) are constructed relatively simplistically. New
trees are proposed at random from some well-defined
neighborhood around the current tree. Not much is
known about the performance of different transition
kernels for phylogenetic inference. Only recently, the
first attempt to evaluate such proposal distributions
was performed by Lakner et al. (2008) for unrooted
trees and a second attempt by Höhna et al. (2008) for
time trees (rooted and clock constrained). The results in
Lakner et al. (2008) and Höhna et al. (2008) show that the
design of the currently used transition kernels leads to
a low rate of accepted transitions, unless a small neigh-
borhood is used. Consequently, the MCMC algorithm
needs long computation times to give reliable estimates
for the parameters under study. New proposal distribu-
tions need to be explored to find more efficient MCMC
algorithms for sampling the posterior distribution in
tree space. In this paper, we will consider new MCMC
transition kernels for Bayesian phylogenetic inference,
partially inspired by kernel designs for other domains
of application.
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MATERIALS AND METHODS

The two most common operations on a tree are the
prune-and-regraft algorithm and the subtree-swap (SS)
algorithm. The prune-and-regraft algorithm, that is, ap-
plied in the Subtree-Prune-and-Regraft (Swofford et al.
1996) operator and the Fixed-Nodeheight-Prune-and-
Regraft (FNPR, Höhna et al. 2008) operator, selects a
random subtree and reattaches the subtree at a new
random branch (e.g., Fig. 1). The SS algorithm (e.g.,
Drummond et al. 2002) exchanges two random sub-
tended subtrees (Fig. 2). In their current application,
both algorithms are stochastic: They propose a new
tree by random perturbation of the current tree. This
results in many proposals being rejected because they
result in a tree with low likelihood. Ideally, the proposal
mechanism would propose trees proportional to their
posterior probability, obviating the need for MCMC
entirely. However, an efficient means of doing this for
phylogenetic problems has yet to be demonstrated. An
intermediate and achievable goal would be to apply
weights to neighboring trees that focus proposals on
promising alternatives. These algorithms, such as the
Gibbs sampler, are computationally more expensive or
require some knowledge of the conditional distribution
but generally have a higher efficiency due to a higher
acceptance rate.

Gibbs Sampler

The Gibbs sampler is a special case of the Metropolis–
Hastings algorithm (Geman and Geman 1984,
Gilks1996). The Gibbs sampler samples from the
conditional posterior distribution, instead of the full
posterior distribution P(X1,X2, . . . ,Xk|Y) with k vari-
ables. Therefore, the Gibbs sampler fixes all but one
variable and samples directly from this conditional dis-
tribution P(Xi|X1, . . . ,Xi−1,Xi+1, . . . ,Xk,Y). Then, a new
parameter X′ is selected. The choice of the parameter
to be updated can be performed either iteratively or by
drawing randomly. Next, a new value for the parameter
is conditionally sampled. The Gibbs sampler has an ac-
ceptance probability equal to one and therefore a high
transition probability. Here, the acceptance probability
denotes the probability of accepting the new proposed
state (including proposals of the same state as the cur-
rent state of the chain), and the transition probability
denotes the probability of accepting new states (i.e.,
leaving the current state). However, the Gibbs sampler
can be applied only if the conditional distribution of the
parameters is known or if each probability can be com-
puted (e.g., when the values are drawn from a discrete
state space).

Metropolized Gibbs Sampler

The Gibbs sampler has the highest possible accep-
tance probability (one) but not the highest transition
probability. The transition probability is the probability
of leaving the current state, and a high transition prob-
ability leads to a faster mixing Markov chain. In this

FIGURE 1. A sample SS with five taxa. a) shows the starting tree
with clade CAB chosen first. b) presents the tree after swapping clade
CAB with node D and gives the corresponding backward proposals.
Here, the number of possible proposals is not symmetric (the forward
and backward proposal probabilities are not equal) and the actual pro-
posal possibilities are indicated. For simplicity of this example, we as-
sume each weight of the tree topology to be equal to one. In a) the
probability of choosing clade CAB first and then proposing to swap
with node D is hence 1

