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ABSTRACT

Spatial climate data are often key drivers of computer models and statistical analyses, which form the basis for scientific
conclusions, management decisions, and other important outcomes. The recent availability of very high-resolution climate
data sets raises important questions about the tendency to equate resolution with realism. This paper discusses the
relationship between scale and spatial climate-forcing factors, and provides background and advice on assessing the
suitability of data sets. Spatial climate patterns are most affected by terrain and water bodies, primarily through the
direct effects of elevation, terrain-induced climate transitions, cold air drainage and inversions, and coastal effects. The
importance of these factors is generally lowest at scales of 100 km and greater, and becomes greatest at less than
10 km. Except in densely populated regions of developed countries, typical station spacing is on the order of 100 km.
Regions without major terrain features and which are at least 100 km from climatically important coastlines can be
handled adequately by most interpolation techniques. Situations characterized by significant terrain features, but with no
climatically important coastlines, no rain shadows, and a well-mixed atmosphere can be reasonably handled by methods
that explicitly account for elevation effects. Regions having significant terrain features, and also significant coastal
effects, rain shadows, or cold air drainage and inversions are best handled by sophisticated systems that are configured
and evaluated by experienced climatologists. There is no one satisfactory method for quantitatively estimating errors in
spatial climate data sets, because the field that is being estimated is unknown between data points. Perhaps the best
overall way to assess errors is to use a combination of approaches, involve data that are as independent from those used
in the analysis as possible, and use common sense in the interpretation of results. Data set developers are encouraged
to conduct expert reviews of their draft data sets, which is probably the single most effective way to improve data set
quality. Copyright  2006 Royal Meteorological Society.
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1. INTRODUCTION

There is currently a great demand for spatial climate data sets in digital form. Basic climate elements provided
by these gridded data sets typically include minimum and maximum temperature and precipitation, given over
a monthly (or smaller) time step, and averaged over a nominal 30-year period. The demand for these data
sets has been fueled in part by the widespread adoption of computer technology that enables a variety
of hydrologic, ecological, natural resource, and other models and decision support tools to be linked to
geographic information systems (GIS). Spatial climate data are often key drivers of computer models and
statistical analyses, which form the basis for scientific conclusions, management decisions, and other important
outcomes. However, despite the great importance of climate inputs to their analyses, many users do not have
a substantial background in geospatial climatology (the study of the spatial patterns of climate), and are,
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therefore, not in a position to critically assess the suitability of spatial climate data sets for a particular
application. Errors associated with spatial climate data are often, by default, assumed to be negligible, or at
least smaller than those associated with other spatial data sets. This assumption can lead to serious errors in
the interpretation of results, and conclusions and decisions made from those results.

The recent availability of very high-resolution climate data sets at the continental to global scale affords
a good opportunity for discussion of the suitability of spatial climate data sets. These data sets are seeing
heavy usage, but also raise important questions about the tendency to equate resolution with realism. In the
past, gridded, computer-generated data sets designed to cover large areas were developed mainly at coarse
resolution (∼50 km). They were not held to the same standards of accuracy as data sets that covered small
areas in great detail, or the traditional hand-drawn climate maps that engaged human knowledge in the process.
Coarse-grid climate data sets could not possibly incorporate many of the spatial climate features we know to
be present, such as elevational gradients, coastal effects, temperature inversions, and rain shadows, because
these basic features occurred primarily at scales below those of the coarse grid. Elevation guidance (used
heavily in the preparation of hand-drawn climate maps since the 1950s) began to be used in these data sets
only a few years ago, with the implicit understanding that this variable was being specified at a coarse scale,
thus allowing interpolation techniques to avoid close scrutiny. Instead, attention was turned to issues other
than the detailed climatic realism of the gridded data, such as the inclusion of station data, quality control
(QC), data processing steps, and other activities required to produce data sets covering large areas.

Today’s computing capabilities now allow very fine-resolution climate grids (∼1 km) to be created over
most of the globe. To many users, an increase in resolution from tens of km to 1 km carries expectations of
increased realism and accuracy. This may or may not be true, depending on the circumstances. For example, it
is likely that less error and bias would be involved when estimating a climate value for a given location from
a 1-km grid cell average than that from a 50-km grid (Willmott and Johnson, 2005). However, a potential
problem exists: while the interpolation methods used to develop these fine grids are not any more sophisticated
than those used to develop the coarse grids of the past, known spatial climate features previously assumed
to be unimportant at the 50-km scale are now very important at the 1-km scale. In addition, a number of
poorly understood climate-forcing factors become important at or just below this scale. Understanding what
a spatial climate data set can and cannot deliver requires the user to have a working knowledge of what the
basic spatial climate-forcing factors are; how they affect climatic patterns; where, when, and at what spatial
scale they occur; and how they are handled by the major interpolation techniques.

The goal of this paper, then, is to provide users of spatial climate data, climate specialists as well as
nonclimatologists, with background and advice for assessing the suitability of a climate data set for a given
application, thus leading to better interpretations, conclusions, and decisions. Space limitations do not allow
more than the briefest overview of some important points, with many equally important issues being left
out, but perhaps the discussion will stimulate the reader to seek out more detailed literature. In Section 2,
well-known physiographic factors that produce observed patterns of climate are introduced, and the spatial
scales at which these factors operate are discussed. In Section 3, popular interpolation techniques are briefly
introduced, with a focus on how they accommodate the major climate-forcing factors. Section 4 discusses
the issues and difficulties with assessing error in spatial climate data sets. The paper concludes with a set of
general guidelines for assessing the suitability of a spatial climate data set for a given application.

