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Abstract

The guided wave (GW) field excited by a wedge-shaped, anisotropic piezocomposite

transducer, surface-bonded on an isotropic substrate is investigated with applications to large

area structural health monitoring. This investigation supports the development of the composite

long-range variable-direction emitting radar (CLoVER) transducer. The analysis is based on the

three-dimensional equations of elasticity, and the solution yields expressions for the field

variables that are able to capture the multimodal nature of GWs. The assumption of uncoupled

dynamics between the actuator and substrate is used, and their interaction is modeled through

shear tractions along the transducer’s radial edges. A similar problem is modeled using

three-dimensional finite element simulations to assess the spatial and transient accuracy of the

solution. Experimental tests are also conducted on pristine structures to validate the accuracy of

the theoretical approach. The experimental studies employ CLoVER transducers developed

in-house, and their manufacturing procedure is briefly described. Frequency response

experiments based on piezoelectric sensors are conducted to assess the performance of the

solution in the frequency domain. These tests are complemented by laser vibrometer

measurements that allow the spatial and temporal evolution of the solution to be evaluated. The

numerical simulations and experimental tests show that the wave time of arrival, radial

attenuation, and azimuthal distribution are well captured by the theoretical solution.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

A Area

A∗ Aspect ratio

b Substrate half-thickness

b̄ Residue

C Capacitance

cp, cs Dilatational/shear wave speed in isotropic material

ck Complex Fourier coefficients of shear tractions

D Dispersion equation for Rayleigh–Lamb waves

di j Piezoelectric coupling coefficient (i, j = 1–3)

E Young’s modulus for an isotropic material

F̄ Shear stresses Fourier transform vector

1 Author to whom any correspondence should be addressed.

gi j Piezoelectric constants (i, j = 1–3)

H, ϕ Helmholtz displacement components

h, w Generic functions

H̃k Hankel transform of order k

Jm Bessel function of the first kind and order m

k Dielectric constant

n Number of half-cycles in toneburst signal

p Capacitance function

r, θ Radial/azimuthal position

r∗ Non-dimensional sensor dimension

�r Radial dimension

R Radius
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RO Transducer’s outer radius

RI Transducer’s inner radius

s(t) Toneburst signal

S(ω) Fourier transform of toneburst signal

t Time

t̄ Thickness

u(·) Unit step function

u Displacement vector

V Voltage

w∗ Non-dimensional sensor width

x, y, z Cartesian coordinates

ẑ Arbitrary complex variable

Γ,Ψ Coefficient matrices used in the theoretical solution

δ(·) Dirac delta function

�θ Azimuthal dimension

ǫi j Strain components (i, j = x, y or r, θ )

ǫ0 Permittivity constant

ε Error between function and Fourier series represen-

tation

θ∗ Non-dimensional sensor azimuthal span

θL Transducer’s left azimuthal edge

θR Transducer’s right azimuthal edge

λ,μ Substrate Lamé constants

ν Poisson’s ratio for an isotropic material

ξ Radial wavenumber

ξx , ξy Wavenumber along x- and y-directions

ρ Substrate material density

τ0 Traction amplitude

σ Stress tensor

φ Azimuthal wavenumber

ω Angular frequency

ω0 Center frequency of toneburst signal

Subscript

a Actuator

A Antisymmetric mode

B Substrate

e Element property

P Piezoelectric

s Sensor

S Symmetric mode

uc Unit cell

1. Introduction and background

The objective of structural health monitoring (SHM) is to

obtain real-time information about the condition of a structural

component. This involves interrogating the structure of interest

using an on-board network of transducers to determine whether

any damage is present, and if so its location, type, and

severity. It is envisioned that the information obtained from

these systems could be used as input to damage prognosis

algorithms which would make a prediction about the remaining

useful life of the component based on its current condition.

There are multiple safety and cost-saving benefits associated

with the implementation of this technology in aerospace,

mechanical, and civil structures. An introduction to this field

was presented in the work by Farrar et al [1], where the

process of SHM was defined in terms of a four-step pattern

recognition process. These steps dealt with evaluation of the

operational environment of the SHM system, the acquisition

and interpretation of transducer data, and the development of

statistical models for feature discrimination. Similarly, the

work of Worden et al [2] provided a set of axioms for the

development of SHM methodologies where key requirements

and constraints were discussed.

Guided wave (GW) testing methods have gained

importance in SHM applications primarily because of their

ability to be transmitted over long distances over the surface

as well as through the thickness of a structure with little

attenuation [3]. In addition, their active nature allows them

to be used for inspection on demand. Another important

benefit of this approach is the sensitivity of different GW

modes to a variety of structural defects. For instance,

the fundamental symmetric (S0) Lamb mode is sensitive to

through-the-thickness damage due to its dominant in-plane

components, and therefore is well suited for the detection of,

for example, full- or part-depth holes. Similarly, the A0 mode

is better suited for surface damage (e.g., surface cracks) due

to its dominant out-of-plane component. A comprehensive

review of this SHM approach was presented by Raghavan and

Cesnik [3].

The following subsections provide a brief background on

the key aspects that are addressed in this paper. Previous

efforts on GW modeling are discussed first, followed by a brief

overview of the available technology for GW transduction.

The different testing approaches available for GW experiments

are then discussed. These components are combined in the

last subsection where the scope of the present investigation is

described.

1.1. Analysis of GW propagation in isotropic plates

After the early development of Lamb wave theory (e.g., the

works of Lamb [4] and Gazis [5]), there has been much effort in

elastodynamics research to develop solutions for the GW field

excited by surface-bonded transducers. Various approaches

have been taken towards this goal and some of these are

highlighted in this section. Several researchers have analyzed

the propagation of GWs in isotropic plates by modeling the

actuator as a combination of point sources. For example,

Wilcox et al [6] used the Huygens principle to model the

acoustic field induced by interdigital polyvinylidene fluoride

(PVDF) transducers. In that approach, the electrode fingers

were divided into individual elements, each of which was

modeled as a point source causing a normal traction on the

surface of the substrate. Each of these sources was represented

through an excitability function and radiation pattern, both of

which depended on wavenumbers found from the Rayleigh–

Lamb dispersion relation. The contribution from the actuator

was then found by integrating the contributions from each

individual point. The predictions from this analysis were

shown to compare well with experimental measurements for

rectangular and wedge-shaped transducers. Along a similar

direction, although in a more general framework, Achenbach

et al [7] expressed the displacements induced by a time-

harmonic point load of arbitrary direction, applied either
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internally or on the surface, as an expansion of symmetric

and antisymmetric Lamb modes using Hankel functions as the

carrier waves. In their approach, the principle of elastodynamic

reciprocity was used to find the expansion coefficients for each

mode.

Different studies have used reduced order plate theories

in the analysis of wave propagation in an effort to obtain

more computationally efficient, but significantly simplified

solutions. For instance, Lin and Yuan [8] modeled the

excitation of GWs on isotropic substrates using Mindlin

plate theory accounting for transverse shear and rotary inertia

effects, and considering only axially symmetric motions. The

effect of the transducer on the plate was modeled as uniform

bending moments around the edges of the actuator. In an

effort to correlate their analysis with experimental results, a

model for the sensor response under the excited GW field was

developed. The experimental measurements, which employed

piezoceramic disks, displayed reasonable agreement with the

theory until frequency-thickness products of 160 kHz mm,

as the shear correction factor needed in the formulation was

chosen to match one dispersion curve corresponding to the

3D elasticity solution. Similarly, Rose and Wang [9] used

Mindlin plate theory to derive source solutions that could be

combined to represent finite-dimensional transducers. They

argued that the range of validity of their solution made it

applicable to typical aerospace structures. A higher-order plate

theory, considering first-order normal strains and second-order

transverse shear strains, was developed by Yang and Yuan [10].

In their work, it was argued that this theory produced good

agreement with 3D elasticity solutions until the first cut-off

frequencies using a more efficient approach. However, the

main limitation with this type of approaches is that they are

limited to low frequency-thickness products and, in most cases,

can only model the fundamental antisymmetric mode. As

was previously mentioned, one of the main advantages of

using GWs is their sensitivity to different damage types, which

can be better exploited at higher frequency-thickness products.

Furthermore, while damage detection can be typically achieved

using the fundamental modes, it may be necessary to use higher

modes if the type of defect is to be identified. In this case, only

3D elasticity models will be reliable.

A more accurate model was developed by Giurgiutiu,

where the GW field excited by an infinitely wide piezoelectric

actuator and an isotropic substrate was modeled using

2D elasticity [11, 12]. The interaction between both

parts was modeled as shear tractions along the transducer

edges, and the solution was found using Fourier transforms

and the residue theorem from complex calculus. The

concept of Lamb wave tuning was demonstrated and good

agreement with experiments was reported. Following this

approach, Raghavan and Cesnik developed 3D elasticity

solutions for GW excitation by finite-dimensional transducers

in isotropic and composite structures [13–15]. The

analysis used Fourier transforms and complex calculus,

and a rigorous Fourier inversion procedure was presented.

Several transducer constructions (piezoelectric wafers and

piezocomposite transducers) and geometries (rectangular,

circular, and ring-shaped) as well as structural configurations

(pipes and plates) were considered, and the solution was used

to determine optimal actuator and sensor dimensions for use in

SHM systems.

Different approaches to numerically model the propaga-

tion of GW have also been proposed. Typical solution method-

ologies, such as the finite-difference and finite element meth-

ods, are not ideally suited for GW analysis due to their high

computational cost. An alternative approach was proposed by

Lee and Staszewski [16] who applied the local interaction sim-

ulation approach (LISA) to analyze the GW propagation in

metallic structures. Following this approach, the domain was

divided into elementary cells that were considered to be discon-

tinuous among each other. Therefore, displacement continuity

was enforced at each cell node. The results from this method

were favorably correlated with experimental data, and subse-

quently used in modeling the interaction of GWs with different

structural defects [16, 17].

