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Abstract

Diagnostic and intervention methodologies for skill assess-
ment of autism typically requires a clinician repetitively initi-
ating several stimuli and recording the child’s response. In
this paper, we propose to automate the response measure-
ment through video recording of the scene following the use
of Deep Neural models for human action recognition from
videos. However, supervised learning of neural networks de-
mand large amounts of annotated data that is hard to come
by. This issue is addressed by leveraging the ‘similarities’ be-
tween the action categories in publicly available large-scale
video action (source) datasets and the dataset of interest.
A technique called Guided Weak Supervision is proposed,
where every class in the target data is matched to a class
in the source data using the principle of posterior likelihood
maximization. Subsequently, classifier on the target data is
re-trained by augmenting samples from the matched source
classes, along with a new loss encouraging inter-class separa-
bility. The proposed method is evaluated on two skill assess-
ment autism datasets, SSBD (Sundar Rajagopalan, Dhall, and
Goecke 2013) and a real world Autism dataset comprising 37
children of different ages and ethnicity who are diagnosed
with autism. Our proposed method is found to improve the
performance of the state-of-the-art multi-class human action
recognition models in-spite of supervision with scarce data.

Introduction

Autism is a complex neuro-developmental disorder that
manifests in children during preschool years (Rapin 1991;
CDC 2019) as deficits in communication, social skills and
stereotypical repetitive behavior. In the last two decades,
the prevalence rate of Autism Spectrum Disorder (ASD)
has grown by more than 150% (CDC 2019). It is well-
established that early intervention services modelled on be-
havior therapies yield the best outcomes for children diag-
nosed with autism (Estes et al. 2015) leading to significant
societal benefits and cost savings. However, resource and ex-
pert scarcity in low resource settings result in delay in the
initiation of the treatment process due to lack of identifi-
cation of the disorder. Families have limited access to di-
agnostic and evidence-based treatment options because of
affordability, lack of insurance support and non-availability
of physical infrastructure. In the developing countries, there
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a) RGB frame
from Autism
data.

b) Optical flow
for (a).

c) RGB frame
from Kinetics
data.

d) Optical flow
for (c).

e) RGB frame
from Autism
data.

f) Optical flow
for (e).

g) RGB frame
from HMDB51.

h) Optical flow
for (g).

Figure 1: Illustration of the similarity between the action
classes in two different datasets in the optical flow domain.
One representative RGB and Flow frame is depicted in each
case: The directional closeness of the optical flow frames
can be observed despite being from unrelated classes. (a)-(b)
‘Arms up’ action in Autism data is close to (c)-(d) ‘Jumping
jacks’ action in Kinetics (Kay et al. 2017) data. (e)-(f) ‘Rolly
polly’ action in Autism data is close to (g)-(h) ‘Flic flac’ ac-
tion in HMDB51 (Kuehne et al. 2011) data.

are entire swaths of children in dire need of treatment who
remain untreated and unseen. Much of this strain and inac-
cessibility could be alleviated by incorporating technology
to assist in early screening and automate the assessment and
initial treatment planning process, which is a prerequisite to
deliver individualized behavior treatment to children. Skill
assessment processes for autism typically involves invoking
instructions to a child, monitoring and recording their re-
sponses as they occur. This requires a trained clinician to en-
gage with the child, perform mundane repetitive tasks such
as recording the child’s observation and human action re-
sponses to fixed set of stimuli. With the advent of tremen-
dously powerful modern Deep learning techniques, one can
hope to automate a lot of such tasks bringing affordability
and improved access in value chain of autism screening, di-
agnosis and behavioral treatment activities while reducing
the dependence on trained clinicians. Specifically, in this pa-
per, we examine the application of human action recognition
from video recordings for tracking the physical behavior of
children diagnosed with ASD or otherwise to build cognitive
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and functional assessments.

