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Abstract
Signal processing algorithms for guided wave pulse echo-based structural
health monitoring (SHM) must be capable of isolating individual reflections
from defects in the structure, if any, which could be overlapping and
multimodal. In addition, they should be able to estimate the time–frequency
centers, the modes and individual energies of the reflections, which would be
used to locate and characterize defects. Finally, they should be
computationally efficient and amenable to automated processing. This work
addresses these issues with a new algorithm employing chirplet matching
pursuits followed by a mode correlation check for single point sensors. Its
theoretical advantages over conventional time–frequency representations for
SHM are elaborated. Results from numerical simulations and experiments in
isotropic plate structures are presented, which show the capability of the
proposed algorithm. Finally, the issue of in-plane triangulation is discussed
and experimental work done to explore this issue is presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Motivation

In recent years, there has been an emerging need for damage

prognosis systems in aerospace structures. Such systems

would automatically provide the user with near-real-time

information about the structure’s condition and its ability to

continue service. In addition, they should also be able to give

estimates of the remaining service life, thereby allowing repairs

to be scheduled accordingly. Their importance has particularly

come to the fore in the light of aerospace accidents such as

the Aloha Airlines fuselage separation [1], the disintegration

of the Space Shuttle Columbia during re-entry [2] and, more

recently, the Chalk’s Ocean Airways crash [3]. While both the

aircraft incidents involved aging aircraft with fatigue-induced

1 Author to whom any correspondence should be addressed.

damage, the Space Shuttle disaster was due to its inability to

detect damage to the wing by falling debris. In all cases,

the presence of damage prognosis systems could have saved

several lives. Apart from the obvious life safety benefits, the

monetary and labor savings benefits of such systems would be

very significant. More details on the motivational drivers for

damage prognosis in civil, mechanical and aerospace structures

can be found in Farrar et al [4], where it is aptly described as a

‘grand challenge’ engineering problem for the 21st century.

1.2. Structural health monitoring and guided wave

approaches

Structural health monitoring (SHM) is the diagnostic part that

directly supports the damage prognosis. It usually consists of a

structurally integrated network of transducers and processors

that use a tested algorithm on the acquired data from the
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(a) (b)

Figure 1. Dispersion curves for Lamb modes in an isotropic aluminum plate structure: (a) phase velocity and (b) group velocity. The circles
mark the excitation center frequency for the FEM simulations in section 1.3.

transducers to evaluate the structure’s condition. The SHM

component would decide whether damage is present in the

structure and, if so, furnish information about its location,

severity and type. This would enable the damage prognosis

system to make an intelligent estimate about the service

potential of the structure. Among various technologies under

investigation for SHM, there are guided wave (GW)-based

approaches. These essentially involve exciting the structure

with high frequency stress waves and processing the difference

in structural response with respect to a baseline signal for the

pristine condition using a tested algorithm to detect damage

and characterize it, if present. Details on the basics of GW

SHM and a brief comparison with other SHM methods are

presented in another work by the authors [5]. The idea of GW

SHM derives from GW non-destructive testing (NDT), which

is now a well-established industrial technology. However, GW

testing for SHM and NDT differs in two key aspects. The

first one is that the mass and space penalty associated with

transducers for NDT make them unsuitable for permanently

mounting onto aerospace structures. Therefore, typically

surface-bonded/embedded piezoelectric wafer transducers are

used. The other significant difference is that the signal

processing and inference about the presence of damage and

its characteristics should be done automatically in near-real-

time by a processor and not by a technician’s judgment

during offline maintenance as in NDT. This present paper

addresses the signal processing aspect of GW SHM. In

particular, drawbacks of conventional approaches to this aspect

are highlighted and a new approach that overcomes these is

presented and validated.

GWs can be defined as stress waves forced to follow

a path defined by the material boundaries of the structure.

For example, when a beam is excited at high frequency,

stress waves travel in the beam along its axis away from the

excitation source, i.e. the beam ‘guides’ the waves along its

axis. Typical aerospace structures are composed of several

beam, plate and shell substructures, each of which can act as

waveguides, thereby making them attractive application areas

for GW SHM. Typically, more than one mode is possible

in a waveguide at any frequency. Furthermore, each mode

has a unique dispersion curve, which represents the relation

between phase velocity (denoted cp) and frequency. In

isotropic plate structures at any excitation frequency, at least

two modes are possible (see figure 1(a)). Another important

characteristic is the group velocity (denoted cg, see figure 1(b)),

defined as the derivative of the angular frequency with respect

to the wavenumber. For an isotropic medium, it gives a

very good approximation to the speed of the peak of the

modulation envelope of a narrow frequency bandwidth pulse.

This approximation improves in accuracy as the pulse moves

further away from the source or if the GW mode becomes

less dispersive. Further details on the fundamentals of GW

propagation can be found in textbooks such as the ones by

Miklowitz [6] or Graff [7].

1.3. Issues in GW signal processing for SHM

Signal processing is a crucial aspect in any GW-based SHM

algorithm. The objective is to extract information from the

sensed signal to decide if damage has developed in the structure

and, if so, characterize it in terms of location. Information

about damage type and severity is also desirable from the signal

for further prognosis. However, classifying and quantifying

damage usually requires some pattern recognition algorithm

which uses the output from the signal processing. The present

work addresses signal processing, but not pattern recognition.