1.2. Transducers for GW excitation in SHM

Several transducer options are available for the excitation

of GWs, and a brief summary of these is presented in this

section. For a comprehensive review of this area, the reader

is referred to the work of Raghavan and Cesnik [3]. The GW

field is usually excited using piezoelectric transducers, with

the most common transducer type being simple piezoelectric

wafers (commonly referred to as piezos) bonded on the surface

of the structure to be inspected. Typical materials used

for the construction of these wafers include lead zirconium

titanate ceramics (PZT) and polyvinylidene fluoride (PVDF)

films. These wafers are thin, light, and unobtrusive and are

very convenient for surface-bonded-based inspection. Among

these, however, PZT is usually preferred since PVDF has a

high compliance and low inverse piezoelectric effect which

results in poor actuator–sensor response [3]. The main

disadvantage in using these, however, is that, although thin

and light, the ceramic material is also very brittle and does

not have good surface conformability. This limitation is

particularly important for the shell-type structures usually

encountered in aerospace applications. In order to alleviate

this problem, different anisotropic piezocomposite transducer

(APT) concepts have been designed and manufactured in

recent years. Bent and Hagood [18] designed the active

fiber composite (AFC) transducer using extruded, cylindrical

piezoceramic fibers embedded in an epoxy matrix. These

fibers are actuated through the use of interdigitated electrode

patterns printed on a copper-clad kapton film. This

construction presented numerous advantages, in particular, a

greatly enhanced surface conformability, high strain energy

density, and focused strain actuation. The implementation

of interdigitated electrodes allowed the use of the 3 − 3

piezoelectric effect, where the poling of the device is such

that the highest piezoelectric coupling coefficient coincides

with the intended actuation direction, as shown in figure 1(a),

theoretically allowing these devices to induce strains at

least twice as large as those obtained with simple PZT

actuators. An alternative concept, the macro-fiber composite

(MFC) transducer illustrated in figure 1(b), was developed by
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(a) (b)

Figure 1. The two primary types of APT [19]. (a) Active fiber composite (AFC) transducer, (b) macro-fiber composite (MFC) transducer.

researchers at NASA Langley [19]. This type of construction

is very similar to the AFC, except that it uses rectangular fibers

obtained by dicing a piezoceramic wafer using high-precision

dicing saws [20, 21] yielding a more repeatable manufacturing

procedure. The most salient non-piezoelectric alternative is

that of electromagnetic acoustic transducer arrays (EMATs)

which typically require permanent magnets to be bonded on the

surface of the structure under inspection (see for example [22]).

These devices use electromagnetic fields to generate forces

on the substrate that result in the excitation of GWs. Since

these devices are typically bulky, they are not well suited for

aerospace applications and will consequently not be considered

in this work from this point onwards.

1.3. GW experiments for SHM applications

GW experiments directed towards SHM applications have been

performed in the past by several researchers in both isotropic

and composite structures. In general, two approaches have

been used to record the GW field generated experimentally.

The first consists of bonding piezoelectric sensors on the

surface of the structure under investigation to record the

strain field produced by the actuator. Using this approach,

the sensor can be sized so that it is insensitive to specific

Lamb wave modes which is a desirable feature for damage

detection. An additional benefit is that there is no limit to

the Lamb wave propagation frequency that can be sensed.

Some important disadvantages of this approach are the facts

that the sensor’s performance is susceptible to environmental

conditions, such as electromagnetic interference (EMI), and

that information is only recorded at the point where the

sensor is placed. Raghavan and Cesnik have used this

approach successfully in sensing the GW field generated by

piezoelectric-based actuators in pristine and damaged isotropic

structures [13, 23]. More recently, this was used to study

the effects of environmental conditions, such as elevated

temperatures, on GW propagation and damage detection [24].

This approach has also been used for damage detection in

composite structures. The works of Badcock et al [25],

who used embedded piezoelectric transducers to detect impact

damage in composite plates, and Kessler et al [26], where

surface-bonded piezoelectric patches were used for detecting

different damage types in composite laminates and sandwich

panels, are typical examples of this application.

The second approach is based on the non-contact

technique of laser vibrometry, where a laser beam is used to

record the out-of-plane velocities induced by the piezoelectric

actuator using the Doppler shifting phenomenon. An overview

of the different non-contact techniques available for SHM

applications can be found in the work of Staszewski et al [27].

This approach allows outstanding visualization of the wave

field, which is valuable in studying its interaction with different

damage types. This feature is also critical in the experimental

analysis of wave propagation in composite laminates, where

wave steering phenomena are typically present [15]. In spite

of these advantages, this method is impractical for on-line

based inspection, and post-processing of the data recorded

(smoothing and denoising) is usually necessary before it can

be effectively analyzed [27]. Staszewski et al have used

this method to study the GW field excited by piezoelectric

transducers in metallic structures, with their initial studies

successfully verifying this technique’s performance in sensing

low frequency (75 kHz) GWs in isotropic plates [27]. Their

investigation was later directed towards detecting different

damage types such as circular holes, rectangular notches, and

cracks [28, 29]. More recently, they have used 3D laser

vibrometry to directly measure all displacement components

with applications to fatigue crack detection [30]. This approach

has also been used for GW visualization in quasi-isotropic

composite laminates (see for example [31]).

1.4. Scope of the present work

This study is concerned with the development of a 3D

elasticity theory for GW excitation by a wedge-shaped APT

in isotropic plate-like structures. The construction of this

theory supports the development of the composite long-

range variable-direction emitting radar (CLoVER) transducer

presented by the authors as an alternative concept for damage

interrogation in SHM systems. The theoretical framework is

based on the work of Raghavan and Cesnik [13, 14], and the

resulting solution is therefore able to capture the multimodal

nature of GWs. The paper begins with a brief description

of the CLoVER transducer where some of its salient features

are briefly described. The boundary value problem of linear

elasticity is then formulated and tailored to the case of a

CLoVER sector. The solution process is later described in

detail and the resulting displacement equations are presented.
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Actuator

Sensor

(a) (b)

Figure 2. (a) Sequential damage interrogation approach proposed with CLoVER transducers; (b) electrode design used in first generation of
CLoVER sectors.

Results from 3D finite element simulations are then used to

determine the accuracy of the theoretical result as a solution to

the elasticity problem considered. Subsequently, the fitness of

the theoretical result in describing the actual physical system

is explored through a comprehensive set of experimental

tests in pristine isotropic structures. The performance of the

solution in the frequency domain is verified using sensor-based

experiments for both the symmetric and antisymmetric modes.

These results are then complemented by laser vibrometer

measurements that allow the temporal and spatial evolution of

the solution to be assessed.

2. The CLoVER transducer

The CLoVER transducer has been introduced [32, 33] as an

alternative concept for efficient damage interrogation and GW

excitation in SHM systems. This transducer consists of a

collection of wedge-shaped APTs arranged in a circular array

that are individually activated in a sequential manner to scan a

complete 360◦ structural range, as shown in figure 2(a).

The geometry of a CLoVER sector allows the amplitude

of the induced displacements to be larger than those for a

similarly sized ring configuration for similar electric current

inputs. This is related to the decreasing capacitance of the

device as its azimuthal span is decreased. In addition, the

interdigitated electrode design used in the first generation of

CLoVER transducers uses two independent radial subdivisions

that are obtained by connecting different sets of electrode

fingers to independent electrode lines. This variable-length

feature can be used to achieve modal selectivity, which is a

desired feature in GW testing (see for instance [34]). This

can be achieved by selecting the radial dimension according

to the wavelength of the desired mode. Moreover, these

subdivisions give each sector in the transducer the ability to

independently act as an actuator and sensor, as schematically

shown in figure 2(b), where it can be seen on the left-hand-side

of the electrode pattern that the upper and lower sections are

separate. Using the radial subdivisions for independent acting

and sensing could decrease the number of separate transducers

needed for inspection. Finally, the composite construction

characteristic of APTs gives the CLoVER transducer the

ability to conform to curved surfaces (e.g., aircraft fuselages),

an increased resistance to environmental damage, and a higher

specific strength than monolithic piezoelectric wafers. The

advantages of the CLoVER concept are discussed in detail in

separate works by the authors [33, 35].

3. Boundary value problem formulation

The GW field excited by a finite-dimensional transducer

bonded on the surface of an isotropic substrate is modeled as

a boundary value problem of linear elasticity. The dynamics

of the actuator and the substrate are assumed to be uncoupled,

and their interaction is modeled as surface tractions along the

edges of the transducer. There are two implications to this

assumption. First, the bonding layer between the actuator and

the substrate is assumed to be infinitely thin and not shear

deformable, that is, the two parts are assumed to be perfectly

bonded. This ensures that strains are transferred only along

the actuator edges. This assumption is clearly an idealization,

as the bonding layer will have a finite thickness in actual

applications. Valuable insight into this aspect was provided

by the work of Crawley and de Luis [36], who considered the

case of a piezoelectric actuator surface-bonded on a substrate

under static conditions. They showed that, for a bonding

layer with finite thickness, this assumption becomes accurate

if the product of the actuator’s modulus and thickness is much

larger than that of the substrate on which it is bonded. In

fact, it was shown that as this ratio approaches zero, the

assumption becomes the exact solution. It was also shown

that if this condition was not satisfied, a shear lag solution

considering strain transfer along the length of the actuator was

necessary. Secondly, so that the dynamics of the actuator can

be ignored, its inertia must be a small fraction of the total

inertia of the system in the region where strains are transferred.

These assumptions are necessary if tractable semi-analytical

solutions are to be obtained. Similar models have been used

in the past and good agreement with experiments has been

obtained [11–14].
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(a)

(b)

Figure 3. Transducer bonded on surface of infinite plate.
(a) Cross-sectional view, (b) top view.

Based on these assumptions, consider an isotropic

substrate of thickness 2b, with the coordinate system centered

midway through its thickness, as depicted in figure 3(a).