2. OVERVIEW OF MAJOR SPATIAL CLIMATE-FORCING FACTORS

Long-term climate patterns observed across the globe are a result of a combination of many different processes
that manifest themselves at many spatial scales. General circulation patterns provide a large-scale backdrop,
including the positions of storm tracks, prevailing wind directions, monsoonal circulations, and other defining
features of a region’s climate. It is assumed that most of these patterns occur at scales large enough to be
adequately reflected in the station data, and thus are not explicitly accounted for by the major interpolation
methods. This assumption may not always be true over data-sparse parts of the globe, however.

Physiographic features on the earth’s surface modulate large-scale climate patterns produced by the general
circulation, sometimes creating steep gradients over short distances. Table I provides an overview of some of
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the more well-known physiographic forcing factors on precipitation and temperature patterns, and suggests
questions users can ask to assess their importance in a given region. Table II summarizes the importance of
well-known spatial climate-forcing factors at various spatial scales, compared to the densities of routinely
available climate stations.

The main physiographic features affecting spatial patterns of climate are terrain and water bodies. The
influence of terrain, often referred to as orography, is a dominant factor in all but the largest spatial scales.

Table I. Overview of the effects of well-known spatial climate-forcing factors on precipitation and temperature patterns,
and suggested questions for assessing their importance in a given region

Factor Assessment
question

Precipitation Summer
maximum

temperature

Summer minimum
and winter

maximum and minimum
temperature

Elevation Are there valleys, hills
or mountains present?

Complex patterns;
mainly local increase
with elevation, except
above maritime layer
or tradewind inversion

Strong, predictable
decrease with
elevation, except
maritime inversions

General decrease with
elevation, but
complicated or even
reversed by inversions
and cold air drainage

Terrain-induced
climate
transitions

Is there evidence of
sharply- defined
climate regimes defined
by terrain features?

Rain
shadows – precipitation
maxima on windward
slopes, sharply
transitioning to minima
on leeward slopes

Blockage of marine
airflow penetration,
producing sharp
contrast between
coastal and inland
temperatures

Divides air masses,
such as continental and
maritime

Cold air
drainage

Are there valleys, hills
or mountains present?

Limited effects Limited effects Temperature inversions
in protected valleys,
even in tropics; very
extensive at higher
latitudes

Coastal zones Are there oceans or
large lakes present?

Wetter coastal areas, if
water body is
significant source of
moisture

If water–land temps
differ, large gradients
between coastal and
inland temperatures

If water–land temps
differ, large gradients
between coastal and
inland temperatures

Table II. Importance of well-known spatial climate-forcing factors at various spatial scales, compared to the densities
of routinely available climate stations

Scale (km)

1 10 50 100 >100

Station spacing Intensive study
areas only

Densely populated
areas in developed
countries

Moderately
populated areas in
developed
countries

Sparsely populated
areas in developed
countries

Most other areas
of the globe

Factor
Elevation High High Moderate Low/Moderate Low/Moderate
Terrain-induced High High Moderate Low Low
climate
transitions
Cold air drainage High Moderate Low Low Low
Coastal zones High High Moderate Low Low
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Terrain affects include the direct effect of altitude on climate conditions; the blockage and uplift of major
flow patterns by terrain barriers; and cold air drainage and pooling in valleys and depressions. Large water
bodies, such as oceans and large lakes, provide moisture sources for precipitation; precipitation patterns are
dictated by how this moisture is transported and deposited inland. The thermodynamic properties of water
are very different than those of land, creating complex temperature gradients along coastlines and at adjacent
inland areas.

The relationship between elevation and precipitation is complex and highly variable in space, but in general,
precipitation generally increases with elevation, owing to forced uplift and cooling of moisture-bearing winds
by terrain barriers (Oke, 1978; Barry and Chorley, 1987). Exceptions are when the terrain rises above the
height of a moist boundary layer or trade wind inversion, resulting in an increase in precipitation with
elevation on lower slopes, and a rapid drying and a decrease of precipitation with elevation on the upper slopes
(Mendonca and Iwaoka, 1969). The elevation of maximum precipitation in such situations is variable, and
depends on factors such as the depth of the moist boundary layer, wind speed and direction, terrain profile, and
others. The process of blocking and uplifting of moisture-bearing winds amplifies precipitation on windward
slopes, and can sharply decrease it on leeward slopes downwind (Smith, 1979; Daly et al., 1994, 2002). The
resulting ‘rain shadow’ effect is common to many mountain ranges worldwide, and is especially noticeable
near major moisture sources, such as oceans. These effects are most important at grid cell resolutions of
less than 100 km, the scale below which major terrain features can be resolved. (However, large areas of
elevated terrain, such as the Tibetan Plateau and western United States, have significant climatic effects
at scales approaching 1000 km.) The direct effects of elevation on precipitation do not appear to increase
further below scales of about 5–10 km, owing to a number of mechanisms, including the advective nature of
moisture-bearing airflow, the viscosity of the atmosphere, delays between initial uplift and subsequent rainout,
and the movement of air around terrain obstacles (Daley, 1991; Daly et al., 1994; Sharples et al., 2005).

