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Abstract
Motivated by the study of the propagation of electromagnetic waves through a
multi-layered optical medium, we prove the existence of two different kinds of
homoclinic solutions to the origin in a Schrödinger equation with a nonlinear
term. We use a Krasnoselskii fixed point theorem together with a compactness
criterion due to Zima. The main results are illustrated with concrete examples
of practical interest such as self-focusing nonlinearities of Kerr and non-Kerr
type.

Mathematics Subject Classification: 34C37, 34C60

1. Introduction

The purpose of this paper is to study the existence and multiplicity of solutions u ∈ H 1(IR)

for the scalar nonlinear differential equation

− ü(x) + a(x)u(x) = b(x)f (u(x)), (1)

where a, b ∈ L∞(IR) are non-negative almost everywhere and f is a given continuous
function. Under some hypotheses, this equation models the propagation of electromagnetic
waves through a medium consisting of layers of dielectric material (we refer to [15] for
a detailed explanation of the physical background). If the medium is stratified in planes
of homogeneous composition perpendicular to the x-axis and we look for solutions of the
Maxwell’s equations with the special ansatz E(x, y, z, t) = u(x) cos(kz − ωt)e2 (which
corresponds to a monochromatic electric field propagating in the direction z and transverse to
the direction of propagation), we are led to the study of solutions of the differential equation

− ü(x) + k2u(x) = ω2

c2
ε

(
x,

1

2
u(x)2

)
u(x), (2)

where c is the speed of light in vacuum, 2π/k is the wave length and ε is the dielectric function.
Such solutions must verify the so-called guidance conditions,

lim
|x|→+∞

u(x) = lim
|x|y→+∞

u̇(x) = 0 (3)
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and ∫
IR

u2(x)dx +
∫

IR

u̇2(x)dx < +∞, (4)

that mathematically amount to looking for non-trivial solutions such that u ∈ H 1(IR) (see [15,
proposition 2.1]). In the context of nonlinear optics, such solutions are known as guided waves
or bright solitons [10].

This problem has been studied by several authors under adequate restrictions on the
dielectric function. The most common choice for ε found in the related literature is

ε(x, s) = A(x) + B(x)s,

with A, B ∈ L∞(IR), which is known as a Kerr nonlinearity. For instance, [2] considered a
dielectric function of the form

ε(x, s) =
{
q2 + p2 if |x| < d,

q2 + s if |x| > d,
(5)

with q, p ∈ IR, and obtained the existence of asymmetric solutions bifurcating from a branch
of symmetric ones. This property is known as a symmetry-breaking phenomenon. This choice
of ε corresponds to a medium consisting of three layers and d gives the thickness of the internal
one. Later, symmetry-breaking behaviour was observed in the multi-layered case [12] but only
in the perturbative case (that is, a small parameter is introduced in the first term of the equation).
Similar results are stated and proved in [3,18]. Finally, [4] addresses the global case (without
perturbative parameter) in a symmetric medium stratified in three layers, obtaining a positive
asymmetric bound state. It is interesting to note that all these papers study the propagation in a
medium of Kerr type. However, at high intensity regimes some kind of saturation is physically
expected (i.e. an asymptotic finite value) for ε. Specific examples of materials with saturation
are discussed in the literature and several models of non-Kerr-like dielectric responses have
been proposed [10, 15].

Our purpose is to complete the mentioned bibliography with a new approach to the
problem. Until now, the methods of proof have relied either on the explicit integrability of
the problem or on a variational approach. We propose the use of a fixed point theorem due to
Krasnoselskii for completely continuous operators defined in cones of a Banach space together
with a suitable study of the Green’s function for the linear part of the problem. This method
has been employed successfully in some scalar problems on the half-line [20] with sublinear
nonlinearities and more generally in a variety of integral equations in infinite intervals of the
Volterra type (see for instance [1, 7, 13] and references therein). Using this technique, we are
able to prove the existence of guided waves when the nonlinear contribution of the dielectric
response has finite support. In particular, under symmetry conditions odd bound states are
found, that is, solutions such that u(−x) = −u(x) for any x ∈ IR. In the framework of optical
solitons, changing-sign solutions are meaningful although related references are difficult to
find [16].

The rest of the paper is organized as follows. In section 2 some preliminary results are
collected. Section 3 contains the main result about the existence of a positive guided wave.
Section 4 proves that, if in addition to the hypotheses of the main result of section 3 we assume
that the coefficients a, b are even, 0 is outside the support of b and f is odd, then there exists
a second guided wave which is odd. Finally, section 5 contains some illustrative examples
of applicability to multi-layered optical media under the main assumption that the nonlinear
contribution of the dielectric response is confined to the internal layers.

