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Abstract

In this paper, a guided wave tomography method based on Full

Waveform Inversion (FWI) is developed for accurate and high resolu-

tion reconstruction of the remaining wall thickness in isotropic plates.

The forward model is computed in the frequency domain by solving a

full-wave equation in a two-dimensional acoustic model, accounting for

higher order effects such as diffractions and multiple scattering. Both

numerical simulations and experiments were carried out to obtain the

signals of a dispersive guided mode propagating through defects. The

inversion was based on local optimization of a waveform misfit func-

tion between modeled and measured data, and was applied iteratively

to discrete frequency components from low to high frequencies. The

resulting wave velocity maps were then converted to thickness maps

by the dispersion characteristics of selected guided modes. The results

suggest that the FWI method is capable to reconstruct the thickness

map of a irregularly shaped defect accurately on a 10 mm thick plate

with the thickness error within 0.5 mm.
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1 Introduction

Corrosion of pressure vessels, storage tanks and pipelines is a significant

problem in petrochemical and nuclear industries [1, 2]. Detecting and quan-

tifying the wall thickness loss due to the corrosion damage is of growing

interest. Conventional ultrasonic thickness-gauging methods are tedious and

expensive, especially for inaccessible areas [3]. Guided wave tomography of-

fers good potential to estimate the remanent thicknesses of corrosion patches

without accessing all points on the surface [4, 5, 6]. It uses the dispersion

characteristics of guided waves, and reconstructs the thickness map by the

inversion of ultrasonic signals captured by a transducer array around the in-

spection area. Research work has been carried out to develop guided wave

tomography algorithms, including traveltime tomography [7, 8], diffraction

tomography [5, 9], and hybrid algorithms which combine the previous two

methods [10].

Traveltime tomography uses the arrival time of guided wave packets to

reconstruct the slowness (reciprocal of velocity) distribution based on a ray

model. Both straight [11] and bent [12] rays have been investigated in the

guided wave tomography. However, by ignoring diffraction, this model is only

valid when the defects are much larger than the wavelength of the guided

wave, and the resolution of this method is limited by the width of the first

Fresnel zone
√
Lλ, where L is the distance between the source and the receiver

and λ is the wavelength of the illuminating wavefield [13].

Diffraction tomography takes diffraction and scattering into account un-

der a linearized scattering model such as the Born or Rytov approximations.

Belanger et al. [5] investigated simple defects under the Born approximation,

which relied on weakly scattering objects. The Rytov approximation, on the

other hand, requires the phase of the total field and the incident field to be

unwrapped [6], thus is only suitable for low contrast scatterings with little
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noise. Theoretically diffraction tomography can improve the resolution to

λ/2. However, it only works with small or low contrast defects where the

phase shift travelling through the defect is small.

More recently, Huthwaite et al. [10] combined the bent ray tomography

and the diffraction tomography and proposed a new HARBUT algorithm.

This was initially developed for medical applications and it was then applied

in guided wave tomography using its iterative version [14], and it can achieve

the same resolution as the diffraction tomography.

In this paper, we introduce a full waveform inversion (FWI) method in

the guided wave tomography for corrosion mapping. Such method was first

developed in geophysics for seismic wave imaging [15, 16, 17]. It uses a

numerical forward model to predict the scattering of guided wave through

corrosion defects, and an iterative inverse model to reconstruct the corro-

sion profile. At each iteration, numerical modeling is performed with the

aim of the least-squared minimization of the misfit between the modeled and

the observed data. This approach overcomes the limitation imposed by ig-

noring crucial low frequency effects in traveltime tomography. Compared

with other tomography methods which are limited by linear scattering, FWI

allows higher order diffraction and scattering to be considered in its numer-

ical solver, thus it is possible to capture more of the guided wave scattering

physics which could lead to more accurate inversion results.

The Finite Difference (FD) method is usually applied in FWI as forward

solver because it is faster and consumes less memory compared with the Fi-

nite Element (FE) method. It can be performed in both time and frequency

domain. In our work, the calculation is performed only in the frequency

domain, by considering the computational efficiency, as problems with mul-

tiple sources are easier to be solved [18]. Moreover, the multiscale strategy

can mitigate the nonlinearity of the inverse problem through moving from
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low to high frequencies, and therefore more likely to obtain the global opti-

mization [19, 20]. Finally, the dispersion and the attenuation can be easily

incorporated into the frequency domain with complex velocities [21, 22].