Temperature exhibits a strong, predictable decrease with elevation where the atmosphere is well mixed,
such as on summer days in inland areas. The main summer exception is in coastal regions with well-defined
marine layers, where maximum temperatures often increase with elevation above the marine inversion,
caused by cool coastal air near the surface undercutting warmer air aloft. Winter temperatures, and daily
minimum temperatures in all seasons, have a more complex relationship with elevation. In the absence of
solar heating or significant winds to mix the atmosphere, temperatures stratify quickly, and cool, dense air
drains into local valleys and depressions to form pools that can be hundreds of meters thick (Geiger, 1965;
Hocevar and Martsolf, 1971; Bootsma, 1976; Gustavsson et al., 1998; Lindkvist et al., 2000). This results in
temperature inversions, in which temperature sharply increases, rather than decreases, with elevation (Clements
et al., 2003). The scales at which inversions are important varies with valley size and terrain configuration, but
are typically less than 50 km. In polar regions, however, widespread regional inversions hundreds of kilometers
in extent can dominate wintertime temperature patterns (Milewska et al., 2005; Simpson et al., 2005). Even
in the subtropics, cold air drainage within sheltered valleys can have noticeable effects on temperature (Daly
et al., 2003). Terrain can also serve as a barrier between air masses, creating sharply defined horizontal
temperature gradients. For example, the Cascade and Sierra Nevada Mountains in the United States effectively
block arctic outbreaks from reaching the Pacific Coast during winter, resulting in a sharp separation of
continental and maritime temperature regimes along the mountain crests.

Coastal effects on temperature are most noticeable in situations where the water temperature is significantly
different than the adjacent land temperature. Such effects are well known in arctic coastal regions (Haugen
and Brown, 1980; Atkinson and Gajewski, 2002). Along the California coastline during summer, the contrast
between the cool, Pacific Ocean and the adjacent warm land mass can create daytime air temperature gradients
of more than 10 °C in just a few kilometers across the coastal strip (Daly et al., 2002). In subtropical climates
such as Puerto Rico, relatively warm sea-surface temperatures increase minimum temperatures along the coast,
compared to inland areas (Daly et al., 2003). Climate gradients associated with coastal proximity usually occur
within 50–100 km of the coastline.

Several additional spatial climate-forcing factors are most important at scales of less than 1 km, but may
also have effects at larger scales. These factors, which include slope and aspect, riparian zones, and land
use/landcover, are typically not accounted for in spatial climate interpolation. Slope and aspect at relatively
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small scales may play a role in determining the local orographic enhancement of precipitation. Slope and aspect
also modulate near-surface temperatures on the basis of exposure to solar radiation and wind (McCutchan and
Fox, 1986; Barry, 1992; Bolstad et al., 1998; Lookingbill and Urban, 2003). The effects of rivers and streams
on the temperature environment are similar to those of coastal effects, except that they are at a smaller scale,
and can be pronounced within a few hundred meters of the water (Brosofske et al., 1997; Dong et al., 1998;
Lookingbill and Urban, 2003). Land use/landcover variations, while most important below 1 km, are a major
consideration in the spatial representativeness of climate stations at much larger scales. For example, stations
located near buildings, roads, or other heat-absorbing surfaces may have very different temperature regimes
than those in open grasslands or heavily vegetated areas (Davey and Pielke, 2005). In data-sparse regions, a
single station, and its particular land use/landcover regime, may influence the interpolated climate conditions
for many tens of kilometers around that station. A further complication is that land use/landcover near a
station is often nonstationary over time, making it difficult to track and account for these effects. Some
aspects of land use/landcover, such as snow cover and irrigation, are discontinuous and intermittent in space
and time. On a related subject, studies have linked changes in land use/landcover to temporal variations in the
mesoscale climate, through changes in surface roughness, albedo, heat and moisture fluxes, and other factors
(Lawton et al., 2001; Pielke, 2001; Pitman et al., 2004).

As shown in Table II, except in the most densely populated regions of developed countries, station spacing
is likely to be insufficient to directly represent the major climate-forcing factors discussed above. Over most
areas of the globe, station spacing is typically 100 km or greater (Willmott et al., 1994). This spacing is
larger than the scales at which elevation, terrain-induced climate transitions, cold air drainage, and coastal
effects are most important. This means that climate patterns caused by these factors will likely be incorrectly
located, inaccurately represented, or not represented at all, if interpolated with simple methods. As discussed
in the next section, some interpolation techniques attempt to improve the representation of climate patterns
by developing relationships between existing station data and explanatory physiographic variables such as
elevation, aspect, coastal proximity, etc. for which much higher-density information is available.

3. OVERVIEW OF COMMON INTERPOLATION TECHNIQUES

Today’s most commonly used spatial climate data sets have been created through the process of statistically
interpolating data values from irregularly spaced station locations to a regular grid. Some data sets have been
derived from remotely sensed data or numerical model output, but we will focus on statistically interpolated
data sets here. It is worth mentioning, however, that future climate interpolation methods are likely to employ
hybrid approaches that combine remote sensing, numerical models, and station data interpolation (Pandey
et al., 1999; Daly et al., 2003; Smith et al., 2005).

