
 

 

 
 

OPEN ACCESS | www.microbialcell.com 4 Microbial Cell | JANUARY 2018 | Vol. 5 No. 1 

www.microbialcell.com 

Review 

 

Guidelines and recommendations on yeast cell death 

nomenclature  
 

Didac Carmona-Gutierrez
1,‡,

*, Maria Anna Bauer
1,‡

, Andreas Zimmermann
1
, Andrés Aguilera

2
, Nicanor Austriaco

3
, Kathryn 

Ayscough
4
, Rena Balzan

5
, Shoshana Bar-Nun

6
, Antonio Barrientos

7,8
, Peter Belenky

9
, Marc Blondel

10
, Ralf J. Braun

11
, Michael 

Breitenbach
12

, William C. Burhans
13

, Sabrina Büttner
1,14

, Duccio Cavalieri
15

, Michael Chang
16

, Katrina F. Cooper
17

, Manuela 

Côrte-Real
18

, Vítor Costa
19–21

, Christophe Cullin
22

, Ian Dawes
23

, Jörn Dengjel
24

, Martin B. Dickman
25

, Tobias Eisenberg
1,26

, 

Birthe Fahrenkrog
27

, Nicolas Fasel
28

, Kai-Uwe Fröhlich
1
, Ali Gargouri

29
, Sergio Giannattasio

30
, Paola Goffrini

31
, Campbell W. 

Gourlay
32

, Chris M. Grant
33

, Michael T. Greenwood
34

, Nicoletta Guaragnella
30

, Thomas Heger
35

, Jürgen Heinisch
36

, Eva 

Herker
37

, Johannes M. Herrmann
38

, Sebastian Hofer
1
, Antonio Jiménez-Ruiz

39
, Helmut Jungwirth

1
, Katharina Kainz

1
, Dimitri-

os P. Kontoyiannis
40

, Paula Ludovico
41,42

, Stéphen Manon
43

, Enzo Martegani
44

, Cristina Mazzoni
45

, Lynn A. Megeney
46–48

, 

Chris Meisinger
49

, Jens Nielsen
50–52

, Thomas Nyström
53

, Heinz D. Osiewacz
54

, Tiago F. Outeiro
55–58

, Hay-Oak Park
59

, Tobias 

Pendl
1
, Dina Petranovic

50,51
, Stephane Picot

60,61, Peter Polčic62
, Ted Powers

63
, Mark Ramsdale

64
, Mark Rinnerthaler

65
, Patrick 

Rockenfeller
1,32

, Christoph Ruckenstuhl
1
, Raffael Schaffrath

66
, Maria Segovia

67
, Fedor F. Severin

68
, Amir Sharon

69
, Stephan J. 

Sigrist
70

, Cornelia Sommer-Ruck
1
, Maria João Sousa

18
, Johan M. Thevelein

71,72
, Karin Thevissen

73
, Vladimir Titorenko

74
, 

Michel B. Toledano
75

, Mick Tuite
32

, F.-Nora Vögtle
49

, Benedikt Westermann
11

, Joris Winderickx
76

, Silke Wissing
77

, Stefan 

Wölfl
78

, Zhaojie J. Zhang
79

, Richard Y. Zhao
80

, Bing Zhou
81

, Lorenzo Galluzzi
82–84,

*, Guido Kroemer
84–90,

*, Frank Madeo
1,26,

* 

1 
Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria. 

2 
Centro Andaluz de Biología, Molecular y Medicina Regenerativa-

CABIMER, Universidad de Sevilla, Sevilla, Spain. 
3 

Department of Biology, Providence College, Providence, USA. 
4 

Department of Biomedical Science, 

University of Sheffield, Sheffield, United Kingdom. 
5 

Department of Physiology and Biochemistry, University of Malta, Msida, Malta. 
6 

Department of 

Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. 
7 

Department of Biochemistry and 

Molecular Biology, University of Miami Miller School of Medicine, Miami, USA. 
8 

Department of Neurology, University of Miami Miller School of Medi-

cine, Miami, USA. 
9 

Department of Molecular Microbiology and Immunology, Brown University, Providence, USA. 
10 

Institut National de la Santé et de 

la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, La-

boratoire de Génétique Moléculaire, Brest, France. 
11 

Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany. 
12 

Department of Cell Biolo-

gy and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria. 
13 

Department of Molecular and Cellular Biology, Roswell Park Cancer 

Institute, Buffalo, NY, USA. 
14 

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden. 
15 

De-

partment of Biology, University of Florence, Firenze, Italy. 
16 

European Research Institute for the Biology of Ageing, University of Groningen, University 

Medical Center Groningen, Groningen, The Netherlands. 
17 

Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Strat-

ford, USA. 
18 

Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal. 
19 

Instituto de Investigação 

e Inovação em Saúde, Universidade do Porto, Porto, Portugal. 
20 

Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. 
21 

Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal. 
22 

CNRS, University of 

Bordeaux CBMN (UMR 5248), Pessac, France. 
23 

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Austral-

ia. 
24 

Department of Biology, University of Fribourg, Fribourg, Switzerland. 
25 

Institute for Plant Genomics and Biotechnology, Texas A&M University, 

Texas, USA. 
26 

BioTechMed Graz, Graz, Austria. 
27 

Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de 

Bruxelles, Charleroi, Belgium. 
28 

Department of Biochemistry, University of Lausanne, Lausanne, Switzerland. 
29 

Laboratoire de Biotechnologie Molécu-

laire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia. 
30 

Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 

National Research Council, Bari, Italy. 
31 

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy. 
32 

Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom. 
33 

Faculty of Biology, Medicine and Health, The Universi-

ty of Manchester, Manchester, United Kingdom. 
34 

Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, 

Canada. 
35 

Zürich, Switzerland. 
36 

Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany. 
37 

Heinrich Pette Institute, 

Leibniz Institute for Experimental Virology, Hamburg, Germany. 
38 

Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany. 
39 

Department of 

Systems Biology, University of Alcalá, Alcalá de Henares, Spain. 
40 

Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 

Houston, Texas, USA. 
41 

Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal. 
42 ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal. 

43 
Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS 

& Université de Bordeaux, Bordeaux, France. 
44

 Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy. 
45 

Instituto 

Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology “C. Darwin”, La Sapienza University of Rome, Rome, Italy. 
46 

Sprott 

Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada. 
47

 Department of Cellular and Molecular 

Medicine, University of Ottawa, Ottawa, Canada. 
48

 Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada. 
49 

Institute 

of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 
50 

Department of Biology and Biological 

Engineering, Chalmers University of Technology, Gothenburg, Sweden. 
51 

Novo Nordisk Foundation Center for Biosustainability, Chalmers University 

of Technology, Gothenburg, Sweden. 
52 

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, 

Denmark. 
53 

Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 
54 

Institute for Molecular Biosciences, 

Goethe University, Frankfurt am Main, Germany. 
55 

Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular 

Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany. 
56 

Max 

Planck Institute for Experimental Medicine, Göttingen, Germany. 
57 

Institute of Neuroscience, The Medical School, Newcastle University, Framlington 

Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom. 
58 

CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências 

Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal. 
59 

Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA. 
60 

Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France. 
61 

Institut of Parasitology and Medical Mycology, 

Hospices Civils de Lyon, Lyon, France. 
62 

Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak 



 

 

 
 

OPEN ACCESS | www.microbialcell.com 5 Microbial Cell | JANUARY 2018 | Vol. 5 No. 1 

www.microbialcell.com 

Review 

ABSTRACT  Elucidating the biology of yeast in its full complexity has 

major implications for science, medicine and industry. One of the 

most critical processes determining yeast life and physiology is cel-

lular demise. However, the investigation of yeast cell death is a 

relatively young field, and a widely accepted set of concepts and 

terms is still missing. Here, we propose unified criteria for the defi-

nition of accidental, regulated, and programmed forms of cell 

death in yeast based on a series of morphological and biochemical 

criteria. Specifically, we provide consensus guidelines on the differ-

ential definition of terms including apoptosis, regulated necrosis, 

and autophagic cell death, as we refer to additional cell death rou-

tines that are relevant for the biology of (at least some species of) 

yeast. As this area of investigation advances rapidly, changes and 

extensions to this set of recommendations will be implemented in 

the years to come. Nonetheless, we strongly encourage the au-

thors, reviewers and editors of scientific articles to adopt these 

collective standards in order to establish an accurate framework 

for yeast cell death research and, ultimately, to accelerate the pro-

gress of this vibrant field of research. 
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Programmed cell death, PI - Propidium iodide, PS – 

Phosphatidylserine, RCD - Regulated cell death, ROS 
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INTRODUCTION 

Yeast, a fungus that predominantly lives as a unicellular 

organism, has had an extraordinary influence on humanity 

throughout millennia, from its usage for baking and brew-

ing to the potential of some species to cause life-

threatening human diseases. The cultural, industrial, bio-

technological, and medical impact of this organism remains 

unparalleled. The use of yeast fermentation to produce 

alcoholic beverages and to leaven bread coincided with the 

rise of ancient civilizations and has persisted until our days. 