The structure of the paper is organized as follows. The theory of FWI

based on the finite-difference frequency-domain method is presented in Sec-

tion 2, including the forward modeling as well as the inversion method. Sec-

tion 3 introduces the numerical simulations based on a simplified acoustic

model using FD method and a more realistic elastic model using FE method.

The choice of frequencies and the calibration method are also introduced in

this section. Experimental setup and data processing are presented in Sec-

tion 4. The performance of FWI including the sensitivity is discussed in

Section 5 by two representative examples. The discussion of the multiscale

inversion and computational aspects is followed in Section 6. Conclusions

are summarized in the final section.

2 Theory

2.1 Forward modeling in the space-frequency domain

The frequency-domain two-dimensional acoustic wave equation in a constant

density media can be written as

(∇2 +K2)p(x, y, ω) = −s(x, y, ω), (1)

where p(x, y, ω) is the pressure (or displacement) wavefield, s(x, y, ω) being

the source, ω being the angular frequency and K(x, y, ω) = ω/v(ω) is the

wavenumber linked with the phase velocity v.

Equation 1 is discretized with the FD method using the mixed-grid ap-

proach [23, 24, 25]. Repeating this method at all grid points leads to a

4



large system of linear equations. In order to solve these equations, they are

rewritten in the matrix form

AP = S or P = A−1S, (2)

where the complex-valued impedance matrix, also the forward modeling op-

erator, is given by A = ∇2 +K2, which is dependent on the frequency and

physical properties of the medium. We now introduce 2D discretization. The

pressure wavefield is computed at l = nx × ny grid points on the 2D regu-

lar grid, where nx and ny represent the number of grids in the horizontal

and the vertical direction, respectively. The pressure wavefield P and the

source term S at one frequency are mapped into l × 1 column vectors, and

the complex-valued impedance matrix A is a l × l matrix.

Equation 2 is often solved by the direct method of LU factorization. After

LU decomposition of the matrix A, the factored A matrix can be reused

to solve the forward problem for other source vectors, so that the multiple

sources problem can be efficiently computed. This plays an essential role in

the iterative solution of the inverse problem, because the forward solutions

for real and “virtual” sources (explained later) are needed at each iteration.

Equation 2 can be given as

LU[P1P2 · · ·Pn] = [S1S2 · · · Sn], (3)

where n is the number of the sources.

The absorbing boundaries along the edges of the model can be utilized to

avoid the reflections from the edges [25, 26, 27], which allows the reduction

of the model size.
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2.2 Inverse problem in the space-frequency domain

Figure 1 outlines the structure of the FWI algorithm. The multi-resolution

nature of the reconstruction is controlled by loop 1 over several discrete fre-

quencies starting from low and moving towards higher frequencies. At each

frequency several iterations are performed, corresponding to loop 2. At the

end of each iteration at a given frequency, a new model parameter is calcu-

lated and is reset as the starting model for the next iteration until a prede-

fined maximum iteration number is reached. This number is chosen between

20 to 40 in our studies. At each iteration, the residual data (difference be-

tween computed results from the current model and the observed data from

experiments) is minimized in the sense of least squares. The velocity map

obtained from the last iteration of the current frequency becomes the initial

model for the next frequency. This process is repeated until the convergence

criterion is reached at the highest frequency. The convergence criterion will

be discussed in details in Section 3.4. The aim of the inversion is to create

a set of model parameters m which can reproduce the observations by using

the forward modeling. Such model parameters consist of the values of the

squared slowness [19]. The theory of the FWI has been introduced in details

in seismology [22, 28, 29], thus only principle equations are given here.

The weighted least squares norm of the objective function, i.e. the L2

norm of the data residuals, is defined as

C(k)(m) =
1

2
∆d†Wd∆d, (4)

where ∆d = d
(k)
calc − dobs is the data residual (the difference between data

d
(k)
calc computed in the current model m(k) and the observed data dobs). The

superscript † represents the transposed conjugate. Wd is a weighting vector

that is used in the data residual to scale the relative contribution of each
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component in the inversion, and k is the iteration number.

