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Abstract 

Many common structural members can be thought of as an assemblage of thin 

plates. For example, an 1 shaped cross-section can be made from three or five thin 

plates and an angle can be thought of as two thin plates whose sides are rigidly 

attached at an angle, and so on. In this study a multi-purpose computer program was 

developed, based on a Rayleigh-Ritz (RR) type stiffness approximation, to investigate 

the wave propagation in infinitely long thin-walled mernbers and the free vibration of 

thin-walled rnembers that are simply supported at their ends. Also, wave propagation 

characteristics of these members where studied. To model the behaviour of these types 

of structural rnembers, using a finite element rnethodology, an element that closely 

models the behaviour of a thin plate was created. There are two uncoupled motions 

of a homogeneous thin plate having material symmetry about its middle surface; 

one corresponds to inplane motion and the other to bending. Previous studies used 

a three node parabolic element to model the inplane motion of the plate. In the 

present work, the three node inplane element and a two node beam element were 

used to generate an element which models both the inplane and bending motions of 

a thin plate. The program was checked for accuracy against another approximate 

solutions as well as analytical solutions. The Rayleigh-Rtz approximation proved 

to be effective in calculat ing the wave dispersion characteristics (wavenumber and 

modeshapes for a given frequency) of thin-walled, infinitely long members as well as 

the characteristic frequencies of vibration of simply supported thin-walled structural 

members. 
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Chapter 1 

Introduction 

1.1 Purpose 

The purpose of this study is to create a multi-purpose computer program that models 

vibration and wave propagation in thin-walled structural members using a plane 

stress, Rayleigh-Ritz stifhess aproxirnation. 

1.2 Scope 

A computer program is developed in this study which is used to investigate wave prop  

agation in infinitely long members as well as the fiee vibration of simply supported 

beams. The study will include a description of the Rayleigh-Ritz approximation using 

two-dimensional theory. As well, exact analytical solutions and a Rayleigh-Ritz a p  

proximation based on three-dimensional theory will also be developed for the purpose 

of verifmg the numerical results of the two-dimensional Rayleigh-Ritz approxima- 

tion. 



CHAPTER 1. INTRODUCTION 

1.3 Overview of the Present Study 

Guided ultrasonic waves have been considered recently for use in the nondestructive 

testing of materials to detect and characterize flaws that are created during the pro- 

cess of fabrication and flaws that develop throughout the service life of the product. 

To evaluate the effectiveness of aay ultrasonic nondestructive evaluation method it 

is important to understand the behaviour of the propagating waves as they travel 

through a member in order. One section of this study focuses on the analysis of 

guided waves in thin-walled structural members. Specifically, it studies the wave dis- 

persion characteristics (wavenumber and modeshapes for a given frequency) of the 

member. This information is necessary for the quantitative nondestructive evalua- 

tion of the member. The inspiration for this study came £rom sucesses in modeling 

the wave propagation in plates of infinite length and width using a Rayleigh-Ritz 

approximation for plane strain analysis [Il-[6]. Although the plane strain stiffness ap- 

proximation does reasonably mode1 the behaviour of an infinitely long and wide plate 

it was recognized that the majority of structural members in use today cannot be 

regarded as being both infinitely long and wide. The majoriw of structural members, 

such as I-shapes or Gshapes, fall into a group that can be thought of as an assem- 

blage of thin plates. In this study a two-dimensional Rayleigh-Ritz approximation 

wil l  be used to calculate the wave dispersion characteristics of thin-walled structural 

members assuming that plane stress conditions are satisfied. 

Also included in this report is a new look at calculating the characteristic fie- 

quencies of vibration of members that are simply supported at two ends. Previous 

methods of calculating the characteristic frequencies of vibration of simply supported 

members have assumed that the cross-section geometry of the section remains con- 

stant throughout each cycle of vibration. The Rayleigh-Ritz method described in this 

report accounts for the distortion of the cross-sectional geometry during vibration. 



1.4 Organization of the Thesis 

Chapter 2 consists of the formulation of the two-dimensional Rayleigh-Ritz stiffness 

approximation for wave propagation in thin-walled structural members. This approx- 

imation is an extension of the plane strain stifbess approximation that was described 

earlier in the Chapter. The next chapter, Chapter 3, formulates the same wave prop- 

agation problem using three-dimensional theory instead of two-dimensional theory. 

This formulation has appeared in previous papers by Dong and Kazic [7] and it w-ill 

be used to check the accuracy of the two-dimensional Rayleigh-Ritz stifbess approxi- 

mation fomulated in Chapter 2. In Chapter 4, the formulation of the exact analytical 

solution for both the inplane and bending motions of a thin-walled structural member 

is presented. The theory for the analytical solution of the inplane wave propagation 

problem was created by modifying the plane strain solution presented by Karu (81 and 

Zhu [9]. Chapter 5 includes all the numerical results needed to veri@ the accuracy 

of the plane stress stifiess approximation. Finally, Chapter 6 will conclude with 

the findings as well as suggest future work that can be done using the theory and 

programs resulting fiom this study. 



Chapter 2 

Stiffness Method - 

Two-D imensional Analysis 

2.1 Introduction 

Many structural members c m  be thought of as an assemblage of thin plates. For 

example an 1 shaped cross-section can be made from three or five thin plates and an 

angle can be thought of as two thin plates whose sides are attached at  an angle, and 

so on. Thus, to model these types of structural members using the finite element 

methodology we must f is t  create an element that closely models a thin plate. There 

are two uncoupled motions of a homogeneous thin plate having material symmetry 

about its middle surface; inplane and bending. In this chapter a stiffness method, 

wherein the displacements are approximated by the interpolation of discrete nodal 

(interface) values, is presented in order to study the wave propagation in structural 

members of infinite length in the longitudinal direction. Previous studies have used a 

three node parabolic element to model the inplane motion of the plane strain problern 

and has been proven to be reliable when compared to analytical solutions [Il-[6]. In 
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the present work, the three node inplane element and a two node bending element are 

assembled to generate an element that models both the inplane and bending motions 

of a thin plate. 

Formulation 

Figure 2.1 shows the geometry of a thin plate in the local x, y: z coordinate system. 

This is the thin plate from which the element stifFness equations will be derived 

using standard finite element methodology. The plate has infinite length or a simply 

supported length, a, in the local x direction, a height, La, in the local y direction and 

a thickness, hl in the local z direction such that h/ L < 10. 

Figure 2.1: The geometry of a plate in the local coordinate system. 

The three node inplane eIement and the two node bending elements are shown 

in Figure 2.2. In this formulation, the equations for the inplane element and the 

two beam elements are derived separately. The equations are then assembled to 

generate a three node element capable of representing inplane and bending motions. 
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Figure 2.2: The inplane and bending elements. 

For a straight plate the inplane and bending motions are uncoupled. However, when 

more than m e  plate is assembled to form common structural shapes the two motions 

become coupled. 

The Rayleigh-Ritz stiffness approximation uses Hamilton's energy principle to 

generate the elemental equations: 

where T and II are the kinetic and potential energies in the body. The expression for 

the kinetic energy resulting from the inplane motions of an element is given by: 

where p is the mass density per unit of area, {ulT =< u v > is a displacement array 

and a dot indicates differentiation with respect to time. 