2 , as indicated by the arcs. The backward pro-

posal probabilities (exemplified in b) has the probability 1
3 .

paper, we consider a modification to the Gibbs sampler
that increases the transition probability. The transition
probability is strongly correlated with the asymptotic
variance of the estimates (Peskun 1973; Mira 2001) and
therefore strongly influences the performance of the
MCMC algorithm

.
A Gibbs sampler can be modified by prohibiting the

current state as a new proposal. Therefore, the oper-
ator is forced to propose different states more often.
Liu (1996) demonstrated that the Metropolized Gibbs
Sampler has a higher transition rate and, hence, higher
performance. However, the difference decreases with
an increasing number of states in the proposal distri-
bution. Therefore, only a discrete parameter can be

FIGURE 2. A sample proposal distribution for the
FNPR/MGFNPR operator on a four-taxon tree. The subtree
containing taxon B is pruned from tree Ψ1. Possible new trees are
Ψ1, Ψ2, and Ψ3, whereas each tree can have a weight assigned to it.
The Gibbs-like sampler proposes the three trees proportional to their
posterior probability and the Metropolized Gibbs sampler excludes
tree Ψ1.
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“Metropolized” to achieve a higher transition rate. Nev-
ertheless, in most situations, the chain is in a state that
has a high probability compared with most other states
in the proposal distribution. This leads to observable
improvements when the Metropolized Gibbs Sampler
is used for proposing new tree topologies (Liu 1996).

Topology proposals are usually operators in a
continuous parameter space because branch lengths
and node heights are continuous parameters. Unfortu-
nately, we cannot easily sample from the conditional
probability distribution of a tree with arbitrary branch
lengths (or node heights). To benefit from using
Metropolized versions of the Gibbs sampler, we
have developed versions of tree proposals, which pro-
pose a state from a discrete set of possible proposals.

First, as a representative for the prune-and-regraft
operators, the FNPR operator is extended. The FNPR
operator does not change the node heights and hence
has a discrete proposal distribution, which is neces-
sary to gain the desired advantage of metropolizing
the proposal. Select a node i that is not the root or a
direct child of the root. Then, the parent node of i is
pruned and all reattachment points j are determined.
For each potential reattachment point, a weight is cal-
culated for the corresponding tree topology. Finally, a
new tree is proposed by drawing a tree randomly ac-
cordingly to the weights (Fig. 2). Although the ordinary
Gibbs sampler has an acceptance rate of one, the Hast-
ings ratio needs to be calculated when we use weights
other than the posterior probabilities. To keep the op-
erators general, we supply the Hastings ratio. Let us
denote the weight for the current tree by wji, the weight
for the proposed tree by wij, and the set of weights
for the possible proposals by Wi and Wj at tree Ψ and
Ψ′, respectively. The Hastings ratio for any weight is
computed by

αH =
P(Ψ|Ψ′)
P(Ψ′|Ψ)

=

wji∑

ω∈Wj

ω

wij∑

ω∈Wi

ω

. (1)

Many different weighting functions are feasible, for
example, the parsimony score, the Conditional
Clade Probability (CCP) score (see below), or the poste-
rior probability. When the posterior probability is used,
the operators are Gibbs like. We name the posterior-
probability-guided-prune-and-regraft operator the
Metropolized-Gibbs Fixed-Nodeheight-Prune-and-Reg-
raft (MGFNPR) operator.

Second, the SS is extended identically. A subtree i is
arbitrarily chosen with i not being the root or the older
child of the root. Then, every alternative node j is cho-
sen with which i can be swapped. For all resulting trees,
a weight is calculated and finally, a tree is proposed ran-
domly, proportional to the weights (see Fig. 1).

The SS operator is an example of an asymmetric pro-
posal distribution. Figure 1 shows the difference in the
proposal distribution depending on the the current tree.