The inverse problem is to minimize the objective function, and it can be

computed by using the gradient

G(k) = Re{JtWd∆d∗}, (5)

where Jt is the transpose of the Fréchet derivative matrix (i.e. Jacobian

matrix, J = ∂P
∂m

). ∆d∗ is the conjugate of the data residual and Re is the

real part of a complex number.

Furthermore, in order to derive the expression for any of partial deriva-

tives ∂P
∂m

in equation 5, we take the partial derivatives of both sides of the

forward equation 2 with respect to the ith model parameter mi

A
∂P

∂mi

= − ∂A

∂mi

P. (6)

A “virtual” source term f(i) = − ∂A
∂mi

P can be introduced as

∂P

∂mi

= A−1f(i). (7)

An analogy between equation 2 and equation 7 indicates that partial deriva-

tives ∂P
∂m

are the solutions of a new forward model of the “virtual” source f(i).

Thus, the link between the gradient vector (including the partial derivatives,

∂P
∂m

) and a new forward modeling can be established.

Since we can generate an equation similar to equation 7 for any value of

i, all of the partial derivatives by the matrix equation can be given by

J =

[

∂P

∂m1

∂P

∂m2

· · · ∂P

∂mq

]

= A−1[f(1)f(2) · · · f(q)], (8)

where q is the number of model parameters, q ≤ l. The computation of the

elements of J requires to solve q forward-propagation problems using virtual
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sources.

Thus, in order to obtain the gradient using equation 5, it is not neces-

sary to compute the elements of partial derivatives J directly. Substituting

equation 8 and f(i) into equation 5, it is obtained

G(k) = Re

{

−Pt

[

∂At

∂mi

]

A−1tWd∆d∗

}

. (9)

Since A−1 is symmetric in the acoustic problem, i.e. [A−1]t = A−1, equa-

tion 9 can be given by

G(k) = Re

{

−Pt

[

∂At

∂mi

]

A−1Wd∆d∗

}

, (10)

where A−1Wd∆d∗ is defined as backward propagated wavefield. The matrix

∂At

∂mi

can be easily computed by using the coefficients of the matrix A. Based

on the reciprocity principle, the gradient is computed by zero-lag convolution

of the forward-modeled wavefield P with the backward-propagated residual

wavefield A−1Wd∆d∗. It means that only two forward models per source are

required. The first forward problem is to obtain the wavefield P for a source

position. The second forward problem calculates the backward propagated

residual wavefield using a “composite” source formed by assembling data

residuals.

In order to provide stable and reliable results, we apply some scaling and

regularization to the gradient equation 10. It can be modified to

G(k) = (diagHa + ǫI)−1G2DRe

{

−Pt

[

∂At

∂mi

]

A−1Wd∆d∗

}

, (11)

where diagHa = diagRe{JtWd∆J∗} indicates the diagonal elements of weighted

approximate Hessian Ha; ǫ denotes the damping factor and G2D is the spatial

smoothing operator.
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The diagonal of the approximate Hessian Ha provides the proper precon-

ditioner for the gradient which scales the tomographic model. The diagonal

element of Ha is the scalar product of two partial derivative wavefields. Fur-

thermore, as the scatterers are removed from the source location, the ampli-

tudes of the partial derivative wavefields and the corresponding elements of

Ha will decrease. Dividing data residuals by these squared amplitude terms

is equivalent to remove the effect of geometrical amplitudes decreasing of

partial derivative wavefields from data residuals. The damping factor ǫ is

added to the diagonal elements of approximate Hessian, which can stabilize

the inversion process because the Ha may be ill conditioned or singular. The

smoothing operator G2D is in the form of a 2D Gaussian spatial filter in this

paper and its correlation length is adapted to inverted frequency components.

Finally, the model parameter vector is updated iteratively according to

m(k+1) = m(k) − α(k)g(k) (12)

where α is a scalar step length and g indicates the search direction of the

objective function. In this paper, the inverse problem is solved by an iterative

linearized approach using steepest-descent algorithm, which means that the

direction of the gradient is the search direction g(k) = −G(k). Moreover, the

step length can be determined to minimize the objective function along the

search direction [30].

3 Numerical modeling

3.1 Elastic model based on FE method

FE simulations are performed on a 10 mm aluminum plate (Young’s mod-

ulus= 70.8 GPa, Poisson’s ratio= 0.33, and density= 2700 kg/m3) with the
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size of 1100×1100 mm2. Cubic shape eight node elements with the size of

1 mm are used in the mesh which ensures that more than 30 elements per

wavelength at the highest frequency is exploited for accurate modeling [31].