To assess the issues involved in signal processing for GW

SHM, results from a couple of illustrative finite element

method (FEM) simulations are presented in this section.

Consider a 2D aluminum plate structure, modeled using a

finite element mesh of 2D plane strain elements as shown in

figure 2(a) (the structure is infinitely wide normal to the plane

of the paper). In the first simulation, a notch is present. It is

0.5 mm deep and 0.25 mm across, at a distance of 7.5 cm from

the plate center. There are surface-bonded thin piezoelectric

wafer actuators on each free surface at the center. The actuators

are modeled as causing shear traction along their free edges,

which has been found to be an effective model in previous work

by the authors [8]. The actuators are excited symmetrically

with a 2.5-cycle Hann-windowed sinusoidal toneburst with

center frequency of 275 kHz. This frequency is highlighted

in figure 1. Even though only the S0 mode is excited in this

case, when it interacts with a defect, all possible modes are

scattered from the defect. At 275 kHz, three GW modes (the
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(a)

(d) (c)

(b)

Figure 2. (a) 2D plate structure with one notch; (b) 2D plate structure with two notches; (c) surface axial strain waveform at the center for the
structure in (b); (d) surface axial strain at the center for the structure in (a).

Lamb modes highlighted in figure 1 and the SH-modes) are

possible in a 1 mm aluminum plate. Due to the 2D nature of

the simulation, SH modes are not possible, and are therefore

not considered. Thus, the two possible modes that can be

reflected and transmitted from the defects are the A0 and S0

Lamb modes. The surface axial strain wave at the center of

the plate from the FEM analysis, done using ABAQUS [9], is

shown in figure 2(d). The first wave packet is the actuation

pulse, which is followed by the S0 mode reflection from the

notch. Subsequently, the slower A0 mode reflection from

the notch is received and finally the S0 reflection from the

boundary reaches the center of the structure. In this case, the

presence and location of the notch was known beforehand,

but in SHM, one has to estimate this information given the

signal. The signal processing algorithm must decide what

mode each reflected wave packet corresponds to, what the

center frequency of the packet is (though the center frequency

of excitation is known, the defect may be sensitive to higher

or lower frequencies and therefore the center frequency of the

reflection can change), and what the precise time of arrival

is. Once the mode and the time–frequency center of the

wave packet are known, the location of the defect can be

estimated, knowing the group velocity for that mode. Now

consider a similar structure as before (figure 2(b)), with the

main difference being that there are two notches. In this

case, as before, in the surface strain waveform at the center

(figure 2(c)), one can see the actuation pulse, followed by

the S0 mode reflection from the notch closer to the center

and the S0 mode boundary reflection. However, in this case,

the A0 mode reflection from the notch closer to the center

overlaps with the S0 mode reflection from the notch closer to

the free end. Therefore, the signal processing algorithm should

also be able to separate overlapping multimodal reflections.

In addition, for SHM, since the signals are to be processed

continuously in near-real-time, it is highly desirable to have

a computationally efficient algorithm. Finally, the algorithm

must be robust to noise.

1.4. Objective of this work

First, conventional solutions to the problem of GW signal

processing for SHM are described and their shortcomings are

highlighted. A new algorithm for GW signal processing for

single point sensors using chirplet matching pursuits and mode

correlation is then proposed and described in detail. The

algorithm is designed for pulse-echo-based methodologies. Its

ability to overcome the problems associated with conventional

solutions for GW SHM is demonstrated using FEM and

experimental results in isotropic plate structures. At the

end, damage triangulation with multiple transducers in

isotropic plate structures using this algorithm is discussed and

demonstrated with experimental results.

2. Conventional approaches to GW signal processing

Conventional solutions to the problem of GW signal processing

adapted from NDT are usually in the form of some

time–frequency representation (TFR). Unlike the well-known

Fourier transform, which provides ‘global’ information about

the frequency content and is thereby suited for signals with

stationary frequency content (meaning their frequency content

does not change with time), TFRs yield the ‘local’ frequency

content and are better suited for non-stationary-frequency

signals. The simplest example of a TFR is the short time

Fourier transform (STFT), in which the signal is divided into a

number of small overlapping pieces in the time domain, each
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Figure 3. WVD of two linear modulated chirps.

piece is multiplied in time using a fixed modulation window

and the Fourier transform is used on the resulting signal. Thus,

the STFT, S(t, ω), of a signal, s(t), and the corresponding

time–frequency energy distribution, E(t, ω), obtained from it

(called the spectrogram) are [10]

S(t, ω) =
1

2π

∫ ∞

−∞
s(τ)h(τ − t)e−iωτ dτ

E(t, ω) = |S(t, ω)|2
(1)

where h(t) is the modulation window. Thus, an image is

obtained for each point of the time–frequency plane (t , ω).