Consequently, we define the Hastings ratio as follows.
Let wij denote the weight for swapping node i with j at
tree Ψ and w′ij at tree Ψ′, respectively. Further, Wi de-
notes the set of weights for all possible new trees when
node i is chosen first and the current tree is Ψ. Then,
the Hastings ratio αH is derived from the following
equations:

P(Ψ′|Ψ) =
wij∑

ω∈Wi

ω
,

P(Ψ|Ψ′) =
w′ij∑

ω∈W′i

ω
,

αH =
P(Ψ|Ψ′)
P(Ψ′|Ψ)

=

w′ij
∑

ω∈Wi

ω

wij
∑

ω∈W′i

ω
.

We name the posterior probability-guided SS oper-
ator as the Metropolized-Gibbs Subtree-Swap (MGSS)
operator.

Pruned Gibbs Sampling

In the previous section, we developed a Metropolized
Gibbs Sampler for clock-constrained rooted phyloge-
netic trees. However, the Metropolized Gibbs Sampler
requires intensive computation for each iteration. Some
computations might not be necessary because many
proposals are rejected. Hence, the Metropolized Gibbs
Sampler is improved by narrowing the proposal distri-
bution to the more likely proposals.

After some initial iterations—the burn-in phase—the
current tree of the MCMC run is expected to have a high
posterior probability. The posterior probability of a tree
can be very sensitive to large changes to the topology
or branch lengths. Therefore, local changes on the tree
topology are assumed to preserve the posterior prob-
ability better than global changes. On the other hand,
proposals from a local operator are more correlated to
the current tree than proposals from global operators.
Furthermore, an operator with a global effect on the tree
is more likely to propose new trees from different is-
lands of high posterior probability.

We extend the MGFNPR operator and MGSS operator
to propose only trees separated by less than a maximal
distance, where the distance is defined by the number
of nodes along the path between the original position
of the pruned (or swapped) subtree to the newly pro-
posed position. We achieve this restriction by comput-
ing a pruning or swapping distance and ensuring that
this distance does not exceed a certain threshold. All
trees with a larger distance are discarded to save com-
putation time. We suggest a pruning distance of 2n−1

10
where n is the number of taxa. This value has been cho-
sen arbitrarily but has been proven by simulations to
give a good performance in our study. We name these
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operators as the pruned Metropolized-Gibbs-Fixed-
Nodeheight Prune-and-Regraft (pMGFNPR) operator
and the pruned MGSS () operator. The idea is similar
to the idea of Huelsenbeck et al. (2008) and Lakner et
al. (2008), which they called an extended Tree-Bisection-
and-Reconnection operator. However, they applied this
technique on stochastic operators for unrooted trees.

Performance Analysis for Tree Proposal Operators

The performance of the tree proposal operators can
be measured by their ability to converge to the
target distribution and the number of samples or time
needed for the MCMC to produce sufficient samples
from the target distribution, so-called convergence diag-
nostics. Diagnosing convergence of an MCMC chain is a
nontrivial problem and is the subject of extensive the-
oretical research (see Cowles and Carlin 1996 for a
review). Here, we rely on a similarity measurement
between the sampled distribution and the target dis-
tribution that was introduced by Lakner et al. (2008)
and Höhna et al. (2008). We call C the set of possible
clades. For each clade C, it is possible to compute the
absolute difference between the clade frequency sC in
the sampled distribution and the clade frequency tC in
the target distribution. We call δ = max

C∈C
(|sC − tC |) the

maximum deviation of the clade frequencies. Once the
target distribution of clades is accurately estimated, it is
then possible to monitor the convergence of any given
MCMC run by monitoring δ as samples are produced.
We propose to use the computation time elapsed to
reach δ < ε for the first time as a metric to evaluate the
efficiency of operators.

The true target distribution of clades is unkown. To
estimate it, we perform a set of long MCMC runs—
the so-called “golden runs.” Each golden run is simply
an extremely long MCMC chain, and therefore, it pro-
duces samples whose distribution reflects as accurately
as possible the true target distribution. For each data
set, 10 golden runs were performed, with the BEAST
v1.4.8 defaults. Each run had 1 billion iterations with
samples every 1000 iterations, which is far longer than
the usual analysis performed on data sets of the size we
studied. The estimated error of a data set is taken from
the maximal estimated error of all clade frequencies in

the data set. Let SEx̄ denote the estimated error, C any
clade in C, sf (C) the standard deviation of the poste-
rior probability for clade C, and n = 10 (the number of
runs).