Motivation

Human action recognition is typically solved in a super-
vised machine learning setting. Most of the successful mod-
els employ Convolutional Neural Networks (CNN) as their
backbone. Two stream networks (Simonyan and Zisserman
2014), 3-Dimensional (3D) Convolutional Neural Networks
(Tran et al. 2015) and Convolutional long short-term mem-
ory (LSTM) networks (Donahue et al. 2015) are some of the
state-of-the-art action recognition approaches. Inflated 3D
CNN (Carreira and Zisserman 2017) or I3D is found to be
one of the top performers on the standard benchmarks like
UCF101 (Soomro, Zamir, and Shah 2012) and HMDB51
(Kuehne et al. 2011) datasets. Temporal Segment Networks
(Wang et al. 2016) or TSN is another example of two stream
networks which has better ability to model long range tem-
poral dependencies.

The objective of this work is to apply human action recog-
nition algorithms to evaluate the responses of the children
with autism, to measure stimulus in the area of imitation,
listener response and motor skills. To accomplish this using
already established methods require large amounts of expert
annotated data corresponding to the particular classes of ac-
tions to be recognized. The process of data collection and
annotation is non-trivial because of non-availability of ex-
pert annotators, lack of co-operation from children and is
also very time consuming. Despite these limitations, there
is abundant availability of large-scale public datasets that
contain thousands of annotated video clips corresponding
to hundreds of action classes. Further, human action classes
share a lot of similarity (in a well-defined feature space like
optical flow (Horn and Schunck 1981)) in-spite of being dis-
joint as shown in Figure 1. For example, intuitively, the ac-
tion classes ‘playing piano’ and ‘typing the keyboard’ can
be thought similar in a suitable feature space. Motivated by
these observations, in this paper we address the following
question - Given a target data distribution with few anno-
tated samples, can the availability of a large-scale anno-
tated source dataset with ‘similar’ attributes as the target
data, be leveraged, to improve the generalization abilities of
classifiers trained on target data? Specifically, we attempt
to weakly supervise the task of human action recognition in
a guided way using large-scale publicly available datasets.

Related Work

State-of-the-art action recognition models (Zolfaghari,
Singh, and Brox 2018; Lin, Gan, and Han 2019; Ghadi-
yaram, Tran, and Mahajan 2019; Carreira and Zisserman
2017; Wang et al. 2016) are deep neural networks which
overfits easily to the dataset with fewer samples leading to
poor generalization. Few-Shot Learning (FSL) action recog-
nition methods (Yang, He, and Porikli 2018; Zhu and Yang
2018; Wang, Zhou, and Qiao 2018; Mandal et al. 2019) are
characterised by different labels between source and target
but a similar feature space. FSL evaluates on novel classes
with limited training examples but these novel classes are
sampled from the same dataset. The large scale public

datasets are not good candidate for source in FSL as there is
significant domain shift that exists between the source and
target data.

Proposed Method

For a given video, there exists transformations such as
optical flow, that are non-unique mappings of the video
space. This suggests that given multiple disjoint set of ac-
tion classes, there can be spaces (such as flow) where a
given pair of action classes may lie ‘close’ albeit they rep-
resent different semantics in the RGB-space. For example,
the optical flow characteristics of a ‘baseball-strike’ class
and ‘cricket-slog’ class can be imagined to be close. Fur-
ther, there exists large-scale public datasets (e.g., Kinetics
(Kay et al. 2017)) that encompasses a large number of an-
notated videos for several action classes. Thus, if one can
find the classes in the public datasets that are ‘close’ to a
given class in the dataset of interest, then the videos from the
public dataset can be potentially used for augmentation re-
sulting in regularization. In the subsequent sub-sections, we
will formalize the aforementioned idea and describe a pro-
cedure to find the closer classes and use it for data augmen-
tation. Let X denote the sample space encompassing the ele-
ments of transformed videos (e.g., optical flow). Let Ps(xs)
and Pt(xt) be two distributions on X called the source and
target distributions respectively. Suppose a semantic label-
ing scheme is defined both on Ps(xs) and Pt(xt). That is,
let Ys = {y1

s ,y
2
s ...,y

N
s } and Yt = {y1

t ,y
2
t ...,y

M
t } be

the source and target class labels that are assigned for the
samples of Ps(xs) and Pt(xt) respectively which in-turn
defines the joint distributions Ps(xs,ys) and Pt(xt,yt).
N and M are the respective number of source and target
classes. Let Ds = {(xs,ys)} and Dt = {(xt,yt)} de-
note the tuples of samples drawn from the two joint dis-
tributions Ps and Pt, respectively. Suppose a parametric
discriminative classifier (Deep Neural Network) is learned
using Dt to obtain estimate of the conditional distribution
Pt