Most major data sets in use today have been developed using one of six interpolation techniques: inverse-
distance weighting (IDW), various forms of kriging, ANUSPLIN tri-variate splines, local regression models
Daymet and PRISM, and regional regression models. These six techniques represent a mixture of general
numerical methods and specific models. IDW and kriging are related formulations that have been implemented
in a variety of models too numerous to discuss here, so they have been grouped together into one category.
ANUSPLIN employs general cubic spline theory, but because this specific model is extensively used in the
development of popular spatial climate data sets, it is the focus of discussion here. Daymet and PRISM are
specific models that both use local regression techniques and have been used extensively to develop popular
spatial climate data sets, but are otherwise very different in their formulation; they are therefore discussed
separately. Finally, the regional regression technique was treated as a general category, because there is
no one specific model used for data set development. Table III summarizes the strengths and weaknesses
of these interpolation techniques, and includes the URL of an example data set or data set description that
employed each technique. Table IV reports how the techniques account for well-known climate-forcing factors.
A popular hybrid method not included in these tables, but worth discussing in this paper, uses an existing
spatial climate data set to improve the interpolation of another data set. This is termed climatologically aided
interpolation (CAI).
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Table III. Summary of strengths and weaknesses of major interpolation techniques used to produce today’s popular spatial
climate data sets, and Web location of a major associated data set. If an entry is a specific model, the general interpolation

approach it employs is given in parenthesis after the name

Interpolation
Technique

Description Strengths Weaknesses Example data
set URL

IDW/2D
Kriging

General method that
uses horizontal distance
to a station to
determine weight in
averaging function

Readily available; IDW
very easy to apply;
both account for
distance relationships

Very simple; accounts
for distance effects only;
kriging requires
domain-wide
semivariogram, which
limits size and
heterogeneity of domain

http://climate.geog.
udel.edu/∼climate/

ANUSPLIN
(thin plate
splines)

Specific model that fits
smoothing splines to
the station data in three
dimensions

Readily available;
relatively easy to
apply; accounts for
spatially varying
elevation relationships

Simulates elevation
relationship only;
difficulty handling sharp
spatial gradients in
relationship

http://biogeo.berkeley.
edu/worldclim/
worldclim.htm

Daymet (local
regression)

Specific model that fits
local linear regressions
of climate versus
elevation

Local regression
accounts for spatially
varying elevation
relationships

Not readily available;
simulates elevation
relationship only; cannot
handle nonlinear and
nonmonotonic elevation
relationships

http://www.daymet.
org

PRISM (local
regression)

Specific model that fits
local linear regressions
of climate versus
elevation, with slopes
that vary with elevation

Local regression
accounts for spatially
varying elevation
relationships; also
accounts for
effectiveness of terrain
as barriers,
terrain-induced climate
transitions, cold air
drainage and
inversions, and coastal
effects

Not readily available;
requires significant effort
to take advantage of full
capability

http://www.ocs.
oregonstate.edu/prism/

Regional
regression

General method that
develops domain-wide,
multivariate functions

Accounts for effects of
multiple variables
(usually latitude,
longitude, and
elevation) on climate
patterns; stable
statistical relationship

A single, domain-wide
relationship limits size
and heterogeneity of
modeling domain; may
not reproduce station
values

http://geog.arizona.
edu/∼comrie/
climas/anim.htm

IDW is the simplest of the six interpolation techniques. It takes advantage of the well-known principle that
as the distance between a station and a location to be interpolated increases, the influence of that station on the
interpolated value is lowered (Renka, 1984; Dodson and Marks, 1997). IDW is a two-dimensional method,
and alone does not explicitly account for any of the climatic forcing factors listed in Table IV. However, even
sophisticated interpolation schemes incorporate some form of IDW algorithm. IDW is also used quite often to
interpolate deviations from a long-term mean in CAI interpolation schemes (see following text). Through their
research with IDW-based algorithms, Willmott et al. (1985b) demonstrated that distances across the earth’s
surface should be calculated in spherical, rather than planar coordinates, to avoid errors and distortions in the
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Table IV. Summary of how major interpolation techniques used to produce today’s most popular spatial climate data
sets account for well-known climate-forcing factors. Techniques that do not account for a factor explicitly (denoted by
‘station data only’) rely on the density and placement of station data to implicitly reflect that factor to varying degrees,

rather than the actual physiographic features and barriers that cause it

Interpolation technique Elevation Terrain-induced
climate transitions

Cold air drainage Coastal zones

IDW/2D Kriging Station data only Station data only Station data only Station data only

ANUSPLIN Station data,
polynomial fit

Station data only Station data only Station data only

Daymet Station data, linear
regression

Station data only Station data only Station data only

PRISM Station data, variable
linear regression

Station data, weighted
by moisture index,
effective terrain
height, and
topographic facets

Station data, weighted
by two-layer
atmosphere
(inversions), and
topographic index
(cold air drainage)

Station data, weighted
by coastal proximity
and topographic
facets

Regional regression Station data,
multivariate
regression

Station data only Station data only Station data only

resulting fields. Examples of data sets that used a form of IDW as the primary interpolation method include
Legates and Willmott (1990a,b) and Dai et al. (1997).

