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The number of publications investigating heart rate variability (HRV) in psychiatry and the behavioral sciences has increased
markedly in the last decade. In addition to the significant debates surrounding ideal methods to collect and interpret measures of
HRV, standardized reporting of methodology in this field is lacking. Commonly cited recommendations were designed well before
recent calls to improve research communication and reproducibility across disciplines. In an effort to standardize reporting, we
propose the Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH), a checklist with four domains:
participant selection, interbeat interval collection, data preparation and HRV calculation. This paper provides an overview of these
four domains and why their standardized reporting is necessary to suitably evaluate HRV research in psychiatry and related
disciplines. Adherence to these communication guidelines will help expedite the translation of HRV research into a potential
psychiatric biomarker by improving interpretation, reproducibility and future meta-analyses.
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HEART RATE VARIABILITY RESEARCH IN PSYCHIATRY

Heart rate variability (HRV) is the complex modification of the
heart rate by the coordination of autonomic, respiratory,
circulatory, endocrine and mechanical influences over time.
Originally popularized as a research tool to detect fetal distress,1

and later to predict risk of mortality post-myocardial infarction
using 24-h Holter recordings,2–5 quantification of HRV has recently
been more widely adopted to approximate autonomic control of
the heart rate in the short term.6–8 The use of HRV as a
transdiagnostic marker has a long research tradition in psychiatry9

that dovetails the recent push to establish neurobiological
markers of psychiatric illness for improved nosology.10 Meta-
analyses have established that individuals with a range of
psychiatric disorders have reduced HRV, with the greatest
reductions observed in psychotic disorders11–14 (but see Stein
et al.15 for situations where higher HRV is not necessarily better).
The increased incidence of cardiovascular disease in psychiatric
illnesses compared with healthy controls16–18 has also contributed
to the increasing interest to better understand autonomic nervous
system function in psychiatric illnesses. HRV has also been shown
to covary with a range of psychological phenomena that are
impaired in psychiatric illnesses such as social cognition19,20 and
executive function.21,22 HRV is a central component of two
prominent biobehavioral frameworks: the neurovisceral integra-
tion model, which highlights an inhibitory cortico-subcortical
neural circuit to respond to environmental challenges23 and the
Polyvagal theory, which adopts a phylogenetic approach.24 Both
models emphasize how reduced HRV approximates a failure to

inhibit maladaptive cardiac autonomic response to stress and
perceived threats, whereas increased HRV promotes behavioral
adaption and cognitive flexibility, all of which are inherent
features to a number of psychiatric illnesses.
Considering the relationship between HRV and many core

clinical features of psychiatric illness, the efficacy of novel
treatments designed to increase HRV and, perhaps concordantly
improve symptoms, is now being explored. HRV biofeedback has
been shown to increase HRV by training resonance frequency
breathing, which is typically 5.5 breaths per minute on average,25

but can vary from person to person.26 Early HRV biofeedback trials
have demonstrated good tolerability and modest symptom
improvements in anxiety, mood and substance-use
disorders.27–31 Vagus nerve stimulation (VNS), which involves
surgical implants of electrodes to the left vagus nerve, also
increases HRV.32,33 VNS has demonstrated effectiveness in
treatment-resistant depression,34–37 with the US Food and Drug
Administration granting approval for such therapeutic use of VNS
in 2005. Owing to the risks of surgery, however, VNS is only
indicated for the most severe cases of depression. Non-invasive
transcutaneous VNS that stimulates afferent vagus nerve fibers
located in the ear38 has also demonstrated similar results,39,40

which may open up such treatment to more individuals with
depression.
Many HRV studies in psychiatry refer to a set of standards

established almost two decades ago.7 While the general principles
surrounding data collection, analysis and interpretation outlined
in this report remain relatively unchanged (apart from novel HRV
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parameters41), coordinated efforts to improve research reporting
and reproducibility have only recently emerged.42,43 Given the
absence of reporting standards specific to psychiatric research, it
is therefore unsurprising that critical study details are inconsis-
tently communicated.14,44