SEx̄ =max
C∈C

(
sf (C)√

n

)

.

We observed that the maximal estimated error was be-
low 0.04% (Table 1). Even though one might expect the
estimated error to increase with the size of the data set,
this is not the case.

Conditional Clade Probability

In the section above, we described how the true pos-
terior probability distribution on trees is commonly
estimated by the clade frequencies and how this is used
as a convergence diagnostic. The approximation error of
the posterior probability for infrequently sampled tree
topologies is very high. In the following, we introduce
a new algorithm to approximate the whole posterior
probability distribution on tree topologies, even when
only a small fraction of the total tree space has been
sampled by a converged MCMC run.

Commonly, the frequency of samples of a particu-
lar tree topology is used to approximate its posterior
probability. Instead, one can use the posterior probabil-
ities of the clades contained in the tree to approximate
the tree topology’s posterior probability. The additive
binary (AB) coding scheme (Farris et al. 1970; Brooks
1981) is such a method. The AB coding scheme assumes
all clades are independent of one another, but, this is not
true in general. The constitution of clades depends on
the parent clades. For instance, if the clade C1 consist-
ing of taxa A, B, and C is observed, then the chance of
observing the clade C2 consisting of A and B is P(C2|C1)
(see Fig. 3). Therefore, we introduce the concept of CCP
and extend the concept of the AB coding scheme.

The weighting for the clades is straightforward. The
weight or probability wC1|C2 for clade C1 given the par-
ent clade C2 equals the joint frequency of observations
for this clade and its parent clade f (C1, C2) over the fre-
quency of the parent clade being present f (C2)

wC1|C2 =
f (C1, C2)

f (C2)
.

TABLE 1. Details of the 11 real data sets used in this study

Data set Number of species Number of nucleotides Type of data TreeBASE Estimated error (in %)

DS 1 27 1949 rRNA, 18s M336 0.0277
DS 2 29 2520 rDNA, 18s M501 0.0021
DS 3 36 1812 mtDNA, COII (1–678), cytb (679–1812) M1510 0.0021
DS 4 41 1137 rDNA, 18s M1366 0.0048
DS 5 50 378 Nuclear protein coding, wingless M3475 0.0393
DS 6 50 1133 rDNA, 18s M1044 0.0052
DS 7 59 1824 mtDNA, COII, and cytb M1809 0.0003
DS 8 64 1008 rDNA, 28s M755 0.0007
DS 9 67 955 Plastid ribosomal protein, s16 (rps16) M1748 0.0038
DS 10 67 1098 rDNA, 18s M520 0.0338
DS 11 71 1082 rDNA, internal transcribed spacer M767 0.0010

Notes: rDNA = ribosomal DNA; rRNA = ribosomal RNA; mtDNA =mitochondial DNA; COII = cytochrome oxidase subunit II.
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Approximating the posterior probability of a phylogenetic
tree using a binary representation.—The algorithm to ap-
proximate the posterior probability of a phylogenetic
tree is based on the posterior probabilities (or weights)
associated with its constituent clades. Let us define a
tree Ψ as a set of clades CΨ. The posterior probability of
the tree is then approximated using

P(Ψ) =
∏

C∈CΨ

(wC + ε),

where wC is the weight for the clade given by the bi-
nary representation. It is necessary to add a small value
ε to each weight to avoid zero probabilities. An esti-

mate for ε is 1 − m

√
1
2 where m is the sample size. The

reason for choosing this ε value is that if we have not
observed a tree containing this clade in m samples, then
the probability of observing it at least once was likely
to be smaller than 1

2 in m independent trials. Finally, the
probability of the tree Ψ is

P(Ψ) =
P(Ψ)
∑

Ψi∈T
P(Ψi)