The substrate is of infinite dimensions along the x- and y-

directions, as shown in figure 3(b), and the transducer is

bonded on the surface z = b. Using the constitutive law for

isotropic materials and linear strain–displacement relations, the

equilibrium equations in the absence of body forces may be

expressed as:

(λ + μ)∇∇u + μ∇2u = ρü. (1)

As previously mentioned, the transducer is replaced by

surface tractions on the top surface of the substrate, while the

bottom surface is traction free. Therefore, the following set of

boundary conditions applies:

σ (x, y,−b) · nl = 0 (2)

σ (x, y, b) · nu = σ 0 (3)

where nl = [ 0 0 −1 ]T, nu = [ 0 0 1 ]T and:

σ 0 =

[

σ ◦
xz

σ ◦
yz

0

]

. (4)

Equation (4) reflects the fact that the surface-bonded

actuator only induces shear stresses on the substrate. A

solution to this problem, for the general case of an

arbitrarily-shaped transducer, was presented by Raghavan and

Cesnik [13, 37] and is outlined below. The displacement

vector, u, is decomposed into its Helmholtz components as:

u = ∇ϕ + ∇ × H (5a)

∇ · H = 0. (5b)

The first term in equation (5a) represents the gradient of

a scalar potential associated with dilatational deformations,

while the second term represents the curl of a vector

potential associated with constant volume distortions. This

decomposition results in the following four differential

equations:

∇2ϕ =
ϕ̈

c2
p

(6a)

∇2H =
Ḧ

c2
s

(6b)

where cp and cs correspond to the dilatational and shear wave

speeds, respectively, which are defined through:

c2
p =

λ + 2μ

ρ
(7a)

c2
s =

μ

ρ
. (7b)

The solution to these equations, under harmonic excita-

tion, is obtained using two-dimensional Fourier transforms,

along with the set of boundary conditions given by equa-

tions (2) and (3). The spatial version of the two-dimensional

Fourier transform, F̄(ξx , ξy), of a generic function, f (x, y), is

defined as:

F̄(ξx , ξy) =

∫ ∞

−∞

∫ ∞

−∞

f (x, y)ei(ξx x+ξy y) dx dy. (8)

Applying the 2D spatial Fourier transform to equation (6a)

results in:

− (ξ 2
x + ξ 2

y )ϕ̄ +
∂2ϕ̄

∂z2
= −

ω2

c2
p

ϕ̄ (9)

where the derivatives property of the Fourier transform has

been used. It can be seen that the Fourier transform application

resulted in a partial differential equation being reduced to an

ordinary differential equation in the thickness domain. The

solution to this equation can be expressed as:

ϕ̄ = A sin αz + B cos αz (10)

where the term α is defined as:

α ≡

√

ω2

c2
p

− ξ 2 (11)

and the radial wavenumber ξ is defined through ξ 2 = ξ 2
x + ξ 2

y .

A similar procedure is applied to each component of the

distortional field, H, which results in the introduction of eight

constants that determine the displacement field. The solution to

ϕ̄ and each component of H̄ are then substituted in the Fourier-

transformed version of equation (5a) to find the displacement

components in the Fourier domain. This result is subsequently

combined with a linear kinematic relationship of the form

given in equation (12) to obtain the strain components.

ǫi j = 1
2
(ui, j + u j,i). (12)

The strain components are then used in conjunction with

a linear elastic constitutive equation to determine the stress

components. The boundary conditions given by equations (2)

and (3) are subsequently used along with equation (5b) to form

a system of equations from which the necessary constants can

be found. The dispersion equation for Rayleigh–Lamb waves
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(a) (b)

Figure 4. (a) Geometry of a CLoVER sector; (b) transducer replaced by shear tractions along radial edges.

results from seeking a non-trivial solution to this system of

equations. A detailed exposition of this procedure can be found

in the book by Graff [38]. The resulting displacement field can

be separated into symmetric and antisymmetric components.

To facilitate the presentation of the theory, only the results

corresponding to the antisymmetric mode will be presented

from this point on. The derivation of the symmetric component

follows an analogous sequence. Note that the complete

displacement field is obtained by summing the contribution

from both modes. After applying the 2D inverse Fourier

transform, the Cartesian displacement components expressed

in Cartesian coordinates are obtained as:

uA(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞

ΓA(ξx , ξy)

DA(ξ)

× ΨA(ξx , ξy) · F̄(ξx , ξy)e
−i(ξx x+ξy y−ωt) dξx dξy . (13)

Note that equation (13) provides the displacement

components at the surface z = b. All subsequent analytical

expressions presented here will be for this surface as well.

In equation (13), ΓA and ΨA are matrices of coefficients, F̄

is a vector containing the Fourier transform of the surface

tractions, and DA corresponds to the dispersion relation for the

antisymmetric mode of Rayleigh–Lamb waves given by:

DA = (ξ 2 − β2)2 sin αb cos βb + 4ξ 2αβ cos αb sin βb (14)

where the term β is defined as:

β ≡

√

ω2

c2
s

− ξ 2. (15)

In the following section, the result given by equation (13)

will be expressed in polar coordinates and used to solve for the

displacement field produced by a CLoVER sector.

4. GW excitation by a CLoVER sector

The CLoVER sector geometry is easily described using polar

coordinates, and is defined by the transducer’s inner and outer

radii, RI and RO, as well as its left- and right-most angular

edges, θL and θR. Figure 4(a) shows a schematic of the

transducer’s geometry. At this point, equation (13) must be

modified to express the displacement components in polar

coordinates. This modification involves the use of the 2D

Fourier transform for polar coordinates; for a generic function,

g(r, θ), it is defined as:

G(ξ, φ) =

∫ ∞

0

∫ 2π

0

g(r, θ)eiξr cos(θ−φ)r dθ dr (16)

while the inverse transform is defined through:

g(r, θ) =
1

4π2

∫ ∞

0

∫ 2π

0

G(ξ, φ)e−iξr cos(θ−φ)ξ dφ dξ. (17)

Using these definitions, along with the transformations

ξx = ξ cos φ and ξy = ξ sin φ, yields the following equation

for the Cartesian displacement components expressed in polar

coordinates:

uA(r, θ, t) =

∫ 2π

0

∫ ∞

0

ΓA(ξ)

DA(ξ)
ΨA(ξ, φ)F̄(ξ, φ)

× e−iξr cos(θ−φ)eiωt dξ dφ. (18)

The matrix ΓA is a 3 × 3 diagonal matrix of coefficients

whose components are given by:

Ŵ11 = Ŵ22 =
τ0 sin βbξ

4π2μβ cos βb
(19a)

Ŵ33 =
−iτ0ξ

2

4π2μ
[2αβ cos αb sin βb + (ξ 2 − β2) cos βb sin αb].

(19b)

Similarly, ΨA is a 3 × 2 matrix of coefficients defined

through:

ΨA =

⎡

⎣

−γ
(1)

3 − γ
(1)

4 (e−2iφ + e2iφ)

γ
(2)
1 (e2iφ − e−2iφ)

cos φ

γ
(1)

5 (e2iφ − e−2iφ)

−γ
(2)
4 − γ

(2)
5 (e−2iφ + e2iφ)

sin φ

⎤

⎦ (20)

where the coefficients γ
( j)

i (defined in the appendix) depend on

the substrate material properties, frequency, and wavenumbers.

Finally, the vector F̄ contains the Fourier transform of the

shear tractions produced at the transducer’s edges. Only shear

7
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stresses along the piezoceramic fiber direction are considered,

as shown in figure 4(b). This choice is based on the fact

that the transducer is acting on the 3 − 3 piezoelectric

effect, which makes the strains induced along the fiber’s axis

significantly larger than those along its normal direction. For

a typical piezoelectric material (such as PZT-5A) poled along

the thickness direction, the piezoelectric coupling coefficient

normal to the poling direction is approximately 54% smaller

than that along the poling direction [39]. This level of actuation

is still significant, but the strains induced along this direction

are further attenuated due to the high aspect ratio of the

fiber and the construction of the APT device. As previously

discussed, the APT is a composite transducer with epoxy

located in between any two fibers. Thus, the shear lag effect

effectively eliminates any strain transmitted normal to the fiber

length. As a result, for the case of a CLoVER sector, the

boundary conditions given by equation (3), transformed to

polar coordinates, take the form:

σzr (r, θ, b) = τ0 f (r, θ) (21)

σzz(r, θ, b) = σzθ (r, θ, b) = 0 (22)

where τ0 represents the amplitude of the traction exerted by

the transducer on the substrate, and f (r, θ) is a function

whose purpose is to make the stress non-zero only along the

transducer’s radial edges, as shown in figure 4(b). Such an

expression is given by2:

f (r, θ) = [u(θ−θL)−u(θ−θR)][δ(r−RI)−δ(r−RO)]. (23)

In order to use the formulation presented above, the

Fourier transform of equation (23) must be determined. Before

doing so, the function must be decomposed along the x- and

y-directions to be compatible with the displacement vector

given by equation (18). This is simply done by defining the x-

and y-components as the function multiplied by an appropriate

rotation matrix. Then, the necessary Fourier transforms are

given by:

F̄1(ξ, φ) =

∫ 2π

0

∫ ∞

0

[u(θ − θL) − u(θ − θR)]

× [δ(r − RI) − δ(r − RO)] cos θeiξr cos(θ−φ)r dr dθ (24)

F̄2(ξ, φ) =

∫ 2π

0

∫ ∞

0

−[u(θ − θL) − u(θ − θR)]

× [δ(r − RI) − δ(r − RO)] sin θeiξr cos(θ−φ)r dr dθ. (25)

The integrals given by equations (24) and (25) cannot be

solved analytically. An alternate solution method is applicable

since the radial and angular parts of the function are readily

separable. For this type of functions, the Hankel transform

of the radial part can be combined with a Fourier series

representation of the angular part to obtain the desired Fourier

transform [40]. In this way, the two-dimensional Fourier

transform, W (ξ, φ), for a generic function w(r, θ) = g(θ)h(r)

can be expressed as:

W (ξ, φ) =
∞

∑

k=−∞

ckeikφ(−i)k H̃k(ξ) (26)

2 Note that this definition of f (r, θ) yields correct units for stress as the delta

function has units of [1/length] and the unit step function is dimensionless.

where H̃k represents the kth order Hankel transform of h(r),

defined through:

H̃k(ξ) = 2π

∫ ∞

0

h(r)Jk(rξ)r dr (27)

and ck are the complex Fourier coefficients of the function

g(θ), defined by:

ck =
1

2π

∫ 2π

0

g(θ)e−ikθ dθ. (28)

In the case under consideration, the function h(r) is

defined by:

h(r) = δ(r − RI) − δ(r − RO) (29)

while the two functions g1(θ) and g2(θ) are given by:

g1(θ) = [u(θ − θL) − u(θ − θR)] cos θ (30a)

g2(θ) = −[u(θ − θL) − u(θ − θR)] sin θ. (30b)

Therefore, the necessary Fourier transforms for the shear

tractions applied on the substrate’s surface result in:

F̄ j1 =
∞

∑

k=−∞

c
( j)

k eikφ(−i)kχk, j = 1, 2 (31)

where:

χk = 2π[RO Jk(ξ RO) − RI Jk(ξ RI)]. (32)

The resulting complex Fourier coefficients, obtained by

substituting equations (30) into equation (28), can be expressed

through:

c
(1)

k =
1

2π(1 − k2)
{u(θL)[e

−ikθL (ik cos θL − sin θL) − ik]

− u(θR)[e−ikθR (ik cos θR − sin θR) − ik]},

|k| �= 1 (33)

c
(1)

k = [(2π − θL − sin θLe−iθL)u(θL)

− (2π − θR − sin θRe−iθR)u(θR)][4π]−1,

|k| = 1 (34)

c
(2)
k =

1

2π(1 − k2)
{(θL)[e

−ikθL (cos θL + ik sin θL) − 1]

− u(θR)[e−ikθR (cos θR + ik sin θR) − 1]},

|k| �= 1 (35)

c
(2)
k = [u(θL)(−1 + e−2iθL − 4iπ + 2iθL)

− u(θR)(−1 + e−2iθR − 4iπ + 2iθR)][8π]−1,

|k| = 1. (36)

Since the CLoVER transducer is primarily meant to

interrogate the structure away from the location where it is

bonded, the main interest is in characterizing the GW field

induced for radial positions such that r > RO, as shown in

figure 5. This set is characterized by the fact that both edges

of the transducer, inner and outer, send waves propagating in

the positive radial direction (henceforth referred to as outward

direction). The form of the solution, i.e., the combination of

8
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Figure 5. Schematic illustrating the solution domain.

equations (18) and (31), suggests that the integral definition of

the Bessel function of kth order be used:

Jk(ẑ) =
1

2π

∫ 2π

0

e−i π
2

keiẑ cos φeikφ dφ

=
1

2π

∫ 2π

0

ei π
2

ke−iẑ cos φe−ikφ dφ. (37)

Note that equation (37) holds because the Bessel function

returns a real number for ẑ > 0. Therefore, taking the complex

conjugate of the integrand does not alter the final result as its

imaginary part is zero. This equation must be manipulated so

that the exponential part of its integrand is similar to that in

equation (18) (taking ẑ = ξr ). This process is carried out

through the following change of variables:

φ = φ̄ − θ. (38)

This operation results in:

Jk(ẑ) =
1

2π

∫ 2π+θ

θ

ζke−iẑ cos(θ−φ̄)e−ikφ̄ dφ̄ (39)

where:

ζk ≡ ei π
2

keikθ . (40)

The right-hand side in equation (39) is almost in the

desired form. The only differences between this result and the

form of equation (18) are in the integration limits and the index

k in the complex exponential. The difference in the integration

limits is of no concern since the integrand of both functions is

periodic in φ with a period of 2π . The indices in equation (18)

will vary according to the powers of the exponentials given

in equation (20). This can be simply resolved by redefining

the resulting index of the complex exponential as −k, and

incorporating this change in the corresponding multiplying

coefficients. As a result, the solution to equation (18) in the

angular wavenumber domain is given by:

uA(r, θ, t) =

∫ ∞

0

∞
∑

k=−∞

[

2πΓA(ξ)

ζk(θ)DA(ξ)

× ∆A(k, ξ, RO, RI, θL, θR)Jk(ξr)

]

eiωt dξ (41)

where ∆A is a 3 × 1 column vector of coefficients that

represents the source terms and is defined in the appendix.

Note that the effect of the transducer dimensions are included

in this term. The Bessel function solution presented in

equation (41) corresponds to a standing wave. In order to

obtain a propagating wave, we resort to the following definition

of the Hankel function of the first and second kind:

H
(1)
k (ẑ) = Jk(ẑ) + iYk(ẑ) (42a)

H
(2)
k (ẑ) = Jk(ẑ) − iYk(ẑ). (42b)

Based on the frequency convention we have adopted, the

Hankel function of the second kind corresponds to an outward-

propagating wave in time. Therefore only this part is retained,

which yields:

uA(r, θ, t) =

∫ ∞

−∞

∞
∑

k=−∞

[

πΓA(ξ)

ζk(θ)DA(ξ)
∆A H

(2)

k (ξr)

]

eiωt dξ.

(43)

Note that the integration limits in the radial wavenumber

domain have changed. This is because retaining the Hankel

function of the second kind only is equivalent to replacing the

azimuthal wavenumber integration limits from a range of 2π

to a range of π ; hence, in order to keep the integration domain

unchanged, the limits in the radial wavenumber domain must

be modified3. The resulting integral is solved using the residue

theorem from complex calculus. Since equation (43) is the

quotient of two functions of ξ , it follows from the theory of

complex calculus that the residue, b̄, of this function at a pole

ξA can be expressed as [41]:

b̄ =
NA(ξA)

D′
A(ξA)

(44)

where the ′ symbol indicates differentiation with respect to

ξ , and the pole ξA corresponds to values of ξ for which DA

vanishes; these points are the wavenumbers corresponding

to the antisymmetric modes of Rayleigh–Lamb waves at a

frequency ω. The notation N(ξ) has been used in equation (44)

to illustrate the concept. This result can be combined with the

residue theorem to express the solution of the integral in the ξ

domain as:
∫ ∞

−∞

N(ξ)

D(ξ)
dξ = 2π i

∑

ξA

N(ξA)

D′(ξA)
, ξA > 0 (45)

where the condition that ξA be greater than zero indicates that

only positive wavenumbers are to be included in the integration

contour. Therefore, the solution may be expressed in final form

as:

uA(r, θ, t) =
∞

∑

k=−∞

[

2π2iΓA(ξA)

ζk(θ)D′
A(ξA)

∆A H
(2)
k (ξAr)

]

eiωt . (46)

Note that since only harmonic excitation is being

considered, only one wavenumber needs to be included.

3 This statement is not fully rigorous as a correction term included in the

integral definition of H
(2)
k has been neglected. However, it can be shown that

the contribution from this term is only significant for very small arguments.

9
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The solution given by equation (46) corresponds to the

antisymmetric mode. The symmetric mode is given by a

similar equation, which is derived by interchanging all sine

and cosine terms whose arguments depend on the substrate

half-thickness, b. This is a crucial change since it modifies

the dispersion equation DA, which produces solutions with

different wavenumbers.

In typical SHM applications, the structure to be inspected

for damage is excited with a stress wave whose shape is

determined by a time-dependent modulated signal. This type

of signal is generally desired so as to control the frequency

bandwidth and avoid dispersion. Hann-modulated signals have

been successfully used in the past by several researchers and

will be adopted in the present formulation [42]. Such a signal

is given by:

s(t) =
1

2

[

1 − cos

(

2
ω0t

n

)]

sin(ω0t) (47)

where n is the number of half-cycles and ω0 represents the

center frequency of excitation. In order to account for the time-

dependence, the time Fourier transform of equation (47) must

be determined through:

S(ω) =

∫ ∞

−∞

s(t)e−iωt dt . (48)

The time-dependent displacements are obtained through

the inverse Fourier transform of the product of the transforms

of the spatial and temporal parts. Since the excitation signal

has several frequency components, a sum over all possible

wavenumbers is necessary. Hence, the solution becomes (only

antisymmetric mode is presented for simplicity):

uA(r, θ, t) =
1

2π

∫ ∞

−∞

∑

ξA

[ ∞
∑

k=−∞

iπ2
ΓA(ξA)

ζk(θ)D′
A(ξA)

× ∆A H
(2)
k (ξAr)

]

S(ω)eiωt dω. (49)

4.1. Additional spatial regions

While the GW field induced by a CLoVER sector will be

used for interrogation away from the transducer, it is still of

interest to find a solution for the GW excitation problem in

the remaining spatial regions. Therefore, region I is defined as

the set of all points such that r < RI, as depicted in figure 6.

The solution for this region is obtained through an analogy to

a circular transducer. In that case, the resulting wave pattern

for radial positions within the edge of the actuator corresponds

to standing waves. This result can be intuitively understood

due to the symmetry of the source. Therefore, each source

term in the Fourier expansion used to obtain the solution for a

CLoVER sector will be treated as a standing wave. Once all

the terms have been multiplied by the corresponding Fourier

coefficient and summed together, the result will correspond

to the GW field excited by a CLoVER sector. To emphasize,

note that each term in the sum represents a standing wave, but

the overall combination yields a propagating wave. Therefore,

the expression for the antisymmetric displacement components

Figure 6. Additional solution regions for CLoVER GW excitation.

induced under harmonic excitation at a frequency ω is given

by:

uA =
∞

∑

k=−∞

2iπ2
ΓA(ξA)

ζk(θ)D′
A(ξA)

ΛA(k, ξA)Jk(ξAr)eiωt (50)

where ΛA is a 3×1 column vector of coefficients that represent

the source terms, presented in the appendix.

