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In the history of clinical genetics, the delineation 

of novel Mendelian phenotypes often started with 

the description of single cases, which prompted 

recognition of additional patients with the same 

condition, de�ning a clinical entity and sug-

gesting a mode of inheritance (Speicher et al., 

2010). In the last few decades, genome-wide 

linkage analysis and candidate gene approaches 

have enabled the molecular genetic dissection 

of over 4,000 single-gene inborn errors (http://

www.omim.org/statistics/entry; Antonarakis 

and Beckmann, 2006). Most of these advances 

were based on the genetic study of multiplex 

families, or groups of unrelated sporadic cases, or 

both, and progress was often accelerated by the 

investigation of consanguineous families. Yet, for 

many patients with a well-de�ned clinical pheno-

type, no disease-causing mutations can be found 

in any of the known disease-associated genes. 
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Can genetic and clinical �ndings made in a single patient be considered suf�cient to establish 

a causal relationship between genotype and phenotype? We report that up to 49 of the  

232 monogenic etiologies (21%) of human primary immunode�ciencies (PIDs) were initially 

reported in single patients. The ability to incriminate single-gene inborn errors in immuno-

de�cient patients results from the relative ease in validating the disease-causing role of the 

genotype by in-depth mechanistic studies demonstrating the structural and functional conse-

quences of the mutations using blood samples. The candidate genotype can be causally con-

nected to a clinical phenotype using cellular (leukocytes) or molecular (plasma) substrates. The 

recent advent of next generation sequencing (NGS), with whole exome and whole genome 

sequencing, induced pluripotent stem cell (iPSC) technology, and gene editing technologies—

including in particular the clustered regularly interspaced short palindromic repeats (CRISPR)/

Cas9 technology—offer new and exciting possibilities for the genetic exploration of single 

patients not only in hematology and immunology but also in other �elds. We propose three 

criteria for deciding if the clinical and experimental data suf�ce to establish a causal relation-

ship based on only one case. The patient’s candidate genotype must not occur in individuals 

without the clinical phenotype. Experimental studies must indicate that the genetic variant 

impairs, destroys, or alters the expression or function of the gene product (or two genetic 

variants for compound heterozygosity). The causal relationship between the candidate geno-

type and the clinical phenotype must be con�rmed via a relevant cellular phenotype, or by 

default via a relevant animal phenotype. When supported by satisfaction of rigorous criteria, 

the report of single patient–based discovery of Mendelian disorders should be encouraged, as 

it can provide the �rst step in the understanding of a group of human diseases, thereby re-

vealing crucial pathways underlying physiological and pathological processes.

© 2014 Casanova et al. This article is distributed under the terms of an  
Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first 
six months after the publication date (see http://www.rupress.org/terms). 
After six months it is available under a Creative Commons License (Attribution–
Noncommercial–Share Alike 3.0 Unported license, as described at http:// 
creativecommons.org/licenses/by-nc-sa/3.0/).
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Further, at least 1,500 Mendelian conditions lack a de�ned ge-

netic etiology. Purely sporadic conditions in non-consanguineous 

families may also be caused by familial single-gene defects (of 

incomplete penetrance) or by de novo mutations (of complete 

penetrance) causing disease by various mechanisms (dominant-

negative e�ect, haploinsu�ciency, gain of function). Finally, 

many patients have a distinctive, very unusual, and possibly 

Mendelian phenotype that has not been described in other 

patients. In some cases, the discovery of the causal gene in a 

single patient (de�ned as a single patient from a single kin-

dred) can pave the way for its con�rmation in other patients. 

Indeed, if a �rst patient is not reported because it is only a 

single patient, a second patient may also not be reported be-

cause it would be once again the “�rst” patient.

Single-patient reports are common in the �elds of human 

genetics with a tradition of mechanistic and experimental 

studies rooted in the availability of blood samples, such as he-

matology and immunology, or inborn errors of metabolism. 

Some investigators in other areas of medical genetics, in sta-

tistical genetics, and in experimental biology, however, question 

the value of genetic studies in a single patient. This point of view 

is illustrated in recently published guidelines (MacArthur  

et al., 2014) that emphasize “the critical primacy of robust 

statistical genetic support for the implication of new genes.” 

Herein, we would like to emphasize the critical primacy of 

robust experimental support for the implication of new genes. 

In ful�llment of this statistical standard, the guidelines require 

that multiple con�rmations of causality be obtained in multi-

ple unrelated patients. Thus, multiple cases are required for the 

satisfaction of two of the three guidelines in “Assessment of 

evidence for candidate disease genes” and, in several of the other 

guidelines, statistical support from multiple cases is strongly 

encouraged (MacArthur et al., 2014). At �rst consideration, 

the logic of these recommendations is appropriate. Obviously, 

no reasonable person should object to the accumulation of 

more data to support an experimental �nding. And we do 

not. We do agree that stringent criteria are required to avoid 

what statisticians call a type 1 error, the acceptance of a false 

hypothesis—in the current situation, the false attribution of 

causality based on single patients. However, insistence on too 

stringent accumulation of data may result in committing a 

type 2 error resulting in the rejection of a valid hypothesis.

We recognize that studies of single patients have limita-

tions. First, when compared with studies of multiplex or mul-

tiple families, they do not bene�t from the power of genetic 

homogeneity; in other words, several a�ected patients with 

the same clinical phenotype certainly provide added con�-

dence that the altered gene is responsible for the phenotype. 

Second, a single a�ected patient does not permit one to draw 

�rm conclusions if the candidate genotype does not display 

full clinical penetrance, even in the presence of a fully penetrant 

and relevant intermediate phenotype; in that case, the age 

and past medical history of the patient, as well as modifying 

genetic factors, may contribute to the phenotype. However, 

single-patient studies can be conclusive, provided there is 

rigorous selection of variations in silico followed by in-depth 

experimental validation in vitro via the dual characterization 

of the mutant alleles and a cellular or animal phenotype, which 

establishes a causal bridge between a candidate genotype and 

a clinical phenotype. With the notable exceptions of hemato-

logical and immunological patients (Orkin and Nathan, 2009; 

Ochs et al., 2014), and to a lesser extent patients with inborn 

errors of metabolism (Scriver et al., 2001), the description of 

novel gene defects in single individuals has rarely been re-

ported. In the former patients, a blood sample is fortunately 

often su�cient to conduct in-depth mechanistic studies and 

discover relevant cellular phenotypes in erythrocytes, platelets, 

and any of the numerous leukocyte subsets.