This TFR can be implemented quickly using the fast Fourier

transform (FFT) for digital signals. Another important TFR is

the Wigner–Ville distribution (WVD), which is defined as [10]

W (t, ω) =
1

2π

∫ ∞

−∞
s
(

t +
τ

2

)

s∗
(

t −
τ

2

)

e−iωτ dτ (2)

where ∗ indicates the complex conjugate. An advantage

of the WVD is that it can exactly localize sinusoids, Dirac

impulses and linear chirps. However, for other signals it always

has additional interference terms. Figure 3 illustrates this

point using the WVD of a signal composed of two Gaussian

modulated linear chirps. The interference terms can be reduced

by using a smoothing filter f (t, ω) in the time–frequency

plane. This yields the generic smoothed WVD [10]:

SW (t, ω) =
∫ ∞

−∞

∫ ∞

−∞
f (t − τ, ω − ̟)W (τ,̟) dτ d̟.

(3)

In fact, it can be shown [10] that the spectrogram and

energy distribution from all commonly used TFRs such as

the scalogram (which derives from the wavelet transform),

the Hilbert Huang spectrum, and others can be represented

in the form of equation (3). The disadvantage of smoothed

WVDs is that they no longer can exactly localize linear chirps,

sinusoids and Dirac impulses. One always compromises

between the interference terms and time–frequency resolution.

Further discussion on TFRs can be found in the books by

Cohen [10] and Mallat [11]. For GW signal processing,

researchers typically use some smoothed WVD followed by

post-processing on the images. This isolates GW packets

Figure 4. Spectrogram of signal in figure 2(d).

and locates their time–frequency centers, spread in the time–

frequency plane and total energy. Finally, their modes are

classified using the time–frequency ‘ridges’ of the reflections

(these are the loci of the frequency centers for each time

instant within each reflection). For example, Prosser et al

[12] used the pseudo-WVD to process GW signals for material

characterization of composites. Niethammer et al [13]

reviewed four different time–frequency energy distributions to

gauge their effectiveness in analyzing GW signals, namely,

the reassigned spectrogram, the reassigned scalogram, the

smoothed WVD and the Hilbert spectrum. Reassignment

is a post-processing technique for improving resolution and

decreasing spread in TFRs. While each technique was found to

have its strengths and weaknesses, the reassigned spectrogram

emerged as the best candidate for resolving multiple, closely

spaced GW modes in terms of time and frequency. Kuttig et al

[14] and Hong et al [15] used new TFRs based on different

versions of the chirplet transform which has additional degrees

of freedom (time shear and frequency shear) compared to the

STFT. It enables superior resolution compared to conventional

TFRs, but this comes at the cost of greater computational

complexity. The above works were all mainly concerned with

material characterization or offline NDT. Among works that

have used TFRs for GW SHM, Sohn et al [16] and Lemistre

and Balageas [17] used scalograms while Ihn and Chang [18]

used spectrograms. Quek et al [19] and Salvino et al [20] used

the Hilbert–Huang transform to process GW signals in plate

structures for SHM.

As an illustrative example, the spectrogram for the signal

in figure 2(b) over the excited bandwidth is shown in figure 4

(the modulation window used was identical to that for the

excitation signal). The spectrogram is plotted on a decibel

scale (logarithmic) with the peak value over the image as

reference. For this simple example, the STFT seems capable

of isolating the individual reflections, identifying their time–

frequency centers and classifying their modes using the time–

frequency ridges, which are highlighted with white lines in

each reflection. However, as is shown in section 5, these

are, in general, incapable of resolving overlapping multimodal

reflections. Superior TFRs that might be capable of resolving

such overlapped signals typically have a high computational

cost associated with them. Another drawback of smoothed
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WVDs is difficult automated post-processing. In addition,

these are more suited for broadband signals, while in GW

SHM, usually narrow-band signals are used, in order to

minimize signal spreading due to dispersion.

Another approach that has been tried for GW signal

processing is the use of multi-element sensor arrays, such as in

the work by Alleyne and Cawley [21] and El Youbi et al [22].

In this approach, the information about the spatial variation of

the data over the sensing area of the array is used to decide the

mode of each reflection. That is, a multi-dimensional Fourier

transform is applied to the signals involving both time and

spatial transformations. However, a large number of closely

spaced transducers to avoid aliasing and sophisticated multi-

channel data capture and processing hardware are needed to

implement this approach for GW SHM.

3. Chirplet matching pursuits

The matching pursuits approach to signal processing is a rel-

atively new concept introduced by Mallat and Zhang [23].

Qian and Chen [24] developed a similar algorithm indepen-

dently around the same time. This ‘greedy’ algorithm itera-

tively projects the signal onto a large and redundant dictionary

of waveforms and chooses a waveform from that dictionary

that is best adapted to approximate part of the waveform. To

understand this algorithm, consider a complex valued signal

f1(t) that belongs to the Hilbert space L2(R), where R is the

set of real numbers. Suppose this space is an inner product

space with the inner product 〈· , ·〉. Then, the following hold:

‖ f1‖ =
∫ ∞

−∞
| f1(t)|2 dt < ∞

〈 f1, f2〉 =
∫ ∞

−∞
f1(t) f ∗

2 (t) dt

(4)

where f2(t) also belongs to L2(R). The property of finiteness

of the 2-norm, defined by the first expression in equation (4),

also holds for f2(t). A dictionary D of all possible expected

wave structures, or ‘atoms’, is used, i.e. D = {ki}, where

ki ∈ L2(R) and ‖ki‖ = 1. The 2-norm is also used as a metric

of signal energy in this work. Then, the matching pursuit

algorithm decomposes a signal f (t) ∈ L2(R) into m atoms

in the following iterative way (with R0 f = f ):

(a) Choose the best atom in D:

kim
= arg max

ki ∈D

∣

∣

〈

Rm−1 f, ki

〉∣

∣ . (5)

(b) Compute the new residual after subtracting the component

along the best atom chosen in (a):

Rm f = Rm−1 f −
〈

Rm−1 f, kim

〉

kim
. (6)

Thus, it decomposes the signal into a linear expansion

of waveforms chosen to match best the signal structure.