We use the notation IR+ = (0, +∞), IR+ = [0, +∞). We write a � 0 (respectively,
a � 0) if a ∈ L∞(IR) is positive (respectively, non-negative) almost everywhere. For a given
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a ∈ L∞(IR), the essential infimum is denoted as a∗. The support of a given function a is
denoted by Supp(a). The limit value of a given function u in +∞ (or −∞) is written simply
as u(+∞) (or u(−∞)). Finally, ‖.‖ denotes the norm of the supremum.

2. Auxiliary results

We begin with some basic properties of the homogeneous boundary value problem

−ü + a(x)u = 0,

u(α) = 0, u(+∞) = 0.
(6)

with a � 0. The properties of this problem are analogous in the cases α = −∞ and α = 0, so
both of them are studied jointly. From now on, we denote by J the whole real line IR or the
half-line IR+ without distinction.

Due to the sign of the coefficient, the equation −ü + a(x)u = 0 presents a typical
exponential dichotomy. The origin is hyperbolic and the stable manifold has codimension
one. The associated Green’s function is given by

G(x, s) =
{

u1(x)u2(s), α < x � s < +∞
u1(s)u2(x), α < s � x < +∞,

(7)

where u1, u2 are solutions such that u1(α) = 0, u2(+∞) = 0. It is easy to verify that a solution
of −ü+a(x)u = 0 vanishes at most once in the interval [α, +∞]. Hence, u1, u2 can be chosen
as positive functions in J . Moreover, u1 is strictly increasing and u2 is strictly decreasing in J .

The following result generalizes some known properties of the Green’s function (see [20])
for the special case of a constant coefficient a(t). First, some preliminaries are needed. Note
that u1, u2 intersect in a unique point x0. Then, we define

p(x) =




1

u2(x)
, x � x0,

1

u1(x)
, x > x0.

(8)

Proposition 2.1. The following properties for the Green’s function defined by (7) hold.

(P 1) G(x, s) > 0 for every (x, s) ∈ J × J .
(P 2) G(x, s) � G(s, s) for every (x, s) ∈ J × J .
(P 3) Given a non-empty compact subset P ⊂ J , we define

m1(P ) = min{u1(inf P), u2(sup P)}. (9)

Then,

G(x, s) � m1(P )p(s)G(s, s) for all (x, s) ∈ P × J.

(P 4) G(s, s)p(s) � G(x, s)p(x) for every (x, s) ∈ J × J .

Proof.

(P 1) Trivial because u1, u2 are positive.
(P 2) Trivial by the monotonicity of u1, u2.
(P 3) We prove it for the case x � s, the remaining possibility is analogous. By the increasing

character of u1,

G(x, s) � u1(inf P)u2(s) � m1(P )
G(s, s)

u1(s)
� m1(P )p(s)G(s, s).
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(P 4) Again, we only prove the case x � s. Looking at the definition, one realizes that p is
increasing for x < x0 and decreasing for x > x0. We consider three cases: if x � s � x0

then p(s) � p(x), which combined with (P 2) gives the result. If x0 � x � s, the equality
holds. Finally, if x � x0 � s, then G(s, s)p(s) = u1(s) � u2(s) = G(x, s)p(x). �

Remark 2.1. The property (P 4) is not used in the proofs and has been included by the author
in the belief that it could be useful in the future developments of this line of research.

Finally, we state a well-known fixed point theorem due to Krasnoselskii for a completely
continuous operator defined on a Banach space [11, p.148]. Let us recall that a given operator
is completely continuous if the image of a bounded set is relatively compact. Given a Banach
space B, we say that P ⊂ B is a cone if it is closed, non-empty, P 	= {0} and whenever
x, y ∈ P and λ, µ ∈ IR with λ � 0, µ � 0 then λx + µy ∈ P .

Theorem 2.1. Let B be a Banach space, and let P ⊂ B be a cone in B. Assume �1, �2 are
open subsets of B with 0 ∈ �1, �̄1 ⊂ �2 and let A : P ∩ (�̄2 \ �1) → P be a completely
continuous operator such that one of the following conditions is satisfied.

1. ‖Au‖ � ‖u‖, if u ∈ P ∩ ∂�1, and ‖Au‖ � ‖u‖, if u ∈ P ∩ ∂�2.
2. ‖Au‖ � ‖u‖, if u ∈ P ∩ ∂�1, and ‖Au‖ � ‖u‖, if u ∈ P ∩ ∂�2.