In the recently published guidelines of MacArthur et al., 

(2014), the requirement of statistical support with an accumu-

lation of cases is lacking in the 49/232 (21%) of monogenic 

primary immunode�ciencies (PIDs) �rst reported on the basis 

of a single case (Table 1). What then should be the criteria for 

a report based on a single patient? Based on our assessment of 

the 49 cases, reasonable requirements include (see Text box): 

in all cases, (1) population studies must indicate that the can-

didate genotype does not occur in healthy individuals and must 

have a frequency less than or equal to that predicted based on 

the frequency of the phenotype; (2) the genetic variants must 

impair, destroy, or alter the function of the gene product. In 

addition, for disorders that a�ect the function of a cell present 

in the patient: (3A) a patient-speci�c relevant cellular pheno-

type should be caused by the mutant allele (with its correction 

by complementation with the normal gene product and/or its 

replication by knockdown, knockout, or knock-in in relevant 

cells). Alternatively, for disorders that a�ect the development 

of a cell lacking in the patient: (3B) presentation of an animal 

model that recapitulates both the cellular and whole-organism 

phenotypes may replace the characterization of a relevant cel-

lular phenotype. In either case, the third step is facilitated by 

the previous demonstration of genetic etiologies a�ecting the 

same physiological circuit. Together, these three steps establish 

a causal relationship between the candidate genotype and the 

clinical phenotype.

Addressing the signi�cance and limitations of gene discovery 

in single patients is timely, as the NGS revolution, with whole 

exome sequencing (WES) and whole genome sequencing 

(WGS), is rapidly providing candidate variations in an increas-

ing number of genetically unde�ned cases (Ng et al., 2009, 2010; 

Goldstein et al., 2013; Koboldt et al., 2013; Kircher et al., 2014). 

Although these methods may facilitate the recognition of the 

same genetic defects in unrelated patients, the number of single 

patients left without candidate genes shared by other patients 

will also grow. The NGS-based discovery of genetic disorders 

in single patients appears to have great promise in various �elds 

of medicine, beyond hematology and immunology. Indeed, 

not only gradual improvements in techniques that permit 

transfection and knockdown of genes in primary cells and 

cell lines but also recent path-breaking approaches, such as 

iPSC (Takahashi et al., 2007; Takahashi and Yamanaka, 2013) 

and gene editing, especially with CRISPR/Cas9 (Marra�ni 

and Sontheimer, 2010; Wiedenheft et al., 2012; Cong et al., 
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Table 1. Discoveries of single-gene defects underlying inborn errors of immunity in single patients

Gene producta Inheritance and alleleb Mousec References Citations (10/2014), ISI

Combined immunode�ciencies

CD45 ARg, LOF Prior Kung et al., 2000 179

CD3- ARg, hM/LOF Prior Soudais et al., 1993 62

CD3- AR, LOFh Prior Rieux-Laucat et al., 2006 48

Coronin 1A ARg, LOF Concomitantly Shiow et al., 2008 80

DNA-PK ARf, hM Prior van der Burg et al., 2009 83

CD8- ARf, LOF Prior de la Calle-Martin et al., 2001 40

Tapasin AR, LOF Prior Yabe et al., 2002 22

LCK AR, LOF Prior Hauck et al., 2012 10

UNC119d ADi, LOF Unrelatedi Gorska and Alam, 2012 12

CARD11 ARf, LOF Prior Stepensky et al., 2013k 18

OX40 ARf, LOF Prior Byun et al., 2013 4

Syndromic combined immunode�ciencies

WIP ARf, LOF Prior Lanzi et al., 2012 23

RNF168 ARg, LOF Later Stewart et al., 2009 295

TYK2 ARf, LOF Prior Minegishi et al., 2006 244

STAT5B ARf, LOF Prior Kofoed et al., 2003 236

IKAROS ADi, hM Prior Goldman et al., 2012 5

Antibody de�ciencies

5 ARg, LOF Prior Minegishi et al., 1998 152

Ig- AR, LOF Prior Minegishi et al., 1999a 111

Ig- AR, hM;LOF Prior Dobbs et al., 2007; Ferrari et al., 2007 30/29

BLNK AR, LOF Concomitantly Minegishi et al., 1999b 188

PI3K p85 ARf, LOF Prior Conley et al., 2012 33

CD81 ARf, LOF Prior van Zelm et al., 2010 102

CD20 ARf, LOF Prior Kuijpers et al., 2010 97

CD21 ARg, LOF Prior Thiel et al., 2012 28

Kappa chain ARg, LOF Prior Stavnezer-Nordgren et al., 1985 27

PKC ARf, LOF Prior Kuehn et al., 2013; Salzer et al., 2013l 9/8

Diseases of immune dysregulation

CD25 ARf, LOF Prior Sharfe et al., 1997 178

Fas-ligand ADi, LOF Prior Wu et al., 1996 300

NRASe ADi, GOF No GOF Oliveira et al., 2007 81

Phagocyte disorders

Rac2 ADi, LOF Prior Ambruso et al., 2000 223

C/EBP AR, LOF Prior Lekstrom-Himes et al., 1999 105

P40 phox ARg, LOF Prior Matute et al., 2009 125

IL12p40 ARf, LOF Prior Altare et al., 1998 263

IFN-R1 ARf, LOF Prior Jouanguy et al., 1996m 552

IFN-R2 AR, LOF Prior Dorman and Holland, 1998 286

IRF8 AR, LOF Prior Hambleton et al., 2011n 128

Defects of innate immunity

IB ADi, GOF No GOF Courtois et al., 2003 148

STAT2 ARf, LOFo Prior Hambleton et al., 2013 3

TRAF3 ADi, LOF Prior Pérez de Diego et al., 2010 81

IL17RA ARf, LOF Prior Puel et al., 2011p 218

APOL1 ARg, LOF Absent Vanhollebeke et al., 2006 63

Auto-in�ammatory disorders

IL1RN ARf, LOF Prior Reddy et al., 2009q 139

Complement de�ciencies

C1qB AR, LOF Later McAdam et al., 1988 41

C1qC AR, LOF Later Petry et al., 1995 27
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in journals that emphasize the importance of in-depth mech-