The potential energy, II, for the inplane motion is given by: 

where { E )  is an array of strain. In Equation 2.3, the work done by the boundary 

force, {Fu), is omitted for convenience. 
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The strain-displacement relationships for each element are 

where u and v are the displacements in the x and y directions respectively. E ~ ,  E~ 

and y,, are the inplane strains. 

The stress-strain relationships are 

In Equation 2.5 the inplane forces are { N )  = {IV,. Ai,, N,)~. The sign conven- 

tions for the inplane forces are shown in Figure 2.3. 

Figure 2.3: Sign conventions for inplane forces. 

Here generalized plane stress conditions are assumed as 
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E 
where Dl1 = l-u;uyl ? 

vz E a* = hl O 1 2  = O21 = l-/& ? Dm - - 2(1-Yzyzz) J%(l-v ) EZ 

and Ey are the modulus of elasticity in the x and y directions respectively, v is defined 

a Poisson's ratio. 

The nodal displacements are approximated as: 

for the inplane element, where 

and 

where ui, ui, wi are the nodal displacements in the x, y, z direction and is the 

rotation about the z axis at node i. 

Shape functions used for the inplane element are 

where0 5 y <  L, and y = % q + % .  

The strains in Equation 2.4 c m  be written in t e r m  of the shape functions [N(y)]  

and displacement array {q (x ,  t) ). For the inplane element 
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where 

N? O  O 0 N I  O O O N .  O  O 0  

14 = [ O O 0 0  O O 0 0  O O 0 0  

O N ? O O  O N 2 0 0  O & ' O 0  

and 

Substituting Equation 2.7 into the equation for kinetic energy. Equation 2.2, re- 

sults in: 

In a similar manner, substituting Equation 2.9 into the equation for potential 

energy, Equation 2.3, gives: 

Application of Hamilton's principle, Equation 2.1, gives: 

where 

Note that [Ki], [K3] and [Ml are s~mvnetric while [K2] is antisymmetric. The elements 

of [Ml, [Ki], [K2], and [K3] of Equation 2.14 are defined in Appendix A. In Equation 
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2.14 the overdot and prime denote the differentiation with respect to time and x 

respectively. 

The element equations for the two bending elements are created by employing a 

similar methodology. For the bending problem the kinetic energy is given by: 

where p is the mass density per unit of area, w is a displacement in the z-direction 

and a dot again indicates differentiation with respect to time. 

The potential energy for bending is given by: 

where ( k )  is an array of curvatures. The work done by the extemal forces, {F,), has 

been omitted for convenience. 

The curvature-displacement relations hip for the bending elements are 

where w is the displacement in the t direction and k,,, k, and kq are the curvatures. 

The moment-curvature relationship is: 

In Equations 2.22 the bending moments are {M) = {M,, M,, i11~)~ .  The sign 

conventions for the bending moments are shown in Figure 2.4. Here generalized 

plane stress conditions are assumed and, therefore, [Dw] = [DU] where [DU] waç 

d e h e d  earlier in Equation 2.6. 

The nodal displacements are approximated as: 
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Figure 2.4: Sign convention for bending moments and shear forces. 

for the first bending element, and 

for the second bending element. [Nw'(~)]  and [lVw2(~)] are matrices containing the 

shape functions defined below: 

[ P 1 ( y ) ] = [ O  O N;U NF O O N," N r  O O O O ]  

[ W 2 ( y ) ] = [ 0  O O O O O N;U NF O O NT NF]. 

For both the bending elements, the shape functions are 

1 Lw 2 
N;" = -(2 -317+773),h77 = -(1 -17-q fT3), 

4 8 
1 L w  

N j " = - ( 2 + 3 7 7 - v 3 ) , q =  -(-1-7+v2+173) 
4 8 

(2.25) 

w h e r e O ~ y ~ L , ,  y = ~ 1 7 + ~ a n d ~ w = ~ .  

The curvatures in Equation 2.21 can be rewritten now in terms of the shape 

functions [N(y)] and the displacement array {q(x, t)). For each beam element 
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where a = 1 or 2. Thus for beam element one (a = l), matrices [d l ] :  [bl] and [a l ]  are 

defined as: 

O o N y N ~ o o N ~  N ~ O O O O  

O 0  O O O 0  O O 0 0 0 0  

O 0  O O O 0  O O O 0 0 0  

and, for beam element two (a = 2), matrices [d2] ,  [b2] and [a2] are defined as: 

0 0 0 0 0 0  O O 0 0  O 
a = ~ w  a 2 w  a 2 ~ y  

O O O O O O * O O &,2 ay2 
(2.32) 

0 0 0 0 0 0  O 0  O 0  O O 

where a prime denotes differentiation with respect to y. 

O 1 
Substituting Equations 2.23 and 2.24 into the equation for the kinetic energy, 

Equation 2.19, results in: 
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In a similar rnanner, substituting Equation 2.26 into the equation for the potential 

energy, Equation 2.20, gives: 

where a = 1 or 2. 

The application of Hamilton's principle for the two beam elements, Equation 2.1, 

gives : 

where 

Note that the non-zero matrices, [Ef] , [Er], [Eg] and [Mr] are symmetric. In Equa- 

tion 2.35 the overdot and prime denote differentiation with respect to time and x 

respectively. 

For the two beam elements, the elernent equations become: 



Adding the equations for the Mo beam elements, Equations 2.42 and 2.43, results 

in the three node element equation 

where [Mb] = [Mi]  + [@], [El] = [E:] + [E:], [&] = [Ei] + [g] and [Es] = [E:] + [g] . 

The elements of [Mb], [El],  [E3] and [Es] of Equation 2.44 are defined in A p  

pendix A. 

For analyzing the propagation of a harmonic wave travelling in the x-direction, of 

a structural member of infinite length in the longitudinal direction, the displacernent 

field can be described as 

{ q )  = {q(x, t)) = {Qo)e+Wte-~x (2.45) 

where y is the wavenumber and w is the circular frequency. The corresponding for- 

mulation for the vibration of a structural member simply supported in the x-direction 

(1: = O, a) is given in Appendix B, and the matrices appearing therein are presented 

in Appendix C. 

Substituting Equation 2.45 into Equations 2.14 and 2.44, produces Equations 2.46 and 2.47 

respect ively ; 

[y2K1 - Y& - K;] (Qo} = (0) (2.46) 

where [Ki] = [K3] - w2 [Ml as well as 

where [E;] = [Es] - w2 [Mb]. 



Adding Equations 2.46 and 2.47 results in the element equations, Equation 2.48, 

for a thin plate in the Iocal x, y, z coordinate system 

[r2& - 7K2 - K; - y4& - - E;]{QO) = {O). (2.48) 

The next step is to transform the local element equations into the global coordinate 

system. The local y-z axes of the plate element, shown in Figure 2.5, make an angle 

6 FVith the globalY-Z axes. 

Figure 2.5: The geometry of a single element in the global coordinate system. 

The transformation of the element equations from the local to the global coor- 

dinate system results in the global element equations, Equation 2.49, in the form 

[Kg1 {Qg)  = {O), i.e. 
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The elements of [Tl, in Equation 2.49 axe: 

1 O O 0 0  O O 0 0  O O 0  

O C s o o  O O 0 0  O O 0  

O - S C 0 0  O 0 0 0  O O 0  

O O 0 1 0  O O 0 0  O O 0  

O O O 0 1  O O 0 0  O O 0  

O O O 0 0  C s o 0  O O 0  

O O 0 0 0 - S C 0 0  O O 0  

O 0  O 0 0 0  0 1 0 0  O 0  

O O 0 0 0  O 0 0 1  O O 0  

O O O 0 0  O O 0 0  C S O  

O O O 0 0  O 0 0 0 - S C 0  

O O O 0 0  O O 0 0  O 0 1  

where S = sin(8) and C = &O). 