Then, A has at least one fixed point in P ∩ (�̄2 \ �1).

This result has been extensively employed in the study of boundary value problems with
separated boundary conditions (see for instance [5, 6, 8, 9] and their references) and more
recently for the periodic problem [14, 17]. However, for problems defined in non-compact
intervals such as ours, there is the difficulty that the Ascoli–Arzela theorem is not valid for
proving the complete continuity of the operator. In [19], the following compactness criterion
is proved. The space of bounded continuous functions u : IR → IR is denoted by BC(IR).

Proposition 2.2. Let � ⊂ BC(IR). Suppose that the functions u ∈ � are equicontinuous in
each compact interval of IR and uniformly bounded in the sense of the norm

‖u‖ξ = sup
x∈IR

ξ(|x|)|u(x)|,

where ξ : IR+ → IR+ is a continuous function such that

lim
x→+∞ ξ(x) = +∞. (10)

Then, � is relatively compact.

3. Existence of positive homoclinic orbits to the origin

In order to avoid trivialities, from now on it is assumed that Supp(b) is a non-empty compact
set. At this point, we introduce the additional assumption that the essential infimum of a is
positive, a∗ > 0. Then the following lemma holds.

Lemma 3.1. If a∗ > 0, and h ∈ L1(IR), the unique solution of the linear boundary value
problem,

−ü + a(x)u = h(x),

u(−∞) = 0, u(+∞) = 0,

belongs to H 1(IR).
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Proof. Multiplying the equation by u and integrating by parts over the whole real line we get∫
IR

u̇2(x)dx + a∗
∫

IR

u2(x)dx =
∫

IR

h(x)u(x)dx < ‖u‖
∫

IR

|h(x)|dx < +∞,

so clearly u ∈ H 1(IR). �
The problem of finding a solution u ∈ H 1(IR) of equation (1) is equivalent to finding a

fixed point for the operator T : H 1(IR) → H 1(IR) defined as

T u :=
∫

IR

G(x, s)b(s)f (u(s))ds =
∫

Supp(b)

G(x, s)b(s)f (u(s))ds,

where G(x, s) is the Green’s function defined by (7) with α = −∞. Note that the image of T

is in fact contained in H 1(IR) as a direct consequence of the previous lemma.
With the idea of an application of theorem 2.1, we define the cone

P =
{
u ∈ H 1(IR) : u(x) � 0 for all x, min

x∈ Supp (b)
u(x) � m1p0‖u‖

}
. (11)

Here, p0 = infSupp(b) p(x), where p(x) is defined by (8) and the constant m1 ≡ m1(Supp (b))

is defined by (9). Note that the compactness of Supp (b) implies that p0 > 0. Besides, from
(P 3) it is easy to see that m1p0 < 1, and hence this cone is non-empty.

The following is the main result in this section.

Theorem 3.1. Let us assume the following hypotheses.

(i) a∗ > 0, b � 0.
(ii) Supp(b) is a non-empty compact set.

(iii) f (s) � 0 for every s � 0.
(iv) There exists r > 0 such that

f (u) max
x∈ Supp (b)

∫
Supp (b)

G(x, s)b(s)ds � r

for every u ∈ [0, r].
(v) There exists R > r > 0 such that

f (u) min
x∈ Supp (b)

∫
Supp (b)

G(x, s)b(s)ds � R

m1p0

for every u ∈ [R, (1/m1p0)R].

Then, there exists a positive solution u ∈ H 1(IR) of equation (1) such that r � ‖u‖ �
(1/m1p0)R.

Remark 3.1. The hypotheses (iv) and (v) are very technical and in general could be difficult
to verify; however, they can be replaced by the following simple (stronger) condition

(iv)′ lim
s→0+

f (s)

s
= 0, lim

s→+∞
f (s)

s
= +∞.

However, (iv) and (v) will be useful in the study of materials with saturation, as is shown in
section 5. Note that v = ∫

Supp (b)
G(x, s)b(s)ds is the unique solution in H 1(IR) of the linear

equation −v̈ + a(x)v = b(x). This fact could be useful in order to find specific bounds for
particular situations of practical interest.

The proof of theorem 3.1 consists of an application of theorem 2.1 which will be prepared
through a number of preliminary lemmas.
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Lemma 3.2. T (P) ⊂ P.