anistic studies; they were highly cited. There is a trend toward 

an increased number of such publications over the years, with 

two peaks in 1995–1999 and 2010–2013, the latter explained 

in part by the advent of WES (Fig. 1). Most of the reports of 

single patients described rare disorders caused by uncommon 

or private genetic variations, with two exceptions (MAPS2 and 

Ficolin 3 de�ciency). In 44 of 49 conditions, the inheritance 

is AR, and in the remaining �ve it is autosomal dominant (AD). 

In the patients with AD disease, the mutation was proven 

to be de novo in the four patients whose parents could be 

tested (Ikaros, Rac2, IB, and TRAF3; Ambruso et al., 2000; 

Courtois et al., 2003; Pérez de Diego et al., 2010; Goldman et al., 

2012). Parental consanguinity in patients with AR inheritance 

was high, with up to 18 of 46 kindreds (2 disorders where 

reported concurrently in 2 kindreds). Homozygous lesions in 

the absence of known consanguinity were found in 16 patients, 

with the remaining 12 patients being compound heterozygous. 

For 36 of 49 conditions, the subsequent description of other 

patients corroborated the initial discovery; most of the 13 ex-

ceptions were published recently (11 after 2010), suggesting 

that the �ndings may still be con�rmed. In all cases, in-depth 

2013; Charpentier and Marra�ni, 2014), o�er new and al-

most unlimited possibilities to provide mechanistic insights 

into the signi�cance of candidate mutations in the cell types 

that are the most relevant to the phenotype under study. What 

was common practice in hematology and immunology can 

now be widely applied.

Single-patient discoveries in the �eld  
of inborn errors of immunity
The �eld of PIDs illustrates the power of single-patient ge-

netic studies. At �rst glance, up to 51 of 234 PIDs (22%) were 

�rst described in single patients (with 53 patients and papers 

because two disorders were each reported in two unrelated 

patients simultaneously; Table 1). In our view, however, two 

single-patient studies failed to convincingly establish causality 

between a germline genotype and a clinical phenotype (Table 1). 

A disease-causing mutation in NRAS that was initially re-

ported to be germline was subsequently found to be somatic 

(Oliveira et al., 2007; Niemela et al., 2011). A mutation in 

UNC199 that was initially reported to be rare and disease-

causing is in fact a common polymorphism that does not cause 

disease (Gorska and Alam, 2012). Most reports were published 

Table 1. (Continued)

Gene producta Inheritance and alleleb Mousec References Citations (10/2014), ISI

C1s AR, LOF Not done Inoue et al., 1998 11

C3 ARf, LOF Later Botto et al., 1990 41

C9 ARg, LOF Not done Witzel-Schlömp et al., 1997 18

Factor B ARg, LOF Prior Slade et al., 2013 1

Factor H ARg, LOF Later Ault et al., 1997 98

MASP2 AR, LOF Not done Stengaard-Pedersen et al., 2003 119

Ficolin 3 AR, LOF Absent Munthe-Fog et al., 2009 63

Total: 49 of 232 (21%) proven PIDs

The IUIS committee for PIDs has compiled 234 genetic etiologies of PIDs into eight tables, corresponding to the eight categories in this table (Al-Herz et al., 2014). There are in 
fact only 232 monogenic PIDs, excluding UNC119 and NRAS de�ciencies. Only loss- and gain-of-function alleles were considered to de�ne distinct disorders; no difference 
was made between truly loss-of-function and hypomorphic alleles, despite their de�nition of distinct clinical phenotypes. We restricted our bibliographic analysis to reports 
of genetic lesions; some PIDs were biochemically de�ned before the identi�cation of mutations, including in single patients.

aThe 51 mutated gene products are indicated for 53 unrelated patients (two conditions were simultaneously described each in two families). With 15 exceptions (Tapasin, Lck, 
UNC119, WIP, Ikaros, PI3K p85, CD81, CD20, CD21, p40 phox, IRF8, STAT2, TRAF3, APOL1, and factor B), a second or more patients were subsequently identi�ed (references 
available upon request; unpublished data). In some families listed herein, one or more deceased siblings were not genetically tested.