2.3 Eigenvalue Problem 

The global element equations, Equation 2.49, are assembled to obtain the structure 

equations, Equation 2.51, in the form [K]{Qg} = {O), as 

[y2K, - Y K ~  - KQ - y4Ei - y 2 ~ 3  - E;]{Qg} = {O) (2.51) 

By defining 

($3 = -r{QX} (2.52) 

{Qf) = -r{Q3 (2.53) 

{&SI = -r{Q3 (2.54) 

and substituting Equations 2.52, 2.53 and 2.54 into Equation 2.51 leads to the eigen- 

value problem of the form 

[A1{Qg) = dBl{Qg) (2.55) 
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where 

and 

Solution of the 

1 0 0 0  

0 1 0 0  

O 0 1  O 

O KI O -El 

envalue problem determines the eig wavenumbers, y, and the cor- 

responding modeshapes, {Qg), of a member for a given frequency, W. For physical 

reasons ftequency, w, is real and positive. The roots for .y may be real, complex 

conjugate pairs or purely imaginary. Positive real roots do not propagate. Corn- 

plex conjugate pairs with positive real parts and positive imaginary parts represent 

evanescent modes. These evanescent modes decay in the positive X direction. Purely 

positive imaginary roots define waves propagating in the positive X direct ion. 

Alternatively, Equation 2.51 can be rearranged into the alternative eigenvalue 

problem, Equation 2.56, where frequencies, w, are obtained for a given wavenumber, 
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2.4 Summary 

The numerical accuracy of the Rayliegh-Ritz type approximation, Equations 2.55 and 2.56 

will be discussed in detail in upcoming chapters. The two-dimensional Rayleigh-Ritz 

approximation will be compared to a sirnilar three-dimensional Rayliegh-Ritz ap- 

proximation and analytical solutions. These solutions will be presented later in this 

st ud y. 



Chapter 3 

Stiffness Method - 

Three-Dimensional Analysis 

3.1 Introduction 

The three-dimensional Rayleigh-Ritz approximation is used to study wave propaga- 

tion in structural members which are infinite in the longitudinal direction or simply 

supported at their ends. The three-dimensional analysis presented here will be used 

later in the study to  check the two-dimensional approximation presented earlier. 

3.2 Formulation 

The formulation used for the three-dimensional analysis is similar to that encountered 

earlier wit h the plane stress assumption. The Rayleigh-Ritz approximation used in 

this approach is based on Hamilton's energy principle, 
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where T and II are the kinetic and potential energies of the body. 

The kinetic energy is given by: 

T = J / / p{ i i }~{z i }dydrdz  
2 

(3.2) 

where p is the mass density per unit of volume, {u) is a displacement array and a dot 

indicates dïfferentiation with respect to tirne. The displacement array { u )  is aven 

The potential energy II is given by 

where the work done by the external forces, {F), has been omitted for convenience 

and { E )  is an array of strains whose components are 

A linear strain-displacement relationship is used. Thus the strains can be written 

where u,v and w are the displacements in the x, y and z directions, respectively. 

Equation 3.6 can be rewritten, in anticipation of the form required for the solution 
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of the problern, as: 

or, in abbreviated matrix form, 

The stress-strain relationship is 

(4 = FI (€1 

In Equation 3.9 the stresses are {a) = {O,, cg,, oz,, q,,, oz=, o,}~. Here we assume 

three-dimensional relationship where matrix [CI represents the elastic moduli of the 

material. The formulation of the problem assumes that the structure is completely 

anisotropic. Thus, there are twenty-one independent coefficients in matrix [Cl, Le., 

cil c l 2  c l 3  cl4 c l 5  c l 6  

c 2 2  c 2 3  c24  c 2 5  c 2 6  

c 3 3  c34 c 3 5  c 3 6  

c 4 4  c 4 5  c 4 6  

c 5 5  c 5 6  

Symm. (766 

However, for the numerical results presented later it is assumed that the structures 

are homogeneous and isotropic. Thus, matrix [Cl reduces to: 
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Isoparametric finite element methodology is followed in forming the element ma- 

trices. Three to nine variable-number-noded two-dimensional elements are used to 

mode1 the shape of the cross-section. Since the numerical integration formulas as well 

as the direct stiffness assembly procedures are standard there is no need to discuss 

the details here [l O]. 

The displacement field may be written as: 

where node j is an intermediate node into Equation 3.33 resdts in 

Nl O O I V 2  O O :  

O NI O :  O N2 O : :  O Nn O 

O O N I O  O N 2 :  O O N ,  

or in abbreviated matrix form 

Substituting Equation 3.16 into Equation 3.8, we obtain 
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which c m  be rewritten as, 

(4 = [AI {d + [BI (6) (3.18) 

wbere 

and 

L O O N  

O N 0  

For the purpose of Guass Quadrature, we consider 6 * 3 submatrices, [Aj]  and [Bj] ,  

of the 6 r 3n matrices [A] and [BI. Matrix [A] = [L,,][N], can be rewritten as 

which can also be written as 

[Al = [ [Al1 I [A21 I - - -  I [Ajl I I [An1 ] 
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Where, for an arbitrary node j, 

[Ail = 

and similady, for rnatrix [BI = [L,][N] can be rewritten as 

Substituting Equation 3.16 into the expression for the kinetic energy, Equation 3.2, 

gives : 

In a sirnilar manner, substituting Equation 3.18 into the equation for potential 

energy, Equation 3.4, gives: 

Where the overdot and prime denote the differentiation with respect to tirne and x 

respect ively. 

Application of Hamilton's principle, Equation 3.1, gives: 
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where 

Note that [KI] ,  [K3] and [Ml are spme t r i c  while [K2] is skew-symmetric. 

For analyzing the propagation of a harmonic wave travelling in the x-direction 

of a structural mernber having an infinite length in the longitudinal direction, the 

displacement field can be descnbed as 

{q(x ,  t)} = {Qo}e+wte-7x (3.32) 

where y is the wavenumber and w is the circular frequency. The corresponding formu- 

lation for the vibration of a structural member, sirnply supported in the x-direction, 

(x = O, a) is presented in Appendix D. 

Once the elements are assembled by substituting Equation 3.32 into Equation 3.27, 

one obtains Equation 3.33: 

3.3 Eigenvalue Problem 

By defining 

and substituting Equation 3.34 into Equation 3-33. leads to the eigenvalue problem 



and 

The solution of the eigenvalue problem determines the wavenumber, y, and cor- 

responding modeshape, {Qo) ,  of a member for a given frequency. w. The roots for y 

may be real. complex conjugate pairs or purely imaginq.  Positive real roots do not 

propagate. Complex conjugate pairs with positive real parts and positive imaginary 

parts represent evanescent modes. These evanecent modes decay in the positive X 

direction. Purely positive imaginazy roots define waves propagating in the positive X 

direction. 