Noise, in general, is uniformly distributed over the time–

frequency plane. Since the matching pursuit algorithm looks

for concentrated energy chunks in the time–frequency plane,

it is inherently robust to noise. Due to this approach,

which is distinct from conventional TFRs, the time–frequency

centers, the spread in the time–frequency plane and the

Figure 5. A stationary Gaussian atom and its WVD.

energy of the individual reflections are readily known, and

no post-processing needs to be done on the output. It

becomes much easier to automate this process in comparison to

algorithms using conventional time–frequency representations.

In those solutions, to automate the process, image processing

algorithms would have to be used subsequent to the generation

of the time–frequency plot to isolate the individual reflections.

In the original paper on matching pursuits [23], an efficient

algorithm using a Gaussian modulated time–frequency atoms

dictionary is described. This dictionary consists of the atoms:

k(l,u,ω)(t) =
1

√
l
g

(

t − u

l

)

exp (iω (t − u))

with g(t) = 21/4 exp
(

−π t2
)

(7)

where u is the time center of the atom and ω is the angular

frequency center of the atom. Also, l is the scale of the

atom, which is a metric representing the dilation along the

time axis of the Gaussian window g(t). It is indicative of

the atom’s time–frequency spread. These have stationary

time–frequency behavior, i.e. the frequency at which the peak

energy occurs for each time instant does not change with

time, as would be seen in a WVD-like plot (see figure 5).

Once the decomposition is done, it is possible to construct

a time–frequency plot of the constituent atoms without the

interference terms obtained using the conventional WVD.

Thus, the resolution possible from such an approach is always

superior to that from conventional smoothed WVDs. In

addition, the use of Gaussian windows ensures that the atoms

are optimal in terms of having minimal product for the root-

mean-squared (RMS) pulse time width and RMS frequency

bandwidth [25]. The matching pursuit algorithm with this

dictionary has been explored by some researchers for GW

signal analysis [26, 27]. However, the implicit assumption

in these works is that the signals are unimodal and non-

dispersive. The atoms in this dictionary are ill-suited for

analyzing dispersive signals, which have non-stationary time–

frequency behavior. Furthermore, these atoms would not help

in GW mode classification, since different modes with the

same energy at the same time–frequency center would yield

similar atoms.

More recently, Gribonval [28] introduced a computation-

ally efficient algorithm for matching pursuits using a dictionary
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Figure 6. A Gaussian chirplet and its WVD.

consisting of Gaussian modulated chirplet atoms. That is, the

dictionary comprises of atoms of the form:

k(l,u,ω,c)(t)

=
1
√

l
g

(

t − u

l

)

exp
[

i
(

ω (t − u) +
c

2
(t − u)2

)]

(8)

where c is the chirp rate of the atom. These have linear time–

frequency behavior (see figure 6). Once the GW signal is

decomposed into chirplets, the additional parameter, i.e. the

chirp rate, can be used to identify the modes of the individual

reflections. This algorithm is even more computationally

efficient than the spectrogram. The computational time to

decompose an N -point signal into M atoms is just O (M N ),

whereas the complexity involved in generating the signal’s

spectrogram, not including post-processing, is O (N 2 log2 N).

Thus, the chirplet matching pursuit seems a very attractive

option for GW signal processing. In the next section, a detailed

outline of the overall algorithm proposed using the chirplet

matching pursuits approach is presented.

4. Proposed algorithm for isotropic plate structures

4.1. Database creation

This algorithm is designed for GW SHM in isotropic plate

structures using the pulse–echo method. That is, the structure

has a central actuator excited with a high frequency pulse and

a collocated sensor receiving the GW echo pulses from the

defects, if any, and the boundaries. This presumes that a set

of baseline signals is available corresponding to the pristine

condition for the structure. For this algorithm, initially a

database of the chirplet chirp rates for the possible modes

over the range of feasible time–frequency centers must be

generated. The frequency centers are limited to the bandwidth

excited in the structure, while the time centers are limited to

the period between the end of the excitation signal and the

time taken for the slowest mode from the boundary to reach

the sensor. For this, it suffices to calculate these values for

each mode at discrete points in the feasible region of the time–

frequency plane. Then, use bilinear interpolation if values for

other points are needed. It should be mentioned that in this

work the scale l of the chirplet atoms in the dictionary was kept

fixed. The chosen value of l , say l0, was such that the spread of

the atom in the time domain was slightly larger than that of the

excitation signal (20–30% larger by rule of thumb; however,

for very dispersive signals, this might need to be further

increased). To generate the database, waveforms for each mode

at the discrete time–frequency points are generated assuming

the defect is a point-scatterer emitting circular crested waves.