bMode of inheritance and nature of the morbid alleles. AR, autosomal recessive (bi-allelic mutations); AD, autosomal dominant; LOF, loss-of-function; hM, hypomorphic; GOF, 
gain-of-function.
cThe corresponding knockout mouse was made prior to, concomitantly with, or after the human de�cit was described, or not at all.
dThe UNC119 mutation is not disease-causing as it is in fact a common polymorphism (>1%) in several human populations (http://useast.ensembl.org/Homo_sapiens/
Variation/Population?db=core;g=ENSG00000109103;r=17:28546707-28552668;v=rs199714731;vdb=variation;vf=54110701).
eThe NRAS mutation is disease-causing but was later found to be somatic, not germline, consistent with the previous discovery of NRAS germline mutations in patients with 
Noonan syndrome (Niemela et al., 2011).
fKnown consanguineous family and homozygous patients (18 conditions and 18 patients). gCompound heterozygous patients (12 conditions and 12 patients); the others are 
homozygous but not known to be born to consanguineous parents (15 conditions and 16 patients). PCK de�ciency was described simultaneously in a consanguineous and in 
a non-consanguineous family.
hSomatic mutations rescued one of the two mutant alleles in a proportion of T cells.
iThe UNC199, Fas-ligand mutations’ familial segregation were not tested, whereas the Ikaros, NRAS, Rac2, IB, and TRAF3 mutations occurred de novo.
jThe UC119 mutant mouse was made previously but not studied for immunological phenotypes. The human gene had been previously shown to be important for T cell activation.
kAnother report was published shortly thereafter yet was quoted as unpublished data in this paper (Greil et al., 2013).
lAnother report was published shortly thereafter (Belot et al., 2013).
mAnother report was published concomitantly in a multiplex family (Newport et al., 1996).
nTwo patients with AD IRF8 de�ciency and a different immunological and clinical phenotype were reported jointly.
oThe STAT2 allele might be severely hypomorphic or completely loss-of-function.
pAD IL-17F de�ciency (in a multiplex family) was reported together with AR IL-17RA de�ciency.
qAnother report was published concomitantly in a multiplex family (Aksentijevich et al., 2009).
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Criteria that must be met to attribute a clinical phenotype to a candidate genotype in a single patient.

1. Family studies and population studies must indicate that the patient’s candidate genotype is monogenic and does not occur in 
individuals without the clinical phenotype (complete penetrance).

 a. The clinical phenotype must be rare and distinctive and the candidate genotype must be monogenic.

 b. Family studies must demonstrate that the candidate genotype of the patient (which includes alleles at both loci for autosomal genes 

or X-linked genes in females) is not shared by other family members. In other words, there must be complete clinical penetrance, with 

a Mendelian mode of inheritance (AR, XR, AD, or XD).

 c. Population studies, including but not restricted to the same ethnic group, must indicate that the candidate genotype does not occur 

in healthy individuals tested, and that the frequencies of the candidate variants and genotype are not higher than that predicted by 

the frequency of the clinical phenotype.

 d. If the variant leads to a premature stop codon (nonsense, frameshift, or essential splice variants), other variants giving rise to pre-

mature stop codons must not be more frequent in the general population than predicted by the frequency of the clinical phenotype.

2. In-depth experimental and mechanistic studies must indicate that the genetic variant destroys or markedly impairs or alters 
the expression or function of the gene product (or two genetic variants in the case of compound heterozygosity).

 a. A variant in a protein-coding gene can be nonsynonymous (change the amino acid sequence) or, if synonymous, have a proven im-

pact on mRNA structure or amount (e.g., create an abnormal splicing site). A variant in an RNA gene must affect its function (if its 

expression is detectable).

 b. Studies should document whether the variant changes the amount or molecular weight of the gene transcript and of the encoded 

protein. Ideally, this should be done in control primary cells or iPSC-derived cell lines, and not only in control immortalized cell lines.

 c. Computer programs that predict whether a missense variant is damaging are helpful but not conclusive. A variation that is not con-

servative and that occurs in a region or at a residue of the encoded protein that is highly conserved in evolution provides support for 

the hypothesis that the amino acid is functionally important.

 d. The variants must be loss or gain of function for at least one biological activity. For variants that result in an amino acid substitution, 

insertion, or deletion, in vitro studies should document a functional change that reveals the mechanism by which the variant causes 

disease. For example, the protein may be unstable, it may not bind essential cofactors, or it may not localize appropriately.

3. The causal relationship between the candidate genotype and the clinical phenotype must be established via a relevant cellular 
or animal phenotype.

 a. In all cases, the candidate gene should be known or shown to be normally expressed in cell types relevant to the disease process. 

These may be cells affected by the disease process, cells which produce factors needed by the affected cells or progenitors of the cell 

lineage affected by the disease. Some genes are broadly expressed but have a narrow clinical phenotype.

 b. For disorders that affect the function of a cell (present in the patient), experimental studies in vitro must indicate that there is a cel-

lular phenotype explained by the candidate genotype (see c). This cellular phenotype should reasonably account for the clinical 

phenotype because the cell type is known to be involved in the disease process and the clinical phenotype is consistent with it. For ex-

ample, if the candidate gene can be connected to a known disease-causing gene via a common cellular phenotype (e.g., mutations in 

a second chain of a receptor), causality is thereby established between the genotype and the clinical phenotype.

 c. The patient-speci�c cell type can include a convenient cell line (EBV-B cell, SV40 �broblasts) but should also ideally include a more 

relevant leukocyte subset or a primary or iPSC-derived nonhematopoietic cell. This cellular phenotype must be rescued by a wild-type 

allele or for dominant-negative mutations by knockdown, knockout, or correction of the mutant allele. Negative dominance must be 

established by co-transfecting the mutant and wild-type alleles into cells de�cient for the gene product. These experiments have be-

come easier with new transfection approaches, siRNA and shRNA, and CRISPR/Cas9 editing. Alternatively or additionally, knockdown 

or knockout of the wild-type gene, or introduction of knock-in mutations in control cells, should reproduce the cellular phenotype.

 d. For disorders that affect the development of a cell (lacking in the patient), a cellular phenotype is dif�cult to establish. The candidate 

gene can be connected to a known disease-causing gene via a common mechanism. Causality is thereby suggested between the geno-

type and the clinical phenotype. In this and other cases, when the candidate gene governs a novel circuit, an animal model in vivo must, 

however, indicate that there are causally related phenotypes that mimic the patient’s phenotypes (molecular, cellular, and clinical) and 

are explained by the candidate genotype. A biological phenotype underlying the patient’s clinical phenotype must be replicated in the 

mutant animal (e.g., IgA de�ciency underlying a speci�c infection).
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In three instances, the mouse mutant has not been generated 