Importantly, the continued development of yeast strains as 

vehicles for the development of new technology, for ex-

ample in bioethanol, drug, and enzyme production, as well 

as the implementation of unconventional yeast species in 

industrial processes, highlights the ever increasing im-

portance of yeast now and in the future [1, 2]. This is ex-

emplified by the fact that the global market for yeast prod-

ucts is in the multibillion dollar range and is expected to 

grow further [3]. Beyond the mentioned applications, yeast 

has a direct impact on human health and disease. Many 

fungi, including some yeasts, can exist as commensals, i.e., 

they are part of our natural microbiota, forming the myco-

biome [4]. In fact, it is being increasingly recognized that 

fungi are a major determinant in establishing commensal 

microbial communities and are thus vital for healthy indi-

viduals [5]. However, under certain circumstances, e.g., 

compromised immunity, commensal fungi may become 

opportunistic pathogens and as such are a potential cause 

for infectious diseases [6]. These include superficial infec-

tions of the skin and nails (especially by dermatophytes) 

that affect billions worldwide, biofilm colonisations of mu-

cosal surfaces and more serious invasive infections, which 

can have very high mortality rates and are estimated to 

lead to 1.5 million deaths per year [7]. A significant number 

of these deaths arise from infections caused by the yeasts 

Candida albicans, Candida glabrata and Cryptococcus 

neoformans in immunocompromised individuals. This soci-

oeconomic burden is further amplified by the unprece-

dented rise in fungal diseases that are affecting plants and 

animals [8]. These examples highlight the importance of a 

full understanding of fungal biology, and the study of yeast 

cell biological processes has been crucial in this respect.  

Yeasts have served as a successful research tool for the 

last century, Saccharomyces cerevisiae (the budding yeast) 

being one of the most thoroughly studied eukaryotes at 

the cellular and molecular levels. Indeed, yeast continues 

to be one of the preferred model organisms to explore 

eukaryotic cell biology, both due to its technical ad-

vantages in devising/sophisticating molecular tool kits to 

study cellular biology, and to a high degree of functional 

conservation [9]. Also, yeast offers rapid growth and inex-

pensive accessibility paired with a high amenability to bio-

chemical and genetic manipulation. This enables the estab-

lishment of various experimental setups, ranging from sin-

gle experiments to high-throughput, genome-scale, unbi-

ased screenings in a short time frame. Notably, many in-

sights obtained in yeast have proven to be transferable to 

higher eukaryotes. Indeed, over the past decades, yeast 

studies have unveiled individual gene functions as well as 

gene and protein interactions, and have instrumentally 

contributed to the understanding of fundamental cellular 

processes such as eukaryotic cell cycle control [10–15], 

autophagy [16–19], mitochondrial function [20, 21], includ-

ing mitochondrial import [22–25], protein degradation [26], 

vesicle fusion [27, 28], genetic instability [29, 30], epigenet-

ic control [31, 32], metabolic regulation [33–35], or cellular 

nutrient sensing [36].  

In addition, studies on yeast have shed light on human 

diseases, providing a cellular platform to examine, for in-

stance, prion biology, virus-host interactions, metabolic 

diseases, neurodegenerative disorders, cancer, or aging 

[37–61]. Among the pathophysiologically relevant path-

ways that can readily be explored in yeast are those gov-

erning cellular demise. Indeed, cell death regulation is 

structurally and functionally conserved in yeast [21, 62–66], 

and yeast has even served to uncover and establish factors 

and pathways involved in apoptosis and other controlled 

cell death subroutines, which have later been corroborated 

in metazoan or other multicellular systems, e.g., the AAA-

ATPase Cdc48/VCP [63, 67], the BAX inhibitor-1 [68], the 

implication of metacaspases as cell death regulators [69–
71], the role of cathepsin D in non-autophagic mitochon-

drial degradation [72, 73], or the lethal impact of ER-Golgi 

transport blockage as one of the mechanisms explaining 

the demise of dopaminergic neurons during Parkinson’s 
disease [74]. To sum up, on the one hand, cell death repre-

sents a key process that can be feasibly modeled in yeast. 

On the other hand, the understanding of yeast cell death 

and its putative modulation may improve industrial and 

biotechnological applications, provide insights into myco-

biome dynamics, and help develop the fight against fungal 

and other diseases. 

In multicellular organisms, the controlled suicide of sin-

gle cells is crucial for development and homeostasis, 

providing a system that eliminates superfluous cells. The 

presence of such a mechanism also allows for the removal 

of damaged cells that might compromise organismal fit-

ness. In a single-celled organism like yeast, this paradigm 

does not seem to apply at first sight, since – in this case – 

cellular suicide entails the death of the whole organism. 

However, in a way, a population of yeast cells de facto be-

have as a multicellular entity of communicating individuals 

rather than a group of isolated cells that do not interact 

with each other. In fact, a given yeast population originates 

from a single clone, and the ultimate biological goal of that 

population is the survival of the genetic information repre-

senting that very clone. Thus, under certain circumstances, 

the death of unfit or damaged yeast cells promotes the 

survival of the population as a whole. A number of physio-

logical scenarios have been described that corroborate this 

teleological explanation for a cellular suicide program in 

yeast, including antagonistic interactions between yeasts, 

aging, mating, or colony formation [54, 61, 75–85]. Of 

note, also other unicellular organisms, including bacteria 

and protozoan parasites, incorporate regulatory processes 

that are at least partly reminiscent of higher eukaryotic cell 

death programs [86–91].  
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Even though it is now clear that yeast can indeed un-

dergo cellular suicide, the corresponding terminology to 

describe this multifaceted process remains heterogenous 

and potentially misleading. Thus, we believe that there is 

timely need for a more precise and consistent nomencla-

ture that clearly defines the concept of “yeast cell death”, 
considering morphological, enzymological, and functional 

aspects. Such standardization seems of importance, given 

that the field  of yeast cell  death is continuously expanding  

with significant progress being made at the phenotypical 

and mechanistic levels, including the finding that, akin to 

higher eukaryotes, yeast can also engage in distinct cell 

death modalities (Figure 1). In this paper we thus attempt  

for the first time to formulate a series of recommendations 

and caveats with respect to cell death-related results ob-

tained in yeast. To this aim, we have followed the direc-

tions of the Nomenclature Committee on Cell Death 

(NCCD) [92–95] and adapted them to the particularities of 

Saccharomyces cerevisiae, which we think can be extended 

to other yeast species and to multicellular filamentous 

fungi. Our goal is to frame a uniform set of guidelines that 

facilitate the communication among yeast cell death re-

searchers, ultimately supporting and accelerating scientific 

advance (Box 1). In that respect, the nomenclature pre-

sented herein will likely need to be revised and updated as 

the field of yeast cell death moves forward and even more 

precise definitions are required. 

 

YEAST CELL DEATH AND SURVIVAL 

A crucial issue that demands a clear definition is the ques-

tion of cell death itself. When is a cell dead? According to 

the NCCD guidelines this is only the case upon irreversible 

plasma membrane breakdown or complete cellular frag-

mentation, because only then the cell is factually disinte-

grated, irrespectively of which upstream pathway or rou-

tine has been engaged [93]. In fact, no earlier marker can 

be defined that reliably determines death in all settings. 

Thereby, this lethal irreversibility might start with the col-

lapse of the electrochemical membrane potential across 

the plasma membrane through formation of a leak. In 

yeast, the most common method to monitor cell mem-

brane integrity in vivo is to use propidium iodide (PI). PI is a 

fluorescent nucleic acid intercalator that can only enter 

cells with a ruptured cell membrane, and can be routinely 

employed in both low and high throughput formats [96–
98]. Along similar lines, colorimetric dyes like trypan blue 

may be used, but are less common [99–101]. Further po-

tential alternatives exist (e.g., 7-aminoactinomycin D), but 

will need to be thoroughly tested with respect to their 

suitability for yeast cell death applications in future studies. 

As mentioned, assessing cell membrane disintegrity is the 

only technique to quantify actual cell death and must be 

performed irrespectively of the lethal setting being ana-

lyzed. This is imperative, since lethal signaling does not 

imply that the final stage (cell death) is reached or even 

that it will be reached at a later stage (see below). In fact, 

specific subpopulations engaged in lethal pathways that 

maintain plasma membrane integrity (e.g., early apoptotic 

cells, see below) are by definition not (yet) dead. In that 

respect, timecourse experiments are important to monitor 

both the lethal subroutine-specific phenotypes and the 

actual occurrence of cell death over time. Of note, indica-

tions exist that upon specific stress insults, a small subpop-

ulation of yeast retains the ability to repair cell membrane 

damage even after having stained positive for PI [102]. 

Given the lack of other comparably well established dyes in 

this context and the large body of data supporting PI stain-

ing as a valid method to quantify loss of survival, we con-

clude that determining PI positivity is – at this point - the 

best technique to quantitatively approach yeast cell death. 

Still, for the sake of accuracy and waiting for further evi-

dence supporting the above-mentioned indications, we 

suggest expressing a corresponding quantification as “% PI-
positivity”   or  “%  cell   death   ( PI   positive )”  instead    of  

FIGURE 1: Yeast cell death. Yeast cells can 

die either upon exposure to very harsh 

microenvironmental conditions via acci-

dental cell death (ACD) or in the context 

of a failing response to mild stress via 

regulated cell death (RCD). While ACD 

invariably manifests with a necrotic mor-

photype (disintegration of cell structure, 

plasma membrane rupture), RCD can 

exhibit a spectrum of morphologies and 

can result from multiple signaling path-

ways, including regulated necrosis or 

apoptosis. Programmed cell death (PCD), 

which occurs in strictly physiological sce-

narios (e.g., development), represents a 

specific type of RCD. The possible role of 

autophagy as a cell death pathway in 

yeast remains elusive, while its cytopro-

tective function is well established. 
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“% death” or “% survival” upon using this method. In the 
long term, the development and establishment of alterna-

tive dyes should be explored in order to validate data ob-

tained with PI. A number of approaches allow to experi-

mentally assess (i) cell viability, which reflects the ability of 

a cell to divide, and (ii) cell vitality, defined as the physio-

logical capabilities of a cell [100]. Nonetheless, an im-

paired/compromised (i) proliferation or (ii) metabolic ca-

pacity does not necessarily result in cellular demise. Thus, 

these techniques alone cannot be used to demonstrate cell 

death. Still, they are very useful to complement and cor-

roborate data obtained with PI or alternative dyes.  