The corrosion patches with desired shapes are modeled by removing the ele-

ments from the mesh. The plate is surrounded by absorbing region to avoid

reflections coming from the edges [32]. The waves are monitored by a circular

array with a diameter of 700 mm consisting of 64 nodes acting as transduc-

ers as shown in Figure 2(a). Out-of-plane displacement is applied in one of

the nodes and the wavefields are measured by the other 63 nodes. This is

repeated for all the source-receive combinations resulting in a 64×63 signal

matrix. The source excitation used in simulations is a 5 cycle Hann windowed

toneburst signal at a central frequency of 50 kHz, which has around 15 dB

bandwidth from 35 to 65 kHz. By applying the normal force at this frequency

it ensures that nearly pure A0 mode is generated [33]. Also, around this fre-

quency the A0 mode is highly dispersive and therefore sensitive to thickness

variations, as shown in Figure 2(b). More details about the mode selection

for guided wave tomography have been discussed by Huthwaite [34].

3.2 Acoustic model based on FD method

FD simulations are performed in a two-dimensional space domain neglecting

thickness of the plate which is an approximation to the full plate model but it

is capable to model any guided modes with dispersive properties [14]. It needs

to be noted that mode conversions do not occur in the acoustic model. This

is consistent with the 3D FE model, as the thickness variation of corrosion-

like defects are relatively smooth, thus causing less mode conversions than

sharp discontinuities [35]. Plate with the same dimension as in FE models is

meshed by grid points with 2 mm spacing. This guarantees the calculation

accuracy which requires at least 4 grid points per shortest wavelength [25].
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The plate is surrounded by absorbing areas with the same width as in FE

models. Omni-directional pressure waves are excited and monitored with the

similar array configuration as described in the FE setup.

3.3 Data processing

As the inversion algorithm is based on the FD acoustic modeling, the input

scattered signals from the FE elastic modeling should be calibrated to ac-

count for possible deviations between the two models. One way to reduce

the amount of phase and amplitude errors of the input is to match the wave

propagation results of the two homogeneous models (without scatterers) by

introducing the calibration factor defined as [14]

Q =
fft∗(BFD)

fft∗(BFE)
(13)

where fft represents the fast Fourier transform, ∗ being the complex conju-

gate, and BFD and BFE are the data from receivers in homogeneous models

by FD and FE methods, respectively.

Additionally, the Gaussian filter is used to smooth the background before

subsequent iterations. The aim of this filter is to minimize the effects of

artifacts from each iteration. The selection for correlation length of the

Gaussian filter is around λ/2.

After the inversion the reconstructed velocity map from FD and FE mod-

els are converted to thickness maps by the known dispersion relationship

between the thickness, frequency and the phase velocity.

3.4 Frequency selection and convergence

The iteration over sequential frequencies enables the inversion to start from a

homogeneous velocity model and moving towards the desired high-resolution
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true velocity model. At each frequency the iterated model should provide

the updated model with a close neighborhood to the global minimum for

the next frequency. Global minima can be found more easily at lower fre-

quencies where the velocity model resembles to the homogeneous background

model [36]. However, the well-defined strategy for selecting appropriate fre-

quencies in waveform tomography has not yet been established [37]. Here we

propose the largest frequency step between the frequency iterations accord-

ing to the wavenumber k distribution of the scattered wave field from the

diffraction tomography [38]. The scattered field contains the transmission

part which is limited within a circle of radius
√
2k1 in the K space and the

reflection subset which is contained between
√
2k1 and 2k1. Transmission

wavenumbers at the lower frequency f1 are always included in the larger

wavenumber subset at the frequency f2 within the circle of radius
√
2k2. In

order to account for all the reflection wavenumbers in the inversion, the rela-

tionship between two subsequent modelings at wavenumbers k1 and k2 should

satisfy the relation k2 ≤
√
2k1. Thus for the inversion based on non-dispersive

waves the relationship between the frequencies is directly f2 ≤
√
2f1. This is

slightly a stricter criterion for the current study as the wave propagation is

dispersive and the growing rate of wavenumber in frequency is slower than

non-dispersive waves.