In a manner analogous to region I, region II is defined

as the set of all points such that RI < r < RO. This

set of points is characterized by the fact that the each

source contribution from the outer edge of the transducer

corresponds to a standing wave, while those from the inner

edge of the transducer correspond to traveling waves. Thus,

the solution for this region is obtained as a combination of

the two solutions presented previously. The antisymmetric

displacement components under harmonic excitation at a

frequency ω are given by:

uA =
∞

∑

k=−∞

2iπ2
ΓA(ξA)

ζk(θ)D′
A(ξA)

[ῩA(k, ξA)Jk(ξAr)

− ΥA(k, ξA)H
(2)
k (ξAr)]eiωt (51)

where ΥA and ῩA are vectors of coefficients whose definition

is given in the appendix. Note that ΥA is associated with waves

originating at the inner radial edge of the transducer, while ῩA

corresponds to waves originating from its outer radial edge.

5. Finite element verification

Results from the theoretical formulation presented above

were compared with three-dimensional FE simulations run in

ABAQUS [43] to assess its spatial and temporal performance.

Taking advantage of the problem’s symmetries, only one

quarter of an aluminum plate was considered. A summary of

the material properties and actuator dimensions considered in

the simulations is given in table 1.

The mesh consisted of three-dimensional continuum

elements, and was primarily composed of eight-node bricks

10
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(a) (b)

Figure 7. FE mesh: (a) complete overview; (b) detail on shear traction application points.

Table 1. Substrate material properties and actuator dimensions used
in FE simulations and theoretical results.

Parameter Value

E (GPa) 70
ν 0.33

ρ (kg m−3) 2700
RO (m) 0.015
RI (m) 0.005
�θ (deg) 30

(C3D8). In addition, the geometry of the mesh required the use

of six-node tetrahedra (C3D6) for the elements immediately

connected to the origin. Similarly, infinite continuum elements

(CIN3D8) were used on the outer radial boundary of the model,

in an effort to minimize boundary reflections [43]. However,

the results showed that these elements were not successful in

achieving this, and therefore the radial positions selected for

comparison were located far from the radial edge. In all cases,

three elements were used through the thickness of the plate.

A schematic of the mesh is shown in figure 7(a), while its

relevant dimensions (radius, R, and half-thickness, b) are given

in table 2. Symmetric (S0) and antisymmetric (A0) modes were

excited by specifying a symmetry and antisymmetry condition

with respect to the z-axis, respectively. The symmetric mode

was used to validate the out-of-plane displacement, while

the antisymmetric mode was used to model the in-plane

displacements. This choice was based on the fact that the

antisymmetric mode has a higher frequency threshold for the

appearance of the SH-mode (shear horizontal mode present

only in the in-plane displacements), which is not considered in

the theoretical solution and would therefore prevent an accurate

verification.

The radial dimension of the elements, �re, was selected

so as to have at least 20 nodes per wavelength for the highest

frequency of the toneburst excitation. The element azimuthal

size, �θe, was selected at 3◦ providing six nodes along the

angular span of the actuator, whose centerline was located

at 90◦. A summary of the mesh parameters is presented in

table 2. The shear tractions caused by the actuator were

modeled through nodal forces on the nodes corresponding

to the actuator edges. Since the theoretical model considers

the traction per unit length to be constant along the radial

edges of the transducer, the relative force amplitudes must

Table 2. Mesh and analysis parameters used in FE simulations.

Parameter Value (S0) Value (A0)

R (m) 0.54 0.13
�re (m) 0.0025 0.0005
�θe (deg) 3 3
�t (s) 10−7 10−7

b (m) 0.002 0.002
f0 (kHz) 100 100
n 7 7
No. of elements 38 700 47 336
No. of nodes 52 464 63 444

be scaled appropriately. This was achieved by considering

point forces of unit magnitude on the outer radial edge and

scaling the magnitude on the inner edge accordingly, which

results in its amplitude being RI/RO. The time-dependent

part of this forcing function was a Hann-modulated toneburst

whose properties are also summarized in table 2. A schematic

showing the details of the shear traction application is given in

figure 7(b). The time step, �t , was selected so as to satisfy the

following criteria: (i) proper sampling of the highest frequency

component of the excitation signal, and (ii) sufficient resolution

of the time needed for the fastest traveling wave to move across

one element in the radial direction [44]. An implicit dynamic

analysis was performed with 1404 steps in all cases.

The numerical implementation of the theoretical solution

requires that a finite number of terms in the infinite sum

given by equation (49) be selected. This number was chosen

based on the normalized error between the angular part of the

shear traction function, equation (30), and its Fourier series

representation, equation (26). This error is defined as:

ε =

√

∫ 2π

0
|g1,2 − gF

1,2|
2 dθ

√

∫ 2π

0
g2

1,2 dθ

(52)

where the superscript F refers to the Fourier series

representation of the function. Figure 8 shows how this error

decreases with increasing number of terms. Based on this

result, the sum was truncated at 150 terms as the reduction

in error with increasing terms was slower after this point.

In addition, the solution was implemented using a larger

number of terms and no difference was observed, indicating
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(b)(a)

Figure 8. Normalized error between angular part of shear traction function and its Fourier series representation for: (a) x1-component;
(b) x2-component.

this selection was sufficient for convergence. For the spatial

comparisons, several azimuthal positions were selected at

different radial locations sufficiently far from the radial edge

to avoid boundary reflections. Figure 9(a) shows the set of

points selected for for this. The radial positions selected

were ten times the transducer’s outer radius (n̂ = 10) for the

symmetric mode, and five thirds times the outer radius (n̂ =

5/3) for the antisymmetric mode. Seven azimuthal locations

from the transducer’s centerline to its opposite direction were

selected, which resulted in intervals of 30◦. Figure 9(b) shows

the normalized peak-to-peak comparison between the theory

and FE results, while figures 9(c) and (d) show a similar

result for the in-plane displacements. Similarly, figures 10(a)

and (b) show sample time histories for two different azimuthal

positions. These figures indicate that the spatial distribution is

accurately modeled by the theoretical solution.

A similar comparison was performed for regions I and

II, where only the antisymmetric mode was considered due

to its shorter wavelength. Figure 11(a) shows a schematic

of the points selected for comparison. For region I, an

azimuthal distribution similar to the one used in the previous

case was employed, but the radial position was changed to

one-half the transducer’s inner radius. In region II, only six

azimuthal points were considered to avoid having a point over

the transducer’s area, while the radial location selected was the

transducer’s midpoint along the radial direction. Figures 11(b)

and (c) show good spatial correlation for the out-of-plane

displacement in regions I and II, respectively. Similarly,

figure 11(d) shows that the time history of the analytical

displacements also matches very well with FE results.

6. Sensor response

In GW-based testing, a stress wave is excited by the

piezoelectric actuator through the structural element whose

condition is to be inspected. This wave typically experiences

changes in its amplitude, frequency content, and group

speed due to its interaction with any defects it encounters

(e.g., cracks, corrosion, delaminations). Furthermore, these

interactions produce additional waves that, generally, scatter

in every direction. This process leads to the use of two

primary methods of testing: the pitch-catch and pulse-echo

methods. The pitch-catch method is based on identifying

damage based on the changes that defects introduce into the

wave by locating a sensor a certain distance away from the

actuator and recording the received wave. In contrast, the

pulse-echo method uses the reflections scattered from defects

to identify and locate damage. This typically involves using

a transducer that acts both as actuator and sensor. In either

method, information about the damage is obtained from strains

sensed by the piezoelectric transducer and the corresponding

voltage signal generated through the piezoelectric effect. This

voltage signal is then used to determine information about

damage presence, location, and severity using adequate signal

processing techniques. Therefore, it is necessary to relate the

strains sensed by the transducer to the induced voltage. This

will allow us to identify excitation frequencies and transducer

dimensions that maximize the sensor response. Raghavan and

Cesnik [13] proposed a model to do this by modeling the

sensor as a capacitor. Using the assumption that the sensor

is under plane stress conditions, the following expression was

presented:

Vs =
kǫ0 Es t̄s g

(1 − νs)Cs

∫

As

ǫii dA (53)

where the piezoelectric constant to be used depends on the

relative directions of the applied electric field and the induced

strain. Similarly, the capacitance of the sensor, Cs, will depend

on whether it is a uniform piezo material or an APT. An

implication of this model is that the sensor is assumed to be

infinitely compliant, so that it does not disturb the GW field

produced by the actuator. The strains necessary to obtain

the sensor response can be obtained from the displacement

components defined previously by means of a linear strain–

displacement relation. In polar coordinates, this is expressed

as:

ǫrr =
∂ur

∂r
(54)

ǫθθ =
ur

r
+

1

r

∂uθ

∂θ
(55)
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(a) (b)

(c) (d)

Figure 9. Comparison between FE and theoretical results. (a) Points selected for comparison. (b) Amplitude comparison for symmetric u3.
(c) Amplitude comparison for antisymmetric u2. (d) Amplitude comparison for antisymmetric u1.

