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SUMMARY 
Coupled mode techniques for guided wave propagation are extended to 2-D 
stochastic heterogeneity superimposed on a stratified medium. This approach 
requires the variations to be smoothly varying and of modest size (less than f2 per 
cent). By averaging over an ensemble of statistically similar models, coupled 
equations for the modal energy transport can be generated. The intermode coupling 
depends on the horizontal correlation functions for the heterogeneity in the crust 
and mantle, and the integrated effect of the vertical variations in velocity and the 
modal eigenfunctions. 

For a particular stochastic model, the attenuation of a single mode as a function 
of distance can be calculated as a superposition of intrinsic attenuation and 
scattering loss by energy transfer to other modes of propagation. These statistical 
estimates of attenuation can be compared with observations of regional phases 
travelling over a variety of paths in a single region. For Lg and Sn phases, 
intermode scattering may represent up to 30 per cent of the apparent loss. 

Key words: attenuation, guided wave propagation, regional seismic phases, stoch- 
astic heterogeneity. 

INTRODUCTION 

Detailed studied of the structure of the crust and upper 
mantle show lateral heterogeneity on a wide variety of scales 
superimposed on a basic stratification with depth. Guided 
seismic waves travelling nearly horizontally through such 
structures are particularly vulnerable to scattering due to the 
presence of heterogeneity. 

A convenient way of representing such guided waves is in 
terms of a superposition of surface wave modes whose 
eigenfunctions are largely confined to the waveguide. Such a 
description has been used by Malin (1980) and Wang & 
Hermann (1988) in simulations of the coda of local 
earthquakes. For longer distance propagation, Malis- 
chewsky (1987) has summarized the techniques for handling 
the interactions of surface waves with vertical interfaces or 
sharp transitions. These methods relate the amplitudes of 
the surface wave modes in the sturcture on one side of the 
boundary to those on the other side. In a similar way, for 
continuous heterogeneity the wavefield can be described in 
terms of surface wave modes if allowance is made for 
energy transfer between modes (Kennett 1984; Maupin 
1988). These coupled mode methods have generally been 
formulated for deterministic velocity structures and much 
less work has been done on a stochastic description of 
guided wave propagation even though this has been 

extensively developed 'for body waves (see e.g. Aki & 
Richards 1980, chapter .13; Hudson 1982). 

Here we present an adaptation of the coupled mode 
procedure to a 2-D stochastic heterogeneous medium, and 
generate coupled equations for the modal energy transport 
averaged over an ensemble of statistically similar models. 
The approach is based on techniques developed for fibre 
optics (Marcuse 1974), but is extended to multiple 
waveguides e.g. the crust and upper mantle for regional 
seismic phases. For a specified stochastic model of the 
velocity heterogeneity we are able to estimate for each 
mode the contribution to the modal loss factor sQm(o) 
induced by scattering into other modes of propagation. Such 
estimates can be compared with observations of guided 
waves over a variety of paths in a single geographic region, 
as e.g. the observations of Nuttli (1980) for Sn and Lg 
phases propagating across Iran. 

COUPLED MODE EQUATIONS 

Kennett (1984) has shown how the displacement and 
traction fields for guided seismic waves in 2-D laterally 
varying media can be represented as a sum of modal 
eigenfunctions with horizontally varying coefficients. When 
the variations in seismic parameters do not show a 
systematic trend horizontally, the expansion may be made in 
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terms of the modes for a fixed reference structure. Maupin 
& Kennett (1987) have shown how the effect of inclined 
interfaces can be included in the scheme by modifymg the 
matrix elements in the differential equations for coupling 
between the modal coefficients. When the structure has 
systematic horizontal variations a more effective repre- 
sentation is to work in terms of the local modes of the 
structure (Maupin 1988). Although the nature of the 
coupling coefficients differ, the two styles of modal 
representation lead to sets of coupled equations with similar 
structure. 

The coupled mode equations give a representation in 
terms of a particular velocity structure. However, in 
considering different classes of heterogeneity it can be 
advantageous to adopt a stochastic treatment for the 
heterogeneity structure. We will consider the case where the 
heterogeneity has no more than f 2  per cent variation in 
seismic parameters from those of a reference model. This 
provides a good representation of many situations in the 
crust and uppermost mantle and can be well treated using 
the coupled mode approach with a fixed set of reference 
modes (Kennett 1989). 