Kriging and its variants also rely on the distance-weighting approach, but involve the development of a
semivariogram function that describes the characteristics of the relationship between weight and distance that
is specific to the data set (Matheron, 1971; Isaaks and Srivastava, 1989). Several kriging variants, such as
elevation-detrending kriging and cokriging (Phillips et al., 1992), have been developed in an attempt to bring
elevation into the process as an explanatory variable. The main drawback to these approaches thus far is
that the relationship between climate and elevation is often assumed to be constant, which usually makes it
unsuitable for large domains. Continued development of kriging algorithms may overcome this weakness in
the future, however. Examples of data sets developed using kriging include Dingman et al. (1988), Hevesi
et al. (1992), Phillips et al. (1992) and Garen et al. (1994).

Thin-plate smoothing splines is a related statistical technique (Wahba and Wendelberger, 1980; Cressie,
2003). The software package ANUSPLIN (Hutchinson, 1995) fits thin-plate splines (usually second- or
third-order polynomials) through station data in three dimensions: latitude, longitude, and elevation. The
main advantages of ANUSPLIN over kriging are that a semivariogram need not be developed (instead, a
smoothing term is automatically tuned to minimize the cross-validation error), and the relationship between
the climate variable and elevation can vary in space, making the method suitable for large domains. Because
a spline is by definition smoothly varying, this approach has difficulty simulating sharply varying climate
transitions, which are characteristic of temperature inversions, rain shadows, and coastal effects. Examples
of data sets developed using tri-variate thin-plate splines include New et al. (2002) and Hijmans et al.
(2006).

Daymet focuses on the effects of elevation on climate (Thornton et al., 1997). Daymet develops local linear
regressions between climate and elevation for each grid cell on a digital elevation model, using data from
surrounding stations. Each station is weighted in the regression function by its distance from the target grid
cell. This method takes into account the elevational variation of climate, and its simple station distance-
weighting algorithm is computationally efficient, allowing its use in the development of nearly 20 years of
daily climate grids for the conterminous United States at 1-km resolution (http://www.daymet.org). Daymet
does not have the ability to simulate nonmonotonic relationships between climate and elevation, such as
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temperature inversions, and does not explicitly account for terrain-induced climatic transitions or coastal
effects.

PRISM (Parameter-elevation Regressions on Independent Slopes Model) also develops local climate-
elevation regression functions for each DEM grid cell (Daly et al., 1994), but calculates station weights on
the basis of an extensive spatial climate knowledge base that assesses each station’s physiographic similarity
to the target grid cell (Daly et al., 2002, 2003). The knowledge base and resulting station weighting functions
currently account for spatial variations in climate caused by elevation, terrain orientation, effectiveness
of terrain as a barrier to flow, coastal proximity, moisture availability, a two-layer atmosphere (to handle
inversions), and topographic position (valley, midslope, ridge) (Table III). While PRISM explicitly accounts
for more spatial climate factors than other methods, it also requires more effort, expertise, and supporting
data sets to take advantage of its full capability. Examples of PRISM climate data sets can be found at
www.ocs.oregonstate.edu/prism/ and www.climatesource.com.

While Daymet and PRISM develop a local regression function between elevation and climate at each DEM
grid cell, regional regression techniques develop a single, domain-wide, multivariate regression function
between climate and latitude, longitude, and elevation (and sometimes other variables such as wind direction,
distance from the coast, etc.). This approach has the advantage of being statistically stable, and often explains
a large proportion of the climate variability within the domain. However, a single regression function has
difficulty handling spatially varying relationships between one or more explanatory variables and climate
across a region, and is therefore usually confined to regional, rather than continental domains that are relatively
homogeneous. Examples of the regional regression approach include Ollinger et al. (1995), Goodale et al.
(1998), Brown and Comrie (2002), and Johansson and Chen (2005).

CAI is a hybrid approach that uses an existing spatial climate data set to improve the interpolation of another
data set (Willmott and Robeson, 1995b). This method relies on the assumption that local spatial patterns of
the element being interpolated closely resemble those of the existing climate grid (sometimes called the
background or predictor grid). This method is useful for interpolating climate variables and time periods
for which station data may be relatively sparse or intermittent. Uses of CAI fall into two broad categories:
(i) using a long-term mean grid of a climate element to aid the interpolation of the same element over a
different (usually shorter) averaging period; and (ii) using a grid of a climate element to aid the interpolation
of a different, but related, climate element (e.g. interpolating growing degree days using mean temperature
as the predictor grid). In one popular CAI strategy, a mean 30-year climatology is mapped carefully with
sophisticated methods, then time series grids for shorter averaging periods (monthly or daily) are developed
using simpler and faster methods such as IDW to interpolate deviations from the mean climatology to a
grid. These deviations can then be added to (e.g. temperature) or multiplied by (e.g. precipitation) the mean
climatology to obtain the new grid. A key assumption of this method is that the spatial patterns of the
deviations from climatology are relatively smooth and simple, and can be interpolated with relatively quick
and simple methods. This is not always the case, such as when temperature inversions occur in an area where
they do not occur climatologically. Examples of data sets developing using CAI approaches include Willmott
and Robeson (1995b), New et al. (2000), Plantico et al. (2000), Funk et al. (2002), Daly et al. (2004), and
Hamlet and Lettenmaier (2005).