(a) (b)

Figure 10. Sample time history for out-of-plane displacement at r = 10RO (with baseline RO = 15 mm) and θ = (a) 90◦ and (b) 0◦.
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(a) (b)

(c) (d)

Figure 11. Comparison between FE and analytical results in regions I and II. (a) Points selected for comparison; (b) amplitude comparison for
antisymmetric u3 in region I; (c) amplitude comparison for antisymmetric u3 in region II; (d) sample time history for out-of-plane
displacement at the origin.

where ur and uθ are the radial and azimuthal displacement

components, respectively. These components can be expressed

in terms of the Cartesian components obtained previously

through the transformation:

{

ur

uθ

}

=

[

cos θ sin θ

− sin θ cos θ

]{

u1

u2

}

. (56)

Since the Cartesian components were previously obtained

in terms of polar coordinates, it follows from equation (56)

that:
∂ur

∂r
=

∂u1

∂r
cos θ +

∂u2

∂r
sin θ (57)

and

∂uθ

∂θ
= cos θ

(

∂u2

∂θ
− u1

)

− sin θ

(

∂u1

∂θ
+ u2

)

. (58)

Similarly, the strain–displacement relation in Cartesian

coordinates is given by:

ǫxx =
∂u1

∂x
(59)

ǫyy =
∂u2

∂y
. (60)

Since the displacement components were found in terms

of polar coordinates, the coordinate transformation r =
√

x2 + y2, θ = tan−1(y/x) is used along with the chain rule

of derivatives to obtain:

ǫxx =
∂u1

∂r
cos θ −

∂u1

∂θ

sin θ

r
(61)

ǫyy =
∂u2

∂r
sin θ +

∂u2

∂θ

cos θ

r
. (62)

Finally, the r and θ derivatives of the displacement

components, for the antisymmetric mode, may be expressed
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(a) (b)

Figure 12. Sensor geometry and location used in analysis. (a) Rectangular piezo sensor. (b) Rectangular APT sensor.

in vector form as:

∂uA

∂r
=

∞
∑

k=−∞

[

iπ2ξAΓA(ξA)

ζk(θ)D′
A(ξA)

∆A{H
(2)

k−1(ξAr) − H
(2)

k+1(ξAr)}

]

(63)

and:

∂uA

∂θ
=

∞
∑

k=−∞

[

−2kπ2
ΓA(ξA)

ζk(θ)D′
A(ξA)

∆A H
(2)
k (ξAr)

]

. (64)

6.1. Rectangular piezo sensor

The sensor response of a homogeneous rectangular piezoelec-

tric sensor is of practical interest in SHM applications. Con-

sider a rectangular sensor of width w, and aspect ratio A∗, so

that, h = A∗w and As = A∗w2, as shown in figure 12(a). The

sensor is centered at the point x = xs , y = ys and is under

the GW field excited by a CLoVER sector of radial span �r

and angular span �θ centered at the point ra = 0.5(RI + RO),

θa = 90◦. In contrast to the case of an APT sensor, the piezo

material has isotropic piezoelectric properties in the plane nor-

mal to the poling direction, and therefore senses all in-plane

extensional strains. In addition, this enables the piezo to be

modeled as a parallel plate capacitor filled with a dielectric ma-

terial. In this way, its capacitance may be expressed through:

Cs =
kǫ0 As

t̄s
. (65)

Consequently, its sensor response is given by [13]:

Vs =
Es t̄s g13

As(1 − νs)

∫ ys+A∗ w
2

ys−A∗ w
2

∫ xs+
w
2

xs−
w
2

(ǫxx + ǫyy) dx dy (66)

where ǫxx and ǫyy are defined by equations (61) and (62),

respectively.

Note that equation (66) holds for harmonic forcing at

a frequency ω. For the general case of a time-dependent

excitation, such as the toneburst signal considered before,

the integrand is multiplied by the time Fourier transform of

this signal and integrated over an infinite frequency range

(which in reality is limited to the frequency bandwidth of

the excitation toneburst), as outlined in section 4. However,

in order to identify optimal excitation frequencies and sensor

dimensions a harmonic analysis is sufficient. Once these have

been identified, they can be used as center frequencies of time-

dependent excitations.

The variation in three parameters was examined. First,

we explored the excitation frequencies to determine values at

which the sensor response would be maximum, as well as to

identify values that should be avoided due to negligible sensing

response. Second, two sensor dimensions were explored. The

width of the sensor was considered, which resulted in the

definition of the non-dimensional parameter w∗ as w/�r . The

effect of the sensor’s aspect ratio was also studied. The results

from this analysis are shown in figures 13 and 14. In the study

of the aspect ratio, the value of w∗ was kept fixed at 1. The

two modes show different qualitative behavior over the range

of frequencies studied with the A0 mode showing two main

frequencies at which high response is obtained, as opposed

to the S0 case which shows primarily one up to 500 kHz.

Note that both dimensions are critical in the response of the

rectangular piezoelectric sensor, with smaller sizes resulting

in better performance. This observation is consistent with

the findings reported in [13]. In addition to the decrease in

amplitude observed for larger sensors, it can also be seen that

the number of nodes increases significantly.

6.2. Rectangular APT sensor

The response of a rectangular APT sensor under the GW

field excited by a CLoVER sector is now derived. This

analysis is based on the assumption that only extensional

strains along the piezoelectric fiber direction are sensed. This

is a reasonable simplification since the induced shear strains

are small compared to the extensional ones. Furthermore,

as discussed in section 4, the piezoelectric performance of
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(a) (b)

Figure 13. Effect of sensor width on piezo sensor response. The baseline case was �r = 0.005 m. (a) A0 mode. (b) S0 mode.

(a) (b)

Figure 14. Effect of sensor aspect ratio (A∗) on piezo sensor response. The baseline case was �r = 0.005 m. (a) A0 mode. (b) S0 mode.

the transducer along the normal direction to the fiber is very

weak. Therefore, for the rectangular configuration, only ǫrr is

needed. The rectangular sensor is modeled by using a wedge-

shaped geometry whose radial origin coincides with that of

the CLoVER actuator. Therefore, while its effective geometry

is that of a rectangle, its dimensions will be expressed in

terms of radial and azimuthal components. This further

assumes that the fibers in the rectangular device are always

oriented along the radial direction. Consider a rectangular

APT sensor centered at the point r = rs , θ = θs , with

radial dimension �rs , angular span �θs , and surface area

As = rs�rs�θs , as shown in figure 12(b). The sensor is

subjected to the GW field excited by a CLoVER sector with

radial dimension �r and angular span �θ centered at the

point ra = 0.5(RI + RO), θa = 90◦. In order to use the

sensor response equation presented earlier (equation (53)), an

expression for the APT capacitance is needed. For this type

of transducer, the capacitance is typically analyzed using the

repetitive nature of the interdigitated electrode pattern. In this

way, only the electric field in a representative unit cell, defined

as the region between any two electrode fingers, is considered.

A comprehensive study on this electric field was conducted

by Lloyd [45] using conformal mapping techniques. In that

work, it was shown that the capacitance of each unit cell was

primarily determined by the piezoceramic thickness, electrode

finger width, and electrode finger spacing, while it scaled

linearly with electrode finger length. Thus, the capacitance of

a unit cell can be expressed as:

Cuc = p(k, ǫ0, dIDE, t̄a)L IDE (67)

where, in the case of a rectangular APT, the electrode finger

length is determined by its radial position, rIDE, and the

azimuthal span, �θ , so that:

Cuc = p(k, ǫ0, dIDE, t̄a)rIDE�θ. (68)

A closed form expression for the function p cannot

be readily obtained. However, the work of Lloyd [45]

showed that this function is non-linearly dependent on the

electrode finger and unit cell geometry, and that it increases

exponentially as the center-to-center distance between the

electrode fingers approaches zero. It is also important to note

that any contribution from the capacitance of the epoxy has

been neglected. This is a logical choice since its dielectric

constant (k ∼ 6) [46] is much smaller than that for a

typical piezoelectric ceramic (k ∼ 1700, PZT-5A) [39].

The capacitance of the overall device may be obtained by

considering it as a composition of capacitors connected in
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(a) (b)

Figure 15. Effect of radial dimension on rectangular APT sensor response. The baseline case was �r = 0.005 m. (a) A0 mode. (b) S0 mode.

parallel. Then, the capacitance of each unit cell may be simply

added together which results in:

C = p(k, ǫ0, dIDE, t̄a)�θ
RO + RI

2
�r. (69)

Using equation (69), the voltage induced in the APT

sensor due to the induced strains is given by:

Vs =
kǫ0 Es t̄s g33

(1 − νs)p As

∫ θs+
�θs

2

θs−
�θs

2

∫ rs+
�rs

2

rs−
�rs

2

ǫrrr dr dθ. (70)

Note that in the case of an APT, g33 is used. In addition,

for a given APT device, the function p is a constant. Using the

definition in equation (70), the voltage is given by:

Vs =
kǫ0 Es t̄s g33

(1 − νs)p As

∫ θs+
�θs

2

θs−
�θs

2

∫ rs+
�rs

2

rs−
�rs

2

[

∂u1

∂r
cos θ +

∂u2

∂r
sin θ

]

× r dr dθ. (71)

This analysis was performed in two separate steps; the

ratio of the radial dimension was first explored by defining

the non-dimensional parameter r∗ as the ratio �rs/�r and

obtaining the sensor response, given by equation (71), over a

wide frequency range for both symmetric and antisymmetric

modes. The result from this analysis is shown in figure 15.

The location of the sensor was set to rs = 15RO and θs =

90◦; this azimuthal position was selected since it coincides

with the transducer’s centerline which is the intended scanning

direction. The actuator dimensions were similar to the ones

presented in table 1. In these and subsequent sensor response

plots, the results presented are normalized by the maximum

value in each set. Similar qualitative differences between the

two modes are observed in this case, with the antisymmetric

mode showing the lower response at a higher frequency than in

the previous case.

The effect of varying the ratio of azimuthal spans was also

examined, which resulted in the definition of the parameter θ∗

as �θs/�θ . The results from this analysis, for r∗ fixed at 1,

are shown in figure 16. As it can be seen, this characteristic

does not affect the trend observed in frequency (figure 15),

but instead causes a decrease in amplitude. Notice that this

effect is significant only if the actuator is made much smaller

than the sensor or vice versa. These trends are logical since

it is expected that changing the sensor dimension in the wave

propagation direction will have the most significant effect. As

in the previous case, it is evident that smaller sensors produce

better results.