,

with T being the set of all possible trees.
In order to establish the accuracy of the CCP method

in approximating the posterior probabilities of tree
topologies, we estimated the probability of all 105 trees
in a simulated five-taxon data set by the MCMC sample
frequency, the CCP model, and a simplistic scoring algo-
rithm referred to as the weighted multiplicative binary
(WMB) score. WMB uses the AB coding schemes and
unconditional clade probabilities as its weights. We find
that the WMB score provides a good approximation
for the tree probability distribution only for frequently
sampled trees, whereas the CCP model provides a good
approximation of the tree probability distribution for all
trees (Fig. 4). Furthermore, this can be used as a prior
distribution for further Bayesian phylogenetic analysis
(Ronquist et al. 2004) or weights for the proposals of
the transition kernel. The latter was used during this

FIGURE 3. The constitution of conditional clade probabilities
shown on two 4-taxon trees. Tree a) consists of the clades CABCD, CAB,
and CCD, where both clades CAB and CCD are subclades of clade CABCD.
The CCP score is then composed by P(CAB|CABCD)×P(CCD|CABCD). On
the other hand, tree b) consists of the clades CABCD, CABC, and CAB with
CABC being a subclade of CABCD and CAB a sublade of CABC. Hence, the
CCP score is composed by P(CABC|CABCD)× P(CAB|CABC).

research. In addition to the posterior probability of a
tree, we used the CCP score for a tree as weights in
the guided-tree-proposal operators. Compared with the
posterior probability, the CCP score is a quick but less
accurate approximation.

However, the CCP score needs a presampling step if
it used to guide the proposals. A long presampling step
tends to give very accurate approximations of the poste-
rior probability but needs a very long time to compute.
An insufficient presampling step tends to give inaccu-
rate approximations of the posterior probability and,
therefore, can misguide the proposal. We ran MCMC
analyses with differing lengths of the presampling step
(data no shown) to find a good trade-off between fast
but accurate approximations. As a rule of thumb, we
used a preburnin run of 10% of the actual chain length
to obtain the samples for the CCP scores.

RESULTS

The data sets used in this study are 11 empirical data
sets (see Lakner et al. 2008 for more details). The data
sets range from 27 to 71 species and from 378 to 2520
nucleotides (Table 1). We chose these data sets so that we
could benchmark our results against previous studies in
a feasible amount of time (Tables 4 and 5).

FIGURE 4. The estimated posterior probabilities based on the
WMB score, CCP score, and MCMC sampling frequencies on a five-
taxa data set containing all 105 distinct rooted tree topologies. The
trees are sorted in decreasing sampling frequency. The WMB score
and CCP score are established using the same sample of trees as used
to plot the MCMC frequencies. The accuracy is high for both clade-
based score on the frequently sampled trees but diverges extremely
for the WMB score on the fewer sampled trees. This figure is available
in black and white in print and in color at Systematic Biology online.
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Set-up of the Empirical Analysis

In our study, we used a set of commonly used stochas-
tic operators, the newly developed guided operators,
and two mixtures of operators (Table 2; see also Höhna
et al. 2008 for a review of the stochastic operators).
The two mixtures of operators are the previously de-
fault setting of BEAST denoted as BEAST default and
our newly proposed mixture Mixture of Tree Proposal
Operators (MTPO). BEAST default is made up of the the
operators with weights given in parenthesis: Narrow-
Exchange (15), Subtree-Slide (15), SS (3), and Wilson–
Balding (3) (for descriptions of the operators, see, e.g.,
Wilson and Balding 1998; Drummond et al. 2002; Höhna
et al. 2008). MTPO is made up of the operators: Narrow-
Exchange (3), Nearest-Neighbor-Interchange (NNI) (3),
and MGFNPR (4).

We performed 100 test runs for each operator on each
of the 11 real data sets. For each data set and operator,
the runs were stopped when either a maximal devia-
tion of clade frequencies of 5% or 100,000,000 iterations
were reached. The iterations and elapsed time till con-
vergence were reported. Samples were taken every 100
steps. The performance evaluation was performed on
a cluster of 94 iMacs with Intel’s T7700 2.4 GHz Core
2 Duo Central Processing Units (CPUs). For simplicity,
only one core on each machine was used.

