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Abstract 5 

In this Comment, we provide guidelines for reinforcement learning for patient treatment 6 

decisions that we hope will accelerate the rate at which observational cohorts can inform 7 

healthcare practice in a safe, risk-conscious manner.  8 



From sepsis warning systems to identifying subtle disease signals in medical images, artificial 9 

intelligence (AI) is poised to transform healthcare for the better1. However, AI is not a panacea, 10 

and if used improperly, these systems can replicate our bad practices rather than improve them. 11 

 12 

Reinforcement Learning (RL) is a subfield of AI that provides tools to optimize sequences of 13 

decisions for long-term outcomes. For example, faced with a patient with sepsis, the intensivist 14 

must decide if and when to initiate and adjust treatments such as antibiotics, intravenous fluids, 15 

vasopressor agents, and mechanical ventilation. Each choice affects the patient’s survival at the 16 

end of the hospital stay, quality of life upon recovery, and so on. While the RL approaches used 17 

to optimize treatment sequences vary, they all fall into a common framework. RL algorithms 18 

take as input sequences of interactions (called histories) between the decision-maker and their 19 

environment. At every decision-point, the RL algorithm chooses an action according to its policy 20 

and receives new observations and immediate outcomes (often called rewards).  21 

 22 

In the context of healthcare, RL has been applied to optimizing anti-retroviral therapy in HIV2, 23 

tailoring anti-epilepsy drugs for seizure control3, and determining the best approach to managing 24 

sepsis4. In contrast to more common uses of AI such as one-time predictions, the output 25 

(decisions) of an RL system affects both the patient’s future health and future treatment 26 

options5. As a result, long-term effects are harder to estimate (Figure 1a).  27 

 28 

To illustrate the potential pitfalls in reinforcement learning, we use the example of sepsis 29 

management, for which there remains wide variability in the way clinicians make decisions. In 30 

the context of sepsis, a history may include a patient's vital signs and laboratory tests. The 31 

actions are all the treatments available to the clinician, including medications and interventions. 32 

The rewards require clinician input: they should represent the achievement of desirable tasks 33 

such as stabilization of vital signs or survival at the end of the stay. By weighing different 34 



rewards, an RL-algorithm could be designed to target short-term outcomes, such as liberation 35 

from mechanical ventilation, or longer-term outcomes, such as prevention of permanent organ 36 

damage. Note that defining short-term goals is not straightforward, since ideal sepsis 37 

resuscitation targets remain elusive6. 38 

 39 

We discuss three key questions that should be considered when reading an RL study. These 40 

questions uncover limitations when making quantitative performance claims about RL-learned 41 

algorithms from observational data. 42 

 43 

Is the AI given access to all the variables that influence decision making? 44 

A clinician could not be expected to make good decisions about a patient’s vasopressor 45 

medication dosing without knowing about the patient's co-morbid cardiac condition as well as 46 

what has transpired in the last 24 hours, and neither can an AI. To estimate the quality of a new 47 

treatment policy based on historical data, it is vital to take into account any information that was 48 

used by clinicians in their decision making—failing to do so may result in estimates that are 49 

confounded by spurious correlation. For example, severely sick septic patients may receive 50 

fluids earlier, yet have worse outcomes than healthier patients which is clearly a result of them 51 

being sicker in the first place. This difference in outcomes may lead an analysis that associates 52 

earlier fluid administration with worse outcomes if not properly adjusted for clinical context. 53 

Adjusting for confounding is challenging when validating the average treatment effect of a single 54 

decision7; this problem becomes significantly harder when decisions are made in sequence. It is 55 

thus important to be conscientious of possible confounding factors when reading an RL study 56 

even more so than for standard prediction studies, as the sequential nature of the problem could 57 

lead to confounding effects on the long as well as the short term.  58 

 59 

Effective cohort size: How big was that big data, really?  60 



When evaluating the quality of an RL algorithm retrospectively, the choice of the proposed 61 

treatment policy affects the effective sample size. This occurs because most approaches for 62 

evaluating RL policies from observational data weigh each patient’s history based on whether 63 

the clinician decisions match the decisions of the policy proposed by the RL algorithm8. The 64 

reliability (variance) of the treatment quality estimate depends on the number of patient histories 65 

for which the proposed and observed treatment policies agree — a quantity known as the 66 

effective sample size. The possibilities for mismatch between the actual decision and the 67 

proposed decision grow with the number of decisions in the patient's history, and thus RL-based 68 

evaluations are especially prone to having small effective sample sizes (Figure 1b). 69 