The convergence of the results over iterations is examined by comparing

the average relative thickness change E around the thinnest area with respect

to the nominal thickness, similarly as in [14],

E
(i)
j =

|T (i)
j (x, y)− T

(i−1)
j (x, y)|

T0

, (14)

where T
(i)
j (x, y) is the thickness at position (x, y) for the current iteration i

at jth frequency component, and T0 is the nominal thickness. The value of
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E ≤ 10−2 is accurate for the thickness estimation in engineering applications.

However, the threshold for stopping the inversion is set to be E ≤ 0.5× 10−3

which is a stricter limit due to the slow conversion rate of the FWI algorithm.

It should be noted that at lower frequencies a fixed number of iterations are

performed and the value E is approaching the convergence, while the above

convergence criterion is only checked at the highest frequency. There are

possibilities to optimize the choice of the frequencies and the number of

iterations, but this is beyond the scope of the current study.

4 Experiments

The experimental setup is shown in Figure 3(a). Experimental measurements

were performed on two 1100mm×1100mm×10mm aluminum plates. A flat-

bottomed circular hole with a wall boundary having an angle of 30◦ to the

plate surface was machined in the first plate. Its diameter on the plate

surface is 60 mm and its depth is 50% of the thickness. The second plate

contains a irregularly shaped defect with the maximum depth of 5 mm, which

was produced by a computer numerical control (CNC) milling machine, and

defect was constructed by removing the material layer by layer. A zoomed

picture of the defect is shown in Figure 3(b).

The measurement was carried out on a 700 mm diameter circle around

the defect, with 64 generator/monitor positions equally spaced along the cir-

cle. The A0 guided mode was generated by a PZT transducer (Panametrics

V1011) at one position, and measured at other positions by a Polytec OFV-

505 laser vibrometer. In each measurement, a 5 cycle Hann windowed toneb-

urst signal at 50 kHz was generated by a Tiepie Handyscope HS3. Figure

3(c) shows a typical signal measured by the vibrometer. A gating function

similar to [14] was applied to remove unwanted components and obtain the

first arrival wavepacket. To avoid the reflection from the edge, only trans-
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mitted signals were used and thus the measurements were taken on half of

the circle with 33 signals measured, as shown in Figure 3(a). This process

was repeated 64 times to build up a matrix of 64× 33 signals.

Similarly as in the simulations, the measured signals need to be calibrated

using Equation 13 before they can be used for inversion. However in the

experiment, due to the presence of the defect, signals in a homogeneous

medium can only be obtained from limited positions. Therefore, we only

measured the waveform in one of the receiver position (shown in Figure

3(a)), which was not affected by the scatterer, and mapped it to all other

receivers according to their positions. This was a reasonable approach, given

that the anisotropy in sound speed is limited in this plate.

5 Reconstruction results

5.1 Single regular defect

The first modeling was performed with a circular defect situated in the center

of a 64 element circular array, as shown in Figure 4(a). The defect is a flat-

bottomed circular hole with a stepped wall boundary. It has the surface

diameter of 60 mm(≃1.3λ at 35 kHz, 1.9λ at 60 kHz) and its thickness

reduction is 50%.

Figure 4(b), (c) and (d) show the monochromatic reconstruction of the

thickness at 35 kHz obtained after 40 iterations for the FD model, the FE

model and the experiment, respectively. Figure 4(e), (f) and (g) show the

polychromatic reconstruction of the plate thickness at 60 kHz. Sequential

frequency group with frequencies 35, 46 and 60 kHz was used according

to the frequency selection criterion discussed in Section 3.4. Homogeneous

background was used as the starting model at the lowest frequency and 20

iterations at each frequency. The velocity map obtained in the final iteration
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at each frequency was used as a starting model for the next frequency. The

work was carried out on a HP Z820 work station with 32-core and 128G

memory. Each forward model in the FD simulation took about 25 seconds

to solve, while the inversion took around 1.5 hours to reach the convergence.