These waveforms represent the expected response of the

piezoelectric wafer sensor collocated with the actuator. As

discussed in earlier work by the authors [8], the response of

a surface-bonded piezoelectric wafer is proportional to the

average in-plane extensional strain over its surface area (this

assumes that the sensor is thin and compliant enough to not

affect the GW incident on it). For the FEM simulations, the

waveforms represent the surface displacement along the plate

thickness direction at the center of the plate. To do this,

for each mode, the radial distance of the defect needs to be

calculated. The phase velocity and group velocity curves for

the isotropic plate structure are assumed known. Suppose

the S0 mode was excited predominantly (or purely) and the

excitation frequency is low enough so that the higher Lamb

modes are not possible. Since a narrow bandwidth pulse is

used, the group velocity can be used as the speed of pulse

propagation to get defect location estimates. Therefore, the

radial distance estimates for the possible modes at the time–

angular frequency center (t0, ω0) are

rS0
=

(t0 − te/2) · cgS0
(ω0)

2

rA0
=

(t0 − te/2) · cgS0
(ω0) · cgA0

(ω0)
(

cgS0
(ω0) + cgA0

(ω0)
)

(9)

where te is the time span of the excitation signal and cg (ω0) is

the group velocity of a particular mode at angular frequency

ω0. Furthermore, a minor correction term equal to half

the actuator size along the direction of propagation is added

to these estimates. This is because, for surface-bonded

piezoelectric actuators, the GWs originate from the edge of the

transducer, and not its center [8]. Next, the wavenumbers for

each mode are calculated over the excited angular frequency

range:

ξS0
(ω) =

ω

cpS0
(ω)

ξA0
(ω) =

ω

cpA0
(ω)

. (10)

It is assumed that, after the GW excited by the actuator hits

the defect, the defect becomes a point-source emitting circular

crested waves axisymmetrically. The spatial variation of the

piezoelectric sensor response is therefore described by the

Hankel function of order zero [8]. Since this wave is reflected

from the defect back towards the collocated actuator/sensor, it

is an incoming wave. Therefore, if time dependence is of the

form eiωt , then the Hankel function of the first kind represents

the incoming wave. For the case of symmetric mode reflection,

the entire distance 2rS0
is traversed as symmetric mode (since

it was assumed that the S0 mode was predominantly excited).

For the case of antisymmetric mode reflection, half the total

distance 2rA0
(from the actuator to the defect) was traveled

as S0 mode, whereas the second half was traveled as the

A0 mode. Therefore, the harmonic surface strain response

waveforms Y (ω) for the two cases are (ignoring constants of
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proportionality, since only the shape is of interest)

YS0
(ω) = H

(1)
0 (ξS0

· rS0
) · H

(1)
0 (ξS0

· rS0
)

YA0
(ω) = H

(1)
0 (ξS0

· rA0
) · H

(1)
0 (ξA0

· rA0
).

(11)

Here the effect of the piezosensor response being proportional

to the average strain over its surface area is neglected for

simplicity. For the 2D FEM simulations, the incoming wave

is given by the complex exponential function with positive

exponent:

YS0
= eiξS0

rS0 · eiξS0
rS0 = ei(ξS0

2rS0
) YA0

= ei(ξS0
rA0

+ξA0
rA0

).

(12)

The chirplet matching pursuit scheme uses a database of

Gaussian atoms. Therefore, to recover the time domain

waveform y(t) for a band-limited burst considering the

frequency bandwidth and Gaussian modulation, the following

equations are used:

yS0
(t) =

∫ ω0+�ω/2

ω0−�ω/2

g(l0(ω − ω0)) · (H
(1)
0 (ξS0

rS0
))2eiωt dω

yA0
(t) =

∫ ω0+�ω/2

ω0−�ω/2

g (l0(ω − ω0)) · H
(1)
0 (ξS0

rA0
)

× H
(1)
0 (ξA0

rA0
)eiωt dω

(13)

where �ω is the angular frequency bandwidth and g( ) is

the Gaussian window vector centered at angular frequency

ω and with the chosen scale l0. A similar equation holds

for the 2D FEM simulations. Of course, in practice, this is

implemented in the discrete (digital) domain. The inverse fast

Fourier transform can be used for efficient computation.

It should be noted that, in this work, SH modes were not

considered for the following reasons:

(a) In the FEM simulations, the elements were 2D, i.e. out-

of-plane displacements are not possible by design. Thus,

SH modes are not possible.

(b) In the performed experiments, surface-bonded piezoelec-

tric wafer transducers are used as sensors, which are al-

most entirely insensitive to shear waves. This is because

they only sense the average in-plane surface extensional

strain and not shear strain, as mentioned before.

Once these waveforms are generated, the chirplet

matching algorithm is applied to them (restricting the scale of

the dictionary chirplets to l0) and the chirp rates corresponding

to each mode at each point of the time–frequency grid are

obtained. The chirplet matching pursuit was implemented

using LastWave 2.0 [29], which is freeware. Thus, one has the

database required to use the proposed algorithm for GW signal

processing, which is described next.