Assessing clonogenicity with plating assays is the most 

commonly used method to quantify cell viability [62, 103]. 

Here, a defined number of cells from a given culture are 

plated on rich medium agar plates that are further incu-

bated to allow colony formation. The ratio between the 

resulting colony-forming units (CFUs) and the originally 

plated number of cells reflects the viability state in the 

culture. Theoretically, however, it is possible that under 

specific conditions (of genetic nature, for instance), colony 

formation may be blocked in cells that per se are still alive 

(a condition usually refered to as senescence). Additional 

caveats include the possibility that live cells at the point of 

plating might die before forming a colony and/or that the 

plating procedure itself might drive (a fraction of) cells into 

death, which would be indistinguishable from cell senes-

cence. Nonetheless, the literature suggests clonogenic 

capacity as a very good correlate to cell death in a plethora 

of different settings [69, 96, 104, 105] and thus represents 

a valid approximation to quantify survival in yeast popula-

tions. Of note, clonogenicity can also be measured by mon-

itoring CFU formation at the microcolony level (time-lapse 

photomicroscopy) [106, 107]. Even though cell and colony 

counting can be automated, clonogenicity assays are ra-

ther time-consuming and used for low- to medium-

throughput analyses.  

A further technique to assess yeast viability follows the 

growth rate of a given culture, which may decrease as a 

consequence of increased cell death. For this purpose, an 

aliquot is inoculated into fresh liquid medium and the 

growth is monitored, for instance, via photometric meas-

urement of optical densities over a specific period of time 

[108, 109]. Optionally, spot dilution assays can be per-

formed, where cultures are spotted in serial dilutions on 

agar plates [110]. Here, the growth ability is compared 

between cultures at the various dilution steps in a semi-

quantitative manner, although automated readout of mi-

crocolonies can be used to yield a quantitative result [111]. 

Monitoring growth can be scaled up and performed either 

manually or using robotics support, which makes it an at-

tractive technique, especially for screen-based analyses. As 

with other viability assays, an important disadvantage is 

that a decreased growth rate can also result from a non-

lethal event such as modulation of cell cycle progression or 

a reduced metabolism due to an alteration in the use of 

media components.  

One possibility to evaluate yeast cell vitality is to direct-

ly assess the activity of specific enzymes directly. Although 

this is not widely employed in yeast cell death research, it 

represents an avenue to assay the physiological state of a 

metabolic pathway within the cell [100, 112, 113]. As 

pointed out below, a caveat of this approach is the possible 

distortion of results by residual activity in dead cells. A 

further option is to use vital dyes, like the two-color fluo-

rescent probe FUN-1, which diffuses into cells, irrespective-

ly of their viability status, and results in green fluorescence 

of the cytoplasm. Dead cells fluoresce green while (live) 

cells that have both plasma membrane integrity and meta-

bolic capability, can further process the probe, resulting in 

red vacuolar fluorescence [114, 115]. Similarly, several 

tetrazolium salts are reduced into colored formazan crys-

tals [116]. Methylene blue is converted to the colorless 

leucomethylene blue only in metabolically active cells [117], 

while the red dye phloxine B is only retained in metaboli-

cally inactive cells that are unable to actively export it [100, 

118]. Other methods aim at assessing further aspects of 

BOX 1: DEFINITIONS OF KEY CONCEPTS IN YEAST CELL 

DEATH  

 
Accidental cell death describes cellular death following 

exposure to very harsh microenvironmental conditions.  

Apoptosis represents a regulated cell death subroutine charac-

terized by specific morphologic and biochemical features and 

executed via different pro-apoptotic factors; eventually, it 

culminates in secondary necrosis. 

Autophagy defines a predominantly cytoprotective process 

that orchestrates the digestion of intracellular material (e.g. 

proteins, organelles) in the vacuole.  

Autophagy-dependent cell death describes a lethal subrou-

tine, in which the molecular machinery of autophagy (or parts 

thereof) causally contributes to cellular demise. 

Cell death defines a status of irreversible plasma membrane 

breakdown (only then, the cell is factually disintegrated, irre-

spectively of which upstream pathway or routine has been 

engaged). 

Cell viability reflects the ability of a cell to divide and thus to 

proliferate. 

Cell vitality reflects the physiological capabilities of a cell and 

thus its metabolic activity. 

Necrosis is a cell death instance mainly characterized by plas-

ma membrane permeabilization; primary necrosis (cellular 

necrosis occurring ab initio) may take place in an accidental or 

regulated manner; secondary necrosis (combined necrotic and 

apoptotic features) is the final stage of the apoptotic process.  

Programmed cell death designates a specific type of regulated 

cell death, which occurs in strictly physiological scenarios (e.g., 

development, aging). 

Regulated cell death describes cellular death occurring in the 

context of a failing response to internal or external mild stress.  

Regulated necrosis is a regulated cell death modality with 

characteristic features of necrosis that can be inhibited by 

specific pharmacological or genetic interventions. 
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cellular physiology, including the cellular ATP content (e.g., 

based on the luciferin-luciferase reaction) [119] or mito-

chondrial transmembrane potential (e.g., upon staining 

with rhodamine 123, JC-1, TMRM/E, DiOC6(3)) [120, 121]. It 

should be noted that the readout of metabolic signatures 

has considerably improved with new generation extracellu-

lar flux analyzers, offering the possibility to simultaneously 

measure mitochondrial respiration and glycolysis (and thus 

mitochondrial function). A drawback of metabolic assays 

resides in the fact that cells may  be able to maintain  some  

metabolic activities until cell membrane rupture occurs, 

and that some rely on specific metabolic processes such as 

oxidative phosphorylation that are not mandatory for cell 

survival. Thus, such techniques may fail to detect subpopu-

lations of dead (or alive) cells, reflecting the notion that a 

decrease in growth or metabolic activity (i.e., viability or 

vitality) cannot be placed on a par with an increase in cell 

death. In conclusion, as mentioned above, the term cell 

death should be used only upon observing breakdown of 

the plasma membrane and thus loss of cell integrity (e.g., 

upon PI staining). In addition, we suggest to strengthen this 

observation by simultaneously assessing clonogenic capaci-

ty (Figure 2), since (i) it represents the best-established 

output to accurately monitor overall cellular viability and 

(ii) it empirically correlates very strongly with actual cell 

death markers. Importantly, both methods are easy, quick 

and relatively inexpensive. The use of additional 

dyes/stainings/assays provides valuable complementary 

information, but cannot be used alone to unequivocally 

define a cell as dead. 

Yeast cell death is often accompanied by oxidative 

damage and thus, a widely employed method in the field is 

FIGURE 2: Strategy to characterize yeast cell death. To define a lethal scenario in yeast, we recommend to sequentially evaluate the follow-

ing three levels. (i) The occurrence of cell death should be assessed by monitoring loss of plasma membrane integrity (e.g., by staining with 

exclusion dyes such as propidium iodide, PI). We suggest to complement this assessment by determining viability with clonogenic tests, 

knowing that, in many scenarios, clonogenic capacity correlates exceptionally well with cell survival. Other viability and vitality assays may be 

performed to corroborate the results obtained, but do not replace these two assays. (ii) If cell death is demonstrated, the possible RCD sub-

routine(s) should be examined via morphological and biochemical observations. While necrotic and autophagic phenotypes demand a fur-

ther clarification (inhibition studies) to conclude whether the observations correspond to an RCD modality (regulated necrosis, autophagic 

cell death), ACD (accidental necrosis), or a cell death correlate (protective autophagy), an apoptotic phenotype directly indicates RCD (via 

apoptosis). Irrespectively, it is imperative to follow the scenario over time (kinetics). (iii) Regulation per se and/or assessment of the regula-

tory network should be tackled by means of genetic and/or pharmacological interventions. Importantly, these interventions should inhibit or 

shift cell death and the observed subroutine-specific phenotypes to conclude on the involvement of an RCD modality (for regulated necrosis, 

autophagic cell death) and/or to provide mechanistic insight (all RCD types). 
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the detection of reactive oxygen species (ROS) [122]. In-

deed, a number of different ROS, like the superoxide anion, 

hydroxyl radical, and hydrogen peroxide, can accumulate 

upon mitochondrial disturbances, ER stress or other cellu-

lar derangements [96, 122–125]. ROS can generally be de-

tected using membrane-permeable dyes that are oxidized 

to fluorescent products in a ROS-dependent manner. Im-

portantly, these stains do not measure ROS as a group, but 

rather react with specific species. For instance, dihydroeth-

idium (DHE) preferentially reacts with superoxides, while 

dihydrorhodamine 123 (DHR123) and 2,7-

dichlorodihydrofluorescein diacetate (H2-DCF-DA) are con-

verted by a broad range of other ROS, but only poorly by 

superoxides [126]. Such specificities should be taken into 

account when measuring ROS with a particular stain, since 

distinct lethal triggers might result in the production of a 

differential ROS subset [123]. Thus, we recommend to spe-

cifically indicate the ROS subtype that is being monitored 

instead of generally referring to ROS production. Of note, 

to a certain degree, DHE may also be oxidized unspecifical-

ly (independently of superoxide). In order to exploit the full 

potential of DHE as a superoxide-specific dye, a range of 

methodological possibilities (e.g., the use of optimized 

spectra) exist [127, 128]. The standardization of such re-

finements for DHE assays, which are a preferred tool in 

yeast cell death research, should be addressed in the fu-

ture. While ROS measurements allow for high-throughput 

approaches due to their simplicity and relatively low cost, 

it is imperative to realize that this method does not dis-

criminate between living and dead cells, although ROS 

usually precede and are often causative for cell death in 

yeast [125]. In fact, ROS play a crucial role in intracellular 

signaling [129–132], functioning, for instance, as direct and 

indirect regulators of diverse physiologically relevant tar-

gets [133–135]. In addition, limited ROS generation might 

be beneficial under certain conditions, since the resulting 

adaptive responses can promote stress resistance as a 

form of preconditioning (hormesis) [131, 136–139]. Thus, 

an increase in ROS should be regarded as a cell death-

correlated phenotype only in connection with assays that 

directly determine increased plasma membrane disintegra-

tion and loss of clonogenicity (see above). Similarly, a de-

crease in ROS production by incubation with anti-oxidants 

might support the mechanistic involvement of ROS in the 

lethal process, but only when cell death is adequately mon-

itored. 