At each point in the 2-D varying medium we represent 
the displacement field w(x, z) as a sum of vertically varying 
modal eigenfunctions with coefficients which depend only on 
horizontal position (Kennett 1984). Thus 

where w: is the eigenfunction for the rth mode with 
horizontal wavenumber k,, and the sum is taken over both 
forward- and backward-travelling modes. The total number 
of modes must be chosen large enough to include all the 
propagation processes of interest (see Maupin & Kennett 
1987). The eigenfunctions for the modes are normalized so 
that they have the same horizontal energy transport. 

The horizontal evolution of the modal coefficients c, is 
described by a set of ordinary differential equations 

where the coupling matrix K depends on the deviations of 
the properties of the actual medium from those of the 
reference. Using the concise notation of Maupin & Kennett 
(1987), which is suitable for anisotropic media 

(3) 

where tyr is the horizontal traction derived from w: and we 
have written ii; = w;(-k,, z). In terms of the elastic 
modulus tensor ckilj 

(Cij)/cl= ckiIj? Q33 = C33 - C31cG1C13. 
The interface terms depend on the slope of the interface 
and the jumps in the horizontal traction ty, across the 
interface. 

The set of equations (2) include the possibility of both 
reflection and transmission. However, direct calculations 
using the coupled mode equations show that reflected waves 
can be neglected without appreciable error, provided that 
deviations in the seismic parameters from the reference 
model are not too large (less than f 2  per cent) and the scale 
of variation is not rapid compared with the horizontal 
wavelengths involved. This neglect of reflected waves can 
also be justified by using first-order Born scattering results 
in the wavenumber domain (Kennett 1972). For a 
heterogeneity pattern with wavenumber spectrum f(k), the 
scattering between two wavenumbers k, and k, is 
proportional to f(k,-k,). For reflected waves k, is 
negative and so the difference k, - k, will be large. Thus 
scattering into reflected waves will only be noticeable if f ( k )  
has significant amplitude for large k, i.e. if the heterogeneity 
itself varies on very small horizontal scales (or is 
discontinuous). 

We will therefore restrict attention to transmitted waves 
and so consider the limited set of coupled equations 

With the restrictions we have placed on the nature of the 
heterogeneity, a good approximation for the modal 
coefficients after passage through a small horizontal distance 
h is given by 

N x+h 

cr(x + h )  = cr(x)  + 2 cs(x)/ dqKrs(q) exp [i(ks - kr)ql, 
s=o 

( 5 )  

the first term in a systematic expansion in terms of the 
coupling coefficients K,, ; higher order interactions can be 
neglected since we have assumed weak heterogeneity. We 
are thus able to treat the set {c,} as the amplitude 
distribution across the medes at the horizontal position x .  

COUPLED POWER EQUATIONS 

The set of coupled mode equations (2) can be solved for a 
particular heterogeneity model and then provides a detailed 
description of the phase and amplitude behaviour of all the 
modes at each point x in the waveguide. By combining this 
information for many frequencies we can, in principal, 
construct theoretical seismograms, but very substantial 
computational effort is required. 

However, it is possible to obtain a measure of the energy 
redistribution between modes as a function of distance in 
propagating through a random heterogeneity by considering 
the average power over an ensemble of heterogeneity 
models. The resulting equations for the modal power 
contributions for each frequency are a coupled set of first- 
order differential equations with constant and symmetric 
coefficients. 

We will adopt a physically based approach to the 
derivation of the coupled power equations following 
Marcuse (1974). The results we derive can be justified 
formally using the techniques of stochastic differential 
equations described in Kohler & Papanicolaou (1977). 

We have adopted a normalization for modal eigenfunc- 
tions in which the horizontal energy transport is equal for 
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each mode. As a result, for a particular heterogeneity model 
a measure of the power in an individual mode P, is 

Pm = ICmI’, 

and from (4) satisfies the horizontal evolution equation 

a d d 
-Pm=c;-cm +crn-c; 
ax dx d X  

= c; Kmncn exp [i(kn - krn)x] + c.c., (7) 
n 

where C.C. denotes the complex conjugate of the previous 
term. We now consider an ensemble average over a 
collection of statistically similar heterogeneity models, built 
according to the same prescription, but not identical. In 
particular we assume that the phases of any periodic 
components in the heterogeneity are randomly distributed 
across the members of the statistical ensemble. 