4.2. Processing the signal for damage detection and

characterization

The signal processing procedure consists of the following

steps:

(i) The chirplet matching pursuit algorithm is applied to the

difference between the test signal and the signal for the

undamaged state. A dictionary of chirplets with fixed scale

s0 as discussed in section 4.1 is used. The algorithm is run

until the last atom extracted has energy above a certain

percentage of the first and most energetic extracted atom.

In this work, this percentage was chosen to be 10%. In the

authors’ experience, atoms below this threshold tend to

correspond to approximation errors. This yields the time–

frequency centers (t0, f0), the chirp rates (c) and the signal

energies of the constituent atoms.

(ii) Atoms with frequency centers outside the excited

bandwidth are neglected.

(iii) The most energetic atom in the time span not

corresponding to the excitation signal or boundary

reflections is examined. If it has energy above a certain

threshold, the structure is judged damaged. There is no

hard and fast rule to decide the value of this threshold,

which is a critical parameter. The decision is dependent

on the energy in the signal difference corresponding

to the excitation time interval. In practice, no signal

generator will be able to reproduce an excitation signal

with 100% accuracy, and there is always some difference

in the excitation signal as seen by the collocated sensor.

In this work, the threshold was set to be 50% of the

energy in the excitation signal difference. This might

need to be lowered for structures with stronger damping

characteristics. In addition, for the final SHM system, this

threshold must also take into account false positive/false

negative probabilities and risk assessment, which are

highly application-dependent. Due to the impossibility

of perfect reproduction of the excitation signal, there is a

small blind zone in the vicinity of the collocated actuator–

sensor pair. This is associated with the sensor being unable

to distinguish the small-amplitude GW reflections from

defects that might be very close to the actuator from the

strong first transmitted pulse from the actuator.

(iv) Next, mode correlation is done using the atom’s chirp rate.

It is compared with that of the possible modes for the

same time–frequency center in the database. The mode is

identified as the one that minimizes the absolute value of

the difference between the atom’s chirp rate and the chirp

rate for each mode at the same time–frequency center.

(v) Knowing the mode and time–frequency center of each

atom, the defect’s radial location relative to the transducer

is known. The defect can then be characterized by using

the frequency center, the energy in the reflection from

the defect, and the relative modal contributions from the

defect. This information can be used to infer what the

defect type is in conjunction with an artificial neural

network trained using prior experimental data or some

modeling studies.

5. Demonstration of the algorithm’s capabilities

5.1. FEM simulations

In section 1.3, it was seen that the STFT was capable

of isolating the individual reflections and identifying their

modes for the simple case of the GW signal in figure 2(d).

Now consider the more complex signal in figure 2(c), with

overlapping multimodal reflections. The portion of the signal

between the end of the excitation signal and the start of
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(a)

(b) (c)

Figure 7. (a) Portion of signal in figure 2(c) with overlapping multimodal reflections and corrupted with artificial noise; (b) spectrogram of
the signal in (a); (c) interference-free WVD of constituent chirplet atoms for the signal in (a).

Table 1. Simulated notch damage in FEM simulation (key: cA0
≡ chirp rate from database assuming A0 mode reflection; cS0

≡ chirp rate
from database assuming S0 mode reflection; Mode ≡ identified mode from mode correlation step; r actual ≡ actual radial location of notch;
r from new algo. ≡ estimate of radial location of notch from proposed algorithm; r from spect. ≡ estimate of radial location of notch from
spectrogram).

Chirplet t0 fo c Signal energy cA0
cS0

r actual r from r from
no. (µs) (kHz) (kHz µs−1) (2-norm) (kHz µs−1) (kHz µs−1) Mode (cm) new algo. (cm) spect. (cm)

1 41.6 245.9 −13 1.4 × 10−14 −12.5 0.6 A0 6.0 6.4 6.5
2 38.4 319.6 34 3.7 × 10−15 −10.2 0.5 S0 10.0 9.4 NA
3 25.6 280.8 7.4 1.8 × 10−15 −7.9 0.3 S0 6.0 5.9 6.3

the boundary reflection, after artificial corruption with white

Gaussian noise (of amplitude 5% of the peak value in the

signal), is shown in figure 7(a). The spectrogram for this

signal (again, using a modulation window identical to that in

the excitation signal) is shown in figure 7(b), on a decibel scale

relative to the peak value in the image. The spectrogram cannot

separate the overlapping multimodal reflections from the two

notches, which are smeared together in the spectrogram. The

time–frequency plot from the chirplet decomposition using

the matching pursuit algorithm is shown in figure 7(c), also

on a decibel scale. The power of this approach is evident

from this figure, where clearly the individual overlapping

reflections from the two notches are resolved. In addition, as

highlighted in table 1, the modes of the individual reflections

are correctly identified and the axial locations of the notches

are identified with a maximum deviation of 0.6 cm, or 6% of

the distance from the transducer. For the two reflections that

the spectrogram could isolate, the errors for radial estimates

are greater than that from the proposed algorithm. Thus, the

proposed algorithm shows superior resolution compared to the

spectrogram.