Altematively, Equation 3.33 can be arranged into the alternative eigenvalue prob- 

lem, Equation 3.35, which has the form [A]{Q) = y[B]{Q). Frequencies, w, are 

obtained for a given wavenumber, y, from 

Summary 

The numencal accuracy of the three-dimensional Rayliegh-Ritz type stithiess approx- 

imation, will be discussed in the upcoming chapters. The threedimensional st8ness 

approximation will be compmed to the two-dimensional Rayliegh-Ritz type stifmess 

approximation presented earlier and analytical solutions which are presented in the 

next Chapter. 



Chapter 4 

Analytical Methods 

4.1 Introduction 

In this chapter the elasticity solutions for inplane and bending problems are presented. 

The purpose of these formulations is strictly to check the validity of the Rayleigh- 

Ritz procedures, discwsed in Chapters 2 and 3, for a thin plate. Thus, the equations 

derived here are only for the local coordinate system and they are not transformed 

into the global coordinate system. Moreover, it is not necessary to use the propagator 

matrices in the inplane problem but it is presented here with the understanding that 

it may be useful in the future for refining wavenumbers used in a scattering analysis. 

4.2 Analytical Method for Inplane Problem 

In the analytical formulation for the inplane problem, a modified propagator matrix 

approach is used to establish the frequency equation of the plate. The frequency 

equation of the plate is fomulated in the form of a standard algebraic eigenvalue 

problem using elasticity equations. 



Consider the plate shown in Figure 4.1. The plate has infinite length in the local 

x direction, a height, L, in the local y direction and a thickness, h, in the local 2 

direction. 

Plane stress conditions in the xy plane wiU be considered here. 

Figure 4.1: The geometry of a plate in the local coordinate system. 

4.2.1 Governing equations 

The straùi-displacement relation for the plate is given by 

{ E )  = Lu 

where 

The u and v are displacements in x and y directions, respectively, whilst 



CHAPTER 4. ANALYTICAL METHODS 

and 

where EU is the strain component. The force-strain relation is given by 

where the stress component is defined as 

Generalized plane stress conditions are assumed. The constitutive matrix for the 

plate is: 

[DU] = h 0 2 1  0 2 2  [ul o2 i6] (4-7) 

E U-&,) 
where Di1 = 1-&,T7 0 2 2  = -i 0 1 2  = D21 = e md D66 = 2(;- %%r) - 

Ez and Ey are the modulus of elasticity in the x and y directions respectively. u is 

defined as Poisson's ratio. 

The equations of harmonic motion in the frequency domain can be expressed in 

terms of the displacements u(x, y) and v ( x ,  y) as 

where b, and b, are body forces in x and y directions, respectively, p the mass density 

per unit volume, and w the circdar frequency. 

4.2.2 Dispersion Relations 

In this section, the analytical frequency equation is presented based on a modified 

propagator mat& approach. 
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4.2.3 Solution 

The appropriate solution to the homogeneous equation, Equation 4.8, in the absence 

of body forces, is [8]-[9]: 

where j = G, and 

Here rl and r2 are the roots of the equation 

Ali, AI2, AZ1 and Az2 are arbitrary constants for the plate and k is the wavenumber. 

Stress and displacement components of the plate can be expressed in terms of these 

four unknown constants. By evaluating the stresses and displacements at y = O and 

y = L, and performing algebraic manipulations, the following relation can be found: 

where 
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The vector Qa, which is unknown initially, represents the displacement and stress 

components a t  y = O. [Pl is the propagator matrix for the plate whose elements are 

given in Appendix E. 

By denoting the elements of the 4 by 4 matrix [Pl as Pm (m,n = 1,2,3,4) 

and invoking the zero traction conditions a t  faces y = O and y = L, the following 

relationship can be obtained fiom Equation 4.14: 

Note that there is no extemal load acting on the plate. The dispersion equa- 

tion (frequency equation) for the plate is obtained by setting the determinant of the 

coefficient rnatrix to zero Le. 

Let Qom be M number of modes to be evaluated and km be the mth root of 

Equation 4.17. Sraction kee conditions at face y = L and Equation 4.16 give the 

components of the mth eigenvector at face y = O, as 

Shen, applying Equation 4.14 at successive interfaces, the mth modal eigenvector can 

be obtained as 

Q: = ( Q&Z! QEm ) 

where 

The u h ,  vom, awom and a,,,, are components of the mth eigenvector determined at 

y = O. It may be noted that Q, can be associated with propagating, non-propagating 

or evanescent modes corresponding to real, imaginary or complex &. 
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4.3 Analytical Method for Bending 

4.3.1 General 

A simplified analytical solution to the classical bending problem is used to determine 

the accuracy of the Rayleigh-Ritz approximation for pure bending. The fiequency 

equation is presented explicitly for a plate that is simply supported on all edges. 

4.3.2 Description of the problem 

In the analytical solution of the bending problem, for the purpose of checking only, 

it is assumed that all four edges of the plate are simply supported. This situation is 

shown in Figure 4.2. The plate has length, a, in the x(=X) direction, width, L, in the 

y(=Y) direction, and thickness, h, in the z(=Z) direction. To sirnpliS the expressions 

used in the derivation, the plate is assumed to be orthotropic and homogeneous. Also, 

the plate is positioned so that the global X,Y,Z axes coincide with the local x,y,z axes. 

4.3.3 Governing equat ions 

The strain-displacement relation is given by 

where tu is the out-of plane displacement (in the z direction) and k=, k, and k, 

are the curvatures. 

The moment-cuniature relation is 
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S.S. = SIMPLE SUPPORT 

Figure 4.2: The geometry of a plate. 

In Equation 4.22 the bending moments are {M} = {M,, MW, M - ) ~ .  Here general- 

ized plane stress conditions are assumed as 

E where Dll = Vz E 
7 0 2 2  = &, 0 1 2  = 0 2 1  = l - ' , y z r  

Ez(l-uzy) 

=3 12 
De6 = 2(1-v,u,,) - 

The equations of harmonic motion in the frequency domain can be expressed in 

terms of w(x, y, t) as 

where b, is the net body force in the z direction and p is the mass density [Il]. 
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4.3.4 Solution 

For free vibrations, b,, is set to zero. Given the boundary conditions shown in Fig- 

ure 4.2, the appropriate solution of Equation 4.24 is: 

where 

The kequency, w,  is given by: 

4.4 Summary 

The analytical solutions presented in this chapter will be used later in the study to 

assess the accuracy of the two-dimension and three-dimension Rayliegh-Ritz approx- 

imations presented earlier. 



Chapter 5 

Numerical Result s 

5.1 Introduction 

In this chapter the numerical accuracy of the Rayleigh-Ritz aproximations will be 

discussed for wave propagation and free vibration problems. 

5.2 Wave Propagation Problem 

Two approximate stiffness methods were formulated in the previous chapters using the 

two-dimensional analysis for thin-walled structural members and a three-dimensional 

analysis. Two analytical solutions were also presented for the inplane motion and 

bending motion of a thin plate. In order to check the two-dimensional stiffness ap- 

proximation's ability to model the behaviour of a cross-section comprised of thin 

plates, it rnust be proved that the stiffness approximation can be used to model the 

behaviour of a single thin plate. The two-dimension Rayleigh-Ritz approximation 

is based on the knowledge that, for a thin plate, the inplane motions and bending 
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motions are uncoupled. T h u ,  the f is t  check of the two-dimensional stiffness ap- 

proximation was made by comparing the results from the analytical solutions for the 

bending and inplane motions of a thin plate. 