4. ASSESSING ERRORS IN SPATIAL CLIMATE DATA SETS

The obvious question that could be asked at this point is: ‘Rather than talk about pros and cons of various
interpolation methodologies, why can’t each data set simply come with accuracy information, like that
provided for DEMs developed by the US Geological Survey(US Geological Survey, 2005)?’ It would seem
a reasonable thing to do, until one realizes that to do so requires ‘ground truth’ sampled at extremely high
resolutions over a large array of regions – feasible for a DEM, but not for climate, which requires nontrivial
instrumentation over many years, and is subject to siting and data collection errors and biases. In essence,
the climate field is unknown, except at a relatively small number of observed points. Climate interpolation
models themselves provide few useful internal estimates of error, because these estimates rely on the very
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same assumptions used in the interpolation process itself, and are therefore, not independent or reliable. (In
a sense, this is akin to asking students to grade their own examinations!) These error statistics should only
be used in a relative sense, with the same model and data set, and interpreted against the backdrop of model
assumptions.

A somewhat more useful error statistic often reported in climate interpolation studies is the cross-validation
error (Willmott and Matsuura, 1995a; Gyalistras, 2003). This is a measure of the difference between a station’s
value and the model’s estimate for that station, when the station has been removed from the data set. In the
common practice of jackknife cross-validation, the process of removal and estimation is performed for each
station one at a time, with the station returned to the data set after estimation. Once the process is complete,
overall error statistics, such as mean absolute error (MAE), bias, and others are calculated (e.g. Willmott
et al., 1985a; Legates and McCabe, 1999). The obvious disadvantage to cross-validation error estimation
is that no error information is provided for places where there are no stations. In addition, the single-
deletion jackknife method favors interpolation model parameterizations that heavily smooth the results and
reduce local detail, so that deletion of one station is relatively unimportant to the stability of the estimate.
A related problem is the tendency for jackknife cross-validation to underestimate errors when stations are
located in pairs or clusters; this type of station configuration increases the likelihood that a nearby station
will be present to produce a good estimate for one that has been omitted from the data set during the
jackknife deletion process. Other deletion schemes, such as withholding a stratified sample of data points
from the analysis, may sometimes be useful in detecting certain weaknesses in the interpolation. For example,
withholding high-elevation stations may help determine how well the system can extrapolate beyond the
elevation range of the data. Unlike internally generated model error estimates, cross-validation errors can be
compared among interpolation techniques. However, the comparison is valid only when all of the parameters
of the interpolation – the domain, input data, grid resolution, etc. – are identical (e.g. Phillips et al., 1992). As
shown in the example below, cross-validation errors can be very misleading when this stipulation is violated.

As an example, let us evaluate several mean annual precipitation grids for the Spring Mountains and its
vicinity, outside Las Vegas in southern Nevada, USA. The Spring Mountains is an isolated range that rises
above the desert floor at 600–900 m to a maximum elevation of 3633 m at Mount Charleston (Figure 1).
Precipitation stations in and around the Spring Mountains indicate that precipitation increases dramatically
from less than 100 mm per year at the lowest elevations, to more than 800 mm per year in the vicinity of
Mount Charleston. A vegetation summary of the Spring Mountains by the Biological Resources Research
Center at the University of Nevada, Reno (www.brrc.unr.edu/mtn/html/springr.html) describes a gradient of
cover types from desert shrub vegetation at the lowest elevations to mixed coniferous forest above about
2300 m. Mount Charleston receives enough snow to support a ski area on its upper slopes, adding additional
independent evidence that the higher elevations receive significantly more precipitation than lower elevations.

Mean annual precipitation for the averaging period 1971–2000 was interpolated to a 30-arc-s (∼800-
m) grid. A fairly comprehensive station data set was available, including both high- and low-elevation
stations that represent the range of precipitation in the region (Figure 1). Interpolation was performed
under four different scenarios. Scenario 1 used the full PRISM modeling system to interpolate precipitation
using all available station data; it was deemed the ‘control’ scenario, since it represented the best available
interpolated grid for this example. Scenario 2 also used all available station data, but PRISM was configured
to operate as an IDW interpolator, with only the distance-weighting algorithm operating. Scenario 3 used
the full PRISM configuration, but all stations above 1500 m elevation were omitted from the data set
before interpolation. Scenario 4 also used stations below 1500 m only, but applied the IDW-configured
PRISM.