Evaluation

Running times varied greatly (Fig. 6). The median
CPU time till convergence is used as a proxy for the
performance of an operator (Table 3). The variance in
running times is also of interest because even an op-
erator with a low median running time can have a
substantial fraction of runs that take an extremely long
time before they converge, causing estimates to vary
significantly when the chain is stopped at an arbitrary
time. A numerical comparison of the median running
time is achieved by normalizing the performance per
data set and averaging the results. Let tij denote the
median running time for operator j on data set i, min(ti)
denote the minimal median running time on data set i
of all operators, and k denote the number of data sets

sj =

k∑

i=0

tij

min(ti)

k
.

Table 3 shows the ranking of the operators according
to the score defined in the formula above. The median
running time represents the factor of how much longer
the median running time is, averaged on all data sets.
The variance represents the factor of how much worse
the variance of running times for an operator is on aver-
age, which is determined in the same way as averaged
median running times. The MTPO clearly produced the
best results. A speed up of 52% over the previous mix-
ture and an order of magnitude (20-fold) reduction in
the variance was achieved.
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TABLE 3. The median running time and the SD of the running
times per operator over all 11data sets

Operator Medianrunning time SD of running
times

MTPO 1.27 1.50
pMGFNPR 1.87 1.99
BEAST default 1.93 7.37
MGFNPR 2.86 3.50
pMGSS 2.95 39.67
Narrow-Exchange 3.63 28.02
NNI 5.3 42.20
FNPR 10.03 12.77
CCP-prune-and-regraft 14.01 79.53
MGSS 14.59 145.05
Wilson–Balding 25.21 24.02
SS 33.51 49.43
CCP-SS 50.08 195.05
Subtree-Slide 91.36 43.37

Note: The table is sorted according to the median running time.

Analyses on the different data sets show that, on
average, the new guided operators converge fastest,
followed by the unguided local operators (Narrow and
NNI) and then the unguided global operators (FNPR,
Wilson–Balding, and SS). Furthermore, it can be es-
tablished that combining several operators creates a
synergy that leads to better performance than the single
operators. This synergy is illustrated, for instance, by
the better performance of BEAST’s default mixture of
operators, compared with the individual component
operators.

The efficiency of the guided operators depends on the
type of guidance function. The posterior-probability-
guided operators perform well on all data sets but need
intensive computations. Therefore, the efficiency is low
on data sets that are easy for other (i.e., stochastic) op-
erators (e.g., data set DS11). However, the efficiency is
better in each case compared with the unguided global
operators. Furthermore, the efficiency is improved on
every data set if the operator uses a restricted neigh-
borhood. On average, 35% less computation time is
needed for the pruned versus the unpruned MGFNPR
operator. The CCP-guided operators converge faster for
some data sets, such as DS3 and DS7. However, these
operators rely heavily on the accuracy of the posterior
estimation of the CCP. Runs with a poor approximation
therefore perform extremely poorly.

Mossel and Vigoda (2005) created an artificial data
set, which is difficult for prune-and-regraft operators
but easier for SS operators. Ronquist et al. (2006) argued
that those situations are unlikely to occur in real data.
In the 11 real data sets studied in this research, we can
confirm the assumption of Ronquist et al. (2006). No
data set was particularly difficult for the prune-and-
regraft operators. In contrast, the FNPR operator was
always superior to the SS operator and data set DS5
seems particularly difficult for the SS operators (Tables
4 and 5).

The Subtree-Slide operator had a very poor perfor-
mance on many data sets and produced many runs
that failed to converge within the maximum allowed

chain length. Nonetheless, the Subtree-Slide operator is
at least as good as the global stochastic operators in 5
of the 11 real data sets (see Table 4 and 5). This result
contradicts the conclusion of Lakner et al. (2008) who
reported the worst efficiency for the Branch–Change
operators. Nevertheless, the overall performance was
the worst according to the median run time.