The averaged power in each mode 

Sm = (ICrnI’), (8) 

and its change with horizontal position will be governed by 
the ensemble average of equation (7): 

-s,=C (Krnnc;cn)exp[i(kn -/c,)x]+c.c. 
ax n 

We will assume that each of the elements defining the 
heterogeneity Ap,  ACT,’, AQ,,, A(C;11C13), A(C3,C,’) 
have similar statistical properties and the heterogeneity 
values at widely separated points are uncorrelated. The 
coupling coefficients will be described by a stationary 
random process with a finite correlation length D in the 
horizontal direction. We will assume the average heteroge- 
neity level across the ensemble vanishes so that 

(9) 
a 

(Kmn ( x )  ) = 0. 
For the guided waves travelling in the direction of 

increasing x we anticipate that the modal amplitude c,(x) 
and the coupling matrix K(x) will be uncorrelated if 

X I  - x >> D,  

and then 

(Crn(x’)cn (x’)Kmn(x) ) = (cm(x ‘ k n  (x ’1) (Krnn(x)) 

with similar behaviour for products of coupling coefficients. 
We can exploit this result in (9) if we express the modal field 
at x in terms of that at x ’  using (5). Under the assumption 
that third-order interaction terms of the type (KKK) can be 
neglected because the heterogeneity is small, we find 
a 

-Sm = 
ax n,r  

[ (c;(x‘)cr(xt))  exp [ i (kn  - krn)xl 

x [‘dq(Krnn(x)Knr(q)) exp[i(kr - k n ) x ~  

+ (cn(x’)cT(x‘)) ~ X P  [i(kn - krn)xI 

x I, dq ( Krnn ( x ) K z r ( q  ) ) exp [ -i (kr-  krn )XI + c.c]. 
X ‘  

(10) 
Since we have assumed a short correlation length we can 
extend the lower limit of integration to -m, and so recast 

the integrals in the form of half-range Fourier transforms 
over the correlation between the coupling coefficients 

X ’  

exp[i(kn - krn)x~ /  dq(Krno(x)Kir(q)) exp [i(krn - kr)ql 

= exp[i(k, - k,)x] 

x [ du ( Kmn(x)Kzr(x-  u ) )  exp [-i(k,-k,)u].  

The coupled power equations can therefore be written as 

(11) 

x [ du(Krnn(x)Knr(x - u)) exp [i(kn - kr)u1 

+ (~n(x’)cT(x’)) ~ X P  [i(kn - k r b l  

x [ du ( ~ , , ( x ) ~ ; , ( x  - u)) exp [i(k,- krn)u] + c.c . I 
(12) 

We anticipate that the modal amplitudes will tend to have 
random phase so that 

(cnc;) = ( Icrn12)amn 

and this selection of diagonal elements will be reinforced by 
a situation akin to stationary phase; the main contribution 
from the right-hand side of (12) will arise from 
non-oscillatory terms in the integrals. Hence we are able to 
drop one summation to give 

(13) x exp [i(kn - k,)u] + C.C. . I 
We have assumed that the modal coefficients are slowly 
varying in going from x to x ’ ,  and so Srn will be nearly 
constant over this interval. As a result, we can replace 
S,(x’) by S,(x) on the right-hand side of (13). Further, we 
require that the total power should be independent of x in a 
lossless medium so that 

Knrn(x) = -K;n(x)* 

Thus 

where we have used the fact that the term in braces is real to 
incorporate the complex conjugate term as an integral along 
the negative u axis. (Note that in this perfectly elastic 
situation, after propagation through a very large distance, 
the power in all the modes will equalize to the same level.) 

Equation (14) covers the general case of weak 
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heterogeneity but further simplifications can be made if we 
make specific assumptions about the form of the hetero- 
geneity model. The near stratification within the Earth 
will impose different stochastic properties on the hori- 
zontal and vertical variations of the heterogeneity. The 
coupling coefficients K,, are defined in terms of an integral 
over the full depth of the heterogeneity. After taking the 
ensemble average over the set of statistically similar 
models, the evolution equations for the average modal 
power will be dominated by the nature of the variations in 
the heterogeneity in the horizontal direction. 