 

ACCIDENTAL VERSUS REGULATED CELL DEATH 

Cellular demise in yeast may occur in two mutually exclu-

sive variants: either as an accidental event or through a 

regulated pathway. Accidental cell death (ACD) occurs up-

on exposure to severe conditions, resulting in a rapid, un-

controllable and unavoidable form of death. ACD may fol-

low a series of extreme stimuli, including physical condi-

tions, such as very high temperatures or pressures, severe 

chemical insults like strong detergents and high concentra-

tions of acids or bases as well as mechanical challenges, for 

instance, vigorous shearing or ultrasonic treatment. The 

immediate nature of ACD, which is characterized by a vir-

tually immediate structural breakdown of cells, allows no 

form of pharmacologic or genetic inhibition. Thus, this 

form of cell death does not constitute a direct target for 

modulation or prevention. However, it remains unclear 

whether yeast cells undergoing ACD may release endoge-

nous, bioactive molecules to the extracellular space [75, 

79]. If so, such molecules could interact with local cells that 

have survived the primary insult and ignite a response 

within the whole yeast population. Such a consequence of 

ACD may resemble the release of damage-associated mo-

lecular patterns (DAMPs) by dying human cells. DAMPs can 

stimulate a direct or indirect (via innate immune effectors) 

cytotoxic response in surrounding bystander cells that have 

survived ACD [140–144]. In such a case, interfering with 

the effects of ACD on the rest of the population remains 

possible.  

ACD is often equated with necrosis, which in yeast is 

usually identified as a cellular condition of early plasma 

membrane permeabilization in the absence of typical 

apoptotic markers and of complete disintegration of sub-

cellular structures [103]. Indeed, ACD usually exhibits mor-

phological features of necrosis, but mounting evidence 

suggests that – as it is the case in human cells – a physio-

logically relevant, regulated type of necrosis does also exist 

in yeast. Thus, we recommend to avoid using the term 

“necrosis” to define an accidental and uncontrollable type 
of death, and to favor the term “ACD”. We believe that this 
will avoid any potential misunderstandings regarding the 

two fundamentally dinstinct (accidental versus regulated) 

modalities of yeast cell death manifesting with a necrotic 

morphology (see below). 

That said, many lethal stimuli result in a form of yeast 

cell death that – at odds with ACD - is executed by a genet-

ically encoded, dedicated molecular machinery. In higher 

eukaryotes, a distinction is made between such a con-

trolled form of cell death when it occurs (i) in the frame-

work of a purely physiological program, e.g., during (post-) 

embryonic development or tissue homeostasis, or (ii) as a 

response to either a perturbation of intracellular or extra-

cellular homeostasis, e.g., upon exposure to mild stress or 

as a consequence of mutations. Cell death occurring in the 

former scenario is termed “programmed cell death” (PCD), 
while the expression “regulated cell death” (RCD) encom-

passes both PCD as well as all other instances of cell death 

that depend on a molecular machinery [145–148]. 

For yeast cell death, many authors have used the term 

PCD to interchangeably refer to all types of cellular demise 

that are not accidental (i.e., to all instances of RCD). How-

ever, emerging evidence is confirming that a yeast popula-

tion, be it a liquid culture or a solid colony, bears a degree 

of complexity reminiscent of multicellular organisms that 

demands a revision of this terminology. For instance, dur-

ing yeast gametogenesis (or sporulation), immature meiot-

ic products as well as the mother cell itself succumb via 

activation of vacuolar rupture [149, 150]. Interestingly, the 

mother cell’s demise is delayed until spores have reached a 
threshold degree of differentiation. Thus, in this scenario, 

RCD occurs in the frame of a developmentally coordinated 
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program, de facto representing an instance of PCD. During 

yeast chronological aging, the cellular community main-

tains homeostasis thanks to the programmed death of 

dysfunctional or old cells, which spares and provides nutri-

ents to the fitter individuals [75, 76]. In yeast colonies, 

stationary-phase or slow-growing cells differentiate into 

specific subpopulations with unique metabolic properties 

and particular functions within the colony [151, 152]. 

These examples show that, indeed, yeast populations can 

harness cell death to control coordinated development, 

homeostasis and differentiation. Hence, we propose to 

define PCD in yeast as a specific instance of RCD that is 

executed in the frame of such physiologic programs. All 

other forms of regulated demise (e.g., cell death induction 

upon stress, or as a consequence of specific genetic altera-

tions) should be referred to with the superordinate term of 

RCD. 

Importantly, since RCD depends on a defined molecular 

machinery, it can be modulated with pharmacologic or 

genetic means. The extent of such modulation depends on 

the progression of the process across a hitherto poorly 

defined point-of-no-return. According to the NCCD, the 

processes preceding such point are part of cellular stress 

responses, while those following it belong to actual cell 

death signaling [93]. Adopting this rationale, RCD can be 

accelerated or delayed (but not avoided) if the point-of-no-

return has been trespassed. Instead, prior to that point, 

modulating stress responses or avoiding stress can prevent 

RCD. However, the definition of this point-of-no-return has 

not been established yet, implying that the exact boundary 

between the reversibility of a stress stimulus and the irrev-

ocable engagement in a lethal cascade remains to be speci-

fied.  

Yeast RCD may follow different subroutines (see below) 

that can be differentiated from each other by a series of 

morphological and biochemical features. To precisely char-

acterize the lethal phenotype, we recommend (i) to first 

determine if cell death actually occurs (as opposed to only 

reduced viability/vitality), (ii) if it does, to then examine the 

subroutine(s) involved via morphological and biochemical 

observations, using at least two different detection meth-

ods [155], and (iii) finally, to corroborate the implicated 

mechanism(s) via genetic and pharmacological interven-

tions (Figure 2). Finally, it should be noted that in cell 

death research, it is generally advisable to determine the 

kinetics of the parameters under scrutiny [156]. In order to 

detect the differential appearance of apoptotic or necrotic 

characteristics, we recommend assessing such features at 

different time points to yield a better resolution of cell 

death events. Importantly, subroutine-specific markers 

should precede cell death. In the following sections, we will 

describe yeast RCD subroutines and the techniques to pre-

cisely discriminate amongst them (Table 1). Beyond the 

specificities outlined below, a number of general issues 

and notes of caution also need to be considered (Box 2). 

 

 

 

APOPTOSIS 

Most studies on RCD in yeast have been conducted in the 

budding yeast Saccharomyces cerevisiae. This includes the 

first observation of an apoptotic phenotype in yeast, spe-

cifically in a strain with a point mutation in the gene coding 

for the cell cycle protein Cdc48 [63]. One of the early indi-

cations for an active cellular participation in the yeast 

apoptotic process was that RCD in this setting can be pre-

vented by inhibiting de novo protein synthesis, e.g. by cy-

cloheximide [125]. Ever since these discoveries, a set of 

methods has been established, validated and refined that 

allows to specifically determine whether a yeast cell has 

engaged in an apoptotic pathway [62]. These techniques 

are mainly based on the key morphologic and biochemical 

features of an apoptotic cell. We suggest employing at 

least two of these apoptosis-specific methods (one of them 

should be Annexin V staining, see below) and include at 

least one viability assay (preferably clonogenic capacity) to 

describe a corresponding phenotype. 

One of the events most commonly associated with 

apoptosis is the exposure of phosphatidylserine (PS) on the 

outer leaflet of the plasma membrane [182]. However, PS 

externalization might be context-dependent to a certain 

degree, at least within the complexity of the human cellu-

lar network [93, 183, 184]. It remains unclear whether this 

is also the case in yeast, although the current evidence 

suggests that PS externalization is a universal feature of 

yeast cells undergoing apoptosis. PS externalization can be 

assessed via monitoring PS-binding to Annexin V, which is 

usually fluorescently labeled for quantitative (e.g., fluores-

cence reader-based or flow cytrometric analyses) and qual-

itative (microscopic) evaluation. To this aim, the cell wall 

needs to be (partially) digested in order to make the exter-

nalized PS accessible to Annexin V and permit binding. 

Usually, the Annexin V assay is performed as a co-staining 

with a marker for plasma membrane rupture like PI [63, 96, 

104, 157]. This allows for the discrimination between sev-

eral subpopulations as they occur in yeast: (i) Annexin V/PI 

double negative, (ii) Annexin V positive, (iii) PI positive, and 

(iv) Annexin V/PI double positive cells.  