7. Experimental studies on GW excitation by a
CLoVER sector

7.1. CLoVER fabrication

The CLoVER transducers used in this study were manufac-

tured based on an adaptation of the procedure presented by

Wilkie et al [20, 21] for MFC actuators. The design and con-

struction process is outlined in figure 17. The first step con-

sisted of designing the desired interdigitated electrode pattern

using a suitable CAD application. Once the design was com-

pleted, the electrode pattern was printed on a copper-clad kap-

ton film (Pyralux LF7062R) using photolithography (Metro-

Circuits Inc). The devices used in this study had an elec-

trode finger width of 0.1 mm and an electrode finger spac-

ing of 0.5 mm, both parameters consistent with those used

in NASA-standard MFCs. PZT-5A piezoceramic rings with

0.2 mm thickness (EBL Products) were diced into wedge-

shaped fibers with a cut angle of 2◦ (American Dicing), so that

a fiber width of 0.36 mm was achieved at the inner radius. This

value corresponds to the width of prismatic piezoceramic fibers

used in typical APT devices [47]. The fibers and electrodes

were bonded using an epoxy adhesive system (Hysol Loctite

E-120HP).

The transducers were cured in an autoclave, while the

standard manufacturing procedure employed a vacuum hot

press. Consequently, the cure cycles presented by Wilkie

et al [21] were used as a starting point, and fine tuned for

the autoclave cure. Each actuator was cured for 2 h in

a vacuum (−28.2 in Hg) bag at 100 psi (689.5 kPa) and

250 ◦F (121 ◦C). This cure time and temperature have been

previously shown to be sufficient for full actuator cure based

on experimentally-calibrated cure kinetics models [20]. A new

set of poling parameters was also employed which resulted in
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(a) (b)

Figure 16. Effect of azimuthal dimension on rectangular APT sensor response. The baseline case was �r = 0.005 m, r ∗ = 1. (a) A0 mode.
(b) S0 mode.

Figure 17. CLoVER transducer development stages.

transducers with performance levels similar to those of NASA-

standard MFCs. Further details of the manufacturing and

characterization procedures can be found in separate works by

the authors [33, 35].

7.2. Sensor-based experiments

In this section, piezoelectric sensors are employed to verify the

accuracy of the theoretical solution in the frequency domain.

This method is restricted to single-point measurements, but

it is able to provide information on the performance of the

transducer over a wide frequency range. This is a critical

component of the solution as it enables a transducer designer

to determine the transducer size that would induce maximum

displacements at a given frequency. This is a key aspect in the

transducer design as the excitation frequency is directly related

to the damage type to be detected.

7.2.1. Experimental setup. In order to verify the GW

excitation model presented in sections 4 and 6, a 3.2 mm-

thick square aluminum 5005 plate was used in the experimental

tests. The plate thickness was selected so that the effect

of the actuator’s dynamics on the substrate system could

be neglected. Past studies have shown successful results

employing a similar arrangement [13]. The plate had a side

length of 0.7 m. In an effort to excite pure symmetric

and antisymmetric modes over a wide frequency range, one

CLoVER transducer was bonded on each surface of the plate

at its geometric center. The sectors used had a radial dimension

�r = 1.0 cm (RO = 2.5 cm, RI = 1.5 cm) and an

azimuthal span �θ = 45◦. The symmetric mode was obtained

by exciting both actuators in phase, while the antisymmetric

mode resulted from exciting them out of phase. The induced

wave field was recorded using a square piezoceramic sensor

with a side length of 11.6 mm and a thickness of 0.3 mm.

The sensor was located along the transducer’s centerline at

a radial distance of 76.3 mm. This position was selected

based on the plate’s dimension, so that boundary reflections

were avoided, thereby satisfying the infinite plate assumption.

The actuators and the sensor were bonded by applying a thin

layer of Epotek 301 bonding agent and allowing it to cure for

24 h. The actuator and sensor arrangement used is illustrated

in figure 18(a). Each actuator was excited with a 3.5-cycle

Hann-modulated toneburst signal using an arbitrary waveform

generator (Agilent 33220A). A digital oscilloscope (Agilent

Infinium 54831DSO) was used to monitor and acquire the

voltage signal from the sensor, which was averaged over 64

samples at a sampling rate of 10 million samples per second.

The overall set up is illustrated in figure 18(b).

7.2.2. Results and discussion. The sensor frequency

response was measured experimentally and simulated using the

theoretical model in section 6.1. A sample of these results is

shown in figure 19, which shows the time history predicted by

the model is in good agreement with the data recorded from

the piezoelectric sensor. The material properties used for the

aluminum alloy in the computations are summarized in table 3.

The figure illustrates the results for the A0 mode at 65 kHz. It

can be noted that the amplitude and time of arrival of each peak

are very well captured by the model, as the error in the time of

arrival is less than 2% while the largest amplitude difference

18



Smart Mater. Struct. 18 (2009) 075005 K I Salas and C E S Cesnik

(a) (b)

Figure 18. Experimental setup: (a) CLoVER actuator and sensor detail; (b) overall arrangement.

Figure 19. Time history comparison for A0 mode at 65 kHz.

(which occurs for the final secondary peak) is less than 8% of

the peak-to-peak amplitude of the pulse.

Several time histories, similar to that presented in

figure 19, were recorded over different frequencies for both

the symmetric and antisymmetric modes. These results

are summarized in figure 20 where each data set has

been normalized by its maximum value. The experimental

data points represent average values, while the error bars

represent three times the peak-to-peak standard deviation. This

uncertainty was found by taking 64 averages at each frequency.

It can be seen that there is good agreement between the

theoretical prediction and the experimental data, especially

for the antisymmetric mode where the differences between

the two results are within the error bars of the experimental

measurements for most of the points. It can also be appreciated

that there is good correlation between both results for the

symmetric mode until a frequency of approximately 275 kHz.

Beyond this frequency, the EMI generated by the CLoVER

sector is very strong and its interaction with the excitation

Table 3. Aluminum substrate material properties.

Property Value

E (GPa) 68.9
ν 0.33

ρ (kg m−3) 2700

pulse is very significant. Consequently, the peak-to-peak

amplitude of the response recorded had to be manually

measured according to the expected time of arrival of the pulse,

calculated based on its group velocity at each frequency. The

EMI results from the rapidly changing electric currents flowing

through the interdigitated electrode fingers of the transducer.

An important area for further development is the shielding of

the transducer and sensor to this type of interference.

7.3. Laser vibrometer experiments

In this section, the non-contact technique of laser vibrometry

is used to investigate the GW field induced by a CLoVER

sector. This method is an important complement to the sensor-

based experiments presented in the previous section as it is

able to provide information on the spatial variations of the GW

field. The section begins with a brief overview of the operating

principles of the scanning laser vibrometer and a description

of the experimental setup used. A comprehensive set of results

are subsequently presented to verify the spatial and temporal

accuracy of the theoretical solution.

7.3.1. Setup and laser vibrometer operation. The key

instrument used in these studies was a Polytec PSV-400

scanning laser vibrometer. This system is composed of the

PSV-I-400 scanning head, the OFV-5000 controller, the PSV-

E-401 junction box, and a data management system. The

light source used in the PSV-400 is a helium neon laser that
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(b)(a)

Figure 20. Comparison between theoretical and experimental frequency response results. (a) S0 mode, (b) A0 mode.

(a) (b)

Figure 21. (a) Definition of horizontal and vertical scan angles; (b) experimental setup used in laser vibrometer tests.

provides a linear polarized beam [48]. The vibrometer system

is able to measure the out-of-plane velocities by measuring

the difference in path lengths between a reference beam and

an object beam that is backscattered from the surface under

inspection. The PSV-I-400 scanning head houses a high

sensitivity vibrometer sensor, a high-precision scan unit, and

a color video camera used to manipulate the laser and scan

points in the PSV software. The OFV-5000 controller is able

to decode the interference signal of the object and reference

beams, while the PSV-E-401 junction box provides an interface

for the scanning head, controller, and data management system

as well as several input channels for triggering and signal

generator output. Finally, the data management system houses

the PSV software used to operate the laser vibrometer.

The scanning head was supported using a tripod and

maintained at a distance of 915 mm from the scanning surface

for most of the experimental tests conducted. This distance

was selected to operate at a laser visibility maximum [48].

An important consideration when taking laser vibrometer

measurements is that the scanning angles be small enough

so that contributions from the in-plane components remain

negligible. The horizontal and vertical scanning angles are

defined in figure 21(a). Furthermore, large scanning angles

(∼10◦) are expected to reduce the signal-to-noise ratio. The

work of Leong et al [29] provided important insight into this

issue. They showed that the vertical scan angle should be

kept below 4◦ in order to maintain a consistent signal to noise

ratio, while the amplitudes of the displacements measured were

mostly insensitive to variations in the horizontal scan angle.

Consequently, the plate under inspection was arranged so that

the vertical scan angle did not exceed the 4◦ limit.

The test specimen consisted of the same isotropic plate

and CLoVER transducer arrangement described in section 7.2.

The surface to be scanned was lightly sanded using 120

grade sand paper to enhance its backscattering behavior. As

the laser vibrometer is primarily sensitive to the out-of-plane
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(a) (b)

(c) (d)

Figure 22. (a) Schematic illustrating distribution of measurement points; time history comparison at r = 3.2R0 and: (b) θ = 90◦;
(c) θ = 72◦; (d) θ = 46◦.

velocities, the center frequency of the excitation pulse used

was maintained at 65 kHz. It was shown earlier through sensor

response experiments that the A0 mode is maximized near this

frequency. This mode was selected as it is well known that

it has a predominantly out-of-plane component. In this case,

the excitation pulse was amplified using a Trek PZD2000 high

power amplifier which provided a fixed gain of 200. The

input voltage used in this set of tests was higher than in the

sensor tests to obtain a high signal-to-noise ratio in the laser

vibrometer, and varied from 200 to 800 Vp−p. The sampling

frequency used in the data acquisition system was 5.12 MHz.