SEPARATION OF CRUST AND MANTLE 
HETEROGENEITY CONTRIBUTIONS 

In general, we expect the heterogeneity in the crust to have 
a different character to that in the mantle. Since we have 
assumed weak heterogeneity, we are able to extract a 
common functional dependence from each of the coupling 
coefficients K,, for the horizontal behaviour of the 
heterogeneity in each of the crust and mantle zones 

Kmn(x) =fC(x)KC,n(x)  +fM(x)KmMn(x). (15) 

f C ( x )  is the horizontal variation function for the crustal 
heterogeneity and KZn(x) is an integral restricted to the 
crust. Similarly f"(x)  is the horizontal variation function for 
the mantle and KEn(x) is defined by an integral over the 
span of the mantle. We do not require a complete 
separation of the horizontal and vertical dependence of the 
velocity and density perturbations from the reference. The 
part of the variation unaccounted for by f C ( x ) ,  f"(x)  
remains in the crust and mantle coupling coefficients 
e n ( x ) ,  KZn(x) which depend on the properties as a 
function of depth at the location x .  When we take the 
average over an ensemble of statistically equivalent models, 
we remove this dependence on location. The ensemble 
average 

(Kmn(x)KL(x -u)) 
= VC(x)fc(x - u>>IRZ~I' + V"(x)fM(x - u)) IR;nI' 
= Rc(u) IRZn12 + R"(u) IkZnl2, (16) 

in terms of the autocorrelation functions RC,  RM of the 
horizontal variation of the crust and m?ntle heterogeneity 
e.g. RC(u) = cfc(x)fc(x - u ) ) .  G,, KKn represent en- 
semble averages over the vertical variations. We have made 
the not unreasonable assumption that the horizontal 
variations in the crust and mantle heterogeneity are 
uncorrelated. 

With the expression (16) for the heterogeneity contribu- 
tion the evolution equations for the averaged modal power 
can be recast as 

+ IR,M,I' (IFM(kn-k,)I2)] (17) 

where ( IFC12), ( IFMI') are the power spectra of the crust 
and mantle correlation functions e.g. 

( IFc(kn - k,)I2) = 

m 

du Rc(u) exp [i(kn - k , ) ~ ] .  (18) 
-m 

We have so far ignored the possibility of intrinsic 
attenuation of the modes as they propagate through the 
medium, but it is easy to compensate for the effect of Q by 
introducing a simple power loss term into (17). Thus for an 
attenuative medium 

where the power coupling coefficients 

(20) 
and Q,' is the intrinsic loss factor for the mth mode. The 
spatial loss factor Q,' is related to the temporal loss factor 
tQ,' for the same mode by the ratio of the group velocity 
(U,) and phase velocity (c,) for the mode 

tQ,' = (Urn/Crn)Qi'). 

The set of coupled equations (19) can be readily solved 
numerically for any given power distribution. Similar 
equations can be derived for other configurations of 
heterogeneity; the differences will lie in the form of the 
power coupling coefficients as e.g. where the mantle has to 
be sub-divided into different zones. 

For small perturbations of an interface 

Krnn ( x )  = f'(x )KLn(x) (21) 
where f ' ( x )  is the shape of the varying interface. The 
coupling integral K!,,, will be confined to a depth band 
representing the extent of the interface variations, and will 
depend on the contrast in seismic properties across the 
interface. In this case, the equivalent to (16) is 

(Krnn(x)K:n(x -u)) = V'(x)f'(x - U)>IRL12 
= R'(u) Ik!,,,,,(', (22) 

where R' is the autocorrelation function of the interface 
shape and K!,,,, the ensemble average over the coupling 
terms. The subsequent analysis will parallel equations 
(17-19) and the corresponding power coupling coefficients 

H,, = IRk12(F'(kn - k,)I2). (23) 
For interfaces with considerable contrast, e.g. the 
crust-mantle boundary, the effect of random topography 
can be comparable to that of velocity perturbations. The 
present approach is not suitable for situations with a 
systematic variation in the depth of an interface. 

ATTENUATION VIA INTERMODE 
COUPLING 

We can rewrite the coupled power equations (19) in a form 
which emphasizes the behaviour of the mth mode 

where c' denotes a summation omitting m = n, and 
N 
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i.e. a sum over one column of the matrix of power coupling 
coupling coefficients H excluding the diagonal element. Note 
that coupling a mode to itself will not affect the power 
distribution with the natural consequence of excluding the 
diagonal element. 