THE DRAWBACKS OF INCONSISTENT STUDY REPORTING

Inconsistent descriptions of study methodology present a
significant problem for the scientific community at large. First, a
lack of methodological detail may hinder or delay peer-review.
Almost half of a large sample of researchers (n= 4037) described
the peer-review process as ‘slow’ or ‘very slow’.45 Appropriate
reporting of HRV methods will reduce the need to request
additional technical details, which then need to be gathered and
structured by the original authors, benefitting both reviewers and
editors. Standardized reporting of HRV methods will also benefit
authors, assisting in the design of experiments and data collection.
Second, a lack of methodological detail hinders replication. A

growing movement within the scientific community supports the
standardization of reporting methodological details and providing
transparent access to original data to improve the odds of
replicability. Such large replication projects have described similar
impediments because of a lack of methodological details in non-
biological psychology,43,46–48 neuroimaging49,50 and drug
discovery.51 Ostensibly, the goal of a methods section is the
description of methodology such that findings may be replicated
from written papers without clarification or reference to other
sources. However, the reporting of methodological details
required for replications is often inconsistent.
Third, unclear methodology presents inevitable and occasion-

ally insoluble problems for performing meta-analyses; that is, the
statistical combination of multiple studies to calculate a summary
effect size for a given research question. Even combining effect
sizes from two or three sets of data meaningfully increases
statistical precision.52 However, the quality of data reporting in
HRV research is mixed, if it is even available, and requests for
additional data because of incomplete information often yield low
response rates.14,44 As large replication endeavors have often
noted, retrospective requests for data or detailed protocols may
be difficult to fulfill; for instance, data retention requirements for
psychological or clinical data vary between institutions, the
responsible students or staff may not be present at the time of
the data request or data may be lost or corrupted because of older
electronic data-storage systems. Moreover, the initial lead
researcher may have no time for, or interest in, assisting with
replication or meta-analyses. Researchers occasionally invoke the
violation of privacy regulations, such as the Health Insurance
Portability and Accountability Act, when declining data-sharing
requests. Many methods have been developed that comply with
Health Insurance Portability and Accountability Act-compliant de-
identification.53–55 In cases where data cannot be appropriately
de-identified (for example, participants all live in a specific
geographical region), additional privacy safeguards, such as
data-usage agreements, can be implemented.56,57 To facilitate
the sharing of data, consent processes can be updated to inform
potential participants who de-identified study data may be
shared.56,58 Researchers may also associate direct replication with
implicit criticism and may be uncomfortable with other labora-
tories pursuing their initial protocols as replication may miss the
nuance of the original protocol.59 In short, insufficient reporting
may slow, obstruct or even directly impede the calculation of
meta-analytical effect sizes and related moderator analyses.
In consideration of these factors, we propose the Guidelines for

Reporting Articles on Psychiatry and Heart rate variability—
GRAPH. Research reported according to the 13-item GRAPH
checklist (Figure 1 and Table 1; also see Supplementary Table 1 for
a downloadable template) will help expedite translational research

efforts by reducing the need for data and protocol requests for
meta-analysis, replication and peer-review. Most importantly, the
reader will have increased means to examine research in the field
critically. We cover important considerations for HRV studies in
psychiatry and biobehavioral research that include the following:
selection of participants, interbeat interval (IBI) collection, data
preparation and HRV calculation. Although we hasten to
emphasize that we are not attempting to advocate a standard
for HRV research—the breadth of research questions and methods
renders this impractical—providing this information will help
improve the interpretation of HRV research in psychiatry and
related disciplines. Although not an exhaustive list of all the
potential methodological considerations for the collection and
analysis of HRV data, these guidelines are intended to provide a
minimum set of criteria from which to design and report HRV
studies in psychiatry.

PARTICIPANT SELECTION

The selection and description of study participants is an integral,
but oft-under-reported aspect of HRV research in psychiatry.
Proper appraisal requires a minimum standard of information on
study populations, particularly for case–control designs. When
studies include a psychiatric population, for example, the method
of diagnosis is an important detail considering the variability of
classification accuracy. Different classification systems are avail-
able for diagnosis (the Diagnostic and Statistical Manual for
Mental Disorders and the International Classification of Diseases).
These diagnoses can be determined via structured clinical
assessments administered by specialists and non-specialists.
Indeed, inexperienced interviewers, such as graduate students,
can have difficulties classifying psychiatric illness.60–62