We believe that the second (Annexin V positive) and 

third (PI positive) subpopulations can be readily interpret-

ed as apoptotic and primary necrotic, respectively, provid-

ed that at least one more assay is performed to validate 

this assumption. For the fourth subpopulation (Annexin 

V/PI double positive cells), we favor the following interpre-

tation: unlike multicellular animals, a yeast population pre-

sumably does not eliminate apoptotic cells via the phago-

cytic activity of other yeast cells. In the absence of such 

clearance by scavengers, an apoptotic cell eventually un-

dergoes a metabolic collapse that results in breakdown of 

the plasma membrane integrity and thus a necrotic pheno-

type. This phenomenon is termed “secondary necrosis” to 
discriminate it from “primary necrosis”, which describes 
the phenotype of “cellular necrosis occurring ab initio” 
[185, 186]. We thus view the above-mentioned fourth sub-

group (Annexin V/PI double positive cells) as a late apop-

totic population that has undergone secondary necrosis.  
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Table 1. Methods commonly used for the assessment of cell death, viability and vitality as well as for the identification of different cell 

death subroutines in yeast. 
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Still, these cells might also have undergone secondary 

necrosis following other cell death subroutines, but at this 

point there is no evidence for this possibility, which should 

be evaluated earlier in the cascade of events leading to 

cellular demise. Importantly, the phenotypical shift from 

apoptosis to secondary necrosis might reflect defined mo-

ecular events and thus be experimentally distinguishable 

from ACD with necrotic features and primary necrosis also 

at the functional level [187, 188]. It could be argued that, 

in turn, primary necrotic cells might eventually stain for 

apoptotic markers like Annexin V, thus also yielding An-

nexinV/PI double-stained cells. However, necrotic markers 

do appear without apoptotic characteristics and such pri-

mary necrotic populations are stably maintained during 

long-term physiological conditions like chronological aging. 

This strongly suggests that primary necrosis can be distin-

guished from secondary necrosis by the absence or pres-

ence of apoptotic markers. Still, no study has yet systemat-

ically evaluated this distinction at the cellular level, for 

instance, via cell sorting analysis. Until such further analysis, 

this interpretation remains a valid approximation. In any 

case, we suggest determining the kinetics of the cell death 

process (see above) to accurately resolve the appearance 

of these subpopulations. In general, any approaches that 

facilitate monitoring death scenarios time-dependently 

represent a helpful improvement, for instance replicative 

age-associated changes using microfluidic platforms [189–
193].  

In multicellular animals, clearance of apoptotic cells is a 

central physiological feature for maintenance of organis-

mal homeostasis. Still, secondary necrosis does occur un-

der certain circumstances [186]. In vitro, cultured metazo-

an cells that are left to finalize the apoptotic process with-

out interruption (e.g., without interference of phagocytic 

scavenging) eventually succumb with features of secondary 

necrosis [186, 194, 195]. In vivo, secondary necrosis may 

occur in multicellular animals, for example, when apoptotic 

cells are shed into the lumina of hollow organs with low 

probability to encounter scavengers or when apoptotic cell 

death occurs at a pace that surpasses the local scavenging 

capacity [186, 196, 197]. These observations suggest that 

secondary necrosis following apoptosis is a conserved out-

come upon exposure to pro-apoptogenic stimuli if clear-

ance mechanisms are absent or insufficient.  

Besides PS externalization, apoptotic cells exhibit 

chromatin condensation, which can be readily assessed by 

nuclear staining with dies such as 4',6-diamidino-2-

phenylindole (DAPI) followed by microscopic inspection [63, 

125]. Another characteristic that accompanies yeast apop-

tosis – especially at late steps of the process - is DNA frag-

mentation. It is often assessed via the “terminal deoxynu-

cleotidyl transferase-mediated dUTP nick end labeling” 

(TUNEL) test, which allows for the fluorescent labelling of 

free 3′-hydroxyl ends that can be easily monitored via mi-

croscopy analysis and quantified using a fluorescent plate 

reader or a flow cytometer [63, 96, 104, 157]. In many 

yeast cell death scenarios, TUNEL positivity matches apop-

totic markers determined by other assays [96, 104, 157, 

198]. However, TUNEL staining detects free 3′-hydroxyl 

ends regardless of the molecular mechanism involved in 

generating them. In fact, in some conditions, necrosis, DNA 

repair, or active gene transcription have all been shown to 

yield TUNEL positivity, at least in human cells [199-204]. In 

yeast, the nature and the kinetics of DNA fragmentation 

detected by the TUNEL test need further investigation, 

even though previous studies have partly addressed these 

issues [79, 205]. In summary, we recommend using the 

TUNEL test as a method to determine the occurrence of 

DNA fragmentation associated with yeast apoptosis rather 

than a technique for quantifying apoptosis on its own. In 

addition, the TUNEL test may provide an assay to screen 

for cellular demise in high-throughput assays. In this set-

ting, hits must be confirmed by testing cellular membrane 

integrity and clonogenic capacity. Furthermore, apoptotic 

DNA damage may be tested using the so-called “comet 
assay”, or single cell gel electrophoresis, whereby physio-

logic DNA strand breaks are distinguished from apoptotic 

DNA dissolution in individual cells (the latter forms a dis-

tinct cluster of fragmented DNA at the ‘tail’ of the comet) 
[206]. In addition, the flow cytometric detection of a sub-

population with hypoploid DNA content (sub-G0/G1) has 

been previously employed as an alternative to assess apop-

totic DNA degradation [207]. However, such results should 

be interpreted carefully, since apparent hypoploidy may 

also reflect an artefact from the debris associated with 

necrotic cells, unless discarded by cell sorting analyses 

[208].  

Apoptotic cell death often follows mitochondrial outer 

membrane permeabilization (MOMP), which culminates 

with the release of pro-apoptotic proteins from the inter-

membrane space and irreversible loss of mitochondrial 

transmembrane potential (Δψm) [96, 159, 160, 162-164, 

209,210]. A detailed analysis of these mitochondrial sube-

vents requires precise kinetic determinations. For instance, 

in acetic-acid induced RCD, pro-apoptotic cytochrome c 

release, which depends on the ADP/ATP carrier [211], oc-

curs before mitochondrial integrity is lost [212]. All of these 

biochemical features might be evaluated to determine an 

apoptotic phenotype, though it should be kept in mind that 

mitochondria have also been associated with at least one 

other RCD subroutine (regulated necrosis) [149]. Thus, we 

recommend the involvement of mitochondria in apoptosis 

to be validated by at least two specific methods (one of 

them should be assessing PS externalization) and at least 

one viability assay (preferentially clonogenic capacity). 

A large number of apoptotic regulators and executors 

have been identified in yeast so far [62]. This enables tes-

ting whether RCD occurring upon a given stimulus is at 

least partly dependent on one of these factors based on 

genetic manipulations, pending confirmatory experiments 

with morphological and biochemical assays. We advise to 

interpret results from genetic disruption or inhibition stu-

dies with caution, as it is difficult to estimate whether 

other or how many signaling cascades have been affected 

by a manipulation a priori specific. Indeed, many yeast cell 

death regulators, e.g., cytochrome c, apoptosis-inducing 

factor (Aif1), endonuclease G (Nuc1) and the yeast me-

tacaspase (Yca1), exert both lethal and vital functions [62, 
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69, 96, 159, 160, 213-216]. Importantly, the molecular 

network underlying apoptosis regulation in yeast is starting 

to be uncovered and additional regulators and subroutines 

that are yet unknown are expected to emerge. Thus, if a 

given cell death phenotype is not dependent on any of the 

known apoptotic regulators this does not exclude apopto-

sis as a possible cell death modality.  

For exploring a putative apoptotic mechanism in a giv-

en cell death scenario, the deletion strains of known apop-

totic regulators should be harnessed, since distinct apop-

totic subroutines exist that rely on different factors that 

may act independently from each other to orchestrate 

cellular demise. For instance, the yeast metacaspase Yca1 

is involved in many apoptotic RCD and PCD settings [62,  

69, 75]. Thus, cell death inhibition in yca1 knockout 

strains may point towards an apoptotic mechanism. How-

ever, under certain conditions, apoptosis is not executed 

via Yca1, but instead relies on other factors, including Aif1, 

Nuc1, the human cyclophilin D ortholog Cpr3, the BH3-only 

protein Ybh3 or ceramides [96, 160, 217-223]. Im-

portantly, while yeast harbors a single metacaspase-

encoding gene (YCA1), it is possible that other proteases 

might functionally substitute for metacaspases [224-226]. 

Thus, in cases where Yca1 is not involved in cell death regu-

lation, we favor the expression “Yca1-independent” in-

stead of “metacaspase-” or “caspase-independent” cell 
death. For cell death stimuli that are dependent on Yca1, 

we consider that the terms “Yca1-“, “metacaspase-“, and 
“caspase-dependent” are all appropriate. In fact, though 

much controversy has accompanied the denomination of 

metacaspases as true homologs of caspases, recent ad-

vances strongly indicate that this is the case [71]. Indeed, 

caspases and metacaspases seem to be evolutionary dis-

tinct variants with a functional commonality that do fulfill 

the criteria of homology, since they both share (i) a com-

mon cellular program (RCD) and (ii) common or at least 

overlapping substrates [70, 227, 228]. 

In human cells, extrinsic apoptosis defines a caspase-

dependent cell death subroutine that is induced by extra-

cellular lethal ligands. These ligands are sensed and trans-

mitted either via specific transmembrane death receptors 

or through so-called ‘dependence receptors'. Dependence 
receptors can trigger two opposite signaling pathways: in 

the presence of ligand, they elicit signals involved in cell 

survival, migration and differentiation, but in the absence 

of ligand, they promote apoptotic RCD. Thus, dependence 

receptors only exert lethal functions when the concentra-

tion of their specific ligands falls below a critical threshold 

level [229]. While in yeast no such dedicated receptors are 

known, cases of metacaspase-dependent apoptosis induc-

tion by molecules that may operate from the extracellular 

microenvironment have been described. For instance, tox-

ins secreted by virus-infected killer strains and a number of 

drugs have been shown to trigger apoptosis executed by 

Yca1 [82, 230-233]. Yet, it remains unknown whether these 

factors act on intracellular targets, or whether they may 

also bind to plasma membrane-localized receptors. Given 

the complexity and interactivity of a yeast population, it is 

BOX 2: GENERAL NOTES OF CAUTION  

 
Besides the specific points to be addressed for appropriately classifying an observed cell death phenotype, various general issues need to 

be considered, as well. 