For a given initial power distribution Som(xo), an 
equivalent integral equation to (24) is 

& ( x )  = ~ X P  [-(krnQ,' + bm)(x - ~ o ) I S O ~ ( ~ O )  

+ 2' r dvexp [-(k,Q,' + b,)(x - v)]HmnSn(v). (25) 

As we have assumed relatively weak heterogeneity, the 
dominant behaviour can be seen from the first-order 
approximate solution 

n=O x,, 

L(x) = ~ X P  [-arn(x -xdls~rn(x~)  

+ r dvexp [-a,@- v)]Hmn exp [-a,(v-x~)IS,(x~), 
n=O *,, 

(26) 

where we have introduced the effective decay rate with 
distance for energy in the mth mode 

a,,, = k,Q,'+ b,  = k,Q,'+ X'H,,,,. (27) 
n 

If we now consider an initial distribution Som(xo) 
concentrated solely in the mth mode, we see from (25) and 
(26) that the main part of the behaviour of the mth mode 
with distance will be decay as exp [-a,(x - xo)]. There will 
be limited retransfer of energy to the mth mode by 
secondary scattering from other modes. 

We can therefore characterize the energy decay rate for 
the mth mode by a, and regard the intermode coupling as 
introducing a 'scattering' attenuation term for the mth mode 

= k,'b, 

where we have reinstated the explicit form (20) for the 
power coupling coefficients between the modes. Equation 
(26) represents the first term in an iterative solution in 
terms of H and, since all elements of H,, are positive, the 
full solution will give a slightly larger value for S,(x) than 
estimated from (26). The loss factor sQi'  defined by (28) 
is therefore a little too small, but gives a very useful 
indication of the behaviour. Equation (28) represents the 
spatial loss factor; the corresponding temporal loss factor for 
the mth mode will be (U,/c,),Q,'. 

For regional seismic phases, the scattering attenuation will 
be significantly different for the mantle phases than the 
crustally guided waves. The dominant term in (25) for Lg 
type modes will be Ik;,1* (Fc(k, - k,)12) and since we 
anticipate the largest heterogeneity to be concentrated in 
the crust , Q i 1  can be significant. For the Sn modes the main 
contribution will be from the mantle heterogeneity. 

When we wish to compare the behaviour of a set of 
modes at fixed frequency w ,  it can be advantageous to work 
with the energy decay factors a,, b,  since these terms are 
directly comparable between modes. 

The expressions for the scattering attenuation for 
individual modes derived in this section are dependent on 
our assumption of 2-D heterogeneity. For 3-D heteroge- 
neity, there is the additional complication that there is the 
likelihood of energy being scattered in directions other than 
forwards and backwards along the local direction of 
propagation. Once scattered out of a particular mode, 
energy is unlikely to return to it in the case of 3-D 
heterogeneity; thus attenuation will be stronger than the 
estimates based on our 2-D model. 

However, when we consider a multimode seismic 
wavetrain, this directional scattering will work to reduce the 
reinforcement of modal amplitudes by cross-coupling. An 
average of the estimated scattering attenuation across a 
number of modes will therefore give a measure of the decay 
rate of the wavetrain with distance which can be compared 
with observations on attenuation. It should also be recalled 
that the derivation of the scattering attenuation depends on 
propagation occurring over distances which are long 
compared with the correlation length of the heterogeneity. 

ESTIMATES OF SCATTERING 
ATTENUATION 

The computational procedure which we have just derived 
enables us to generate a good estimate of the statistical loss 
factor for an individual mode as a combination of anelastic 
and scattering contributions. For direct comparison 
between different modes we can use the rate of energy 
decay with distance. Here we will apply our results to the 
regional phases Lg and Sn travelling through heterogeneous 
earth models. 

From equation (25), calculation of the scattering loss 
factor requires us to specify the statistical nature of the 
horizontal heterogeneity spectrum in the crust and upper 
mantle as well as estimate the ensemble averages of the 
intermode coupling te+s kc, k" which depend on the 
modal eigenfunctions for the reference model. In Fig. 1 our 
reference model (ARANDA) is shown together with the 
vertical component of displacement for Rayleigh modes at 
1 Hz. The modes clearly divide into two classes: first, those 
modes for which the displacement is largely restricted to the 
crust which will constitute the Lg wavetrain, and second, 
modes with little crustal displacement but significant energy 
transport in the mantle which represent the Sn phase. At 
1 Hz the transition occurs at mode 11. The fundamental and 
first higher modes are confined to the sedimentary 
overburden and hardly interact with the other modes. 