(Witzel-Schlömp et al., 1997; Inoue et al., 1998; Stengaard-

Pedersen et al., 2003). In the case of APOL1 (Vanhollebeke  

et al., 2006) and �colin 3 (Munthe-Fog et al., 2009), there is 

no mouse ortholog (Table 1). In two instances, Coronin and 

BLNK de�ciency, the mouse and human defects were reported 

jointly (Minegishi et al., 1999b; Shiow et al., 2008). The other 

cases were no less interesting, as the associated phenotypes 

were often surprising when compared with the corresponding 

mutant mice, sometimes in terms of the impact of the muta-

tion on the immune response and more often in terms of its 

impact on clinical phenotypes, particularly susceptibility to spe-

ci�c infections. For example, the role of OX40 in T cells had 

been characterized in mice but its role in human immunity 

against HHV-8 was only established by the demonstration of 

OX40 de�ciency in a child with Kaposi sarcoma (Byun et al., 

2013). Monogenic predisposition to other speci�c infectious 

diseases is increasingly documented (Alcaïs et al., 2010; Casanova 

and Abel, 2013). Hypomorphic (DNA-PK, CD3, Ig, and 

Ikaros; Soudais et al., 1993; Dobbs et al., 2007; van der Burg 

et al., 2009; Goldman et al., 2012), gain-of-function (IB; 

Courtois et al., 2003), and/or heterozygous (TRAF3, Ikaros, 

Fas-ligand, Rac2, and IB; Wu et al., 1996; Ambruso et al., 

2000; Courtois et al., 2003; Pérez de Diego et al., 2010; Goldman 

et al., 2012) human mutations also revealed phenotypes not 

seen in mice bearing two null alleles. Overall, an important 

added value of the genetic dissection of human PIDs, in single 

patients or multiple patients, besides its direct medical impact, 

is that it enables an analysis of immunology in natural as op-

posed to experimental conditions (Casanova and Abel, 2004, 

2007; Quintana-Murci et al., 2007; Casanova et al., 2013).

Fully penetrant autosomal and X-linked recessive traits
What general lessons can we draw from the study of single 

patients with PIDs? First of all, what are the Mendelian modes 

of inheritance (in the sense of full penetrance) that are most 

appropriate for single-patient studies? Autosomal recessive (AR) 

inheritance is appropriate, especially in consanguineous fami-

lies (Lander and Botstein, 1987), as one can bene�t from link-

age information and focus on homozygous mutations. The 

larger the number of healthy siblings, the easier it is to select 

candidate variations. The sequencing data can be �ltered quickly 

to identify these mutations. Information increases with the 

level of the consanguinity loop—i.e., the more distant the pa-

rental relationship, the more accurate the linkage mapping. 

The large fraction of homozygosity in the patient (e.g., ex-

pected value of 6.25% if born to �rst cousins) increases the 

background noise of homozygosity for other, non–disease-

causing, genomic variants. Other caveats should be kept in 

mind. Consanguineous families are not protected from X-linked 

diseases, compound heterozygous alterations, or de novo mu-

tations. Moreover, if the family is highly consanguineous, the 

patient may be homozygous for uncommon, albeit non-rare, 

genetic variants that modify the phenotype. Conversely, non-

consanguineous families reduce the background but leave the 

mode of inheritance uncertain. Homozygosity in a patient born 

mechanistic studies in the patients’ myeloid or lymphoid cells 

proved the deleterious nature of the mutations found. In turn, 

the pathological nature of most alleles was documented on 

immunological grounds. For some genes, a connection with a 

known morbid gene was established by the characterization 

of a cellular phenotype. For most genes, the known role of the 

mouse ortholog provided evidence that the mutation was re-

sponsible for the clinical and immunological phenotype ob-

served (Table 1). In these and other instances, the gene was 

often connected with known human pathways, and the mor-

bid nature of the mutation was rarely provided on the sole 

grounds of genetic and experimental data.

What did we learn from these 49 PIDs?
The discovery of novel monogenic defects in single patients 

has often o�ered novel biological and pathological insights. 

For example, there was no previous evidence in mice or hu-

mans pointing to the role of RNF168 in DNA repair and 

immunity (Table 1). It is its defective biological function in 

human mutated cells that established both its morbid nature 

and physiological role, with RNF168 de�ciency underlying 

RIDDLE syndrome (Stewart et al., 2009). For four components 

of the complement pathway, the human defect was docu-

mented before the development of the corresponding mutant 

mouse, and its disease-causing nature was established thanks 

to biochemical studies using human plasma (McAdam et al., 

1988; Botto et al., 1990; Petry et al., 1995; Ault et al., 1997). 

Figure 1. Distribution of single-patient inborn errors of immunity 
reported per year. The red dots indicate conditions that have not yet 

been reported in a second patient. It is notable that the number of single-

gene defects reported per year is increasing with time, with two peaks, 

one in the years 1995–1999 and another in 2010–2013. The �rst peak  

(13 patients) corresponds mostly to the discovery of genetic etiologies of 

classical PIDs that had been long clinically delineated, all discovered by 

newly developed genetic tools for linkage analysis and a candidate gene 

approach. The second peak (15 patients) bene�ted from the advent of 

NGS (PI3K p85, CARD11, OX40, and PCK de�ciencies in a total of  

5 patients) but also re�ected the growth of the �eld and the exploration 

of novel phenotypes (e.g., IRF8, STAT2, and Ikaros de�ciencies).
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private allele. In current practice, one can search for the variant 

in multiple online databases. Advances in NGS have made it 

possible to collect information on the frequency of genetic vari-

ations in a much larger number of individuals of various 

ethnicities. Public databases of variants (dbSNP, HapMap, 1000 

Genomes, and NHLBI “Grand Opportunity” Exome Se-

quencing Project [GO-ESP, https://esp.gs.washington.edu/]; 

Altshuler et al., 2010; Abecasis et al., 2012; NCBI Resource 

Coordinators, 2014) and disease-causing variants (HGMD; 

Stenson et al., 2014) typically include data on the genetic 

variability of between 10,000 and 100,000 individuals. This is 

valuable but occasionally not su�cient. The patient may be from 

an ethnic group that is under-represented in available databases. 

