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Abstract. The paper describes a general approach for processing data from a guided 
wave transducer array. The technique is based on phased addition in the frequency 
domain and can be applied to any array geometry and any types of array elements. 
The problem of finding optimal phased shifts, which allow the best resolution to be 
achieved with the minimum number of array elements, is investigated. Different 
algorithms are applied to modelling and experimental data and the results compared. 
Generalization for the case of multimode media is suggested. 

Introduction  

Ultrasonic guided waves are widely used in many areas of nondestructive evaluation [1-4]. 
In this paper the problem of synthesizing a high resolution image of reflectors in a plate-
like structure with a guided wave array of arbitrary shape is considered. The complete raw 
data set of signals from every transmitter-receiver combination is collected and then post-
processed. The general approach is to multiply the transmitted and received signals by 
suitable phase factors in order to focus the beam on every point within test structure. The 
algorithms differ in the way in which these phase coefficients are calculated. 

Conventional technique is based on applying such phased shifts that all signals have 
equal phases at the focusing point. For an ultrasonic linear array this method is known as 
the Total Focusing Method [5]. In the current paper this method is referred to as the basic-
phased addition algorithm [4].  

In principle the basic-phased addition algorithm can be applied to any array 
geometry, but its performance is good only for a limited number of cases. For example, it 
produces acceptable results for linear array [5], but in the case of a circular array a large 
number of elements is required to obtain acceptable resolution [4].  

This paper is concerned with finding optimal phase coefficients, which allow the 
best resolution to be achieved for any array geometry with the minimum number of array 
elements. There is no requirement for the array elements to be omni-directional, i.e. to have 
equal transmission and reception sensitivity in all directions. 

In order to obtain better resolution and higher sensitivity it is necessary to use 
higher order guided wave modes at higher frequencies, where multiple modes exist. 
Generalization of the above algorithms for the case of multimode media is suggested. 

1. Array and data acquisition   

An ultrasonic guided wave array system on an isotropic plate structure is considered. The 
array elements behave as point sources, nT  elements function as transmitters and nR  

elements function as receivers. The  time traces from each transmitter-receiver combination 
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are collected and converted to frequency, ω, domain. The complex spectrum of n-th signal 
is denoted by )(ωns , n=1..N, where RT nnN =  is the total number of transmitter receiver 
pairs in the array. 

The wave field from any transmitter propagates into the plate, interacts with the 
scatterers and generates a scattered wave field. It is assumed that there is only one wave 
mode. Then, by using Born approximation, the scattered signals )(ωns  can be written in 
the following form  

∫= rrr dOKs nn   ),( ),()( ωωω ,                            (1) 

where ),( ωrO  is the unknown object distribution function characterizing the reflectors. 
Function ),( ωrnK  for i-th transmitter and j-th receiver has the form: 

),,(),,()()( ωωω rRrRr r
j

t
i GGA,ωKn = ,                                        (2) 

where )(ωA  is the source excitation pulse, ),,( ωrr′G  is the Green’s function of the 
structure, t

iR  is the location of the i-th transmitter and r
iR is the location of j-th receiver. 

The solution to the problem (1) is non-unique and unstable, i.e. the problem (1) is 
ill-posed. In the next sections the ways to obtain the stable approximation, which is “close” 
to the exact solution ),( ωrO  are discussed. 

2. Phased methods 

2.1 Formulation 

The general idea of array processing is to multiply the signals )(ωns  by suitable phase 
factors ),( 0 ωrnt  in order to focus the beam on every point 0r  within test structure:  

∑≡
n

nn stO )( ),(),( 00
)1( ωωω rr ,                                            (3) 

here ),( 0
)1( ωrO  is the approximation to the function ),( 0 ωrO .  Using equation (1), the 

functions ),( 0
)1( ωrO  and ),( 0 ωrO  can be related by  

∫= rrrrr dOPO  ),( ),,(),( 00
)1( ωωω ,   ∑≡

n
nntP ),(K ),(),,( 00 ωωω rrrr  .           (4) 

Function ),,( 0 ωrrP  is the result for a point reflector located at 0r or the point 
spread function (PSF). 

The results for all frequencies are then summed to synthesise the image: 
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The processing algorithms differ in the way in which the phase coefficients 

T
Ntt },..,{),( 10 =ωrt  are calculated. 

2.2 Basic-phased addition algorithm 

In the basic-phased addition method the coefficients are chosen to maximise the PSF at the 
point r0 in the image: 
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2.3 Method of maximization of contrast 

Another way of calculation the phase coefficient is to maximise the amplitude of the PSF at 
the focusing point, r0, relative to the amplitude of the PSF at all other points:  
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                                                        (7) 

This approach was firstly presented for the problem of focusing of bulk waves by a 
group of surface sources in [6].   