The ensemble averages kc, k" require an average of 
depth integrals over a combination of heterogeneity and 
eigenfunction terms. We have estimated these averages by a 
Monte Carlo simulation; random velocity perturbations (up 
to 1 per cent) were applied to the velocities at the top and 
bottom of each of the layers in the reference model 
ARANDA and linear interpolation was used to calculate 
intermediate velocity values. Densities were varied in 
proportion to the velocities, and the depths of the interfaces 
were not varied. The coupling integrals (3) were then 
evaluated for both Love and Rayleigh waves for 300 
different simulations of the vertical heterogeneity structure 
and averaged to give estimates of kc, k". kc is calculated 
for an integral over the crust i.e. down to 30 km, and KM 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/100/3/415/665297 by guest on 21 August 2022



420 B. L. N .  Kennett 
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P km/s Rayleigh Modes 1 .O Hz 

1. ARANDA reference model and the vertical component of displacement for the first 18 Rayleigh modes at 1 Hz. 

over the mangle structure which is extended in the reference 
model to 200 km depth. This procedure gives quite stable 
estimates for Rc and k'. 

The model adopted for the autocorrelation of the 
horizontal variation of the heterogeneity was exponential 

R(u) = h2exp ( - lul /D),  

for a horizontal correlation length D. This form has the 
advantage that it can allow the existence of discontinuities in 
velocity gradients. The corresponding Fourier transform 
appearing in the loss factor terms is 

(JF(k)J2) = 2h2/D[k2 + (1/D)2]. 

We have scaled the amplitude factor h to be unity for the 
f l  per cent heterogeneity assumed in the calculation of the 
vertical averages Rc, U". 

The dependence of the loss factor on heterogeneity will 
be quadratic over the ranges for which the present theory is 
valid (less than f2 per cent). At higher levels, local 
multiple scattering will become important and the rate of 
increase of the loss factor will drop below quadratic. 

In Fig. 2, the behaviour of the scattering loss factor is 
shown for three Rayleigh and Love modes at 1 Hz, with f l  
per cent heterogeneity, as a function of the correlation 
length D, for the crust. The mantle correlation length was 
fixed at 50km. The modes were chosen to represent 
different aspects of the wavefield. At l H i ,  mode 4 is 
sensitive to the upper middle crust and forms part of the 
onset of Lg with a group velocity of 3.45 km s-'. Mode 9 

Frequency 1.0 Hz 

'1 
Mode 4 

has greater sensitivity to lower crustal properties and 
represents waves travelling near critical incidence on the 
crust-mantle interface; at 1 Hz it is close to an Airy Phase 
with a group velocity of 3.2kms-' and so represents the 
coda of Lg. Mode 14 has a group velocity around 
4.45 km s-l and forms part of the Sn phase. 

The solid triangles in Fig. 2 indicate the calculations for 
2-D structure for Rayleigh waves and the open diamonds 
indicate the corresponding values for Love waves. The 
behaviour is generally similar although there is more 
difference for the Sn type mode (14). For this slowness, the 
Rayleigh wave couples P-waves propagating in the near 
surface with Sn type behaviour for S; the influence of the 
P-wave velocity heterogeneity raises the loss factor for the 
mode. 

For both of the crustal modes we see a tendency for the 
scattering loss factor to peak for correlation distances about 
three times the horizontal wavelength of the waves. For 
small-scale heterogeneity there will be considerable 
scattering, but loss and gain by intermodal interactions will 
tend to balance. For larger scale heterogeneity, scattering 
will be more infrequent and SO loss will be reduced. The 
detailed behaviour depends: on the mode and also the 
character prescribed for the vertical heterogeneity. 

The loss factor for the mantle mode (14) is less sensitive 
to the character of the crustal heterogeneity. There is 
considerable mixing between mantle modes giving a 
significant scattering component. However, the intrinsic 
attenuation is likely to be low so that the overall loss factor 
will normally be less than for crustal propagation. 