(i) In general, we recommend to sequentially test the following: first, whether cell death occurs (defined as loss of plasma membrane 

integrity, which may be accompanied by decreased proliferation and/or diminished metabolic activity), second, the hallmarks of cell 

death subroutines as implied at the descriptive level (morphology, biochemistry), and third, the mechanisms of cell death as determined 

at the interventional level (genetic, pharmacological). Thus, it is imperative to combine multiple and complementary approaches, also 

with respect to kinetics (markers should preceed cell death), to characterize a specific cell death type. We recommend performing at 

least two independent and subroutine-specific assays, preferably not just restricted to the assessment of morphological features. 

(ii) While mainly qualitative or arduously quantifiable methods (e.g., electron microscopy) offer the possibility to accurately define spe-

cific cell death phenotypes, they may be poorly representative of the general sample conditions. Thus, we encourage using these me-

thods for exploratory purposes, but strongly suggest accompanying them with quantitative assays. 

(iii) In many cell death settings, the dependence on specific factors may be tested by inhibiting their function. Where possible, we 

recommend employing genetic tools (i.e., knockout, temperature-sensitive mutants) instead of pharmacological inhibitors. Indeed, the 

specificity of such compounds might not be sufficient to precisely block the activity of a single pathway/factor that characterizes a cell 

death subroutine [153]. 

(iv) If knockout strains are used to inquire the involvement of the corresponding gene/protein in a given cell death scenario, we recom-

mend employing self-generated deletion strains and control results by complementation analysis (i.e., ectopic re-expression of detleted 

genes etc.). Those available at public strain collections constitute useful starting tools for experimentation, but may have accumulated 

secondary mutations that might lead to misinterpretations [154]. 

(v) For the quantification of fluorescence-based detection methods, we recommend using flow cytometry rather than a fluorescent 

plate reader. Data obtained with a plate reader may indeed be influenced by the fluorescence of the entire culture, which may vary with 

several parameters including strain-specific cell size. Few highly fluorescent cells may yield the same signals compared to a substantial 

fraction of moderately or low fluorescent but still positively stained cells. Thus, even upon normalization to the OD600, bulk results are 

less accurate than results obtained with flow cytometry, which is based on actual single-cell fluorescence. Plate readers may be conven-

ient for high-throughput studies, but positive hits should be validated using flow cytometry. 
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conceivable that a yet-to-be-determined extrinsic apoptot-

ic pathway may co-regulate cell death within a yeast com-

munity [79, 234]. However, and meeting the definition of 

extrinsic apoptosis put forward by the NCCD, we suggest 

not to use this term until dedicated death receptors or 

dependence receptors are discovered. Similarly, another 

specific type of apoptosis in human cells, anoikis, which 

defines a form of intrinsic apoptosis restricted to adherent 

cells that detach from the matrix [235], is theoretically 

possible in yeast. Indeed, adhesion mediated by cell-wall-

bound adhesins is crucial for colony and biofilm formation 

as well as for host-pathogen interactions [236-238]. While 

it remains conceivable that normally adherent yeast cells, 

which detach in a specific scenario where adhesion is im-

portant, might undergo a form of anoikis, this form of RCD 

has not (yet) been described in yeast. 

 

REGULATED NECROSIS 

In dying yeast, necrotic characteristics may appear in the 

frame of a primary or secondary necrotic process. While 

secondary necrosis is probably a consequence of apoptosis 

in most if not all cases (see above), a primary necrotic phe-

notype (which occurs without any preceding apoptotic 

traits) may result from two cell death modalities: ACD or 

RCD. Indeed, yeast primary necrosis can not only be the 

outcome of severe insults (accidental necrosis), but also 

develop as an event orchestrated by a genetically con-

trolled machinery (regulated necrosis) [103]. In both cases, 

cell death is characterized by a set of distinct morphologi-

cal and biochemical features that defines it as necrotic.  

Necrosis first leads to a gain in cell volume and orga-

nelle swelling (oncosis), which may be observed, for in-

stance, using fluorescent microscopy of GFP-fused proteins 

that mark organellar membranes [149]. Eventually, necrot-

ic cells also show the complete breakdown and disintegra-

tion of subcellular structures, which can be assessed using 

electron microscopy [157]. Similarly, the rupture of the 

plasma membrane that accompanies necrosis can easily be 

assayed via electron microscopy or fluorochromes like PI 

that only enter cells with a disintegrated cell membrane, 

but are excluded by healthy or early apoptotic cells [103, 

157]. In yeast, the release of intracellular material has not 

yet been systematically employed as an assay to character-

ize necrotic cell death. However, the nucleo-cytosolic 

translocation of Nhp6A may be used to assess necrosis in 

yeast [104, 157, 165, 239]. Nhp6A is the yeast homolog of 

the mammalian protein high mobility group box 1 

(HMGB1), whose release accompanies immunogenic cell 

death mammalian cells [144, 240]. We suggest assessing at 

least two of these markers in order to define bona fide 

primary necrosis in yeast. In addition, viability should be 

measured with at least one assay (preferably by assessing 

clonogenic capacity) to corroborate cellular demise. Finally, 

we strongly recommend to exclude the presence of apop-

totic death indicators, and most importantly to differenti-

ate the observed phenotype from secondary necrosis. 

As in higher eukaryotic cells, in yeast, ACD may be trig-

gered upon the challenge to extremely detrimental condi-

tions. Thus, agents like hydrogen peroxide, acetic acid, 

amphotericin B, or several metals that are pro-apoptotic at 

low doses may induce necrosis at high concentrations [125, 

218, 241, 242]. We assume that necrosis is the conse-

quence of radical cellular damage in most of these cases, 

and hence a bona fide instance of ACD. This is in line with 

the concept that not only the type but also the intensity of 

a given perturbation determines the form of death [91, 

243].  

As mentioned above, yeast can undergo regulated ne-

crosis, reminiscent of the RCD instances detected in human 

cells [244]. Indeed, genetic and chemical manipulations 

demonstrate that yeast necrosis can be inhibited, at least 

in some settings, indicating that it results from the activa-

tion of a molecular mechanism. In order to differentiate 

regulated from accidental necrosis, it is necessary to test 

whether a pharmacological or genetic intervention is capa-

ble of inhibiting necrosis in the scenario that is being stud-

ied. Known necrosis-modulatory approaches include the 

exogenous administration of the naturally occurring poly-

amine spermidine, which can specifically reduce primary 

necrotic cell death in the context of chronological aging 

[157]. A similar outcome can be obtained by genetic modu-

lation of polyamine biosynthesis [157]. In addition, the 

proteolytically inactive propeptide of the vacuolar endo-

protease Pep4, the homolog of human cathepsin D, has 

been shown to mediate antinecrotic effects. Accordingly, 

prolonged overexpression of Pep4 (or its propeptide) can 

extend chronological lifespan via specific inhibition of ne-

crosis [104, 245]. Intriguingly, the antinecrotic function of 

Pep4 depends on polyamine biosynthesis [104]. In fact, 

further vacuolar factors as well as other organelles, e.g., 

peroxisomes, might be connected to regulated necrosis, 

but this requires further investigation [246-250].  

Under certain circumstances, regulated necrosis in 

mammalian cells may be mechanistically linked to primary 

Δψm dissipation [251, 252], and such a mitochondrial per-

meability transition (MPT)-driven necrosis is connected to 

a series of pathological conditions [253]. In yeast, necrotic 

cell death also seems to depend on mitochondria in several 

settings [149, 165, 221]. In addition, recent reports show 

that necrotic cell death upon a lipotoxic insult requires a 

functional Rim101 signaling cascade that involves the cal-

pain-like protease Rim13/Cpl1 for lethal execution [254, 

255]. To interrogate a possible case of regulated necrosis, 

it is thus advisable to evaluate a possible mitochondrial 

involvement. For that purpose, it would be indicated to 

examine whether necrosis is diminished upon abrogation 

of mitochondrial function, e.g., in a ρ0
 strain (which lacks 

mitochondrial DNA). However, as previously mentioned, 

mitochondria are the main executors of apoptotic cell 

death. Thus, mitochondrial dependence cannot be used as 

a sole determinant to characterize regulated necrosis and 

must be accompanied by a set of other assays that demon-

strate the primary necrotic nature of cell death. Of note, 

several known mammalian mediators of regulated necrosis 

have homologs in yeast, including cathepsins, cyclophilin D, 

calpains, Hsp90, or protein kinase A, among others [244], 

but only a few of them have been examined in this context 
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[103, 256]. It will be interesting to see whether these fac-

tors possess a conserved necrotic function in yeast, which 

would expand the possibilities to determine bona fide reg-

ulated necrosis. Similarly, it remains to be seen whether 

known inhibitors of regulated necrosis in mammals also 

interfere with some cell death scenarios in yeast as well 

[257]. 