2.4 Least squares method 

By replacing the integral in (1) by a sum at discrete points Mrr ,..,1 , we get a system of 
linear equations 

sxK =                                                                                 (8) 
where { }T

M,...,OO )()( 1 rrx = , { })(}{ mnnm KK rK == , { }TNss ,...,1=s .  
To solve the system (8) we can use the Tikhonov regularization method [7]. Then 

(8) is replaced by the Tikhonov equation: 
( ) sKxKKE ++ =+ )1(   βα ,                                                  (9) 

where T*KK =+ , E is the identity matrix, and α and β are regularization parameters. 
If  β=0 then equation (9) represents the Moore-Penrose pseudoinversion method. It 

can be shown that this is equivalent to the basic-phased addition algorithm (6). Therefore, 
the discrete PSF { } { }),( mnnm PP rrP ==  and the approximate solution )1(x  for the basic-
phased addition method can be written in the form: 

KKP += ,    sKx +=)1(                                                        (10) 
If α=0 then equation (9) represents the least squares method and it is possible to 

show that this is equivalent to the method of maximization of contrast (7). But in this case 
the solution is very unstable. To make it stable 0>= optαα  is taken. Therefore, the PSF 
and the approximate solution for the method of maximization of contrast are given by: 

( ) KKKKEP     
1 +−++= optα ,     ( ) sKKKEx     

1 )1( +−++= optα                  (11) 

2.5 Examples 

2.5.1 Far-field approximation 

Consider the two dimensional problem when a point reflector is in the far field of an array.  
A polar coordinate system where r and φ represent, respectively, radial and angular 
position is defined, with its origin at the nominal centre of the array. In this case PSF can be 
written as 

),,( ),,,,( 0
)(2

00 0 ωϕϕωϕϕ ∞
−= PerrP rrki ,                                      (12) 

where λπ /2=k  is wave number, λ is wavelength and ∞P  is angular PSF. 
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2.5.2 Linear array 

Fig.1(a) shows the angular PSF for a linear array with omni-directional point elements. It 
can be seen that in this case the basic-phased addition method gives better resolution than 
the method of maximization of contrast.  

 
2.5.3 Circular array 

Fig.1(b) shows the angular PSF for a circular array with omni-directional point elements. It 
can be seen that in this case, on the contrary, the method of maximization of contrast gives 
better resolution than basic-phased addition method.  

Thus, the performance of each method depends on the geometry of the array. 
 

       
(a)                                                                          (b) 

Fig. 1. Amplitude of PSF for (a) linear array, (b) circular array. Dotted line – basic-phased addition 
method, solid line – method of maximization of contrast.  

3. Improved processing 

3.1 Deconvolution 

The expression (4) can be regarded as new equation for unknown function ),( 0 ωrO . The 
question is: is it possible to improve the resolution given by the first approximation )1(O  ?  

Denote the angular part of )1(O  in the case of far field by ),()1( ωϕx . Then equation 
(4) can be written in the form 

ϕωϕωϕϕωϕ
π

dxPx   ),(  ),,(),(
2

0
00

)1( ∫ ∞= ,                                          (13) 

where ∫
−

= rdrerOx
rrki )0(2

),,(),( ωϕωϕ . 
For an axisymmetric array (for example the circular array shown in Fig.1(b)) 

equation (13) can be written as a relationship between Fourier coefficients:  
),(),(),()1( ωωω ΩΩ=Ω Ω XPX    ,...2,1=Ω                                         (14) 

Fig.2 shows the amplitude of the spectra ΩP  in Ω-ω plane for the basic-phased 
addition algorithm and method of maximization of contrast. It can be seen that for both 
methods 0),( ≅ΩΩ ωP  for )(0 ωΩ≥Ω . Ω0 describes the limit of angular resolution ϕΔ  of 
an array and depends only on the ratio of the diameter of an array to the wavelength.  
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Using equation (14), the Fourier spectra for the second approximation can be 
written in the form [2]: 

[ ] ),( ),( ),(),( )1(1 )2( ωωωω ΩΩΩ=Ω −
Ω XPFX ,                            (15) 

where ( ){ }222  )(/exp),( γωω kF Ω−=Ω  is a Gaussian shaped filter function which 
suppresses data outside the region )(0 ωΩ≤Ω  and smoothes the resulting function in 
angular domain, γ is a parameter defines the width of the filter. 
 

     
(a)                                                                          (b) 

– Fig. 2. Amplitude of the spectra ΩP for (a) basic-phased addition method; (b) method of 
maximization of contrast.  