θ(yt|xt) where θ denotes the parameters of the neural
network. With these notations, we consider the case where
the cardinality of Dt is much less than that of Ds imply-
ing that the amount of supervised data in the case of tar-
get distribution is much less than that of the source distri-
bution. In such a case, Pt

θ(yt|xt) trained on Dt is deemed
to overfit and hence doesn’t generalize well. If there ex-
ists a yp

s ∈ Ys that is ‘close’ to y
q
t ∈ Yt, then samples

drawn from Ps(xs|ys = yp
s ) can be used to augment the

class y
q
t for re-training the model Pt

θ(yt|xt). In the subse-
quent sub-section, we describe a procedure to find the ‘clos-
est’ yp

s ∈ Ys, given y
q
t ∈ Yt and a model Pt

θ(yt|xt) trained
on Dt.

Guided Weak Supervision

Videos lie in a very high dimensional space and are of vari-
able length in general. Thus, standard vector distance met-
rics are not feasible to measure the closeness of two video
objects. Further, the objective here is to quantify the dis-
tance between the classes as perceived by the discriminative
model (classifier) Pt

θ(yt|xt) so that the data augmentation
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Figure 2: The overall procedure of the proposed method. A classifier trained on the target data is used to match the modes
(classes) of the source data. Target classes are augmented with samples from the matched source classes (Guided Weak Super-
vision). Finally, the classifier is re-trained with the augmented target classes along with Directional Regularization loss.

is sensible. Thus, we propose to use the maximum poste-
rior likelihood principle to define the closeness between two
classes. Let X(ys=y

p
s ) = {xs1,xs2, ....,xsl} denote the sam-

ples drawn from Ps(xs|ys = yp
s ). Now Pt

θ(ytj|x = xsj),
j ∈ {1,2.., l} denotes the posterior distribution of the target
classes Yt given the jth feature vector from the source class
X(ys=y

p
s ). With this, a joint posterior likelihood Lyt|xs

of a
class yp

s can be defined as observing the target classes given
a set of features X(ys=y

p
s ) drawn from a particular source

class yp
s . Mathematically,

Lyt|xs
= Pt

θ(yt1,yt2, ....,ytl|xs1,xs2, ....,xsl) (1)

where xsj, j ∈ {1,2.., l}, are from the class yp
s . If it is as-

sumed that xsj are drawn i.i.d., one can express Eq. 1 as,

Lyt|xs
=

l
∏

j=1

Pt
θ(ytj|xsj) (2)

The parameters θ of the discriminative model created us-
ing Dt are independent of X(ys=y

p
s ) and are fixed during

the evaluation of Lyt|xs
, which implies that yti|xsi is in-

dependent of xsi ∀i �= j thus leading to Eq. 2. The pos-
terior likelihood in Eq. 2 can be evaluated for every tar-
get class yt = y

q
t , q ∈ {1,2, ...,M}, denoted by Lyt=y

q

t
|xs

called the target-class posterior likelihood corresponding to
the features from source class yp

s under the learned target
classifier Pt

θ(yt|xt). Mathematically,

Lyt=y
q

t
|xs

=

l
∏

j=1

Pt
θ(ytj = y

q
t |xsj) (3)

With this definition of the target-class posterior likelihood,
we define the matched source class y∗

s |y
q
t ∈ Ys to a given

target class y
q
t as follows:

y∗
s |y

q
t = argmax

Ys

Lyt=y
q

t
|xs

(4)

Note that the definition of Lyt=y
q

t
|xs

is specific to a source-

target class pair and therefore all xsj in the objective func-
tion of the optimization problem in Eq. 4 comes from a par-
ticular source class. Thus, one can employ the discriminative
classifier trained on the target data to find out the ‘closest’

matching source class as the one that maximizes the pos-
terior likelihood of observing that class as the given target
class under the classifier. Every class in the joint distribution
can be looked as a ‘mode’ and the goal here is to match the
classes (‘modes’) in the joint distribution of the source and
target distributions. Figure 1 demonstrates the idea of mode
matching through examples. Optical flow frames of the tar-
get and the source classes have similar visual properties in-
dicating the closeness. Once the matched source class is de-
termined for every given target class, a set of source classes
matched is defined as Y∗

s = {y∗1
s ,y∗2

s , ..,y∗M
s }. Now, the

discriminative classifier Pt
θ can be re-trained on the samples

from the source dataset corresponding to Y∗
s in a supervised

way with class labels being the corresponding y
q
t for every

y∗
s . This procedure thus increases the quantity and variety

of the training data for Pt
θ and we call it as Guided Weak

Supervision (GWS).