Interpolated grids for the four scenarios are shown in Figure 1. Jackknife cross-validation statistics are
given in Table V. Statistics include bias, which is the mean of the signed difference between the interpolated
prediction and the observation; and MAE, the mean of the unsigned differences between the interpolated
prediction and the observation. Bias indicates whether the interpolator tends to over-predict (positive bias) or
under-predict (negative bias) the observations in their absence. MAE is an indicator of the overall performance
of the interpolator; a high MAE suggests that the interpolator does a poor job in predicting the observations,
while a low MAE suggests that the interpolator is generally reproducing the observations well. In Table V,
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Table V. Error analysis for four interpolation scenarios of 1971–2000 mean annual precipitation for Spring Mountains/Las
Vegas, Nevada and its vicinity. Error statistics are given for jackknife cross-validation, consisting of single-station deletion
with replacement; and a stratified sample cross-validation, for which the nine high-elevation stations (>1500 m) are
omitted as a block, with no replacement. Scenarios are ranked by visual similarity to the control grid (Scenario 1) and

mean absolute cross-validation error (MAE). See Figure 1 for plots of precipitation grids

Error statistic Interpolation scenario

1. Control – full
PRISM, all

stations used
(N = 23)

2. IDW, all
stations used

(N = 23)

3. Full PRISM, only
low-elevation
stations used

(N = 14)

4. IDW, only
low-elevation
stations used

(N = 14)

Visual similarity to control
grid

1 (control) 3 2 4

Jackknife cross-validation

Rank based on MAE 3 4 1 2
Bias (mm) 1.6 41.0 5.3 −2.0
Bias (%) 3.8 40.8 5.2 2.2
MAE (mm) 49.7 78.3 17.2 19.9
MAE (%) 17.6 47.0 12.7 14.1

Stratified sample
cross-validation,
high-elevation stations only
(N = 9)

– – – –

Bias (mm) – – −49.2 −359.8
Bias (%) – – −5.2 −66.8
MAE (mm) – – 90.4 359.8
MAE (%) – – 17.7 66.8

the quality of each interpolated grid is ranked, on the basis of two different criteria: (1) visual similarity to the
control scenario grid; and (2) jackknife cross-validation MAE. As shown in Figure 1 and Table I, Scenario 3
is visually most like the control, but the maximum value on Mount Charleston is somewhat low. Despite using
low-elevation data only, PRISM’s ability to extrapolate precipitation-elevation relationships in a climatically
reasonable way results in high-elevation precipitation patterns that are similar to those of the control scenario.
Scenario 2 is the next most similar. There is no elevation extrapolation in IDW, but the presence of station
data in the mountains provide some semblance of the precipitation patterns there. Scenario 4, IDW with
low-elevation station data only, does not reproduce the mountain precipitation pattern at all, because there
are no high-elevation stations or elevation extrapolation.

At a glance, the cross-validation statistics appear to tell a very different story. Scenario 3 has the lowest
MAE, followed closely by Scenario 4, which ranked a distant last in its visual similarity to the control scenario.
However, adhering to the stipulation that all of the parameters of the interpolation must be identical, we cannot
compare results from Scenarios 1 and 2 with those of 3 and 4, because they used very different station data
sets. Comparing Scenarios 1 and 2, which did use the same station data sets, Scenario 2 is correctly shown
to have a much larger MAE than that of Scenario 1. The comparison of Scenarios 3 and 4 reveals another
difficulty, however. Because cross-validation errors do not give any information for locations where there are
no stations, the lack of high-elevation stations in Scenarios 3 and 4 made interpolation performance in the
mountains ‘invisible’ to the error analysis. Thus, similar MAE values were reported for radically different
interpolation grids. In this instance, more useful error information was obtained by conducting a stratified
sample cross-validation exercise, in which the interpolation schemes in scenarios 3 and 4 were run to estimate
precipitation at the nine high-elevation stations (already omitted from the data set). As shown in Table V, the
IDW scheme in Scenario 4 performed very poorly, greatly under-predicting all of the high-elevation stations.
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Figure 1. Maps of 1971–2000 mean annual precipitation for Spring Mountains/Las Vegas and its vicinity, Nevada, interpolated under
various configurations of PRISM and station data: (a) Scenario 1: full PRISM configuration using all stations; (b) Scenario 2: PRISM
configured to simulate IDW interpolation, using all stations; (c) Scenario 3: full PRISM configuration using stations below 1500 m
only; (d) Scenario 3: PRISM configured to simulate IDW interpolation, using stations below 1500 m only. Dots indicate locations of

stations used in the interpolation

In contrast, the full PRISM model in Scenario 3 predicted the high-elevation stations reasonably well, with
only a slight negative bias.

Ironically, the above example illustrates a general tendency for interpolation analyses that use compre-
hensive station data to report greater cross-validation errors than studies that use relatively little data.
However, the comprehensive error estimates are clearly more realistic. Comprehensive data sets are more
likely to include stations in remote, or otherwise ‘difficult’ locations that challenge the interpolation sys-
tem when omitted, but help produce the best spatial climate data set when present. In addition, no one
measure or estimation method gives a complete picture of interpolation error. The best methods are
those that provide maximum independence from the model and data used to produce the spatial cli-
mate data set (station data suffer from significant errors, as well, but cannot be discussed in any detail
here). Climate data sets may be independently evaluated by assessing their consistency with other spa-
tial elements, such as stream flow, vegetation patterns, and related climate elements (e.g. snow pack), or
observations not available at the time of interpolation (Daly et al., 2002; Milewska et al., 2005; Simpson
et al., 2005).
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Because the goal is (or should be) to produce climate maps that best represent the state of human knowledge,
the most useful source of verification is probably that of experts who can integrate information from disparate
sources to give definite, justifiable feedback on how well the model results reproduce their best knowledge,
from a variety of perspectives. This feedback can be in the form of evaluation of the spatial patterns and
magnitudes of the mapped climate values, as well as insight into station data quality issues (Daly and
Johnson, 1999). If the intent of the developer is to invite wide usage of their data set, conducting an expert
review should be an integral part of the development process. Unfortunately, this is rarely done. Reasons
range from the need to minimize costs and increase expediency, to a failure to recognize the importance
of the process. Expert review is a nontrivial exercise, involving significant time and resources, and contact
with reviewers working in diverse disciplines. Depending on the geographic extent of the data set and other
considerations, the number of reviewers will often be many times greater than the number of referees for
a submitted journal manuscript. The results of such reviews may require the developers to make significant
changes in their methodology, repeat the development process, and possibly repeat the review process, if
necessary.