A thin plate was analyzed using the twedimensional Rayleigh-Ritz approximation 

and the inplane analytical solution. The bending problem will be evaluated separately. 

The height of the plate is 10 cm, the thickness is 1 cm. It was assumed for simplic- 

ity that the plate was homogenous, isotropie and infinitely long in the longitudinal 

direction with E = 2 5- and v = i. For a wavenumber, y = 0.00000 + 0.31415932, 

the analysis obtains the circular fiequencies, w radls  shown in Table 5.1. 30 elements 

were used in the 2D Rayleigh-Rtz approximation. 

- - 

1 Two-Dimensional RR 1 Analflical Inplane 1 

Table 5.1 : A cornparison of the two-dimensional stifhess approximation and inplane 

analytical method for calculating circular frequencies of wave propagation, rad/s,  in 

a plate. 

The two-dimensional approximation and the analytical inplane method give iden- 

tical resuits for the wave propagation problem. For clarity the frequencies correspond- 

ing to modes of pure bending have been omitted. 

Next, a thin plate was analyzed using the two-dimensional stianess approxi- 

mation and the analytical bending solution. To mode1 the bending problem the 

two-dimensional s t f iess  approximation was changed, by eliminating the rows and 

columns in the structure equations associated with the displacment of the plate in 



the z direction at  nodes y = O and y = L. With these rows and columns eliminated 

the two-dimensional stiffness approximation models a plate simply supported at its 

edges y = O and y = L. The height of the plate is 6 cm, the thickness is 1 cm. It was 

assumed, for simplicity, that the plate was homogenous, isotropic and ùifinitely long 

in the longitudinal direction with a density ylg = 13, Young's Modulus is 19 
and Poisson's ratio, v = O. For a wavenumber, y = 0.00000 + 0.104721; the analysis 

obtains the circular hequencies, w radls shown in Table 5.2. 30 elements were used 

in the 2D Rayleigh-Ritz approximation. 

Table 5.2: A cornparison of the two-dimensional stiffness approximation and bending 

analytical method for calculating circular fiequencies of wave propagation, rad/s, in 

a plate. 

11 

The two-dimensional approximation and the analytical solution to the bending 

problem give near identical results for the wave propagation problem. For clarity the 

fiequencies corresponding to the modes of inplane motion have been omitted. 

Next, the two-dimensional stifmess approximation was compared to the three- 

dimensional stiffness approximation for the wave propagation problem. A thin plate 

was andyzed using both two-dimensional and three-dimensional stiffness approxima- 

tions. The height of the plate is 10 cm, the thickness is 1 cm. It is assumed for sim- 

plicity that the plate is homogenous, isotropic and infinitely long in the longitudinal 

direction with E = 2 i 9  and Y = 5 .  For a wavenumber, y = 0.00000 + 0.31415931, 

Two-Dimensional RR 

0.0823076 

Analytical Bending 

0.082308 



CKAPTER 5. NUMENCAL RESULTS 

the analysis obtains the circular frequencies, w radls  shown in Table 5.3. 30 elements 

were used in the 2D Rayleigh-Ritz approximation and 30 Cnode elements were used 

in the 3D Rayleigh-Ritz approximation. 

1 Two Dimensional RR 1 Three Dimensional RR 

Table 5.3: A comparison of the 2D stifhess approximation and 3D stiffness approxi- 

mation for calculating circular frequencies of wave propagation, rad/s ,  in a plate. 

In both cases the results of the stiffness approximations were nearly identical to the 

analytical solution. A comparison of the frequencies and corresponding mode shapes 

(not shown) calculated using the two-dimensional Rayleigh-Ritz approximation and 

the three-dimensional Rayleigh-Ritz approximation shows that, for a straight thin 

plate, the two-approxïmate rnethods are almost identical. As expected, the mode 

shapes from both models indicate that the frequencies can be divided into modes 

of pure inplane motion and bending motion. Notice that when the same plate is 

analyzed again when the plate is rotated at an angle, O, fiom the global Y axis the 

fiequencies of both approximate analyses do not change. The only change that occurs 

is that the directions of the mode shapes are rotated an angle, 8, from the global Y 

axis. This revelation is important because it proves that the motion of the plate is 



independent of the angle 0, which is crucial when the plates are arranged to form 

various structural shapes. 

The two-approxknate stifhiess methods that were formulated earlier were checked 

next against the analytical solution for the propagation of waves through a cyhder  

of infinite Length. The formulation for the analytical solution of a cylinder d l  not 

be presented, only the numerical results will be presented. However, the theory has 

been presented by Zhuang [12]. 

The cylinder was analyzed using both the two-dimensional and the three-dimensional 

stiffness approximations as weU as the analytical solution. The radius of the cylinder 

analyzed was assumed to be 10 cm and the thickness was 1 cm. It was assumed, 

for simplicity, that the cylinder was homogenous and isotropie, with E = 2 i V  

and Y = 5. For a wave number, 7 = 0.00000+0.20000i, the analysis obtains the 

circular frequencies, w radls,  shown in Table 5.4. 300 elements were used in the 2D 

Rayleigh-Ritz approximation and 60 9-no de elements were used in the 3D Rayleigh- 

Ritz approximation. 

A compazison of the lowest eleven frequencies and corresponding mode shapes 

(not shown) shows that the two approximate methods give nearly identical solutions. 

The slight variance between the two approximate solutions is most likely due to the 

use of three-dimensional curved elements to mode1 the curved surface. In the two- 

dimensional solution a curved surface is modeled using straight elements. Thus, it  

cornes as no suprise that the analytical solution is closer to the three-dimensional 

stiffness approximation than the two-dimensional stiffness approximation. 

Please note that for each frequency that was calculated using the stifiess a p  

proximations there should be a corresponding frequency calculated when using the 

analytical solution. The remainder of the analytical hequencies could have been ob- 

tained through repeated solution of the analyticd problem by increasing the number 



Two-Dimensional 

Table 5.4: A cornparison of the 2D stress stiffness approximation, 3D stifFness a p  

proximation and analytical solution by showing computed circular frequencies of wave 

propagation, w rad/s,  in a cylinder. 

of circumferential waves used in each solution. However, for this report it was decided 

that further calculations were not necessazy and only the results for the number of 

circumferential waves, m = 0,1,2,3, have been presented. 

5.3 The Vibration of Structural Members Simply 

Supported at Their Ends 

The two stiffness methods can be used to calculate aU of the modes of vibration of 

a simply supported structural member. In this thesis simplified solutions are used 

to check the numerical accuracy of the stiffness methods. However, only some of 

the modes of vibration have simplified solutions. In this context, simplified solu- 

tions are defined as the solution to the classical beam equation and the solution to 



one-dimensional longitudinal vibration problems. The modes of vibration that have 

simplified solutions are free transverse vibration and hee longitudinal vibration. 

Free Transverse Vibration 

The characteristic fkequencies of free transverse vibration for a stnictural member, 

simply supported at its end, can be calculated using simple solutions. 

The charactenstic fkequencies of a simply supported member are [Il] 

where a is the distance between supports, 1 is the moment of inertia of the member, 

g iç the acceleration of gravity, 0 is the cross-sectional area, 71 is the mass per unit 

volume of material and n is the number of half wavelengths in the mode of vibration 

being solved. 