It can be seen from the figures that the defect was reconstructed in all

cases, with sharper images at higher frequencies. Very clear images were

obtained from the acoustic modeling. Some artifacts at the location of an

array can be seen in the images from elastic models but they do not degrade

the quality of the interior of the resolvable area. This is due to the under-

sampling of the wavefield in the circular array. According to Simonetti et

al. [39], the minimum number of transducers in a circular array to correctly

sample a wavefield can be expressed as

N >
4πr

λ
, (15)

where r is the radius of the image to be free from grating lobes. At 60 kHz

(λ = 34 mm), 130 transducers would be needed to correctly reconstruct the

image for an area of 700 mm in diameter. However, it is not practical to have

too many transducers in the experiment, particularly for field applications,

and therefore the number of transducers is limited to 64 in our studies with

expected reduction in the imaging area that is free from grating lobes. An-

other possible reason for the artifact at the position of the array could be the

inability to cancel entirely the source contribution in the models during the

inversion which arise from the singularities in Green’s function and its near-

field effects [21]. Notable artifacts are observed in the images reconstructed

from the experimental data. Despite the reason of the undersampling as

discussed above, the excited wavefields may not be ideally omni-directional

which means that the phase and amplitude of the signal may vary with re-

spect to the excitation angle. As in the calibration, the signals without the
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scatterer are generated synthetically, and therefore this mismatch between

the true and synthesized signal leads to the phase and amplitude errors in

the inversion. In addition, the results can be affected by the noise, the mea-

surement positioning error, the length of the gating function, and the slight

anisotropy of the material [40].

Comparisons between the reconstructions and the original thickness pro-

file across the defect extracted from Figure 4(b)-(g) are shown in Figure 5. It

can be seen that in both FD and FE cases the hole’s depth is reconstructed

already at 35 kHz. The reconstruction from experimental data slightly un-

derestimates the depth by 0.4 mm. The reconstruction of all cases at 60 kHz

slightly overestimates the depth but the largest error obtained by experimen-

tal data is 0.3 mm from the true value. The thickness reconstruction from the

experiment by using only the transmission part (a matrix of 64×33 signals)

is similar to the simulation results based on both reflection and transmission

parts (a matrix of 64×63 signals). These results clearly demonstrate that the

resolution compared to the resolution of traveltime tomography, i.e.
√
Lλ=

153 mm (at 60 kHz) is improved significantly.

It is worth mentioning that an attempt was made to carry out the inver-

sion directly at 60 kHz from a homogeneous velocity model but the conver-

gence was not achieved indicating that the starting model was not accurate

enough for the inversion. The reason is that at the lower frequency, the initial

estimate is obtained at the longer scale component, which has slow varying

features and fewer minima [36]. Therefore, the neighborhood of the global

minimum is more likely to be captured at such scale.

5.2 Irregularly shaped defect

The reconstruction of the irregularly shaped defect as in the experiment was

carried out in Figure 6(a). The depth of the defect varies irregularly up to 5
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mm and its largest extent is around 220 mm. The defect is characterized by

complicated shape and smooth variations in thickness. Three sequential fre-

quencies 35, 46 and 60 kHz were used for the inversion, and at each frequency

30 iterations were applied. The forward model in this case took 50 seconds

to solve, slightly longer than the previous case due to the complication in the

velocity map. The inversion process took around 4.5 hours to get the results

shown in Figure 6(b), (c) and (d).

It can be seen that the original shape with fine details of the defect is

reconstructed very well from the acoustic model. The reconstruction based

on the elastic model can also accurately capture almost all details of the

defect. The image from the experimental data is more noisy due to the

reasons explained previously. However, the overall shape of the defect and

thinnest parts match the original image very well.

The cross-sections of Figure 6 with the largest corrosion depths are shown

in Figure 7(a) and (b). It can be seen that the profiles of the defect are very

accurately reconstructed by using the data from the acoustic model. The

reconstructions using the data from the elastic model and the experiment

are also very good although the deepest points in the defect are slightly

underestimated, with an error of about 0.5 mm. It is worth noting that

the reconstruction results between the experimental data and the elastic

model using FE simulations are very close to each other, suggesting that

the inversion can be reliably performed with only the transmitted signals.

This is also observed by other researchers in the previous work [5].

6 Discussion

The results presented in this paper for two different defects have shown that

the FWI is a useful tool to obtain high resolution thickness mapping for

plate-like structures by using only transmission measurement of the total
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field. The results of the irregular defect also indicate that the resolution

of FWI is slightly compromised when defects were reconstructed from the

elastic model and experimental data compared to the equivalent reconstruc-

tion using the simplified acoustic model. The reason comes from the fact

that two-dimensional FD model is an approximation for the realistic three-

dimensional wave propagation model and can yield some restrictions in the

inversion if the modeling data severely deviate from each other. This has been

shown by Huthwaite [6] where the scattering from small scatterers of the two

models within the Born approximation was compared. It was found that the

scattered waves from two-dimensional acoustic and three-dimensional elastic

models behave similarly only in a limited scattering region in the transmis-

sion zone.