The overall experimental setup is illustrated in figure 21(b).

7.3.2. Results and discussion. The first set of tests consisted

of evaluating the time history performance of the solution.

Three points were selected at a fixed distance of 3.4RO and

various azimuthal locations, as shown in figure 22(a). The

time of arrival is close for both solutions (within 5%) as

shown in figures 22(b)-(d). The shape of the toneburst signal

is also well captured although there are some differences in

the relative amplitude of both the main and secondary peaks.

The largest of these differences occurs for the time history

recorded at 72◦ and corresponds to approximately 30% of the

peak-to-peak amplitude of the excitation pulse. As previously

mentioned, the excitation voltage used in these experiments

was significantly larger than that used in the sensor-based

experiments, partially to obtain a good signal to noise ratio. A

larger voltage input generates larger strains in the transducer,

and it is possible that this results in a more pronounced

contribution from the transducer dynamics which have been

neglected in the theoretical solution. It should be noted that

there are additional reasons for selecting a higher excitation

voltage in this set of experiments. First, in this case only one

transducer is being used in contrast to the two used in the

previous experiments. This was done because in preliminary

testing it was found that due to the sensitivity of the laser

beam, minor misalignments in the placement of the transducers

(∼2 mm) significantly affected the shape of the propagating

pulse. It is likely that the sensor is not as sensitive to these

differences as it is primarily excited by the weaker (in the A0

case) in-plane displacements. In addition, the piezoceramic

fibers used in the CLoVER transducer are relatively thin.

Finally, the antisymmetric mode is being excited using shear

tractions in the plane of the substrate. It has been previously

reported [49] that, due to this mode’s strong out-of-plane

component, transducers that apply surface tractions normal to

the surface are preferred for A0 excitation when employing a

single device.
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o

Figure 23. Comparison between theoretical and laser vibrometer
results for peak-to-peak amplitude.

The second set of tests consisted of evaluating the decay

in the propagating pulse amplitude with radial distance. It is

important to accurately capture this parameter in the theoretical

solution as it is key in determining the inspection distance

that can be achieved with the transducer. In this case, several

radial positions oriented along the centerline of a CLoVER

sector were selected and the laser was used to measure the

time history. The peak-to-peak amplitude obtained from

these measurements were then compared to similar results

obtained using the theoretical model. This result is shown

in figure 23, where the results have been normalized by

the mean peak-to-peak amplitude in each data set. As in

previous cases, the error bars represent three times the standard

deviation. This uncertainty was found by repeating each

measurement three times, collecting 64 averages in each

test. The figure shows that the experimental and theoretical

results are in excellent agreement, with the differences between

them staying within the experimental uncertainty for all the

measurement points. Note that neither the theoretical model

nor the numerical simulations have accounted for material

damping, and therefore the amplitude attenuation observed

in the results in figure 23 are due to geometric attenuation

only. The good agreement between both results indicates

that accounting for material damping is not necessary when

working with linearly elastic isotropic materials.

Another important consideration is the azimuthal distribu-

tion of the induced GW field. This parameter indicates the

directionality achieved by a CLoVER sector. As in the ra-

dial decay study, the peak-to-peak displacement amplitude was

measured at several azimuthal and radial locations as shown in

figure 24(a). In this case, a complete 360◦ range was scanned

using a grid consisting of 60 azimuthal points. In addition,

three radial locations were chosen to investigate the evolution

of the azimuthal distribution with radial distance. The mea-

surements were repeated three different times with each set

consisting of 64 averages. The displacement field was calcu-

lated theoretically for the same radial locations using a finer

grid of azimuthal points. These results are compared in several

polar plots shown in figures 24(b)–(d). In these figures, the

transducer centerline coincides with the 90◦ direction, and the

peak-to-peak amplitude is represented by the radial distance

from the origin for each azimuthal location. The uncertainty

for each point is represented by two finer lines surrounding the

experimental points which correspond to three times the stan-

dard deviation.

The results show that the azimuthal distribution is

captured well by the model. The regions where the largest

disagreements are observed correspond to normal directions

from the transducer centerline where the GW field is smallest,

which in turn decreases the signal-to-noise ratio in the laser

vibrometer resulting in large standard deviations. Some

differences are also observed for the wave field induced in the

opposite direction, i.e., towards the 270◦ direction, especially

for larger radial distances. The largest error in this case is in the

order of 23% and it occurs for the farthest radial position tested,

at an azimuthal location of approximately 300◦. It is likely that

this disagreement is partly due to the presence of additional

CLoVER sectors which are not accounted for in the theoretical

solution. These additional transducers introduce concentrated

masses which act as very small GW scatterers. As the radial

position is increased, a larger portion of the wave field interacts

with the additional sectors, which may explain the increasing

difference with larger distance. It can also be appreciated from

the figures that as the radial position is increased, the main

displacement lobe becomes wider, which is consistent with the

expectation that in the far field the wavefront would tend to a

uniform circular front [38].

The final set of tests consisted of a full-field scan to

visually compare the temporal and spatial evolution of the GW

field induced by a CLoVER sector. The scanning grid used

in this case consisted of 25 radial points distributed over a

7 cm range, which provided approximately three wavelengths

with seven points per wavelength. A complete 360◦ range was

covered using an azimuthal grid consisting of 40 points. The

starting radial position for the measurements was selected at

1 cm from the radial edge of the CLoVER sector to avoid

scanning over pieces of kapton film that remain attached to

house the electrode bus of the transducer. Similarly, the

radial positions scanned excluded points near the origin as a

piezoelectric sensor was bonded in this area. These results are

summarized in figures 25 through 27, which show very good

correlation between the theoretical model and the experiment.

The directionality of the transducer is clearly visible, as the

induced displacements remain primarily within the azimuthal

span of the CLoVER sector. The results presented in the

previous sections have shown the accuracy of the three-

dimensional elasticity solution in describing the GW field

induced by a CLoVER sector in isotropic structures. The

performance of this device in damage detection and location

has also been explored in separate studies [33, 50] by the

authors, where it has been shown that its directionality and

geometry allow it to accurately detect simulated defects in

metallic and composite plate-like structures.
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(a) (b)

(c) (d)

Figure 24. (a) Schematic showing location of the scan points used in azimuthal comparison tests; comparison of peak-to-peak amplitudes at:
(b) r = 1.4RO; (c) r = 2.2RO; (d) r = 3.8RO.

Figure 25. Full-field comparison between laser vibrometer and theoretical solution at time t = 35 μs. (a) Experiment. (b) Theory.

8. Summary and conclusions

The guided wave (GW) field excited by a surface-bonded,

wedge-shaped anisotropic piezocomposite transducer (APT)

was investigated in this paper. This study supports the

development of the composite long-range variable-direction

emitting radar (CLoVER) transducer. This novel device has

been introduced by the authors as an alternative concept for
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Figure 26. Full-field comparison between laser vibrometer and theoretical solution at time t = 50 μs. (a) Experiment. (b) Theory.

Figure 27. Full-field comparison between laser vibrometer and theoretical solution at time t = 65 μs. (a) Experiment. (b) Theory.

damage interrogation and GW excitation in structural health

monitoring (SHM) systems. This transducer has an overall ring

geometry, but is composed of wedge-shaped APT sectors that

can be individually excited to interrogate the structure along

a particular direction from a central location. Some of the

advantages offered by this new design were briefly discussed.

The theoretical analysis considered uncoupled dynamics for

the actuator and substrate, and their interaction was modeled

as surface tractions along the actuator’s edges. Under these

assumptions, a 3D elasticity boundary value problem was

formulated, and its solution yielded theoretical expressions

for the displacement field. Results from three-dimensional

finite element simulations demonstrated the accuracy of the

theoretical result as a solution to the elasticity problem.

The sensor response of a uniform rectangular piezoelectric

wafer and a wedge-shaped APT under the GW field excited

by a wedge-shaped APT was also investigated. This

analysis was based on modeling the actuators as capacitors.

The rectangular piezoelectric sensor was considered as a

parallel plate capacitor, while the APT was considered as

a combination of parallel plate capacitors. It was found

that the radial dimension of the APT sensor significantly

affects the response in frequency, while the azimuthal span

only affects the response amplitude. The overall trend that

smaller sensors produce enhanced response was confirmed.

A combination of sensor-based and laser vibrometer-based

experiments were conducted to verify the performance of

the solution in representing the actual physical system. A

comprehensive set of results was presented and the ability of

the solution to capture the experimental results in the time,

frequency, and space domains was demonstrated.
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Appendix

The column vector of coefficients, ∆, first introduced in

equation (41), is defined through:

∆ =

⎧

⎪

⎨

⎪

⎩

̺
(1)
−2−k − ̺

(2)
−k − ̺
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⎪
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(A.1)

where the individual components have the following defini-

tions:
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Similarly, the column vector Λ is defined as:

Λ =

⎧

⎪
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where the individual components have the following defini-

tions:
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The column vector Υ̃ is defined as:

Υ̃ =

⎧

⎪

⎨

⎪

⎩

ρ̃
(1)
−2−k − ρ̃

(2)
−k − ρ̃

(3)
2−k

ψ̃
(1)

−2−k − ψ̃
(2)

−k − ψ̃
(3)

2−k

υ̃
(1)
1−k + υ̃

(2)
−1−k

⎫

⎪

⎬

⎪

⎭

(A.19)

where the individual components are given by:
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Finally, the column vector Υ is defined as:
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where the individual components are given by:
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The distinction between symmetric and antisymmetric

modes occurs in the definition of the coefficients γ
(i)

j .

The following equations provide their definition for the

antisymmetric case. The coefficients for the symmetric mode

are found analogously by interchanging sine and cosine terms

whose arguments depend on the substrate half-thickness b,

and by replacing the antisymmetric wavenumber, ξA, by its

symmetric counterpart, ξS.
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