Tree Space Visualization

Shortcomings of one operator can be identified by
tracing the path of the Markov chain through the tree
space. However, tree space is multidimensional and vi-
sualizing it is challenging (Billera et al., 2001). Hillis et al.
(2005) developed a tool using multidimensional scaling
(MDS) to visualize a tree space. In their method, the dis-
tance between two trees is defined by the weighted or
unweighted Robinson–Foulds (RF) distance. However,
the RF distance does not reflect the number of steps an
operator has to take on the shortest path between two
trees. Matsen (2006) followed the same idea using MDS
to turn the tree space into a two-dimensional space. In-
stead of the RF distance, Matsen used the NNI distance
but without showing visual results.

We performed tree space visualization on the pos-
terior distribution of trees for data set DS1. DS1 is the
smallest of the real data sets but was comparatively dif-
ficult for most of the operators and therefore provided
a good insight into the source of difficulties in sampling
phylogenetic posterior distributions. Other data sets
show similar properties, as they all contain at least two
tree islands (data not shown). First, the trees contained
in the 95% credible set were extracted. The set of trees is
given in Table 6. Next, we calculated the NNI distances
between every pair of trees. The resulting tree space
was transformed with the MDS algorithm into a two-
dimensional space. Figure 5 shows the tree space with
all 15 trees and edges between trees with a NNI distance
of one. The tree space is separated into 5 tree islands.
Each island is built by a group of trees with at least one
connection of only one NNI transformation to another
tree of that island. Consequently, the distance between
two tree islands is at least two NNI transformations.

The optimal scenario is when the operators connect
one tree island directly to any other tree island. The
likelihood of visiting the more distant islands decreases
with the number of operations needed to reach it. Fur-
thermore, if the tree island is not likely to be visited but
has a high posterior probability, then the dwell time in
that island must be higher to achieve the correct pro-
portion of samples for the tree island. This leads to slow
mixing between the distant parts in the tree space and
high variance in convergence time.

The distances between islands have a strong influence
on the transition probabilities between those islands. If
the tree islands are more than three NNI transforma-
tions distant, then direct transitions between the tree
islands become extremely unlikely. For instance, the
only tree island with a distance of three or less from tree
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TABLE 6. The 95% credible set of data set DS1

Tree Tree island Posterior probability (%)

1 1 60.44
2 1 19.27
3 2 7.61
4 1 1.73
5 2 1.01
6 3 0.89
7 1 0.73
8 2 0.68
9 1 0.54

10 4 0.48
11 1 0.46
12 5 0.38
13 1 0.35
14 4 0.35
15 1 0.34

island 3 is tree island 1 (Fig. 5). Hence, almost all transi-
tions from tree island 3 are to tree island 1, although tree
island 4 has a distance of only 4. Furthermore, direct
transitions between tree islands become unlikely if one
shortest path leads via another tree islands. This routing
has a strong impact on the visiting times of a tree island
of the Markov chain and hence the sampling frequency
of trees.

DISCUSSION

Mixing in Tree Space

Two properties of the posterior distribution can con-
tribute to slow convergence in phylogenetic MCMC.
First, if the tree space is very flat (has many trees in the
95% credible set and little variations in the posterior
probabilities of the trees), then more trees must be
sampled in order to represent the posterior probabil-
ity distribution correctly (e.g., data set DS9). Second, if
the tree space is very spiky (has discretely separate tree
islands each with high posterior probability, e.g., data
set DS1), then the difficulty is in jumping from one spike
to another.

Local operators need more transformations to pass
valleys of less likely trees, whereas global operators
need fewer transformations. But the proposal distribu-
tion of the global operators is much larger and fewer
proposals are accepted because of the spiky nature of
the tree space with only a few high probability trees.
The impact of the low acceptance probability is greater
than the gain of fewer steps through the valley of the
less likely trees. Therefore, empirically it appears that
the local operators outperform the global operators.