 70 

For example, we found that the effective sample size for a sepsis management policy on a 71 

cohort of 3855 patients was only a few dozens9. In general, the effective sample size will be 72 

larger if the learned policies are close to the clinician policies, suggesting that RL with 73 

observational data will be most reliable for refining existing practices rather than discovering 74 

new treatment approaches. 75 

 76 

Will the AI behave prospectively as intended? 77 

Even if the AI has access to all the important variables and the evaluation was perfect, errors in 78 

problem formulation or data processing can lead to poor decisions. Simplistic reward functions 79 

may neglect long-term effects for meaningless gains: for example, rewarding only blood 80 

pressure targets may result in an AI that causes long-term harm by excessive dosing of 81 

vasopressors. Errors in data recording or preprocessing may introduce errors in the reward 82 

signal, misleading the RL algorithm. Finally, the learned policy may not work well at a different 83 

hospital or even in the same hospital a year later if treatment standards shift. 84 

 85 

Thus, it is essential to interrogate RL-learned policies to assess whether they will behave 86 



prospectively as intended. An increasing body of work on interpretable machine learning 87 

enables such introspection10. 88 

 89 

Toward standard practice 90 

Together, big data and RL provide unique opportunities for optimizing treatments in healthcare, 91 

especially those undertaken in sequence. However, to realize this potential, we must exercise 92 

caution and due diligence in their application and evaluation. 93 

 94 
  95 



Figures 96 

 97 
Figure 1. (a) Prediction, treatment effect estimation and sequential decision-making tasks. 98 
These tasks are progressively harder to solve based on observational data. In classical 99 
prediction tasks, only a single outcome for a patient is considered—the result of following 100 
standard practice without interventions from the analyst. Here, we use the common example of 101 
predicting 48h in-hospital mortality. In treatment effect estimation, we must also reason about 102 
what would happen under alternative unobserved interventions. Consider for example choosing 103 
between performing catheterization on a patient with cardiac arrest, or placing them on 104 
medication. To perform sequential decision making, such as for sepsis management, treatment 105 
effect estimation must be solved at a much grander scale—every possible combination of 106 
interventions could be considered to find an optimal treatment policy. (b) Effective sample size 107 
in off-policy evaluation. Each dot represents a single patient at each stage of treatment, its color 108 
indicating the patient’s characteristics. The more decisions are performed in sequence, the 109 
likelier it is that a new policy disagrees with the one used to learn from. We illustrate 110 
disagreement by grayed out decision points. Using only samples for which the old policy agrees 111 
with the new results in a small effective sample size and a biased cohort, as illustrated by the 112 
difference in color distribution in the original and final cohort. 113 
  114 



1 Obermeyer, Z. & Emanuel, E. J. Predicting the future—big data, machine learning, and 115 
clinical medicine. The New England journal of medicine 375, 1216 (2016). 116 

2 Parbhoo, S., Bogojeska, J., Zazzi, M., Roth, V. & Doshi-Velez, F. Combining Kernel and 117 
Model Based Learning for HIV Therapy Selection. AMIA Summits on Translational 118 
Science Proceedings 2017, 239 (2017). 119 

3 Guez, A., Vincent, R. D., Avoli, M. & Pineau, J. in AAAI    1671-1678 (2008). 120 
4 Komorowski, M., Celi, L. A., Badawi, O., Faisal, A. & Gordon, A. The intensive care AI 121 

clinician learns optimal treatment strategies for sepsis. Nature Medicine (2018 (In press)). 122 
5 Chakraborty, B. & Moodie, E. Statistical methods for dynamic treatment regimes.  123 

(Springer, 2013). 124 
6 Simpson, N., Lamontagne, F. & Shankar-Hari, M. Septic shock resuscitation in the first 125 

hour. Current opinion in critical care 23, 561-566 (2017). 126 
7 Johansson, F., Shalit, U. & Sontag, D. in International Conference on Machine Learning    127 

3020-3029 (2016). 128 
8 Precup, D., Sutton, R. S. & Singh, S. P. in International Conference on Machine 129 

Learning    759-766 (2000). 130 
9 Gottesman, O. et al. Evaluating Reinforcement Learning Algorithms in Observational 131 

Health Settings. arXiv preprint arXiv:1805.12298 (2018). 132 
10 Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable machine learning. 133 

arXiv preprint arXiv:1702.08608 (2017). 134 
 135 



Standard practice 

Observed outcome ICU Patient 

Percutaneous  
Coronary Intervention 

Medication 
Patient w. 
heart attack 

Observed response 

Time 

c) Sequential decision making: Sepsis management b) Treatment effect estimation: Acute Coronary Syndrome 

a) Prediction: In-hospital mortality 

Mechanical ventilation? Sedation? Vasopressors? Unobserved response 

Unobserved 
responses 

Observed  
decisions  
& response 

(a) 



Proposed policy 

Effective cohort 

Time 

Decisions with disagreement 

Discomfort 

Blood pressure 

O2 Intake 

Mechanical ventilation? Sedation? Vasopressors? 

Patient characteristics 

(b) 


	Article File
	Figure 1a
	Figure 1b