Diagnoses can also be gathered via self-report. Simple self-
reported diagnoses are the least accurate means of collecting
diagnostic information; as many as half of patients are unaware or
unable to correctly identify their diagnosis.63 Data from self-report
questionnaires may show satisfactory agreement with structured
clinical interviews and clinician diagnoses. However, they cannot
replace clinical interviews for diagnosis, a point emphasized by
the authors of many of these screening instruments.64–66 An
additional confound is the large range of available self-report
questionnaires, with variable validity, rendering comparisons
between studies difficult. Data from participants with subclinical
symptomology, particularly ‘high-trait’ groups, based on these
self-report questionnaires are still valuable, but such distinction
needs to be explicit (for example, self-report questionnaire
cutoffs). Disorder characteristics can also influence HRV. For
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Figure 1. Guidelines for reporting articles on psychiatry and heart
rate variability (GRAPH). A minimum set of criteria from which to
design and report HRV studies in psychiatry. IBI, interbeat interval.
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instance, age of onset and illness severity are associated with
HRV.13,67 Finally, psychiatric comorbidities, which are common in
psychiatric illness,68 also modify HRV in psychiatric populations.69

Healthy participants are often recruited to HRV studies to study
behavioral or cognitive correlates, as a comparison with a clinical
population, or a combination of both these goals. Bearing in mind
the well-described association between mental illness and HRV,
adequate descriptions (as detailed above) of how the absence of
the condition was determined in controls are important. This is
not only relevant in studies that compare HRV between a
psychiatric population and controls but also studies that
exclusively report the recruitment of healthy controls. Relatedly,
the source of the healthy comparison group is also relevant. Many
studies recruit ‘hypernormal’ controls (also referred to as ‘well’
controls) who are not representative of the general
population.70,71 Although it is ideal to recruit participants from
the same sampled population as the clinical group, this may not
always be possible or practical because of cost and time
considerations (but see Schechter and Lebovitch72). Specific
information about where control groups were selected from can
provide a more accurate assessment of whether differences
between groups may be exaggerated by potential control group
population biases (for example, socioeconomic status and race).
Irrespective of the psychiatric status, reporting of pre-specified

participant exclusion and inclusion criteria requires adequate
description. Research indicates that demographic attributes, such
as gender,73 physical activity levels74,75 and habitual levels of
alcohol,11,76 and nicotine intake77 influence HRV. Age is of
particular importance as it is inversely related to HRV78,79 and
patient groups are often older compared with the younger
university/college students usually recruited to healthy sample
studies. The occurrence of physiological conditions80,81 and
ectopic beats also increases with age.82,83 In addition, physical
health conditions such as cardiovascular,84–86 metabolic87 and
renal diseases88–90 can have an impact on HRV and occur at
increased frequency in psychiatric conditions. Relatedly, cardio-
vascular and psychotropic medications (especially, tricyclic anti-
depressants) also have an appreciable impact on HRV.13,14,91

Assessing for these factors is particularly important when
comparing clinical and nonclinical groups, as they can often differ
on many of these domains but may not be standardly assessed or
reported.

IBI COLLECTION

Hardware

Interbeat interval data have traditionally been collected via
electrocardiogram (ECG) or photopletysmography. These methods
still represent the bulk of recordings, although more recent
technologies are available or in development, such as
smartphone-enabled optical pulse sensors,92 webcam video,93

ultrasounds to index fetal heart period,94 microwave radar,95

cushion-mounted ballistocardiogram96 and toilet seats.97 To assist
interpretation and reproducibility, research should communicate
details of the device (for example, manufacturer and model) along
with the software used for IBI extraction or analysis. If the device is
commercially unavailable, the researcher should provide more
detailed information, including but not limited to the analog front-
end, microcontroller unit, peripherals, electrodes and so on.
Likewise, any data concerning explicit validation against existing
measurement devices should be included. Many sports watch-
monitor manufacturers offer models with sufficient sampling rates
to calculate HRV (for example, Polar and Suunto). However,
researchers do not have access to metrics about how these
devices are identifying or correcting errors, consequently making
the decision on the data quality sufficient for retention in analyses
difficult. Error identification might be possible to some degree
from RR intervals, but these devices do not provide the ECG trace,
which can be used to better identify cardiac dysrhythmia. Thus,
using these devices to investigate a condition or population
characterized by above-average error or ectopy may be
problematic.98