Free Longitudinal Vibration 

If the two stiffness methods are used to calculate all the modes of free vibration, there 

should be a mode of free longitudinal vibration which occurs when both ends of the 

beam are free to move in the longitudinal direction. The characteristic frequencies of 

vibration of these modes can be calculated using simplified solutions. The simplified 

solution can be expressed as [Il] 

where, a is the distance between supports, g is the acceleration of gravity and 71 is 

the m a s  per unit volume of material. 

In order to ven& that the two-dimensional Rayleigh-Rtz approximation can 

model the free vibration of a thin-walled structural member which is simply s u p  

ported at its ends, it rnust be shown that the approximation can model the fiee 
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vibration of a thin plate simply supported at its ends. Consider a plate whose height 

is 6 cm, thickness is 1 cm and its unsupported length is 30 cm. It is assumed, for 

convenience, that the plate has a density 1% and Young's Modulus is 1 9 .  The 

first meen kequencies of vibration of the beam, calculated using the two-dimensional 

Rayleigh-Ritz approximation are shown in Table 5.5 in ascending order for the number 

of half wavelengths, n=1,2,3,4,5. The simplified solutions for free longitudinal vibra- 

tion, hee out of plane transverse vibration (x-z) and free inplane transverse vibration 

(x-y) are used to calculate the circular fiequencies s h o w  in Tables 5.6, 5.7 and 5.8. 

30 elements were used in the 2D Rayleigh-Ritz approximation. 

r 2D Rayleigh-Ritz Approximation 

Table 5.5: The circular kequencies of vibration, radls,  for a simply supported plate 

calculat ed using two-dimensional st &ess method. 

Comparing the values calculat ed using the twdimensional Rayleigh-Rit z approx- 



Table 5.6: The free longitudinal circular frequencies of vibration, rad l s ,  of a simply 

supported plate calulated using the simplified solution. 

Free Longitudinal Vibration - Analytical 

1 Transverse Vibration - Out of Plane (x-z) - Analytical 1 

Table 5.7: The fiee, out of plane, transverse circular frequencies of vibration, rad l s ,  

of a simply supported plate calcdated using the simplified solution. 

n=l 

0.1047198 

Transverse Vibration - In Plane (x-y)- Analytical 

n=4 

0.4188790 

Table 5.8: The free inplane transverse circular fkequencies of vibration, radis, of a 

simply supported plate calculated using the simplified solution. 

n=5 

0.5235988 

n=2 

0.2094395 

n=3 

0.3141593 



Figure 5.1: The geometry of the I shaped section in the global coordinate system. 

imation and the corresponding simplified solutions reveals good agreement for both 

the free longitudinal and free out of plane, transverse modes of vibration. But, a 

cornparison of the two-dimensional stiffness solution and the simpEed solution for 

the free inplane transverse modes of vibration shows some disagreement. However, it 

is expected that the approximate solutions will not agree with the simplified solution. 

The approximate stifhess solutions both take into account the distortion of the cross- 

section geometry during vibration, whereas the simplified solution assumes that the 

geometry of the cross-section does not change. As a result, the approximate stifhess 

solution is more indicative of the true behaviour of the simply supported plate. 

Next, the 1-shaped member simply supported at its ends, which k shown in Fig- 

ure 5 -1, was analyzed using the two-dimensional stifhess approximation, the three- 

dimensional stifbess approximation and the corresponding simplified solutions for 

bending modes. It was assumed for simplicity that the section was homogenous and 

isotropie, with E = 2 i 9  and Y = ?. The fkequencies of the h t  characteristic 



mode of vibration in the X-Z plane and the X-Z plane of the member are shown in 

Tables 5.9 and 5.10. 30 elements were used in the 2D Rayleigh-Ritz approximation 

and 120 Cnode elements were used in the 3D Rayleigh-Ritz approximation. 

1 Two-Dimensional 1 Three-Dimensional 1 Simplified Solution 1 

Table 5.9: A cornparison of the 2D stiffness approximation, 3D stiffness approximation 

and analytical solution by showing cornputed circular frequencies of free vibration in 

the X-Z plane of an 1 shaped member, simply supported at its ends. 

1 Two-Dimensional 1 Three-Dimensional 1 Simplified Solution 1 

Table 5.10: A cornparison of the 2D stiffness approximation, 3D stifkess approxima- 

tion and analytical solution by showing computed circular kequencies of free vibration 

in the X-Y plane of an I shaped member, simply supported a,t its ends. 

Again, the simplified solutions do not give good agreement with the two-dimensional 

stifbess approximation or the three-dimensional stitFness approximation. However, it 

is reiterated that the two-dimensional stiffness approximation and the threedimensional 

stiaiess approximation are a better mode1 of the actual behaviour of the member. 

Both stiffness approximations allow for the distortion of the cross-section geometry 

during vibration whereas the simplified solution models the vibration of the mem- 

ber with the geometry of the section remaining unchanged. The distortion of the 

cross-section geometry during vibration is visble in the modeshapes, shown in Fig- 

ures 5.2 and 5 -3 which correspond to the aforementioned kequencies. 



Figure 5.2: A sketch of the mode shape corresponding to wi,,. 

Figure 5.3: A sketch of the mode shape corresponding to wl,,. 
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5.4 Free Transverse Vibration of Rect angular Plat es 

Simply Supported on Four Edges 

In this section the two-dimensional stifiess approximation for the vibration of a plate, 

simply supported at its ends, is modified to model the vibration of a plate simply 

supported on all four edges. The stifiess approximation of a plate simply supported 

a t  its ends is made to model the vibration of a plate simply supported on al1 four of 

its edges by setting the displacement of the two edge nodes, y = O and y = L to zero 

in the Y-direction. 

The characteristic frequencies of vibration of a structural member simply s u p  

ported along its edges can be derived using simple solutions. The characteristic 

frequencies for the transverse vibration of a plate simply supported along its edges 

are given by 

where L is the width, a is the length, h is the thichess, 1 = $, is the moment of 

inertia of a unit width of cross section, g is the acceleration of gravity, v is Poisson's 

ratio, E is Young's Modulus and y1 is the specific weight of the plate. 

Consider a plate whose width is 6 cm, thickness is 1 cm and its unsupported length 

is 30 cm. It is assumed, for convenience, that the plate has a density ylg = 13, 
Young's Modulus is 1- and Poisson's ratio, u = O. The simplified solution, Equa- 

tion 5.3, for the transverse vibration of a plate simply supported along its edges is used 

to calculate the characteristic frequencies shown in Table 5-11. The same problem 

using the two-dimensional approximation finds the frequencies of all possible modes 

of vibration including those of the free transverse plate vibration, free longitudinal 

vibration and inplane, transverse vibration of a simple plate. For simplicia only 

the modes corresponding to free transverse plate vibration are shown in Table 5.12, 
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the rernaining modes have already been presented. 30 elements were used in the 2D 

Rayleigh-Rit z approximation. 

1 Fkee Transverse Vibration of a 

Table 5.11: The free, out of plane, transverse circular frequencies of vibration, rad/s ,  

of a rectangular plate, s k p l y  supported along all four edges, calculated using the 

simplified solution. 

1 m=l 

Table 5.12: The circular frequencies of vibration, radis, of a plate, simply supported 

along all four edges, calculated using the two-dimensional st ihess method. 