Further, some DNA sequences were not well enough covered 

using older approaches to catalog variants. An in-house data-

base that includes data from over 500 ethnically matched DNA 

samples analyzed using the same technology is valuable. 

Moreover, private databases of neutral datasets are being 

developed at institutions that are taking advantage of NGS to 

search for disease-causing gene variants. With very rare phe-

notypes, it is helpful to select private variations in single patients. 

However, except in the speci�c context of de novo mutations, 

there are still a substantial number of private (or very rare) 

variants in any exome data. One should consider the genotype 

frequency, which is more relevant than the allele frequency. 

A very rare AR condition may be caused by a mutant allele 

that is rare, but not private to the family studied, and found in 

control heterozygotes. The next step is to prioritize these variants 

by further in silico studies to select the most plausible one.

Searching for plausible genes
Information about the mutated genes is also crucial in select-

ing variations and �ltering out others. There are at least three 

ways by which a mutated gene can be selected as a candidate 

disease-causing gene in a single patient. First, the gene may en-

code a protein that belongs to a pathway already implicated in 

patients with the same phenotype. The relationship between 

these genes may be distant and indirect, and tools such as the 

human gene connectome can be helpful in revealing their con-

nectivity (Itan et al., 2013). In other words, there can be phys-

iological homogeneity behind genetic heterogeneity. Second, 

there is increasingly detailed information in various databases 

regarding the expression of human genes in a wide array of human 

cell lines, cell types, tissues, and organs (GTEx Consortium, 2013; 

Rung and Brazma, 2013). Transcripts for the gene of interest 

are likely to be expressed in the tissue a�ected by the pheno-

type or tissues that are known or could reasonably be expected 

to in�uence the phenotype. However, mutations in broadly ex-

pressed genes occasionally result in a phenotype that is highly 

tissue speci�c (Boisson et al., 2013). Third, genes crippled with 

deleterious mutations in the general population are unlikely 

to be causative of any rare phenotype with complete pene-

trance, as assessed for example with the gene damage index 

(unpublished data). Knowing the degree of purifying selec-

tion operating on the genes carrying variations in the patient 

under study is also helpful (Barreiro and Quintana-Murci, 

to parents not known to be related is suggestive of AR inheri-

tance due to cryptic consanguinity. Compound heterozygos-

ity is even more suggestive of AR inheritance, as it is rare and 

deserves special attention. In that regard, the trio design, NGS 

analysis of the patient and both parents supports the search for 

compound heterozygous mutations. Finally, X-linked reces-

sive (XR) inheritance is possible with a focus on hemizygous 

mutations in males. In the latter two cases, the existence of a 

de novo mutation provides further evidence given the rela-

tively small number of coding de novo mutations per genome 

(Sanders et al., 2012; Veltman and Brunner, 2012; Ku et al., 

2013). Obviously, incomplete penetrance and the impact of 

modi�ers clearly cannot be studied in single patients (Cooper 

et al., 2013).

De novo mutations underlying dominant or XR traits
The trio design enables one to detect de novo mutations, which 

are more likely to be disease-causing and certainly easier to 

incriminate in single patients than inherited variations. A de novo 

mutation provides strong but not conclusive evidence that  

the variant is related to the clinical phenotype. Highly delete-

rious, distinctive phenotypes that occur in outbred populations 

may be due to heterozygous or hemizygous de novo muta-

tions (Boisson et al., 2013). In such instances, the clinical pen-

etrance is typically complete. It is estimated that 50–100 new 

sequence variants can be found in the genome of every in-

dividual. However, most of these genome variants have no 

functional consequences because they do not change the amino 

acid sequence of coding regions or they occur in noncoding 

or nonregulatory regions. On average, only 1 or 2 de novo 

mutations can be found in each exome (Sanders et al., 2012; 

Veltman and Brunner, 2012; Ku et al., 2013). These new mu-

tations may cause a phenotype that is so severe that it is rarely 

passed on to the next generation. Variants that are found in the 

patient but not the parents are excellent candidate disease-

causing mutations, especially if they are in a plausible gene (see 

section below). The de novo mutation alone may underlie an 

AD or XR disorder (or as discussed above an AR disorder if 

coupled with an inherited mutation on the other allele). It is 

important to test multiple cell types, hematopoietic and non-

hematopoietic, as the apparently de novo mutation detected 

may not be germline but somatic, in which case it may re-

main disease-causing, albeit not underlying a monogenic trait, 

as shown for NRAS (Table 1). The search for de novo muta-

tions alone justi�es the strategy of sequencing trios, which is 

quite powerful and �ts well with single patient investigation 

(Veltman and Brunner, 2012).

Focus on rare phenotypes and rare genotypes
The genotype and allele frequencies are important factors to 

consider when selecting candidate variants (Kircher et al., 2014). 

It is not too di�cult to select candidate disease-causing ge-

netic lesions in a single patient because the most common rea-

son for a study to be restricted to a single patient is precisely 

that the disease is extremely rare. A rare phenotype is likely to 

be due to heterozygosity or homozygosity for a very rare or 
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consists of testing the impact of the mutation on the expression 

of the gene product. This is easily done with protein-coding 

genes, even if there is no antibody to the protein of interest, 

using N- or C-terminal tags and a variety of easily transfect-

able recipient cells, which may not necessarily be relevant to 

the clinical phenotype. A biochemically deleterious allele, in 

terms of protein expression, is often the �rst experimental 

evidence that the variation is disease-causing. The subcellular 

tra�cking, distribution, or location of the mutant proteins is 

often informative, although overexpression studies in irrelevant 

cell lines may be misleading. Expression studies can be per-

formed regardless of the nature of the gene and even in the 

absence of patient’s primary cells or cell lines. In contrast, func-

tional studies by gene transfer can be more di�cult to conduct, 

as they require at least some knowledge regarding the function 

of the mutated gene. This biochemical step, which does not 

necessitate any cells from the patient, is important for the vali-

dation of candidate variations. It is currently more di�cult to 

study the expression of RNA genes by gene transfer; this is a 

poorly investigated topic due to the rarity of such pathological 

lesions to date (Batista and Chang, 2013), which certainly de-

serves more e�ort in the future. Biochemical studies of the 

candidate mutant allele should ideally be compared with other 

mutants, rare or common, found in individuals without the 

phenotype under study and serving as negative controls.