Recent advances in technology along with the rise of the
‘quantified self’ movement,99 where people track and monitor
their own biometric data, have converged to create a new
category of consumer devices purported to measure HRV.
However, these devices are generally not formally validated
against an ECG for accuracy. Moreover, these devices often (a)
report a proprietary metric rather than a standard metric, (b) do
not provide access to raw data and (c) do not offer technical
details of correction methods (if any are present). Researchers
should consider their own investigations into the validity of novel
devices to determine their accuracy in the population of interest.
Without a method of checking the original sinus rhythm there is
no way to determine the accuracy of potential errors in a beat-to-
beat series. That is, a proprietary device may return accurate beat

Table 1. GRAPH checklist items

Topic Number Checklist item

Selection of participants
Psychiatric group selection 1a Psychiatric group recruitment details and illness assessment methods
Control group selection 1b Control group recruitment details and methods to rule out psychiatric illness
Inclusion criteria 1c Description of inclusion criteria (for example, absence of physical health conditions)
Disease characteristics 1d Description of disease duration, severity, psychiatric comorbidities and medication status
Demographics 1e Details on age, gender distribution, physical activity level, alcohol intake and nicotine intake

IBI collection
Hardware/software details 2a Brand and electrode configuration (if applicable)
IBI collection details 2b Raw sampling rate, length of data collection, time of day, filtering, participant posture and instructions

Data analysis and cleaning
IBI calculation 3a IBI calculation and resampling methods
IBI artifact identification 3b IBI artifact identification method (for example, algorithm, manual inspection)
IBI data loss 3c Reasons for loss (for example, persistent ectopy, equipment failure)
IBI cleaning 3d Artifact cleaning methods and the percentage of beats were corrected

HRV calculation
Method of analysis used 4a Metrics used and the software/script used for HRV calculation, log transformation (if applicable)
Frequency bands used 4b Specification of frequency bands and how they were interpreted

Abbreviations: GRAPH, Guidelines for Reporting Articles on Psychiatry and Heart rate variability; HRV , heart rate variability; IBI, interbeat interval.
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information, but other device and individual patient factors may
go undetected. For instance, vascular insufficiency may interfere
with the collection of photopletysmography signals, and cardiac
arrhythmia may interfere with the collection of ECG signals, both
of which may be impossible to determine without inspection of
the raw data.

Sampling rate

While the electrocardiographic P-wave is the direct representation
of sinoatrial (SA) depolarization, and therefore the closest
indication of the initiation of the cardiac cycle, the R-wave (which
corresponds to ventricular depolarization) is used for convenience.
As temporal accuracy is important to calculate the variance of a
time series successfully, previous guidelines provided a minimum
desirable sampling rate,7 with 500 Hz being the recommended
threshold to accurately identify native fiducial points.100,101 Having
said that, 250 Hz may also be adequate when collecting data from
healthy adults.102 It is still possible that Holter legacy data, which
was typically recorded at 128 Hz, may be below this minimum.
However, early data recorded at 128 Hz may still provide useful
information if the error subsequent to the slower sample rate is
recognized. Altogether, this consideration is only occasionally
relevant to contemporary research, as hardware standards are
often well in excess of minimum sampling rates—commercial
devices are readily available with native sampling rates of 1–8 kHz.
Moreover, it is clear that R-wave fiducial points can be easily
reconstructed from lower-sampled signals as a 128-Hz signal
contains enough data to improve the information in the signal.
For instance, the reconstruction of R-waves even with a simple
quadratic correction allows 128-Hz data to show equivalent
accuracy to 512 Hz (Figure 2). As a consequence, research should
state the native sampling rate of the hardware utilized, along with
any details of signal reconstruction (if applicable).

Time factors of recording

Whereas HRV has historically been calculated using 24-hour Holter
monitoring—which offers superior prediction of future cardiovas-
cular disease mortality103 and the opportunity to evaluate longer-
term circadian HRV differences—the majority of HRV data within
psychiatry and the behavioral sciences have been calculated using
short-term recordings (durations between 1 and 5 min). The Task
Force statement suggests a minimum of 60-s continuous
recording to quantify high-frequency (HF) HRV,7 with recent work
showing reasonable agreement between ultrashort-term HRV
measures (o60 s) and 5-min periods.104 Two other recommenda-
tions for time periods are common (although neither appears to
be strictly analytical): (a) 5 min of baseline recording, which is an

overwhelmingly popular standard for most frequency domain HRV
recordings,105 and likely a vestigial standard leftover from the
original processing limits of the PDP-8 minicomputers originally
used to collect ECG during the 1960s; and (b) 10 cycles of the
lowest frequency of interest, or at least 250 s of recording in a
standard frequency domain analysis reporting a low-frequency
(LF) band with a lower bound of 0.04 Hz.
A related issue for consideration is acclimatization to the