5. CONCLUSIONS AND USER GUIDELINES

On the basis of the above information, some general conclusions and guidelines for the user of spatial climate
data sets are summarized below.

Terrain and water bodies, where they occur, often have major effects on spatial climate patterns. The
importance of terrain and coastal effects is lowest at scales of 100 km and greater, and become greatest
at less than 10 km. Except in densely populated regions of developed countries, the typical station spacing
of more than 100 km is likely to be insufficient to directly represent climate patterns caused by the major
climate forcing factors. Interpolation techniques that develop relationships between existing station data and
explanatory physiographic variables such as elevation, coastal proximity, etc. for which much higher-density
information is available, have the potential to better represent the actual climate patterns.

Regions without major terrain features and are at least 100 km from climatically important coastlines usually
have the simplest spatial climate patterns. As such, they can probably be handled by all the methods discussed,
including IDW and ordinary kriging, if sufficient station data exist to represent the major circulation patterns.
Situations characterized by significant terrain features, but with no climatically important coastlines or rain
shadows, and a well-mixed atmosphere (little cold air drainage) can be reasonably handled by methods that
explicitly account for elevation effects; these include ANUSPLIN, Daymet, PRISM, and regional regression
models. Examples of these conditions are precipitation and summer daily maximum temperature in an inland
region. Regions having significant terrain features, and also significant coastal effects, rain shadows, or cold
air drainage and inversions are difficult to map accurately. They are best handled by a system such as PRISM,
configured and evaluated by experienced climatologists. Examples include minimum temperature in complex
terrain, and maximum temperature and precipitation in mountainous and/or maritime-influenced areas.

Several additional spatial climate-forcing factors are most important at scales of less than 1 km, but may
also have effects at larger scales. These factors, which include small-scale slope and aspect, riparian zones,
and land use/landcover, are typically not accounted for in spatial climate interpolation. Further improvements
in spatial climate interpolation should involve accounting for these factors. However, this will require not
only basic, quantitative knowledge of the effects of these factors on climate, but high-quality, fine-grid data
sets describing these factors that can be used as input.

Spatial climate data sets represent a significant source of error in any analysis that uses them as input.
There is no one satisfactory method for quantitatively estimating error in spatial climate data sets, because
the field that is being estimated is unknown between data points. Error estimates based on model assumptions
are useful in a relative sense only, and cannot be compared to those of other models. Cross-validation errors
are limited to locations for which stations exist. They can be compared among models, but only when all
of the parameters of the interpolation are identical. Perhaps the best overall way to assess error is to use a
combination of approaches, involve data that are as independent from those used in the analysis as possible,
and use common sense in the interpretation of results.
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Developers of spatial climate data sets have a responsibility to frankly communicate the strengths and
limitations of their data sets; ‘overselling’ the data increases the danger that the information will be used
in inappropriate ways, possibly causing misleading results and conclusions. Developers are encouraged to
conduct expert reviews of their draft data sets, which is probably the single most effective way to improve
data set quality. As resources allow, developers should consider developing tools to aid users in determining
the usefulness of the data sets for their applications. These would include serving the data in a usable map form
on the Internet, and allowing users to see what data were used in the interpolation. In the end, the development
of high-quality spatial climate data sets is a nontrivial activity, requiring a significant, long-term commitment
of expertise, time, and resources. Given the extremely large number and diversity of scientific studies that
depend on these data sets, such commitments should be easily justified from a cost-benefit perspective.

Although not discussed here, station data suffer from significant errors. The care and effectiveness of
procedures used in their QC can spell the difference between a clean, relatively accurate data set, and one
that is fraught with errors and inconsistencies. Good QC takes much time and effort, usually more than the
interpolation itself. Interestingly, effective QC systems often use spatial interpolation methods to obtain an
expected value to which the station value is compared. In many ways, the QC and interpolation of station
data involve the same processes and should be developed and performed together.

Users are encouraged to think critically when evaluating a spatial climate data set for their needs. None
are perfect, but many are useful for a variety of regions and applications, if their limitations and assumptions
are understood and respected. Take great care when reading descriptions of interpolation methods that state
or infer that they ‘handle sparse data well,’ as this says nothing about the realism and accuracy of the spatial
climate fields. Determine whether an expert review has been performed on the data set, and who reviewed
it. Use the guidelines in this paper and pursue the literature cited to become educated on how the major
spatial climate forcing factors were accounted for during the construction of a spatial climate data set. When
reporting on an analysis, state how deficiencies in the spatial climate data set may affect the results.
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