Directional Regularization

The procedure of GWS described in the previous sub-section
effectively changes the semantic meaning of the matched
source classes to the semantic meaning of the target classes.
Thus, it is possible to train a classifier on the source data
to discriminate between the matched source classes Y∗

s =
{y∗1

s ,y∗2
s , ..,y∗M

s }. Suppose such a classifier is denoted by
Ps

φ(y
∗
s |xs), where φ are the model parameters. We assume

that Ps
φ(y

∗
s |xs) and Pt

θ(yt|xt) have the same architectural

properties. Also, it is assumed that the source dataset is
larger in size and more diverse as compared to the target
dataset. This implies that Ps

φ(y
∗
s |xs) has better generaliza-

tion abilities compared to Pt
θ(yt|xt) (This fact is corrob-

orated empirically in the experiment section). We propose
to leverage this fact in improving the generalization capa-
bilities of Pt

θ(yt|xt) using Ps
φ(y

∗
s |xs). Further, during the

training of Ps
φ(y

∗
s |xs) with samples from Y∗

s , it is desirable

that the separation that is achieved between the classes in
Y∗
s under the classifier Ps

φ(y
∗
s |xs) is ‘preserved’ during the

training of Pt
θ(yt|xt) with samples from Y∗

s . We propose
to accomplish the aforementioned properties by imposing a
regularization term during the training of Pt

θ(yt|xt). Specif-
ically, we propose to push the significant directions of the
parameter matrix of θ towards that of the parameter matrix
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of φ. Note that φ is fixed during the training of Pt
θ(yt|xt).

Intuitively, this implies that the significant directions of the
target parameters should follow that of the source parame-
ters. Mathematically, let Mθ and Mφ be two square matrices
formed by re-shaping (without any preference to particular
dimensions) the parameters θ and φ, respectively. We per-
form an Eigenvalue Decomposition on Mθ and Mφ to ob-
tain matrices of eigenvectors Eθ and Eφ, respectively. Let

Ê denote the truncated versions of E with first k significant
(a model hyperparameter) eigenvectors. Under this setting,

we desire the significant directions Êθ and Êφ to be aligned.
Mathematically, if they are perfectly aligned, then

ÊT
θ Êφ = Ik (5)

where Ik is a k-dimensional identity matrix and T denotes
the transpose operation. Thus, any deviation from the condi-
tion laid in Eq. 5 is penalized by minimizing the Frobenius
norm of the deviation. We term this as Directional Regular-
ization (DR) denoted as LDR given by the following equa-
tion:

LDR = ‖ÊT
θ Êφ − Ik‖F (6)

where |.|F denotes the Frobenius norm of a matrix. Note
that this regularizer imposed on θ during the training of
Pt

θ(yt|xt) ensures that the directions of separating hyper-
planes of the target classifier is encouraged to follow those of
the source classifier trained with the matched classes. Thus
the final objective function during the re-training of the tar-
get classifier is as follows:

LTotal = −

l
∑

j=1

ytj log ŷtj + ‖ÊT
θ Êφ − Ik‖F (7)

where ŷtj is the predicted target class. Thus in summary,
given a small amount of data from the target distribution,
the proposed method (1) trains a classifier on the target sam-
ples, (2) determines the closest classes from the source dis-
tribution to all the target classes using the target classifier,
(3) trains a new (relatively robust) classifier on the samples
from the source distribution with re-labeled source classes
(matched with the target classes), (4) uses the samples of the
matched source classes to re-train the target classifier along
with Directional Regularization that builds the final model
for the target data. This entire procedure is pictorially de-
picted in Figure 2.