recording environment. Often this is accomplished by using an
analysis period that begins subsequent to the start of recording,
an approach used by ourselves19,67,92 and others.106–108 Acclima-
tization can help reduce any HRV changes because of posture,
which may take time to adjust if the participant has just assumed
a supine or seated position.109–111 Acclimatization may also
reduce confounds subsequent to test anxiety in psychiatric
populations. Considering the impact of attentive states on
respiratory frequency,112 which subsequently influences the ECG
recording,113 the beginning of the recording period should not be
announced. As the comparison of HRV between different time
periods is also problematic,114 the longer period should be
reduced to match the shorter period.

Posture and procedures

Posture has a well-characterized effect on autonomic outflow,
which is proportional to the shift of the body axis because of the
primarily sympathetic response to venous pooling and conse-
quent involvement of the baroreflex. The use of graded tilt—
whereby an immobile participant’s posture is increased in
progressive increments from supine to upright—reveals a strong
curvilinear relationship between posture and HRV.109,115 Conse-
quently, direct equivalence between supine, seated and standing
recording is not warranted, given these differences and wider
dispersion of HRV during supine recordings compared with
upright.
The instructions given for a task are also an important

consideration. In some cases,116–118 researchers administer a
low-demand cognitive ‘Vanilla’ Task,119 which may have some
relevance for psychiatric populations that have difficulty sitting
still or experience stress under experimental ‘resting-state’
conditions. Instructions with attentional demands may also
modulate HRV, primarily because of changes in respiratory depth
and frequency. Regardless, the instructions given to the partici-
pant should be stated. Some researchers have also attempted to
blind participants to the purpose of the equipment that measures
respiration to encourage true spontaneous breathing. For
instance, Vlemincx et al.112 explained to participants that
respiratory sensors built into a garment were collecting informa-
tion on muscle tension. Thus, instructions given to participants for
baseline recordings should be noted. Considering the influence of
circadian rhythms and digestion on HRV,120–123 time of day and
time since last meal should also be noted and standardized where
possible in short-term HRV recordings, especially for designs
incorporating repeated recordings over time.

Other signals

The obvious ancillary recording for the measurement of HRV is
respiration, due to its direct influence on HF HRV.124–126 However,
the importance of monitoring respiration under resting conditions
is not settled. Proponents for respiratory monitoring maintain that
respiration should be controlled, as respiratory parameters may
modify the relationship between HF HRV and cardiac vagal
modulation.127 Others argue that this is not necessary,128 as these
respiratory and HR oscillations have the same origin.129 Regard-
less, respiration is almost exclusively the source HF HRV (with
some modest contributions from other sources, such chest
compression130), and respiratory data provide information that
directly affects the cardiac cycle, such as respiratory frequency and

Figure 2. Reconstruction of interbeat interval (IBI) signal. s.d. of
errors compared with a natively sampled 2048-Hz signal in a single
15-min recording where all IBIs are identifiable; a simple quadratic
correction to the peaks of the 128-Hz signal (c128) results in
comparative accuracy to the natively sampled 512-Hz signal.
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depth. Erratic sinus arrhythmia (see more information below) may
also contribute to the HF band despite its non-respiratory origin.15

Indirect measures of respiration can also be calculated from
ECG131–133 and photoplethysmographic134 signals. The potential
to compute respiration directly from a record of cardiac intervals
without the need for monitoring via impedance, belt or mask is
appealing, considering its simplicity. In specific situations, respira-
tion may be of interest to researchers investigating populations
that happen to breathe slowly, such as athletes74 or meditators.135

On the other end of the spectrum, some patient
populations,136,137 and children138 breathe at a faster rate. There
is evidence to suggest that periodic and sudden fluctuations in
the respiratory rate are both a source of altered HRV variability
over time and are directly mediated by experimental task
demands.112 The presence and frequency of sighs, which are
reported to be increased in psychiatric illnesses,139,140 should also
be monitored as these produce large deviations from typical
respiratory length and depth.141 HRV is also dependent on HR in
an inverse nonlinear manner.142,143 A mathematical correction for
this dependency has been proposed to improve HRV
reproducibility.144 Finally, using exercise as a stress task will also
increase the respiratory rate.145