Relevant cellular or animal phenotypes  
support a causal relationship
Relevant cells from the patient should demonstrate a functional 

abnormality that is caused by the mutant allele or alleles and 

that can explain the clinical phenotype. For loss-of-function 

mutations, introduction of a wild-type copy of the gene of 

interest should correct the cellular phenotype, unless the 

mutation is dominant-negative. Similarly, validation of the 

disease-causing role of gain-of-function or dominant-negative 

mutations may be obtained by introducing a mutated copy of 

the gene into wild-type cells. If the mutant allele is dominant 

by haploinsu�ciency, it can be rescued by overexpression of 

the wild-type and a knockdown of the wild-type allele in con-

trol cells can also be informative. However, these approaches, 

albeit valid, su�er from the limitation that it is hard to main-

tain endogenous regulation and full control of the level of ex-

pression of the transfected/transduced gene. Recently, the 

CRISPR/Cas9 technology has opened new perspectives, as it 

allows the knock-in of the appropriate mutation in one or 

both alleles of the gene in control cells to mimic the abnor-

mal phenotype, or to correct the mutant alleles in the patient’s 

cells (Marra�ni and Sontheimer, 2010; Wiedenheft et al., 

2012; Cong et al., 2013; Charpentier and Marra�ni, 2014). 

This approach adds much con�dence to the proposed caus-

ative relationship. These mechanistic studies have traditionally 

been easier with a blood sample or EBV-B cell lines, which 

accounts for the prominent role of hematology and immuno-

logy in the development of human molecular genetics (Speicher 

et al., 2010). Dermal �broblasts have been used in various 

�elds. More recently, the iPSC technology (Takahashi et al., 

2010; Quintana-Murci and Clark, 2013). The extent of puri-

fying selection is now known for most human genes (Barreiro 

and Quintana-Murci, 2010; Quintana-Murci and Clark, 2013). 

Mutations in genes under tight purifying selection represent 

more likely culprits for rare diseases, especially for diseases 

that are life-threatening in childhood, and more so for AD 

than AR modes of inheritance (X-linked recessive being prob-

ably in between). To further incriminate haploinsu�ciency 

for AD and XD traits that are life-threatening before repro-

ductive age, the gene must be under purifying selection.

Searching for plausible mutations
The predicted impact of the mutation itself is also important, 

as some lesions are predicted to be more damaging than oth-

ers (Kircher et al., 2014). As of now, protein-coding gene exonic 

mutations are more easily implicated than regulatory mutations 

or mutations in RNA-coding genes or in intergenic regions. 

Upcoming progress may facilitate the study of such mutations 

in single patients in the future. In protein-coding genes, UTR 

and synonymous variations are di�cult to incriminate in sin-

gle patients, even though they can interfere with splicing and 

other regulatory processes. In contrast, nonsense mutations af-

fecting canonical splice site residues, in-frame and out-of-frame 

insertions and deletions, and mutations of the stop codon (stop 

loss) are most likely to be deleterious, although some can be 

hypomorphic, for example due to reinitiation of translation. 

The impact of missense mutations, which form more than 90% 

of rare and common nonsynonymous variations (and a smaller 

proportion of pathogenic mutations; Tennessen et al., 2012), is 

less easily predictable and has therefore received much atten-

tion. Some missense mutations are intrinsically more disrup-

tive than others. Moreover, a missense mutation at a residue or 

in a domain that is highly conserved throughout evolution is 

probably damaging. Several software programs, such as Sort-

ing Intolerant From Tolerant (SIFT; Kumar et al., 2009) and 

PolyPhen2 (Adzhubei et al., 2010), have been developed to 

predict the pathogenicity of missense mutations based on a 

combination of biochemical and evolutionary data (Li et al., 

2013). Although mutations predicted to be loss-of-expression 

and/or loss-of-function are more readily convincing, amino 

acid substitutions may be more interesting because they can 

provide insights into function of a particular domain or the 

e�ects of decreased but not absent protein function, or even 

into the impact of a gain of function. Overall, the predicted 

impact of any given mutation in�uences its selection as a can-

didate lesion to be functionally investigated in single patients 

(Kircher et al., 2014).

Biochemically deleterious alleles support a causal relationship
In the PID �eld, the ability to experimentally validate the 

mutation in leukocytes can document its causal role based on 

a single patient observation. The same principle can now be 

applied to other �elds, with equally high expectations. The 

report of a mutation that ful�lls the in silico criteria listed 

above is likely to be disease-causing but must be con�rmed 

by in-depth, functional, and mechanistic studies. The �rst step 
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by the fact that the mice are reared in an environment that is 

tightly controlled. The patients’ phenotype occurs in natura, as 

opposed to experimental conditions (Casanova and Abel, 2004). 

The phenotype of patients with bi-allelic null mutations there-

fore often di�ers in informative ways from mice with null mu-

tations in the same gene. Moreover, genetic variations that are 

found in patients are also more diverse and thus more illumi-

nating than mutations created experimentally in the labora-

tory, although ENU mutagenesis also generates hypomorphic 

and hypermorphic variants (Andrews et al., 2013).

As shown with PIDs, it may be weeks, months, years, or 

even decades to �nd a second patient with the same pheno-

type caused by a mutation in the same gene. Of course, both 

international collaborations and the publication of a �rst 

patient may hasten this process. What is more challenging, 

rare, and informative is paradoxically a patient with a di�erent 

phenotype, caused by the same mutation at the disease locus. 