Visualizing tree space.—The detailed study of data set
DS1 shows that the local operators are more efficient in
mixing in the tree space than the stochastic global op-
erators. The stochastic global operators perform poorly
because of low acceptance probabilities. The transition
probabilities between the tree islands are a good proxy
for the mixing ability of an operator. Furthermore, the
transition probabilities show the shortcomings of an
operator. The data sets can be further analyzed by find-
ing the shortest path between any two trees in the 95%

credible set, which has the lowest transition probabil-
ity and then designing an operator, which can propose
jumps directly between the two trees. Also, future stud-
ies might evaluate the efficiency of mixing between
tree islands (e.g., by measuring the mean access time,
mean commute time, and mean cover time; Seary and
Richards 1997).

Guided MCMC Operators

Global operators can be guided to prefer trees with a
high posterior probability so that more tree proposals
are accepted and the transition probability is higher. As
a result, once the chain is in a valley, guided operators
will traverse valleys between tree islands more quickly.
The guidance functions can be quick and inaccurate
or slow and accurate. The CCP model is used to esti-
mate the probability of a proposal quickly, but it will
have low accuracy unless a long period of training is
used. This can be achieved by a good presampling of
the tree space. The importance distributions used in this
research required a substantial presampling phase, es-
pecially when the posterior distribution was very flat
(e.g., data set DS9). Further improvement would require
importance distributions that represent the posterior
distribution more accurately with fewer samples. One
idea for a better importance distribution would involve
taking the marginal clade divergence times into account
when evaluating a proposed tree, as a substantial frac-
tion of trees with a high marginal probability may be
rejected because the current divergence time assign-
ments are unsuitable for the proposed tree topology.

Guiding the proposals by the posterior probability is
slow but accurate, and the likelihood calculations of the
proposed trees consumes the majority of the compu-
tational time. Nevertheless, a number of optimizations
were investigated to make the likelihood calculation
faster, such as recalculating only partial likelihoods
when only parts of the tree are changed. Because the cur-
rent implementation of the tree likelihood calculation
in BEAST is efficient at reusing partial likelihoods, we
believe that guiding the proposals by the likelihood is
currently the most promising approach to Metropolized
Gibbs Sampler for phylogenetic analysis.

CONCLUSION

This research has shown that single tree proposal
operators can be improved when they are guided. The
guidance function and the proposal distribution have a
large impact on the performance. For the given proposal
distributions, the MGFNPR and MGSS have the highest
possible transition probabilities. They can only be im-
proved by optimizing the implementation or finding a
trade-off between speed and accuracy.

We introduced two new Metropolized Gibbs Sam-
pler operators, and we verified their advantage over the
ordinary Gibbs samplers for proposing new tree topolo-
gies. The pMGFNPR greatly increases the performance
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FIGURE 5. A visualization of the tree space of data set DS1 containing the 95% credible set, emphazising the distinct tree islands. The set
of trees with their posterior probabilities is given in Table 6. The trees are plotted using MDS and the NNI distance between each pair of trees
and filled with a grayscale matching their posterior probability. All trees in one island are connected to at least one other tree in the island by a
single NNI transformation.

FIGURE 6. The detailed performance analysis of data set DS10. The
box plots show the running times for each operator over 100 repli-
cates. The boxes representing the 50% median running times, and the
whiskers show the full range including the outliers. Runs were termi-
nated when either they converged closely to the target distribution or
they reached the maximum number of iterations.

of the MCMC algorithm. A new mixture, MTPO, which
includes the new Metropolized Gibbs Sampler opera-
tors, decreases the median running time till convergence
by 52% and the variance among the runs 20-fold over
the previous settings. We recommend our mixture for
fast and more reliable results in Bayesian phylogenetic
inference.

The newly introduced CCP score is a good proxy of
the posterior distribution on trees when MCMC sam-
ples are available. Here, we used the CCP score to guide
the operators for proposing trees with higher posterior
probability more often. However, the CCP score can be
used in many more applications. First, it can be used as
a summarizing statistic after a MCMC run is performed.
It is a fast algorithm to compare several different tree
topologies and estimate their posterior probabilities.
Second, the CCP score can be used as a analyses can be
combined together. This research only scratches the sur-
face of ideas for improving Bayesian phylogenetics by
MCMC, and we anticipate much more work in this area
if Bayesian phylogenetics is to mature as a statistical
computing discipline.
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