Mode 14 

Mode9 -2r 
-3t -3t -3t 

- 5 1  -5 L -5 L 
0 25 50 0 25 50 n 25 50 

Correl. length km Correl. length !un Correl. length km 

2. Variation of the scattering loss factor for different Rayleigh and Love modes at 1 Hz as a function of horizontal correlation 
length in the crust. Rayleigh waves are indicated by solid triangles and Love waves by open diamonds. 
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Figure 3. Variation of the energy loss with distance b, with mode number for different horizontal correlation lengths in the crust. Rayleigh 
waves are indicated by solid triangles and Love waves by open diamonds. 

In order to compare a number of different modes, it is 
preferable to work with the rate of energy loss with distance 
b, rather than the scattering loss factors. In Fig. 3 we 
therefore display 6,  as a function of mode number at 1 Hz, 
for both Love and Rayleigh waves and three different 
choices of crustal correlation length D,. Mode 1 is confined 
to the sediments and has little interaction with other modes, 
so that its scattering attenuation is small. Attenuation for 
the other modes is of the same order of magnitude. As the 
horizontal correlation length shortens to less than 10 km, a 
reasonable value for crustal variation (Wu & Aki 1988), the 
decay rates of the various crustal modes tend to equalize 
which will give rise to a consistent decay rate for the Lg 
wavetrain. 

The frequency dependence of the loss factor estimates is 
explicit through the dependence on w and k in the coupling 
coefficients and correlation spectra, but also implicit through 
the shape of the eigenfunctions. For a crustally guided mode 
it is difficult to compare the Q-’ estimates at different 
frequencies because the character of the mode changes. 
However, we can compare modes with similar propagation 
characteistics at different frequencies and we find that our 
statisical estimates of =Q-’ increase with frequency. The 
increase is not a simple power law and this is an indication 
of saturation at higher frequencies (around 2 Hz). 

As pointed out by Hudson (1982) it is often difficult to 
find a direct relation between the results of stochastic 
calculations and observable features of the siesmic 
wavefield. Fortunately, for guided wave attenuation we are 
able to find a very close correspondence between our 
estimate of energy loss with distance and observations of 
regional phase attenuation over a variety of paths within a 
single region (see e.g. Nuttli 1980; Herrmann 1980). Once 
the effects of dispersion and geometrical spreading are 
removed from the observations, the attenuation with 
distance is isolated and will include both intrinsic and 
scattering attenuation. 

For a large number of different paths in Iran at lHz ,  
Nuttli (1980) found a broad spread of amplitude decay 
factors for both Lg and Sn with an average value around 
0.0045 km-’. To convert to energy loss coefficients we must 
multiply by a factor of two. Comparison with Fig. 3 shows 

that f l  per cent heterogeneity would account for about 10 
per cent of the observed attenuation and this factor would 
rise to around 40 per cent for f 2  per cent heterogeneity. 
The intrinsic attenuation is likely to be high in Iran, but the 
apparent Q of around 200 may well have a significant 
scattering component. 

For the low-attenuation zone in the Eastern United 
States, Herrmann (1980) has deduced an amplitude decay 
rate of O.OOO9 km-’, with an apparent Q of 1500, for many 
paths to the station BLA (Blacksburg, Virginia). This would 
be equivalent to an energy decay rate of 0.0018km-’. 
Nearly a third of this loss could be accounted for by 
scattering due to f l  per cent heterogeneity, within a 
medium with low intrinsic loss (Qi = 2250). 

These results show that our estimate of the scattering loss 
for guided waves fit well with observations of guided wave 
attenuation. If, then, ;we have a measure of the 
heterogeneity structure and intrinsic attenuation for a 
region, we can use our statistical approach to estimate an 
average effective loss factor which can be used as a 
reference against which to compare observations on diffrent 
paths. 

The seismic velocity distributions derived from tom- 
ographic inversion (e.g. Spakman 1989) often show higher 
levels of heterogeneity than have been assumed in the 
stochastic calculations (up to f5 per cent). However, such 
heterogeneity has a horizontal scale length typically greater 
than 200 km and so will not be a significant contributor to 
scattering for higher frequency waves (1 Hz and above). The 
estimates of scattering attenuation due to small-scale 
variations in seismic properties will therefore give a good 
guide to the behaviour in the presence of variability on 
much longer horizontal scales. 
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