One of the benefits of FWI lies in its multiple frequency strategy that

helps to process data subsets of increasing resolution to incorporate smaller

wavenumbers in the tomographic models. The inversion can be started from

the homogeneous background model at low frequency where the global mini-

mum can be more easily found as the velocity errors in the waveforms remain

below a half-cycle [21]. As mentioned before, traveltime tomography provides

accurate reconstructions when the size of the object to be imaged is much

larger than the wavelength λ and the width of the first Fresnel zone
√
Lλ.

For the diffraction tomography to be valid the phase shift travelling through

the defect must be small. The FWI is an alternative approach to fill the

gap between traveltime tomography and diffraction tomography. The recon-

struction results of the irregular defect demonstrated that the inversion is

successful even when the defect is larger than the first Fresnel zone and its

smaller details around the size of the wavelength can be determined.

Compared with existing methods, the major limitation of the FWI ap-

proach is its computational complexity and cost. The relationship between
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the measurement data and the model is nonlinear and the inversion needs to

be iterated several times before it converges. The calculation results showed

that the convergence for a single frequency can be obtained in 20 to 40 itera-

tions. Depending on the total number of frequencies needed for the inversion,

much more iterations would be required. Although the current computational

cost is acceptable as an off-line imaging method, it is possible to improve the

time efficiency of the FWI. In this work the conventional steepest descent

algorithm was used for numerical optimization. The convergence rate could

be improved significantly if more advanced optimization methods, such as

quasi-Newton algorithm [41], are used. Another solution for reducing it-

erations is to use a low resolution tomography algorithm to build a more

accurate starting model that will subsequently be refined by FWI. Finally,

the sequential execution used to solve the equations of the forward problem

in this work can be replaced by the massively parallel solver MUMPS algo-

rithm [42], which distributes the solving processes over the processors and

improves the calculation speed by more than one order.

7 Conclusions

In this paper, the full waveform inversion (FWI) method is developed for

guided wave tomography on plate-like structures. It includes a forward solver

to predict the scattering measurements in a two-dimensional acoustic model

and an inverse model to update the velocity map iteratively, which is then

linked to the thickness map via the dispersion relations of selected guided

wave modes. The algorithm uses multiple frequency strategy, which applies

the image produced at lower frequency as the initial model for the higher

frequency. Consequently, the reconstruction of the thickness map is less

dependent on the initial model, while keeps high resolution to small features.

In this work, a simple circular hole and a complex shaped defect were used
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for the demonstration of the algorithm via both numerical simulations and

experiments. It was shown that the minimum thickness could be estimated to

be within 0.5 mm for a 10 mm thick plate. The FWI method allows higher

order scattering effects to be considered in the model, thus could lead to

improved resolution compared with other guided wave tomography methods,

and the details will be investigated in the future work.
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Figure 1: Structure of the FWI algorithm.
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Figure 2: (a) The configuration of a circular transducers array for guided
wave tomography on a plate. (b) Dispersion curves of Lamb wave in a 10
mm aluminum plate.
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Figure 3: (a) Experimental setup with the irregularly shaped defect; (b) a
zoomed picture of the defect; (c) typical time-trace from the experiment with
chosen time window.
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Figure 4: FWI reconstructions with a single central defect. Original model
(a); monochromatic 35 kHz in the acoustic model (b), the elastic model (c),
the experimental data (d); polychromatic 60 kHz in the acoustic model (e),
the elastic model (f), and the experimental data (g).
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(b)

(a)                         

(c)

Figure 5: Cross sections of the thickness reconstructions of a single central
defect along the central line in the acoustic model (a), the elastic model (b),
and the experimental data (c).
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Figure 6: Polychromatic FWI reconstructions applied to the irregular defect
at 60 kHz. Original model (a), the acoustic model (b), the elastic model (c),
and the experimental data (d).
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(b)(a)                         

Figure 7: Cross sections of reconstructions of the irregular defect along the
line marked in Figure 6a along the vertical line (a) and the horizontal line
(b).
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