Implementation

The idea of GWS detailed in the previous section assumes
that the source and the target distributions are ‘similar’ un-
der a certain feature transformation. The raw video data in
the RGB space does not adhere to such assumptions because
of the variability of the content/scene/subjects etc. However,
transformations such as optical flow masks most of the non-
motion related information and exaggerates the motion in-
formation. In this domain, it is reasonable to assume that
the source and target action classes are ‘similar’ (Refer Fig-
ure 1). We match each target Autism class to a source class
using the baseline Autism model Pt

θ(yt|xt). Since a proba-
bilistic Softmax layer is used at the output of the classifier,

the matched source class, for every given target class, can be
simply taken to be that source class whose samples get la-
beled as the given target class most of the times as compared
to all other source classes. The optimization problem in Eq.
4 can be approximated as follows:

y∗
s |y

q
t = argmax

Ys

Lyt=y
q

t
|xs

(8)

=
l

∏

j=1

Pt
θ(ytj = y

q
t |xsj) (9)

≈ argmax
Ys

[

Count
j∈{1,..l}

(

y
q
t = argmax

Yt

Pt
θ(ytj|xsj)

)

]

(10)

We propose to use state-of-the-art action recognition mod-
els such as I3D and TSN that employ optical flow streams.
Baseline target Autism model Pt

θ(yt|xt) is obtained by
training Autism data using an I3D or TSN architec-
ture by initializing their weights with pre-trained Kinec-
tics/ImageNet/HMDB51 models. GWS and re-training with
Directional Regularization are performed only on the flow
stream without altering the RGB stream. Once the source
classes are matched, the samples from the matched source
classes are trimmed to a fixed length of average duration of
the target clips (≈ 2 seconds in the Autism data). This is ac-
complished by trimming each video sample of the matched
source classes using an overlapping window approach and
taking that portion of the video which has the highest Soft-
max prediction score under the baseline target classifier for
that particular target class. These trimmed (or action local-
ized) video clips from the source data are used for data
augmentation to re-train the target classifier with the Direc-
tional Regularization loss. Both the RGB and re-trained op-
tical flow streams are combined for final prediction. All the
data is pre-processed to generate the optical flow frames us-
ing the TVL1 algorithm (Zach, Pock, and Bischof 2007).
The code associated with this paper can be found at https:
//github.com/prinshul/GWSDR.

Autism Dataset

The target Autism data consists of 37 subjects (‘child’ and
‘subject’ are used interchangeably). Five subjects have Cau-
casian origin and the rest are Asians. Their ages range from
2-14. During assessment, a clinician performs the functional
assessment by probing a child for age-appropriate listener
response and imitation skills by invoking an instruction re-
sponse and expecting a child to respond through a human
action. We deliberately chose eight representative human ac-
tion responses invoked through either listener response or
imitation instruction for our experiments. Specifically, the
action classes selected are - ‘Move the table’ and ‘Arms up’
for gross motor skill assessment, ‘Lock hands’ and ‘Tap-
ping’ for fine motor skills, ‘Rolly polly’ for complex mo-
tor action, ‘Touch nose’, ‘Touch head’ and ‘Touch ear’ for
identification of different parts of the body. We chose these
particular actions since the presence of age-appropriate fine
and gross motor skills demonstrate neuro-typical develop-
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a) GWS on I3D using Kinetics
samples.

b) GWS+DR on I3D using Kinet-
ics samples.

c) GWS on TSN with HMDB51
samples.

d) GWS+DR on TSN with sam-
ples from HMDB51.

Figure 3: Performance on I3D and TSN with different baselines and different amount of augmented source (Kinetics and
HMDB51) samples using GWS and DR.

ment of a child, as well as providing a clear picture of atyp-
ical development (Gowen and Hamilton 2013). A total of
1481 video clips were recorded in a semi-structured envi-
ronment with the clinician facing the child, and three syn-
chronized cameras (Logitech C922 720p 60fps) were placed
to record the videos. The first camera faced the clinician, the
second faced the child and the third was positioned laterally
to both the clinician and the child. Figure 4 depicts represen-
tative frames of some action classes during training sessions
for different camera positions. The video clips were anno-
tated by trained clinical psychologists. The response of the
child for a particular stimulus is treated as a human action
response classification problem. 2D-videos were recorded
with 37 subjects and 12 licensed clinicians in two phases for
a period of 12 months in the US and Asia across different
Autism diagnostic centers. There are 148 annotated video
clips and the test set contains 1333 clips. All the training and
test samples are trimmed video clips containing exactly one
of the eight actions of 2-5 seconds in duration. A copy of the
Autism dataset can be obtained by contacting the authors.