Proof. Evidently, the property (P 1) of the Green’s function together with (ii) implies that
T u(x) � 0 for all x. Let us call xm the point where minx∈ Supp (b) T u(x) is attained. Then, for
all x ∈ IR,

T u(xm) =
∫

Supp (b)

G(xm, s)b(s)f (u(s))ds

� m1

∫
Supp (b)

p(s)G(s, s)b(s)f (u(s))ds

� m1p0

∫
Supp (b)

G(x, s)b(s)f (u(s))ds = m1p0T u(x),

where we have used (P 2) and (P 3). This completes the proof. �

Lemma 3.3. T : P → P is continuous and completely continuous.

Proof. The continuity is trivial. We have to prove that given � ⊂ P a bounded set (call
M a valid bound for this set), the image T (�) is relatively compact. By the Ascoli–Arzela
theorem, it is standard to prove that the functions belonging to T (�) are equicontinuous in
each compact interval of IR. With proposition 2.2 in mind, let us define q(x)

q(x) =




1

u1(x)
, x � 0,

1

u2(x)
, x > 0,

(12)

where u1, u2 are the same functions of the definition of the Green’s function (7). This function
is discontinuous at 0, but the basic properties of u1, u2 enable us to fix an even function
ξ : IR → IR+ such that ξ(x) = ξ(|x|) < q(x) for all x ∈ IR and condition (10) holds. It only
remains to prove that the functions of T (�) are uniformly bounded in the sense of the norm
‖·‖ξ . Take u ∈ � and suppose that x > 0 as a first case. Then, calling M∗ = maxs∈[0,M] f (s),

ξ(|x|)|T u(x)| � q(x)T u(x) = 1

u2(x)
T u(x) � M∗

u2(x)

∫
IR

b(s)G(x, s)ds

� M∗

u2(x)

[∫ x

−∞
b(s)u1(s)u2(x)ds +

∫ +∞

x

b(s)u1(x)u2(s)ds

]

� M∗
∫ x

−∞
b(s)u1(s)ds + M∗

∫ +∞

x

b(s)u1(x)
u2(s)

u2(x)
ds

� M∗
∫

Supp b

b(s)u1(s)ds,

where we have used that u2 is decreasing and consequently (u2(s))/(u2(x)) � 1 if s > x.
Further, the last bound is finite because of the compactness of Supp (b) and does not depend
on u. When x � 0, an analogous argument gives

ξ(|x|)|T u(x)| � M∗
∫

Supp (b)

b(s)u2(s)ds,

and the proof is completed. �



Guided waves in a multi-layered optical structure 2109

Lemma 3.4. If a∗ > 0 and h ∈ L∞(IR) has compact support, then any positive maximum of
a solution of the linear equation

−v̈ + a(x)v = h(x)

is attained at Supp (h).

Proof. By contradiction, if v(x0) > 0 is a maximum of v and x0 	∈ Supp (h), then
−v̈ + a(x)v = 0 around x0, so v is strictly convex in x0, which is a contradiction. �

Proof of theorem 3.1. We define the open sets �1 and �2 as the open balls in H 1(IR) of
radius r and R/m1p0, respectively. We also define

Mr = max
s∈[0,r]

f (s), MR = min
s∈[R, R

m1p0
]
f (s).

Let us take u ∈ P ∩ ∂�1. Note that v = T u is the unique positive solution in H 1(IR) of
the linear equation

−v′′ + a(x)v = b(x)f (u(x)).

Therefore, using lemma 3.4 and hypothesis (iv),

‖T u‖ = max
x∈ Supp (b)

T u(x) � Mr max
x∈ Supp (b)

∫
Supp (b)

G(x, s)b(s)ds � r.

On the other hand, let us take u ∈ P ∩ ∂�2. By the defining property of the cone,
R � u(x) � R/m1p0 for every x ∈ Supp (b). Then

‖T u‖ = max
x∈ Supp (b)

T u(x) = max
x∈ Supp (b)

∫
Supp (b)

G(x, s)b(s)f (u(s))ds

� MR min
x∈ Supp (b)

∫
Supp (b)

G(x, s)b(s)ds � R

m1p0

by hypothesis (v). The proof is closed by a direct application of theorem 2.1. �

4. Odd homoclinic orbits to the origin in the equation with symmetric coefficients

In the previous section we have obtained positive solutions of the problem under consideration,
which is the case considered in the wholeness of related papers known to the author. In this
section, we prove the existence of a new kind of solution when the coefficients are even,
which physically means that the layered structure of the optical medium is symmetric. In the
following result, p0 = infSupp (b)∩IR+ p(x) and m1 ≡ m1(Supp (b) ∩ IR+).