Simply-supported Plate - Analytical 

Two-Dimensional Stiffness Approximation 

From the values tabulated in Tables 5.11 and 5.12 it is easy to see that the two- 

dimensional stiffness approximation and the simplified solution agree quite closely 

with one another. The calculated frequencies of vibration are almost identical. 

n=l 

0.082308 

n=l I n=2 I n=3 

n=2 

0.091805 

n=4 n=5 

n=3 

0.107633 

n=4 

0.129793 

n=5 

0.158284 
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5.5 Numerical Difficulties at High Frequencies 

As with any Rayleigh-Ritz stiffness approximation that requires the solution of an 

eigenvalue problem, the accuracy of the solution decreases as frequency increases, 

however by increasing the number of elements used in the solution the accuracy can 

be increased. But, increasing the number of elements also increases the size of the 

eigenvalue problem being solved. Thus, the computational time required to solve the 

larger problem increases significantly and so does the demand on the memory of the 

computer solving the problem. That being said, the stiflkess approximation is still 

an efficient way to calculate wave dispersion charactenstics. 

5.6 Summary 

In this chapter the two-dimensional stifFness approximation was proven to be effec- 

tive in calculating the wave dispersion characteristics of thin-walled, idnitely long 

members as well as the characteristic kequencies of vibration of simply supported 

thin-walled structural members and simply supported thin plates. However, there 

are numerical difliculties when calculating the wave dispersion characteristics of very 

high frequencies using the Rayleigh-Ritz type stifbess approximations. 



Chapter 6 

Conclusions 

6.1 Concluding Remarks 

The purpose of this study was to create a multi-purpose program that can analyzed 

thin-wded structural members using a two dimensional Rayleigh-Ritz stiffness ap- 

proximation. The program that was created met all expectations, the numerical 

results prove that the program c m  be used to calculate the wave dispersion charac- 

teristics of the wave propagation problem and characteristic frequencies of vibration 

of simply supported rnembers and plates simply supported along four edges with great 

accuracy. However, it should be noted that like any Rayleigh-Ritz approximation of 

this type numerical difficulties arise when solving the eigenvalue problem for high 

fkequencies of vibration. 

6.2 Future Work 

The next st ep in developing a quantitative non-destructive evaluation met ho d is to 

create a program to  do a scattering analysis on thin-walled structural members using 
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the wave dispersion characteristics calculated using the methodology described in this 

report . 

The versatility of the finite element method makes many di£Ferent types of analysiç 

possible. The List of possible future work on the vibration of beams could include 

changes in the support conditions and applying extemal forces to nodes to create 

forced vibration etc.. The static analysis of beams compensating for the deformation 

of the cross-section geometry under deflection is also a possibility. ie. when the body 

forces are not equal to zero but the kequency of "vibration" is zero. 
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Appendix A 

Matrices of the 2D Wave 

Propagation Problem 

The elements of [Dl], [KI], [K2], [&], [Mb] , [El], [E3] and [Es] appearing in Equa- 
tion 2.48 are: 

[Ml = 

where 

Symm. 
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where 
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where 

L Antisymrn. 
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[Mb] = 

where 
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where 
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P 

Symm. - 

where 



Appendix B 

2D RR Vibration of Simply 

Supported Members 

B. 1 Introduction 

In this section of the study the element equations created earlier using the two- 
dimensional Rayleigh-Ritz approximation will be modified from their original form 
to mode1 the vibration of thin-walled structural members simply supported in the 
longitudinal direction at their ends. 

B. 2 Formulation 

This problem is an extension of the two-dimensional wave propagation problem de- 
rived earlier. In the wave propagation problem it is assumed that the length of the 
member is infinite in the x=X direction. To mode1 simple supports a t  the ends of the 
beam there are only a few minor modifications. For simple supports it is necessary 
that the displacements u(0) # O,u(a) # O,v(O) = v(a) = w(0) = w(a) = 9(O) = 

6(a) = O where 9 = g. The vibration is assumed to be sinusoidal therefore 



where X = y, and a is the length between supports and m is the number of half 
wave lengths, Le. m = l , 2 , 3  .... 

Thus we assume that the nodal displacements as a function of x and t are 

and 

We now return to the element equations, Equations 2.14 and 2.35: derived earlier 
using plane stress analysis. However, due to changes in the order of the displacement 
field the rows and columns of the elemental matrices [Ml,  [KI ] ,  [Kz] , [K3],  [Mb],  [El],  
[E3] and [Es] must also be changed accordingly. The revised matrices are shown in 
Appendix C. 

Substituting Equations B.5 and B.6 into Equation 2.14 results in: 

Each of the matrices of Equation B.7 can be expressed in terms of zero and non- 
zero submatrices as shown below: 



+w*[Mu]{Q~;) - X2[K1U]{Q8) + X[K2U]{Qi) - [K3]{QI;) = {O} (B.12) 

+u2 [MJ {Q:) - A2 [ K u ]  {Qa) - X[&J {Q;) - [KSI {Q;) = {O) (B. 13) 

Similarly substituting Equations B.5 and B.6 into Equation 2.35 results in: 

where 

Submatrices [Mh] [Ela], [E3a] and [E5J are defined in Appendix C. 

Arranging the three equations into a convenient rnatrix form gives 

where 
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The next step is to transfom the local element equations into the global coordinate 
system. The transformation matrix [Tl is used to transform the element equations 
£rom the local to global coordinate system. Resulting in the global element equations, 
Equation B.17, in the form [Kg]{&:) = {O). 

L J 

The elements of the transformation mat* [Tl, in Equation B.17 are: 

where S = sin@) and C = cos(8). 

B .3 Eigenvalue Problem 

The global element equations, Equation B.17, are then assembled to obtain the global 
structure equations, Equation B.18, in the form [K]{QE) = {O) 
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We can now arrange Equation B.18 into the eigenvalue problem given below 

L 

where 

(B. 19) 

From this eigenvalue problem frequencies, w are obtained for a given number of half 
wavelengths, m. 

B.4 Summary 

The accuracy of the plane stress mode1 of the vibration of thin-walled structural 
members simply supported at their ends will be discussed in Cliapter 5. The plane 
stress approximation wiU be compared to a similar approximation based on three- 
dimensional theory as well as the simplified analytical free vibration mode1 which will 
both be presented later in the study. 



Appendix C 

Matrices for 2D RR Vibration 

Problern 

In changing hom the wave propagation problem to the vibration problem we must 
first rearrange the rows of the displacment vector {q(z7 t )) .  Instead of 
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in the wave propagation problem, we now have 

for the vibration problem. 

The end result is the rows and columns of the element matrices must also be 
changed. The element matrix [Ml for the vibration problem is shown below. The 
elements of the matrix have been defined in Appendjx A. 

[MI = 

- - 
~ ( 1 . 1 )  M(1.5) ~ ( 1 . 9 )  0  O  O 0 0 0 0 0 0  

M(5.5) ~ ( 5 . 9 )  0  O  O 0 0 0 0 0 0  

~ ( 9 . 9 )  0 O  O 0 0 0 0 0 0  

~ ( 2 . 2 )  ~ f ( 2 . 6 )  ~ ( 2 . 1 0 )  0  0  0  O  0  O  

~ ( ' 3 . 6 )  ~ ( 6 . 1 0 )  0  O O O O O 

b1(~O-'0) O  O  O  O  O  O  

0 0 0 0 0 0  

0 0 0 0 0  

0  O  0  0  

0  0  0 

O  O  

Symrn. O  - d 

It is here that we note that matrix [Ml is comprised of two non-zero submatrices 
which we will define as: 
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It is here that we note that matrbc Ki is comprised of two non-zero submatrices 
which we will define as 

[Klu] = 

Symm. Symm. 