a) Asian subject.
‘Arms up’ action.

b) Asian clinician.
Imitation instruction.

c) Lateral view.
‘Rolly polly’ action.

d) Caucasian child.
‘Lock hands’ action.

e) ‘Rolly polly’-
Caucasian clinician.

f) ‘Touch head’-
Listener response.

Figure 4: Training sessions of Asian and Caucasian subjects
by clinicians with different camera positions.

Experiments and Results

Two large-scale publicly available human action recognition
datasets namely Kinetics (Kay et al. 2017) and HMDB51
(Kuehne et al. 2011) are used as the source datasets while
the data described in the previous section (termed as the
Autism dataset) is the target dataset. The task is of stan-
dard 8-class classification on the target Autism data with
classes as described in the previous section. We train a bi-

nary action classifier with two classes, ‘Response’ and ‘No
Response’. The ‘Response’ class has samples from all the
8 action classes while the ‘No Response’ class has samples
containing random actions (different from the 8 actions in
the Autism dataset) or no action at all. This classifier helps
to mark the video clips with actions not belonging to one of
the 8 classes or having no response. All the further experi-
ments are carried out on video clips containing a ‘Response’.

Baselines

For mode matching experiments, I3D is used in conjunc-
tion with Kinetics and TSN with HMDB51. Our base-
lines are I3D and TSN which are pre-trained on Kinetics
and HMDB51 respectively. Next, using the baseline model,
the Kinetics and HMDB51 classes are mode matched to
Autism classes. Table 1 shows matched classes on both
the source datasets. It is apparent from Table 1 that mode
matching maps semantically similar actions from Kinetics
and HMDB51 to the Autism actions, confirming the pro-
posed hypothesis. Figure 3 shows the variation of test ac-

Autism Kinetics HMDB51

Move the table Pushing cart Push
Touch ear Tying necktie Sit up
Lock hands Playing trombone Shake hands
Touch head Blowdrying hair Shoot ball
Touch nose Putting on eyeliner Eat
Rolly polly Playing hand clapping games Flic flac
Tapping Playing drums Chew
Arms up Jumping jacks Fall floor

Table 1: Action classes from the source datasets (Kinetics
and HMDB51) matched to target (Autism) classes.

curacy with different amounts of source data from Kinet-
ics and HMDB51 mode matched classes augmented with
Autism classes. Baseline models are re-trained with varying
amounts of mode matched Kinetics or HMDB51 samples
(equivalent to 5%(≈ 75 samples) to 30%(≈ 450 samples)
of all the Autism samples). In all of these baseline mod-
els, when the size of augmented source data is increased
and the model is re-trained, the baseline accuracy increases
till the percentage of the augmented source data is compa-
rable (in terms of number of samples) with the Autism data.
It is seen that when the source data dominates the Autism
data, the accuracy drops. This is expected because when the
source distribution dominates, the classifier tends to overfit
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a) Baseline model on I3D. b) Baseline model on I3D with
GWS+DR.

c) Baseline model on TSN. d) Baseline model on TSN with
GWS+DR.

Figure 5: t-SNE plots of embeddings of penultimate layers of baseline I3D and TSN Autism models with and without GWS
and DR. It is clearly seen that the inter-class separability has increased and clusters are more dense after GWS and DR.

on it. However, with GWS along with DR, not only the rise
in test accuracy is more, the drop in accuracy after peak-
ing is smoother as compared to GWS without DR. This im-
plies that DR offers more tolerance towards the augmented
source data which allows the performance to increase fur-
ther. Our approach outperforms all baseline Autism models
of I3D and TSN with comparable source samples. When we
re-train the baseline Autism I3D classifier by augmenting
random samples from the source (without mode matching),
the test accuracy drops to 32% thereby showing importance
of GWS. t-SNE (Maaten and Hinton 2008) plots for the 8-
dimensional embeddings from penultimate layer of I3D and
TSN are obtained for the baseline models with and without
GWS and DR as shown in Figure 5. With our approach, the
inter-class separability of samples has increased while the
intra-class separability has decreased so the model tends to
be more confident in its predictability of Autism classes.

a) Baseline I3D with Kinetics
samples.

b) Baseline TSN with HMDB51
samples.