 

3.2 Maximization of contrast in the interval 

As have been shown each array has resolution limit characterised by some minimum spatial 
interval which can be resolved. The idea of the method of maximization of contrast in the 
interval is to maximise the PSF in this interval rather then in one focusing point as in (7). 
For far field resolution it can be written in the form: 

max  
d ),(
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Fig.3 shows that maximization of contrast in the interval gives better resolution than 
previous methods for both linear and circular types of array. Moreover, in the case of a 
circular array the distribution of the amplitudes of the spectra ),( ωΩΩP  and filter function 
F(Ω,ω) are very close to each other. This means that deconvolution does not improve the 
resolution very much in this situation. Thus, in practice the method of maximization of 
contrast in the interval gives the best possible resolution. 

Note, that there is a maximum interelement spacing requirement in an array that 
must be adhered to in order to prevent the appearance of grating lobes. This maximum 
spacing does not depend on the method of array processing and it is approximately equal to 
λmin/2, where λmin is the shortest wavelength of guided waves within the frequency range of 
the transmitted signal. 
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(a)                                                                          (b) 

Fig.3. Amplitude of the PSF for (a) linear array; dotted line - basic-phased addition method; (b) circular array; 
dotted line - method of maximization of contrast in one direction. Solid line on both (a) and (b) - method of 

maximization of contrast in the interval. 

5. Results 

The experimental example considered is an array containing 16 transmitter elements and 32 
receiver elements arranged in concentric rings with pitch circle diameters of 52 and 136 
mm, as shown in Fig.4. The array elements are EMATs designed to excite and detect the S0 

Lamb wave mode and have equal transmission and reception sensitivity in all directions. 
The array was used on a 1.05 m by 1.25 m by 5-mm thick aluminium plate specimen with 
square cut edges and 2-mm thick steel disk was bonded to the surface of the plate at the 
location shown to simulate a defect. The more detailed description of the experimental set-
up and array elements can be found in [2]. 

 

 
 

– Fig.4. a) Geometry of EMAT array;  
b) experimental arrangement on 5-mm thick aluminium plate specimen. 

–  
 

The results of data processing are shown in Fig.5. From Fig.5(a) and (b) it is seen 
that the basic-phased addition method and the method of maximization of contrast give 
many angular side-lobes. These side-lobes can be suppressed by deconvolution, the result 
obtained using the method of maximization of contrast with deconvolution is shown in 
Fig.5(c) (the phased addition algorithm with deconvolution gives the same resolution). 
Fig.5(d) shows that method of maximization of contrast in the interval gives approximately 
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the same resolution as previous methods with deconvolution. This demonstrates the 
practical application of the technique to real experimental data.  
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                    (a)                                                                 (b) 
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                                 (c)                                                                  (d) 

Fig.5. Results obtained using  (a) basic phased addition algorithm, (b) method of maximization of 
contrast, (c) method of maximization of contrast with deconvolution, (d) method of maximization of contrast 

in the interval. 

6. Multimode resolution 

6.1 Algorithm 
 
The processing algorithms described above can be generalised for the multimode media. 
But deconvolution in this case becomes quite complicated because instead of the scalar 
equation (13) there will be a system of linear equations. Therefore for multimode media the 
maximization of contrast in the interval seems to be the most appropriate method.  

If there are several modes the problem of maximization (15) can be written for 
every transmitted-received mode combination: 

max 
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,                                                   (17) 

here index m refers to the mode combination of interest and index l refers to all possible 
mode combinations. 

This method can be characterised by the set of point spread functions { }),( 0 ϕϕmnP . 
Each function ),( 0 ϕϕmnP  describes the response from a point reflector for the n-th mode 
combination if the extracted mode combination is the m-th. For the case of ideal resolution 

)(),( 00 ϕϕδδϕϕ −= mnmnP . 

dB scale 
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6.2 Example 

The same configuration of array as in section 5 is considered. The inner ring has diameter 
40 mm and contains 16 transducers, the outer ring has diameter 80 mm and contains 32 
transducers. Each transducer operates as omni-directional transmitter and receiver. It is 
supposed that there are three modes in the system, S0, A0 and SH0 and transducers are 
equally sensitive to all three modes. Fig. 6 shows the set of PSF for the case of SH0-SH0 
mode combination extraction. The scale is logarithmic, so 10-2 corresponds to –40dB level. 
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Fig.6. Amplitude of point spread functions for different mode combinations  

in the case of SH0-SH0 mode extraction; logarithmic scale.   

7. Conclusion 

A general procedure for array processing has been presented. The approach is based on 
multiplying the transmitted and received signals by suitable phase factors in order to focus 
the beam on every point within a test structure. The technique is applicable to any geometry 
of array and any type of array elements.  

Different methods of calculating the phase coefficients have been considered. The 
performance of different algorithms has been tested on modelling and experimental data. It 
is shown that the method of maximization of contrast in the interval gives the best 
resolution. 

Generalization of the above algorithms for the case of multimode media has been 
suggested. 

S0-S0 A0-A0 

SH0-S0 S0-SH0 SH0-A0 

A0-SH0 S0-A0 A0-S0 

SH0-SH0 

2π φ0 
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