A number of questions remain to be answered with re-

gard to the actual existence of a necrotic RCD subroutine in 

yeast. In mammals, regulated necrosis plays a number of 

key roles, most prominently due to its immunogenic nature, 

for instance upon pathogen infection [244]. Such interac-

tion with the immune system, however, is a feature of 

complex multicellular organisms. Nonetheless, several 

physiological scenarios in which regulated necrosis seems 

to be instrumental for yeast, provide a teleological expla-

nation for its existence in a unicellular organism. During 

chronological aging, for instance, yeast cells die exhibiting 

markers of both early/late apoptosis and primary necrosis 

[61, 75, 157]. Interestingly, the fraction of cells dying by 

primary necrosis actually represents the majority of the 

dying population that is reduced upon a cytoprotective 

intervention, at least via polyamine-mediated lifespan ex-

tension [104, 157]. Another example is the necrotic death 

of the meiotic mother cell during the terminal stages of 

gametogenesis (sporulation) [149]. In this setting, necrosis 

occurs after the spores have reached the final phases of 

development, suggesting a controlled coordination that 

allows for gamete differentiation prior to the elimination of 

the mother cell. This might well constitute an instance of 

necrotic PCD, reinforcing the notion that yeast populations 

must be seen as a multicellular community of genetically 

identical cells that responds to selective pressures by en-

suring the long-term survival of at least one clonal individ-

ual. Therefore, it is conceivable that regulated necrosis 

might participate in cell-to-cell communication via the in-

evitable release of intracellular contents, as this is the case 

in higher eukaryotes [244]. Such hypothetical necrosis-

related quorum-sensing molecules, however, are yet to be 

identified in yeast. 

In human cells, different types of regulated necrosis 

have been defined, with MPT-driven regulated necrosis 

and necroptosis among the most extensively studied forms 

[258, 259]. In yeast, mechanistic insights into the control of 

necrosis are still very limited at this point. Thus, we strong-

ly discourage the use of neologisms to avoid confusion. 

Instead, we propose to employ the term “regulated necro-

sis” to describe any genetically controlled form of necrosis 
in yeast (or “programmed necrosis” if it is a form of PCD). 
Further research into the molecular activators, transducers 

and executioners of regulated necrosis in yeast will reveal 

whether potentially different subroutines of the process 

exist. 

 

OTHER RCD TYPES 

In mammalian cells, a series of other RCD modalities have 

been defined. Macroautophagy (hereafter referred to as 

autophagy) is a conserved catabolic process that orches-

trates the digestion of intracellular material (e.g., protein 

aggregates, organelles) in the vacuole. During autophagy, 

double-membraned vesicles (so-called autophagosomes) 

form and engulf cytoplasmic components, followed by the 

fusion of autophagosomes with the vacuole, where the 

cargo is degraded and the resulting macromolecules are 

released into the cytoplasm for reuse [16, 260]. Thus, au-

tophagy is predominantly a cell survival mechanism (see 

below). Historically, though, “autophagic cell death” 
(ATCD) was one of the three distinct cell death manifesta-

tions (besides apoptosis and necrosis) that were described 

for human cells based on morphological criteria [261]. Alt-

hough this original description did not indicate any func-

tional connection, it became a widespread belief that ATCD 

would point to cell death as a mechanistic outcome of au-

tophagy. The term ATCD has indeed been extensively mis-

used to describe cell death instances that occur in the 

presence of autophagic markers, instead of testing an ac-

tual dependency on the process and/or its molecular ma-

chinery, i.e., assessing the retardation of cell death via 

pharmacological or genetic inhibition of autophagy [260]. 

In fact, the NCCD has recently agreed to identify such 

forms of cell death as “autophagy-dependent cell death” 
(ADCD) [95]. ADCD can in principle describe (i) cell death 

dependent on the autophagic machinery (in its whole, or 

parts thereof) and (ii) cell death dependent on actual au-

tophagic degradation. Indeed, (i) components of the au-

tophagic machinery have been etiologically implicated in 

specific settings of RCD in Drosophila melanogaster and 

human cells [243, 262-266]. In these contexts, the molecu-

lar apparatus for autophagy contributes to cellular demise. 

To our knowledge, however, there is no study in which cell 

death has been directly linked to (ii) a functional autophag-

ic flux. Thus, we surmise that most cases of ADCD rather 

depend on components of the autophagic machinery than 

on autophagic responses. In fact, the molecular machinery 

of ADCD and adaptive autophagy partially differ (at least in 

D. melanogaster) [267, 268]. 

In yeast, the term ATCD has been used to describe cel-

lular demise occurring under specific external stress condi-

tions like zinc-induced cell death [269], heterologous ex-

pression of human α-synuclein [174] or human p53 [270] 

as well as internal deficiencies like defects in inorganic py-

rophosphatases [271]. Following the recent proposition 

by the NCCD, we favor the use of the term ADCD (instead 

of ATCD) in yeast, as well. Again, ADCD should be used to 

describe cell death only when autophagy (or at least two 

proteins from the autophagic machinery, see below) has 

been experimentally given an etiological implication in the 

process. As a note of caution, it is important to underscore 

that the term ADCD should be avoided if the autophagic 

machinery (or components thereof) is activated parallel to 

(rather than triggering) RCD or if it promotes other RCD 

subroutines [95]. In fact, in most known cases from yeast 

to human, autophagy acts as a cytoprotective response to 

detrimental stress conditions, in which it disposes dam-

aged cellular material [37, 272, 273]. Accordingly, cell 

death is rather accelerated than repressed upon inhibition 

of autophagy in both human cells and yeast [274-276]. In 
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fact, and despite the evidence for autophagy activation in 

the course of cell death (see above), the very existence of 

ADCD as an actual cell death type has been questioned 

[277, 278]. In any case, cell death may often be preceded 

or accompanied by autophagy markers, probably mirroring 

the final effort of dying cells to counteract a lethal stress. 

Thus, in most cases, cells showing biomarkers of autophagy 

might be dying with, and not by, autophagy. We thus con-

sider that the use of the term ADCD should be used with 

utmost care, taking into account the aforementioned NCCD 

recommendations [95]. 

A number of microscopic, biochemical and enzymatic 

assays are available and established [175, 279, 280] to de-

termine autophagic flux, i.e., the progression through the 

pathway and thus its degradation activity [175, 176]. One 

of the most common methods to measure autophagic flux 

in yeast is to evaluate the vacuolar processing (or GFP lib-

eration) of N-terminally GFP-tagged Atg8, a central modu-

lator of autophagosome formation, and its delivery to the 

vacuole, via fluorescence or immunoblot analysis [166-170]. 

Other widely used assays include assessing the autophagy-

dependent activity of a modified version of the vacuolar 

alkaline phosphatase Pho8 via a specific enzymatic assay 

[118, 171] or monitoring the pH-change of cellular com-

partments upon delivery of pH-sensitive fluorescent pro-

teins to the vacuole (such as Rosella) [173]. However, such 

quantitative assessments – while necessary – are not suffi-

cient to characterize ADCD: for that purpose, a functional 

dependency on the autophagic machinery (or components 

thereof) must be concluded, as mentioned above. Thus, all 

cases of cell death that are accompanied by autophagic 

markers, but cannot be suppressed or retarded by inhibit-

ing the (at least parts of) the molecular apparatus of au-

tophagy should not be considered as ADCD.  

The causative implication of autophagy in cell death 

may be explored by deletion of autophagy-related (ATG) 

genes, which are the key orchestrators of the process [175]. 

However, ATGs may have autophagy-unrelated functions 

as well [281]. Thus, akin to the recommendations for high-

er eukaryotes [260], we suggest testing at least two (and 

better more) distinct ATG deletions to assess dependency 

on the autophagic machinery. Inhibitory components of 

the autophagic apparatus can also be targeted, e.g., by 

constitutively activating the TOR complex 1 or the RAS/PKA 

signaling pathway, resulting in autophagy suppression 

[178-181]. As mentioned above, dependence of cell death 

on the molecular machinery of autophagy (in its whole, or 

parts thereof) does not imply cell death to be dependent 

on autophagic degradation. To evaluate if the autophagic 

response is implicated in the lethal execution, one may 

take advantage of chemical inhibition [175, 177]. Vacuolar 

proteolysis can be blocked through direct inhibition of pro-

teases either genetically (e.g., by deleting PEP4 or PRB1) or 

pharmacologically (e.g., by addition of pepstatin A, E-64D, 

leupeptin alone or in combination) as well as by neutraliz-

ing the vacuolar pH (e.g., by means of chloroquine) [175, 

176]. In yeast, chemical inhibition of autophagosome for-

mation (as it is commonly applied in mammals using specif-

ic suppressors of phosphatidylinositol 3-kinase) is not typi-

cally employed, since substantially higher concentrations 

of these drugs are often needed [262, 265]. In fact, genetic 

approaches are generally favored in the ADCD field due to 

insufficient specificity of most pharmacological autophagy 

inhibitors [260]. 

The expression “mitotic catastrophe” (MC) was first 
employed to illustrate the lethal phenotype of a tempera-

ture-sensitive fission yeast mutant strain that enters mito-

sis prematurely without effectively completing it [11]. The 

term MC has since been most frequently used to define 

cell death that occurs upon aberrant mitosis [94], which is 

frequently accompanied by gross nuclear alterations. In 

yeast, as in mammals, it may result from genome instability, 

microtubule destabilization, DNA damage, or alterations in 

cell cycle checkpoints [282-285]. Intriguingly, yeast RCD has 

been connected to most of these features [63, 286-288]. It 

will be interesting to follow whether known MC scenarios 

culminate in specific RCD subroutines.  

In mammalian cells, death following mitotic aberrations 

can, indeed, be either apoptotic or necrotic [289]. Since 

mitotic defects may contribute to malignant transfor-

mation in the mammalian system, MC can be viewed as an 

oncosuppressive mechanism that operates via cell death or 

senescence [94, 289]. In fact, suppression of MC provokes 

tumorigenesis and cancer progression in mammals [290]. 

By analogy, MC in yeast might be a mechanism to elimi-

nate mitosis-incompetent and thus unfit cells from the 

population. Adhering to the recommendations by the 

NCCD [94], we thus propose to use the term MC as an in-

dependent molecular avenue that precedes RCD, but does 

not constitute a bona fide cell death executioner mecha-

nism by itself [290]. 