5.2. Experimental results

In order to verify the proposed algorithm’s potential

capabilities, experiments were conducted with a 1 mm thick

aluminum plate structure, the schematic of which is shown

in figure 8(a). The 1 mm thick aircraft-grade aluminum

alloy plate was supported on two support struts on two

edges and the other two edges were free. Surface-bonded

PZT-5A piezoceramic transducers were used. The actuators

were excited symmetrically with a 2.5-cycle Hann-windowed

sinusoidal toneburst of center frequency 175 kHz, thereby

predominantly exciting the S0 mode. After baseline signals

were recorded for the pristine condition, artificial ‘damage’

sites in the form of C-clamps were introduced (see figure 8(b)).

The C-clamps act as local scatterers of GWs incident on them
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Figure 8. (a) Schematic of experimental set-up; (b) photograph of experimental set-up.

over their contact area, causing incident GWs to be scattered

from them. Damage in the structure, such as cracks, dents

or impact damage, would also have a similar effect on GWs

incident on it. The difference signal between the pristine

and ‘damaged’ cases is shown in figure 9(a). Again, in this

case, the spectrogram is incapable of resolving the overlapping

S0 mode reflections from the two clamps (figure 9(b)). On

the other hand, the proposed algorithm showed its superior

resolution in this case too. The chirplet matching pursuit step

was able to resolve the overlapping S0 mode reflections as

well as the S0 and A0 mode reflections from the boundary

(figure 9(c)). The mode correlation step correctly identified the

modes, thereby allowing accurate radial location estimates of

the clamps, as seen in table 2 (errors in location: C1—0.3 cm;

C2—0.9 cm). The spectrogram’s estimated location (for the

reflection from the clamp that it could localize) has the same

error as the proposed algorithm. When using the relative modal

contributions to characterize the defect, one must bear in mind

that a finite-dimensional piezoceramic sensor has different

sensitivities to different wavelengths of the GW sensed [8]. As

a first-order approximation, it might suffice to normalize the

energy of each reflection to the sensitivity of the sensor to the

wavelength corresponding to the center frequency for the GW

mode of the reflection.

It should be noted that the best accuracy in radial location

estimation was in the FEM simulation with the S0 mode

reflection from N1 (error: 0.1 cm). There are two reasons

for this: (i) the reflection was isolated (i.e. not overlapping

with another reflection) and (ii) the notch was very thin axially

(0.025 cm), and hence the ‘point-scatterer’ defect model was

realistic. In the experiment, the clamp had a contact diameter

of 1 cm, weakening this assumption, as reflected in the location

errors. Furthermore, the error tends to be worse for the

weaker reflection in overlapping reflections, as one would

naturally expect. Another error source is the uncertainty in

material properties, which affects wavespeeds. Despite these

errors, which are minor, the advantages of the new algorithm

over conventional approaches to GW signal processing can

be clearly seen with these results. However, it should be

pointed out that testing was restricted to the fundamental GW

modes in this work. At higher frequencies, in the presence

of higher GW modes, the use of linear chirplets may not

suffice. Quadratic or higher-order chirplets might need to be

employed, such as in the work by Hong et al [30]. In that

work, the matching pursuit approach was used with quadratic

chirp functions for GW signal processing. However, this

will increase the computational complexity of the algorithm

compared to that for linear chirplets. In addition, in that work,

sensing was restricted to one mode there (by controlling the

number of coil turns in the magnetostrictive GW sensor used)

and mode classification was not addressed. It should be noted

that, in this work, the two modes had different dispersion

characteristics over the excited frequency bandwidth. If the

two modes are similar to each other in terms of variation of

wavespeed with frequency, the chirp rates for the two modes

may be very close to each other. The algorithm presented here

may not be able to distinguish the modes. Until this point, only

radial location of defects relative to a transducer pair has been

discussed. In the next section, triangulation using multiple

transducers in isotropic plates is discussed.

6. Triangulation in isotropic plate structures

In order to pinpoint the in-plane location of a defect in an

isotropic plate structure and characterize it, one needs the radial

locations of the defect relative to at least three pairs of central

collocated piezoelectric transducers. It is highly desirable

to use circular or ring-shaped transducer wafers, so that

there is no directional selectivity or preference. In addition,

care must be taken to use as thin piezoelectric wafers as

possible to minimize the extraneous reflections caused by the

increased local stiffness of the structure where the transducer

is bonded. The proposed algorithm needs to be repeated

for the signals obtained using each collocated actuator/sensor

pair. If there are multiple mode reflections observed from the

defect, the average radial location obtained from the modes

can be used. One can then draw three circles of radii equal

to the radial locations thus found about the centers of the

corresponding actuator/sensor pairs. The intersection of the

three circles would yield the location of the defect. This is

illustrated in figure 10(a). In addition, as before, the relative

modal contributions, the frequency center and individual modal

energies can be as input parameters for a pattern recognition

algorithm used to classify the defect and quantify its severity.
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(a)

(b) (c)

Figure 9. (a) Difference signal between pristine and ‘damaged’ states; (b) spectrogram of the signal in (a); (c) interference-free WVD of
constituent chirplet atoms for the signal in (a).