An example can be found in the realm of infectious diseases 

because the patient must be exposed to the organism to be at 

risk. Ascertainment bias, i.e., the risk of diagnosing a given 

genotype only in patients sharing the phenotype of the �rst 

case, is probably a more serious problem than the (obviously 

nonexclusive) uncertainty of causal relationship between a 

genotype and a clinical phenotype in single patients. In study-

ing single patients, one should keep in mind that there are no 

truly Mendelian disorders because humans, like other species, 

are not single-gene organisms and because environment af-

fects the phenotype. One should consider the study of single 

patients in a Darwinian perspective, with Mayr’s population 

thinking, as opposed to essentialism (Mayr, 1988; Mayr, 1991) 

and consistent with Garrod’s concept of chemical individual-

ity of man (Garrod, 1931; Bearn, 1993). One should attempt 

to establish a causal relationship between a genotype and a 

phenotype in a unique individual, being aware that the same 

genotype may cause another phenotype in another patient 

and that the same phenotype in another patient may be caused 

by another genotype. The three causal relationships would all 

be correct. In the vast majority of cases, however, replication 

in other patients has been observed, and single-patient discov-

eries, especially in the �elds of hematology and immunology, 

in PIDs in particular, have stood the test of time (Table 1).

Genetic heterogeneity in human populations is such that 

some newly discovered single-gene inborn errors may be re-

ported in only a single patient for years or even decades. The 

dissection of sporadic but genetically homogenous traits is dif-

�cult, but that of sporadic heterogeneous traits is even more 

di�cult. Needless to say, the search for lesions found in multi-

ple patients and multiple kindreds does greatly facilitate the 

genetic analysis of human conditions. However, the extreme 

diversity of human genetic variation is not only re�ected 

in genetic heterogeneity of well-de�ned and homogeneous 

phenotypes. In fact, each patient is unique because of the het-

erogeneity of genetic variants and unique environmental his-

tory. Again, the concepts of population thinking and chemical 

individuality are essential when re�ecting on this question 

(Garrod, 1931; Mayr, 1988, 1991; Bearn, 1993). Because of 

2007; Takahashi and Yamanaka, 2013), which enables the 

mechanistic study of many cell types that can be a�ected by 

disease, has opened up new perspectives in various �elds. It 

has become possible to study patient-speci�c disease pheno-

types in iPSC-derived neurons (Ming et al., 2011), hepato-

cytes (Schwartz et al., 2014), cardiomyocytes (Josowitz et al., 

2011), or respiratory epithelial cells (Huang et al., 2014). This 

approach even enabled the study of nonhematopoietic PIDs, 

with the demonstration of impaired intrinsic immunity and 

enhanced HSV-1 growth in patient-speci�c, iPSC-derived 

TLR3-de�cient neurons and oligodendrocytes (Lafaille et al., 

2012). Along with biochemical studies, investigation of the spe-

ci�c functional consequences of a given mutation in the ap-

propriate cell type (and correction thereof) represents the 

most important step in the experimental validation of candi-

date variations. In turn, the cellular phenotype can be causally 

related to the clinical phenotype in at least two ways. It can be 

shared by patients bearing mutations in a known disease-

causing gene (e.g., mutations in another chain of the same re-

ceptor or molecular complex, or in another molecule along 

the same signaling pathway). Alternatively, it may be novel yet 

provide a plausible molecular and cellular mechanism of dis-

ease. If there is no relevant cellular phenotype, animal models 

can also validate the disease-causing e�ect of a genotype, if 

they recapitulate the human whole-organism phenotypes. 

The animal models can also serve to connect a cellular and a 

whole-organism phenotype. Overall, with the stringent in sil-

ico and in vitro criteria de�ned above, we argue that single- 

patient studies can be illuminating for the study of rare, Men-

delian disorders in hematology, immunology, and beyond.

Concluding remarks
We have highlighted some criteria that facilitate the genetic 

study of single patients, particularly in families with fully pen-

etrant AR traits and de novo mutations. In this paper, the 

concept was illustrated by a review of discoveries in the �eld 

of PIDs. The study of patients with unique conditions is im-

portant, both for purely clinical reasons and for increasing our 

understanding of physiology. Patients with a unique set of 

unusual �ndings need a genetic diagnosis. They cannot be ig-

nored (Mnookin, 2014). Publication of these cases is also an 

e�cient way to �nd and help other patients with the same 

phenotype and the same disease-causing gene. Discovering and 

reporting single-gene disorders in single patients is also im-

portant for biological reasons that go beyond the speci�c pa-

tient. It is not often recognized that murine knockout models 

are genetically more questionable than single patient studies. 

The murine phenotype is typically associated with and tested 

in a single genetic background under de�ned (and for this 

reason also unrepresentative and potentially misleading) ex-

perimental conditions (Andrews et al., 2013). The animals are 

therefore more likely to be homozygous for modifying ge-

netic factors. Single patients are not 100% homozygous, mak-

ing their phenotype more robust. Only 6.25% of the genome 

of patients born to �rst-cousin parents is homozygous. Inter-

pretation of data from knockout mice is further complicated 
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variability in clinical presentations, there are only patients; there 

are no diseases. Or, there are as many diseases as patients. Ill-

nesses are designated by speci�c terms by default. NGS is push-

ing medicine further in that direction—we increasingly discover 

unique conditions and, decreasingly, universal diseases. Single 

patients and their families deserve this attention to unmet 

needs (Mnookin, 2014), and the construction of the biomedi-

cal edi�ce at large also deserves this e�ort. A single patient is 

a fragile bridge between two worlds, between basic scientists 

and practitioners. It would be unfortunate if interpretation of 

the guidelines proposed by MacArthur et al. (2014) to include  

insistence on multiple cases with similar defects results in  

inhibition of reports of novel monogenic inborn errors docu-

mented with only a single case. If none of the single cases are 

published, the only way a new entity would be reported is  

if at least two cases came to the attention of investigators at  

the same time. Consistent with a long tradition in hematol-

ogy and immunology, in-depth mechanistic studies of appro-

priate cellular phenotypes in a single patient in relevant cell 

types can provide a causal bridge between a genotype and a 

clinical phenotype.
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