Theorem 4.1. Under the conditions of theorem 3.1, if moreover a, b are even functions,
0 	∈ Supp (b) and f is odd, then there exists an odd non-trivial solution u ∈ H 1(IR) of
equation (1) such that r � ‖u‖ � 1/m1p0R.

Sketch of the proof. The proof mimics the steps of the proof of theorem 3.1, working now
with the Green’s function for the problem on the half-line IR+. The operator T : H 1(IR+) →
H 1(IR+) is defined as

T u :=
∫

IR+

G(x, s)b(s)f (u(s))ds.
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The adequate cone is

P =
{
u ∈ H 1(IR+) : u(0) = 0, u(x) � 0 for all x ∈ IR+, min

x∈ Supp (b)∩IR+

u(x) � m1p0‖u‖
}

.

Then, T (P) ⊂ P and T is a continuous and completely continuous operator, since proposition
2.2 can be applied to functions u defined only in IR+ and such that u(0) = 0 by simply
extending as the zero constant function on the negative axis. Then, the proof of lemma 3.3 is
valid by taking

ξ(|x|) := 1

u2(|x|) .

Finally, the sets �1 and �2 are defined again as the open balls of radius r and R/m1p0,
respectively. Everything works in the same way so the repetitive details are omitted. In
conclusion, we obtain a positive non-trivial solution u ∈ H1(IR+) such that u(0) = 0 and the
odd extension gives the desired solution.

Note that the assumption 0 	∈ Supp (b) is necessary in order to have m1 	= 0, which is a
key point in the proper definition of the cone as well as in the choice of the set �2. We will
analyse briefly the physical implications of this assumption in section 5.

Remark 4.1. By revising the proofs, one realizes that theorems 3.1 and 4.1 are still true for
the more general equation

− ü(x) + a(x)u(x) = b(x)f (x, u(x)), (13)

where f is a given L∞-Caratheodory function (that is, f (·, s) ∈ L∞(IR) for every s and
f (x, ·) continuous for a.e. x), provided that f holds inequalities (iv) and (v) uniformly in x.
We have chosen the current presentation just for simplicity.

5. Application to the existence of guided waves in optical systems

In this section we analyse the consequences of our main results in the problem of the existence of
guided waves crossing an optical stratified medium composed of several layers of homogeneous
material. As usual, given a dielectric response function ε, the nonlinear contribution is isolated
by the decomposition

εL(x) = ε(x, 0), εNL(x, s) = ε(x, s) − εL(x).

For simplicity, we are limited to the case εNL(x, s) = B(x)F (s), although more general
situations could be studied (see remark 4.1). This case covers most of the examples found in
the literature, as we will see later. Then, equation (2) is

− ü(x) +

(
k2 − ω2

c2
εL(x)

)
u(x) = ω2

c2
B(x)F

(
1

2
u(x)2

)
u(x). (14)

This corresponds to equation (1) with a(x) = k2 − (ω2/c2)εL(x), b(x) = (ω2/c2)B(x) and
f (s) = F((1/2)s2)s. Therefore, f (s) is always an odd function, whereas in applications a, b

are typically piecewise constant functions, each constant corresponding to a different layer.
We will say that a dielectric function ε(x, s) = εL(x) + B(x)F (s) is of Kerr type if F is

increasing and

F(0) = 0, lim
s→+∞ F(s) = +∞. (15)

This definition covers in particular the classical Kerr nonlinearity ε(x, s) = εL(x) + B(x)s.
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Corollary 5.1. Let us assume that k2 > ω2/c2‖εL‖, B � 0 and Supp (B) is a non-empty
compact set. If the dielectric function is of Kerr type, there exists a positive solution u ∈ H 1(IR)

of equation (14). If moreover εL(x), B(x) are even functions and 0 	∈ Supp (B), there exists
an odd solution ũ ∈ H 1(IR) of equation (14).

The proof is direct. From the point of view of physics, the requirement of the compactness
of Supp (B) means that the nonlinear contribution of the dielectric response is confined to the
internal layers.