A series of other cell death subroutines have been de-

fined in human cells that, however, are restricted to specif-

ic cell types and thus do not apply to yeast. 

 

RCD IN OTHER YEASTS AND FILAMENTOUS FUNGI 

As previously mentioned, yeast cell death has been most 

extensively studied in S. cerevisiae. However, other yeast 

species have been shown to share similar cell death char-

acteristics and also bear a set of comparable cell death 

subroutines. Thus, we propose to extend the above-

described recommendations formulated above to all yeast 

species. 

Schizosaccharomyces pombe (fission yeast) has been 

shown to express an RCD machinery that responds to vari-

ous stimuli. These include physiological triggers such as 

aging, defects like the abnormal metabolism of intracellu-

lar lipids [291-294], and a number of insults, including ER 

stress [295], inositol starvation [292,  293] or the heter-

ologous expression of several metazoan apoptotic effec-

tors, e.g., BAX and BAK [296]. All of these stimuli converge 

on the activation of apoptosis. Of note, according to our 

definitions, neither regulated necrosis nor ADCD have been 

demonstrated in S. pombe (yet). Among the described S. 

pombe apoptosis executors are the chaperone Cnx1 (cal-

nexin) and the metacaspase Pca1 [295, 297]. Pca1 is in-

volved in the apoptotic response to inositol starvation 

[295, 297] and lipid-induced, non-apoptotic cell death in 
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minimal medium. Conversely, Pca1 does not seem to play 

any role during apoptosis induced by ER stress [295], 

valproic acid treatment [298], or lipotoxic stress in mini-

mal medium [292]. S. pombe apoptosis is expected to 

involve additional players, as there is evidence for the 

presence of different factors in fission yeast that are ho-

mologous to effectors of S. cerevisiae apoptosis, including 

the protease Nma111 [299], Aif1 [300] or endonuclease 

G [301]. 

The major opportunistic human pathogen Candida albi-

cans, which has become a molecular genetics model to 

study pathogenicity, virulence and fungal development 

[302, 303], can also undergo apoptosis following the ex-

posure to a plethora of different agents [242, 304–306]. 

To date, no RCD subroutines other than apoptosis have 

been described. Interestingly, apoptosis can occur in both 

the blastospore and the hyphal form of this organism 

[305] as well as in Candida biofilms, which are highly tol-

erant to standard antimycotics and hence difficult to eradi-

cate. Exploiting the apoptosis machinery in cells constitut-

ing biofilms may pave the way to their effective eradica-

tion, and hence limit the incidence of indwelling device-

associated infections (IDAIs) [307–309]. C. albicans also 

harbors a gene encoding a metacaspase (CaMCA1) [310], 

which mediates apoptosis, for instance, upon treatment 

with farnesol [311], caspofungin [312], and micafungin 

[232] or upon interaction with murine macrophages 

[311, 313]. Conversely, CaMca1 is not involved in other 

apoptotic settings like exposure to the plant defensin 

RsAFP2 [314]. The Ras–cAMP–PKA signaling pathway 

[315] and the bZip transcription factor Cap1 [316, 317] 

have also been implicated in distinct apoptotic scenarios. 

Finally, other closely related Candida species, e.g., Candida 

glabrata [318], Candida krusei [319], Candida 

dubliniensis [320], Candida tropicalis [321], or Candida 

parapsilosis [232, 322], have been reported to exhibit 

apoptotic markers upon lethal challenge.  

Cryptococcus neoformans, an important pathogen of 

immunocompromised and immunocompetent patients, 

also undergoes apoptosis [323, 324], with apoptosis-

inducing factor and two metacaspases independently or-

chestrating this lethal subroutine [324]. At least one other 

Cryptococcus genus member, Cryptococcus laurentii, has 

also been shown to respond to some stimuli with apoptotic 

RCD [325]. Furthermore, a number of other yeast species, 

e.g., Kluyveromyces lactis [326, 327], Pichia pastoris 

[328], Rhodotorula glutinis [329], or Zygosaccharomyces 

bailii [330, 331], may develop signs of apoptosis under 

certain conditions. We surmise that similar lethal programs 

are to be discovered in other yeast species. In fact, such 

discoveries and further characterization of both identified 

and yet uncovered RCD programs are expected to follow in 

the near future, given that antifungal therapeutics for 

medical and industrial purposes may increasingly rely on 

targeting the yeast RCD machinery [332, 333]. We thus 

suggest adopting the recommendations formulated above 

for the description of cell death in all types of yeasts. 

It should be noted that a growing body of work is ad-

dressing RCD in multicellular fungi. A major human patho-

genic fungus that causes life-threatening disease is Asper-

gillus fumigatus, which has also been demonstrated to 

undergo apoptosis under certain conditions [334, 335]. The 

genome of A. fumigatus codes for two metacaspases (CasA 

and CasB), whose relative contribution to cell death seems 

to depend on the scenario [335–337]. In fact, other fungal 

proteases might also exert metacaspase activities that are 

relevant for cell viability and/or survival [337]. Aspergillus 

nidulans is another member of the Aspergillus spp. that has 

been demonstrated to undergo RCD [338, 339]. The ge-

nome of A. nidulans appears to code for an apoptotic ma-

chinery with relevant players like apoptosis-inducing factor 

and two putative metacaspases [339, 340]. Another fila-

mentous fungus, Podospora anserina, is used as an aging 

model that incorporates crucial apoptotic factors, including 

two metacaspases (PaMCA1 and PaMCA2) and at least five 

Aif members, of which only mitochondrial (but not cyto-

solic) isoforms seem to be relevant for aging-driven RCD 

[341, 342]. A role for the P. anserina cyclophilin D ortholog 

in RCD [343–345] as well as for autophagy in aging and 

lifespan control of P. anserina [346, 347] have been re-

ported. Further instances of fungal RCD [306, 348] have 

been documented in Paracoccidioides brasiliensis [349], 

Colletotrichum gloeosporioides [350], Fusarium oxysporum 

[351], Fusarium graminearum [352], Mucor racemosus 

[353], Botrytis cinerea [354], Penicillium expansum [355], 

Rhizopus oryzae [356], Scedosporium prolificans [357] and 

Neurospora crassa [358]. As multicellular organisms, fila-

mentous fungi have developed programs that are reminis-

cent of organismal RCD. For instance, several putative 

homologs of factors relevant for animal apoptotic control 

that are not found in unicellular yeast are present in the 

genomes of filamentous species [359]. Thus, multicellular 

fungi may have complex traits not present in yeasts that 

may add to the criteria and definitions presented herein. 

 

CONCLUDING REMARKS 

The impact of yeast (and other fungi, including filamentous 

species) on our lives at multiple socioeconomic, scientific 

and medical levels emphasizes the importance of decoding 

the mechanisms that determine its survival and control its 

demise. Therefore, the molecular comprehension and po-

tential manipulation of yeast cell death hold major promise 

for biotechnological and biomedical applications. We antic-

ipate that numerous fields might benefit from the possibil-

ity to modulate yeast cell death. For instance, the produc-

tivity of yeast during large-scale processes in the pharma-

ceutical and industrial arenas largely depends on its viabil-

ity and ultimately on its tolerance to stress and its demise 

in stationary cultures. Also, novel pharmacological ap-

proaches that specifically target the RCD machinery of 

yeast pathogens may bypass the ever-increasing resistance 

to classical antimycotics, which is an emerging public 

health problem. Other medical manipulations of yeast RCD 

are also conceivable, e.g., strategies to intervene on path-

ogenic deviations of the mycobiome. Finally, yeast will 

continue to help the community in deciphering eukaryotic 

cell death pathways as it serves as an important model for 

human disease. Given its power to study the relationship 
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between genotype and phenotype, we expect to gain fur-

ther insights from yeast to identify actionable targets that 

may be subjected to pharmacological (drug discovery) or 

genetical manipulation.  

For all these reasons, it is now imperative to set the 

standards for defining and studying cell death in yeast. 

That said, we want to emphasize that the present set of 

recommendations should be taken – as any scientific over-

view – as a snapshot of the current knowledge, rather than 

as a definitive compilation. Indeed, as research continues, 

we surmise that the present guidelines will have to be ex-

tended and revised. For instance, other nuanced changes 

to - or even novel types of - RCD may emerge from contin-

ued efforts to characterize the multicellular character of 

yeast populations, including but not restricted to uncover-

ing intercellular communication, interaction between pop-

ulations or cellular differentiation within colonies and bio-

films. Still, neologisms should be introduced with care and 

only when the characterization of a lethal process that 

bears new functional and biochemical aspects requires it. 

Otherwise, new expressions should be avoided to limit 

confusion. 

Another crucial point is to acknowledge the inherent 

complexity and dynamic nature of RCD in general and its 

different subroutines in particular. In fact, it is the crosstalk 

between pro-life and pro-death signals that determines 

cellular fate, and the activation of pro-survival pathways 

(such as autophagy) may often accompany lethal signals. 

Also, stress conditions may activate different RCD subrou-

tines that can be interconnected or may occur inde-

pendently, sequentially, or in parallel. Indeed, the inhibi-

tion of one specific RCD modality might trigger backup 

mechanisms that still ensure cell death execution. It is thus 

important to keep these points in mind when classifying a 

lethal phenotype. 

Altogether, the present guidelines attempt to unify the 

nomenclature and definition of yeast cell death modalities 

and - in our opinion – will help other fields of unicellular 

research (e.g., bacteriology, parasitology, etc.) to establish 

their set of recommendations using the present one as a 

basis. We are convinced that some degree of linguistic and 

experimental standardization is necessary for facilitating 

communication among researchers, especially at a point 

where the existence of yeast RCD is scientifically accepted 

and its socioeconomical impact is ever growing. 
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