Table 2. Experimental results of isotropic plate with simulated damage (key: cA0
≡ chirp rate from database assuming A0 mode reflection;

cS0
≡ chirp rate from database assuming S0 mode reflection; Mode ≡ identified mode from mode correlation step; r actual ≡ actual radial

location of clamp; r from new algo.≡ estimate of radial location of clamp from proposed algorithm; r from spect. ≡ estimate of radial
location of clamp from spectrogram; Bndry ≡ boundary reflection; Exctn signal ≡ difference in excitation signal).

Chirplet t0 fo c Signal energy cA0
cS0

r actual r from r from
no. (µs) (kHz) (kHz µs−1) (2-norm) (kHz µs−1) (kHz µs−1) Mode (cm) new algo. (cm) spect. (cm)

1 67.2 221.5 7.8 7.3 × 10−3 −5.11 0.14 S0 Bndry Bndry Bndry
2 38.4 190.9 1.7 2.9 × 10−3 −4.55 0.07 S0 8.2 8.5 8.5
3 14.4 234.2 7.7 1.9 × 10−3 −1.79 0.01 Exctn signal
4 62.4 208.3 0.0 1.8 × 10−3 −5.17 0.13 S0 Bndry Bndry Bndry
5 100.8 166.1 −7.6 9.4 × 10−4 −4.63 0.33 A0 Bndry Bndry Bndry
6 48.0 208.3 0.0 9.2 × 10−4 −4.76 0.09 S0 10.2 11.1 NA

If, however, one is mainly interested in locating the defect

and not in characterizing it, an easier approach can be adopted.

Instead of using three collocated piezoelectric actuator/sensor

pairs, it suffices to use three circular piezoelectric wafer

transducers, and while one is excited, the others can be used

as sensors. However, in this approach, one must ensure that

the elements are sensitive only to one mode when used as

sensors. Then, the chirplet matching pursuit step is used to

find the time-of-flight from the actuator to the defect and back

to one of the sensors as well as the frequency center of the

pulse. This yields the distance traveled by the pulse, say d

(since only one group velocity is possible). The locus of all

possible locations of the defect is an ellipse with the actuator

and the sensor as its foci and d as the major axis. By exciting

each actuator in turn and using the others as sensors, three

such ellipses can be drawn and the defect is located at their

intersection. This concept was proven experimentally using a

3.15 mm thick aluminum 5052 alloy plate instrumented with

three surface-bonded piezoelectric discs of diameter 1.3 cm

each and thickness 0.23 mm each. The excitation signal

used was a 2.5-cycle Hann windowed sinusoidal toneburst

with center frequency 210 kHz. At this frequency and in its

vicinity, the A0 mode wavelength nearly equals the transducer

diameter. Therefore, as proved in an earlier modeling paper

by the authors [8], the transducers are insensitive to A0 modes

when used as sensors, and only the S0 mode needs to be

considered. The results from this experiment are shown in

figure 10(b). A through-hole of diameter 5 mm was drilled

into the plate as shown to check if its location could be found

using this approach. While one expects the three ellipses to
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(b)(a)

Figure 10. (a) Approach for locating and characterizing defects in the plane of plate structures using multimodal signals; (b) experimental
results for in-plane defect location in plate structures using unimodal GW signals.

intersect at one point, due to experimental imperfections, they

come close to intersecting each other at a single point but do

not quite do so, resulting in a triangular error box. This gives

a crude estimate of the defect size. The center of the error

box was 0.5 cm away from the center of the drilled hole. It

should be noted that in this simplified approach, it is crucial

to restrict the sensing to one mode. If more than one mode is

possible, the locus of all points of the defect given the time-

of-flight and center frequency from one transducer to another

is not necessarily an ellipse. Since one cannot be sure about

how much of the time was spent traveling as one mode and

how much as another, the locus would, in general, be an

intricate shape and this shape would need to be recalculated

for different times of flight, thereby making the algorithm

computationally intensive. This ellipse triangulation technique

has been discussed in the open literature (e.g. Kehlenbach and

Das [31]), but the case of multimodal signals has not received

much attention.

7. Summary and future directions

This paper presented a new approach for GW signal processing

using chirplet matching pursuits and mode correlation. The

algorithm is designed for processing GW signals obtained

in pulse–echo tests for SHM. Its theoretical advantages

over conventional algorithms for GW SHM were discussed:

better resolution and lack of interference terms (enables it

to separate overlapping multimodal reflections), robustness

to noise, computational efficiency (in this aspect, it is even

superior to the spectrogram), and ease-to-automate post-

processing, as needed for SHM. Its prowess was demonstrated

using numerical and experimental results, where the proposed

algorithm was able to separate overlapping, multimodal

reflections and estimate radial locations of defects with a

maximum deviation of 0.9 cm for a damage site 10.2 cm away.

The resolution of the algorithm was shown to be superior or

equal to that using a spectrogram. In-plane triangulation for

isotropic plate structures using multimodal signals and ellipse

triangulation using unimodal GW signals were discussed.

The latter was experimentally demonstrated to triangulate a

drilled hole within one diameter of it in an aluminum alloy

plate. Future work will focus on experimental validation

of an extension of the algorithm for composite structures.

In addition, detailed models for GW scattering from defects

will be examined to move beyond using the ‘point-scatterer’

assumption used for defects in this work.
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