Kerr nonlinearities are by far the most common in the related references. For instance,
[2, 12, 18] consider the equation

−ü + λ2u = χA(x)u(x) + (1 − χA(x))|u(x)|p−1u(x),

where p � 2, A is a closed interval or the union of two closed intervals and χA is the
characteristic function. The conditions of the first part of corollary 5.1 hold when IR \ A is
compact. In particular, this includes the ‘reversed’ case of that studied by Akhmediev [2], that
is,

ε(x, s) =
{

q2 + s if |x| < d,

q2 + p2 if |x| > d,
(16)

without restriction in the width d of the internal layer. For this three-layered optical medium,
corollary 5.1 provides a positive solution u ∈ H 1(IR); however, we do not know if there exists
a second (odd) solution since 0 ∈ Supp (B). To get this kind of solution the medium should
have at least five layers, a case studied in [12, 18]. Again, our results cover the case when the
nonlinearity is confined to the internal layers. For instance, for the dielectric response

ε(x, s) =
{

q2 + s if d1 < |x| < d2,

q2 + p2 if |x| < d1 or |x| > d2,
(17)

with q, p, d1, d2 > 0, we get two different guided waves.
The study of dielectric responses attempting to model materials with saturation is of high

interest. Some simple models cited in [15] are

ε(x, s) = εL(x) + B(x)
s

1 + s
,

ε(x, s) = εL(x) + B(x)(1 − e−s).

In general, we will say that a given dielectric function ε(x, s) = εL(x) + B(x)F (s) is of
non-Kerr type if F is increasing and

F(0) = 0, lim
s→+∞ F(s) = F∞ < +∞.

By using theorems 3.1 and 4.1, it is easy to prove the following result.

Corollary 5.2. Let us assume that k2 > ω2/c2‖εL‖, B � 0 and Supp (B) is a non-empty
compact set. If the dielectric function is of non-Kerr type and the following condition holds

ω2F∞ min
x∈ Supp (B)

∫
Supp (B)

G(x, s)B(s)ds >
c2

m1p0
, (18)

then there exists a positive solution u ∈ H 1(IR) of equation (14). If moreover εL(x), B(x) are
even functions and 0 	∈ Supp (B), there exists an odd solution ũ ∈ H 1(IR) of equation (14).
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Consequently, we have proved the existence of guided waves in non-Kerr media for high values
of ω, k.

Our results also provides some information on the localization of the solutions that can
be of interest in the study of branches of solutions in systems controlled by parameters. As a
basic example, we consider

ε(x, s) = εL(x) + λB(x)F (s),

where B is fixed and λ is a positive parameter.

Corollary 5.3. Let us assume that k2 > ω2/c2‖εL‖, B � 0 and Supp (B) is a non-empty
compact set. If the dielectric function is of Kerr type, then for all λ > 0 there exists a positive
solution uλ ∈ H 1(IR) of equation (14). Moreover,

lim
λ→0+

‖uλ‖ = +∞, lim
λ→+∞

‖uλ‖ = 0.

If moreover εL(x), B(x) are even functions and 0 	∈ Supp (B), there exists a second branch
of odd solutions ũλ ∈ H 1(IR) with the same limiting properties.

Proof. The application of theorem 3.1 requires the existence of rλ, Rλ such that

F

(
1

2
r2
λ

)
�

(
1

c2
λω2 max

x∈ Supp (B)

∫
Supp (B)

G(x, s)B(s)ds

)−1

�
(

1

c2
λω2m1p0 min

x∈ Supp (B)

∫
Supp (B)

G(x, s)B(s)ds

)−1

� F

(
1

2
R2

λ

)
.

Using (15), such rλ < Rλ exist and can be chosen so that

lim
λ→0+

rλ = +∞, lim
λ→+∞

Rλ = 0.

Hence, we obtain a branch of solutions uλ such that rλ � ‖uλ‖ � Rλ/m1p0, and now a
passing to the limit finishes the proof, since the arguments for the branch of odd solutions are
analogous. �

The proof of the following result is similar.

Corollary 5.4. Let us assume that k2 > ω2/c2‖εL‖, B � 0 and Supp (B) is a non-empty
compact set. If the dielectric function is of non-Kerr type, then there exists λ0 > 0 such that
for all λ > λ0 there exists a positive solution uλ ∈ H 1(IR) of equation (14). Moreover,

lim
λ→+∞

‖uλ‖ = 0.

If moreover εL(x), B(x) are even functions and 0 	∈ Supp (B), there exists a second branch
of odd solutions ũλ ∈ H 1(IR) for λ > λ̃0 > 0 with the same property.

We emphasize that in the concrete model of a multi-layered optical structure, the hypothesis
0 	∈ Supp (B) means that in order to assure the existence of odd bound states at least five layers
are needed. Moreover, the layer containing 0 must have a linear response. The existence of
this kind of solution in the remaining symmetric cases is an interesting open problem.
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