Figure 6: Performance on I3D and TSN with iteration over
the source samples with GWS and DR. The accuracy
increases through iteration by augmenting with newer mode
matches samples in every iteration although overfitting on
source data occurs from 3rd iteration.

In the next set of experiments, we iteratively re-train the
target model with GWS and DR. That is, in every new it-
eration we discard the mode matched source samples from
the previous iteration keeping the number of samples sim-
ilar in every iteration (equivalent to the number of Autism
training samples) and re-train the target model with new set
of samples from the matched modes classes. Figure 6 shows
the variation in accuracy when the new source samples are

Model Asian Caucasian ≤ 5 yrs. > 5 yrs.

I3D 58.2% 34.6% 55.1% 41.2%
TSN 53.7% 30.2% 51.7% 38.1%
I3D+GWS+DR 63.7% 40.2% 59.8% 46.5%
TSN+GWS+DR 57.0% 33.8% 55.4% 40.9%

Table 2: Performance of GWS and DR with a specific bias
in the Autism training dataset. It is seen that in all the cases,
the proposed approach offers better performance over the
baselines.

augmented with Autism data in every iteration. In Figure 6a,
the test accuracy increases from the baseline for initial it-
erations with GWS and DR. With GWS only (I3D+GWS),
the accuracy drops after the 2nd iteration. If GWS is applied
with DR on the baseline (I3D+GWS+DR), it continues to
increase even after the 2nd iteration but starts to dip from
3rd iteration on-wards which can be ascribed to overfitting
on the source data. As with the previous cases, we observe
more tolerance of DR with newer samples as compared to
GWS. Newer samples are accepted with lesser surprise in
DR which enhances the generalizability and performance.
Similar behavior is observed with TSN as shown in Figure
6b.

Bias in the Training Data

Table 2 shows the results for the proposed method under
different kinds of dataset biases. The results in the second
column in this table are accuracies when the training data
has only Asian subjects. Third column are test accuracies
when the training data has Caucasian subjects. In the fourth
column, the training data has subjects that are 5 years or
below. The last column are test accuracies when the training
data has subjects above 5 years in age. It is observed that
even if the dataset has a bias, our approach performs better
than the baselines.

GWS and DR under Different Settings

Table 3 shows test accuracy scores on baseline Autism
model under six different settings. We sampled examples
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Model Second best
modes

Flow + RGB
stream

Handpicked
modes

Combined
modes

I3D→ TSN TSN→ I3D

I3D+GWS 73.5% 67.5% 74.2% 73.8% - 73.2%
TSN+GWS 71.4% 65.8% 71.9% 71.2% 71.7% -
I3D+GWS+DR 74.4% 68.1% 75.3% 74.8% - 74.4%
TSN+GWS+DR 72.4% 66.7% 72.8% 72.7% 73.1% -

Table 3: GWS and DR under different settings on baselines (69% for I3D and 68% for TSN) - It is seen that (a) GWS or
GWS+DR with second best modes too leads in better performance (b) re-training the RGB stream is detrimental since there
is no similarity in the RGB space (c) GWS or GWS+DR with hand-picked modes also results in improvement in accuracy
(d) re-training with samples from matched modes classes from different datasets results in performance enhancement (e) & (f)
Cross neural architecture GWS and DR - Increase in accuracy from the baselines indicate that similar actions in the optical flow
space retain their meaning irrespective of the neural architectures.