The elernent matrix [KI for the vibration problem is shown below. The elements L of the matrix have been de ed in Appendix A. 

The element m a t e  [K2 for the vibration problem is shown next. The elements 
of the matrix have been de L ed in Appendix A. 

[KI] = 

1 . 1  K<l'S) K('.9) 0  
- 

1 1 1  O O 0 0 0 0 0 0  

K(5.5) K(5+9) 0  
1  1  O O O O O ~ O O  

K(9.9) 0  
1 

O  O 0 0 0 0 0 0  

K(2.2) K(2.6) K(Z.lO) 
1 1 1 

0 0 0 0 0 0  

K(6.6) K(6.10) O O O O O O 
1  1  

K ? O . ~ O )  O O O O O O 

0 0 0 0 0 0  

0 0 0 0 0  

0 0 0 0  

0 0 0  

O O 

Symm. O - - 
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[K21 = 

- 
0  0  0  K(1'2) 2 K('.6) 2 K:<*IO) 0  0  0 0  0  0 1  

O O  O - ~ ( 2 . 5 )  2 O K ~ O )  O O O  O O O  

O O O -K(2.9) ,K(6.9) K ~ O )  O O O O O O 

-K('v2) K(2.5) K(2.9) 
2 2 2 

O O O 0 0 0 0 0 0  

- ~ ( 1 . 6 )  O K(fL9) O 
2 2 

O O  0 0 0 0 0 0  

K 1 o  ,K(5.'Q) 
2 - , Y 0 )  O O O 0 0 0 0 0 0  

O O O O O O  0 0 0 0 0 0  

O O O O O O  0 0 0 0 0 0  

O O O O O O 0 0 0 0 0 0  

O O O O O O 0 0 0 0 0 0  

O O O O O O 0 0 0 0 0 0  

O O O O O O  0 0 0 0 0 0  

- - 

The element matrix [K3 for the vibration problem is shown below. The elernents 
of the matrix have been de An ed in Appendix A. 

Matrix K2 is comprised of two non-zero submatrices which we will deiine as 

[K3l = 

F - 
' K("S) K('.Q) 0  
3 3 3 

O O 0 0 0 0 0 0  

K(5.s) K(5.9) 0  
3 3 

O O 0 0 0 0 0 0  

K(9." 0  O O 0 0 0 0 0 0  

K(2.2) K y . 6 )  K(2-10) 0  0  0  0  0  0  

K ( w  K(-O) 0  0  O 0  0  0  

K ~ O J O )  O O O O O O 

0 0 0 0 0 0  

0 0 0 0 0  

O 0 0 0  

O 0 0  

O O 

Symm. O - d 
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It iç here that we note that matrix K3 is comprised of two non-zero submatrices 
which we will d e h e  as 

The element rnatrix [Mb] for the vibration problem is shown next. The elernents 
of the matrix have been defined in Appendix A. 

Matrix [Mbp] is comprised of one non-zero submatrix which we will d e h e  as 

The element matrix for the vibration problem is shown next. The elements 
of the m a t a  have been ned in Appendix A. 
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Matrix [El] is comprised of one non-zero subrnatrix which we will define as 

L S y mm. 

The element rnatrix LE3 for the vibration problem is shown next. The elements 
of the mat& have been de ned in Appendix A. 

- - 
O  

B 
0 0 0 0 0 0  O  O  O O  O  

0 0 0 0 0 0  O  O  O  O  O 

0 0 0 0 0  O  O  O  O  O  

O 0 0 0  O  O  O  O  O  

0 0 0  O O  O  O  O  

O  O  O  O  O  O O  

[J%] = E(3.3) 1 0  E(3.4) E(3.s) 0 

3 3 3 

E(7,7) E(7.") E(4.7) O ,$7.12) 
3 3 3 3 

E(ll.") 0 E(8.11) E(11m12) 
3 3 

E(4.4) E(4.8)  0 
3 3 

E(8.8) E(8.12) 
3 3 

Syrnrn. 
E(12.12) - 3 - 

M a t e  [E3] is cornprised of one non-zero submatrix which we will define as 
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The element matrix [ES for the vibration problem is shown next. The elements i of the matrix have been de ed in Appendùc A. 

Symrn. 

Matrix [ES] is comprised of one non-zero submatrix which we will define as 
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3D RR Vibration of Simply 

Supported Members 

D. l  Introduction 

In this section the element equations created earlier using the three-dimensional stiff- 
ness approximation will be modified £rom their original form to mode1 the vibration 
of thin-wded structural members simply supported at their ends. 

D .2 Formulation 

This problem is an extension of the three-dimension wave propagation problem de- 
rived earlier. In the wave propagation problem it is assumed that free-fkee conditions 
exist at the end supports. To mode1 simple suppoas at the ends of the beam there 
are only a few slight modifications. For simple supports it is necessary that the dis- 
placements u ( 0 )  # 0,  u (a )  # O ,  ~ ( 0 )  = v(a) = ~ ( 0 )  = w(a)  = O. The vibration is 
assumed to be sinusoidal therefore 
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where X = y, and a is the length between supports and rn is the number of half 
wave lengths, i.e. m = 1 ,2 ,3  .... Thus we assume that 

and 

where a = v, w and n is the number of nodes in the variable-number-nodes two- 
dimensional elernent . 

Substituting Equations D.4 and D.5 into the element equations derived earlier 
using Hamilton's principle, Equation 3.27, we get : 

where 
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Expanding Equation D.6 results in Equations D. 11, D. 12 and D. 13: 

Arranging the four equations into a convenient matrix form 

where 

(D. 10) 

(D.11) 

(D.12) 

(D. 13) 



D.3 Eigenvalue Problem 

The global element equations, Equation D.14, are then assembled to obtain the global 
structure equations, Equation D.15, in the fom [K]{Qg) = {O), as 

We can arrange Equation D.15 into the eigenvalue problem below: 

where 

F'rom this eigenvalue problem frequencies, w are obtained for a given number of half 
wavelengths, m. 

D.4 Summary 

The accuracy of the three-dimension mode1 of the vibration of thin-walled stmc- 
tural members simply supported at their ends is discussed in Chapter 5. The three- 
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dimension approximation will be compaxed to a similar approximation based on b-O- 
dimensional theory as weU as a simplified free vibration model. 



Appendix E 

Coefficients of Matrix [PI 

The elements of the matrix [Pl appearing in Equation 4.14 are given below: 

where 
pl, = 2 j k[dcos(2hrl) - cbcos(2hr2)] 

D* 
p32 = e f k [ m 2  (1  + b1)sin(2hrl) + -drl (1 + al)sin(2hr2)] 

D2 
p42 = 23ç2r1r2(l + al )  (1 + bl) [-cos(2hrl) + cos(2hr2)] 

pl3 = %[cos(2hrl) - cos(2hrz)] 

p z  = g[r la l  blsin(2hrl) - r2sin(2hr2) j 
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