Model Autism
Dataset

SSBD

TSN (Pretrained with HMDB51) (Wang et al. 2016) 68.0% 87.4%
I3D (Pretrained with Kinetics) (Carreira and Zisserman 2017) 69.3% 91.2%
ECO (Pretrained with Kinetics) (Zolfaghari, Singh, and Brox 2018) 61.4% 80.1%
TSM (Pretrained with Kinetics) (Lin, Gan, and Han 2019) 69.8% 90.5%
R(2+1)D (Pretrained with IG-65M) (Ghadiyaram, Tran, and Mahajan 2019) 68.4% 88.3%

TSN+DR 70.1% 89.2%
I3D+DR 71.3% 92.8%
TSN+GWS 71.6% 90.3%
I3D+GWS 74.3% 93.6%
TSN+GWS+DR 72.5% 91.4%
I3D+GWS+DR 75.1% 95.7%

Table 4: Comparison with state-of-the-art action recognition models on Autism dataset and SSBD.

from second best modes to augment with Autism data us-
ing GWS and DR. The results in the second column are the
test accuracy scores using second best modes. It can be seen
that the performance is better than the baseline model al-
beit less than the performance of model with the best modes
shown in Table 1. It is however apparent that even second
best modes preserve the closeness in the optical flow space.
All the experiments are executed by re-training optical flow
stream of the baseline models. Besides optical flow, if we
re-train the RGB stream as well, it is seen that the perfor-
mance of the classifiers deteriorates as shown in third col-
umn of Table 3. This ascertains the fact that the notion of
closeness is valid only for optical flow samples. Next, we
handpicked similar action classes (like ‘Washing hands’ in
Kinetics matched to ‘Lock hands’ in Autism data, etc.) from
Kinetics and HMDB51 datasets and applied our approach on
the baseline models. Fourth column of Table 3 records test
accuracy scores with these handpicked classes (or modes).
The results are comparable to our approach where we em-
ploy baseline models to find similar classes or actions us-
ing mode matching. Hence, irrespective of the metric used
to find similarity (either using human intelligence or mode
matching), the performance is much better than the baselines
when they are augmented and re-trained with similar classes
(GWS) with or without DR. Next, we combined correspond-
ing best mode matched classes from Kinetics and HMDB51
(like ‘Pushing cart’ from Kinetics is combined with ‘Push’

from HMDB51, etc.) and used these samples for GWS and
DR as shown in the fifth column of Table 3. The perfor-
mance is comparable with our approach when the modes are
not combined which implies that the idea of similarity in
optical flow space is preserved even if different datasets are
merged. Fifth and sixth columns report test accuracies for
the case when the modes matched using one architecture is
used to augment the classifier built on another architecture.
Fifth column of Table 3 are the test accuracy scores when
baseline TSN is re-trained with augmented Kinetics modes
extracted from mode matching on I3D. Similarly, sixth col-
umn has test accuracy scores when baseline I3D is re-trained
with HMDB51 modes extracted from TSN. The scores are
still better than the baseline Autism model (69% for I3D and
68% for TSN) which indicates that similar actions in the op-
tical flow space retain their meaning irrespective of the neu-
ral architectures used as a backbone.

Comparisons with State-of-the-art

Table 4 reports test accuracy for GWS and DR on baseline
I3D and TSN. It is consistently observed that with our ap-
proach (GWS or DR or GWS+DR), the performance is bet-
ter than the baseline I3D and TSN and state-of-the-art action
recognition models using Autism dataset and SSBD. SSBD
is a public dataset having 75 examples and three action
classes namely ‘arm flapping’, ‘head banging’ and ‘spin-
ning’ that are used in Autism diagnosis. Additionally, it is
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seen that DR offers additional accuracy benefits over GWS.

Conclusion

In this paper, we proposed a method for improving the gen-
eralization abilities of a classifier designed for human action
recognition trained on scarce data. Specifically, leveraging
the semantic similarities of the action classes in the optical
flow space, we proposed a generic method called Guided
Weak Supervision (GWS) to augment and re-train a classi-
fier on the target data with samples from a large-scale an-
notated dataset, along with a novel loss function termed as
Directional Regularization (DR) that would result in perfor-
mance enhancement. We demonstrated the efficacy of the
proposed method for screening, diagnosis and behavioral
treatment for ASD by treating imitation, listener response
and motor skills as action classification tasks. With the
proposed framework, we can integrate and automate com-
plete value chain of screening to treatment for children with
ASD by capturing behavioral treatment progress data tem-
porally and remotely. The other future direction is to employ
the techniques of GWS and DR for generalized supervised
learning tasks beyond the proposed use case of Autism.
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