DATA CLEANING AND ANALYSIS

IBI calculation

Identifying IBIs is computationally straightforward; the Pan-
Tompkins algorithm,146 where the raw ECG signal is bandpassed,
differentiated, squared, integrated and smoothed to isolate
R-waves, was developed over 30 years ago and remains a
common and effective processing method. After peak detection
is achieved, most frequency domain analysis methods resample
the RR series into an evenly sampled time series (typically
between 1 and 10 Hz). Different resampling rates may affect
equivalent frequency transforms; however, this usually is not
profound as long as researchers satisfy the Nyquist criterion.147

Several sources of artifact that may affect the frequency bands
of interest are common.148 The main sources of contamination
include powerline interference (at 50 or 60Hz depending on the
nature of local AC power), muscle contraction or movement
artifacts, and baseline drift. The occurrence of one or more of
these in any given data set is almost certain, but may be highly
variable; therefore, filtering of data for artifacts should be clearly
noted in manuscripts along with whether beat detection was
visually inspected as some systems (predominately clinically
oriented suites) do not provide this facility. To aid future analysis,
the raw signal should be recorded without online filtering during
data acquisition, if possible.

Non-sinus beat/arrhythmia identification

A central premise of HRV is that IBIs approximate SA node-firing
patterns, otherwise known as normal sinus rhythm. Accordingly, a
fiducial point that does not originate from the SA node (that is, a
non-sinus beat) does not represent the autonomic nervous system
input to the SA node. Two common sources of non-sinus beats are
the atria and ventricles, which can prompt an atrial premature
contraction and ventricular premature contraction (VPC), respec-
tively. As these beats are premature, they lead to a short R–R
interval followed by a long compensatory R–R interval (Figure 3).
Pathological causes of ectopy include electrolyte abnormalities,
ischemia and cardiomyopathy. Ventricular arrhythmias can also be
generated from an unmasked ectopic focus in populations with
very low HR, such as athletes.149 More benign causes of ectopy in
healthy populations include caffeine or nicotine,150,151 which is
one reason most researchers ask participants to refrain from such
intake before IBI collection. To our knowledge, research is yet to
examine the impact of caffeine withdrawal on HRV, which requires

future investigation. However, double-blind experiments suggest
that abstinence in those that regularly consume caffeine has no
effect on heart rate.152

Although even one misidentified beat can have a considerable
influence on HRV calculation,153 there is no consensus or absolute
criteria for defining atrial premature contraction or VPCs via
algorithm. Accordingly, manual inspection of the ECG trace is
needed for non-sinus beat identification. Many software packages
attempt to make their own corrections from R–R intervals, not
from identifying incorrect ECG signals. Atrial premature contrac-
tions and VPCs are relatively common; a few percent in a healthy
population,82,83 a higher percentage in an athletic
population154,155 and higher still in some cardiac conditions.156

However, many papers do not seem to have any corrections or
removals at all or omit these details entirely.
Correcting these artifacts assumes only that the directly affected

beats are problematic. However, a further concern exists if VPCs
are the source of heart rate turbulence, in which a non-sinus beat
causes subsequent short-term R–R changes.157 In healthy people,
the compensatory pause after a VPC is followed by brief R–R
interval acceleration, and then R–R interval deceleration. This
pattern is not observed in high-risk patients, with decreased
deceleration speed (that is, turbulence slope) shown to be a
powerful predictor of mortality.157,158 It is thought that heart rate
turbulence has a baroreflex origin,159 whereby a VPC causes a brief
drop in blood pressure, leading to baroreceptor inhibition of vagal
input, which leads to a brief increase in heart rate. Careful
inspection of the ECG signal can help both identify ectopy, as this
can occur without artifact, and any subsequent heart rate
turbulence. Visual inspection can also help identify artifacts that
can be missed with commonly used filter thresholds. For example,
people with extremely high or low HRV can have normal sinus
beats misidentified as ectopic beats. Thresholds can also be
adapted depending on the population.
Erratic sinus arrhythmia is a less well-recognized form of

persistent arrhythmia that differs from ectopy in that heart beats
appear to have normal electrocardiographic morphology (that is,
they have sinus origin) but display short-term variation that is non-
respiratory in origin.15,160 Although erratic sinus arrhythmia has
been strongly associated with serious cardiovascular illness,
predicting post-infarction survival,161 this does not preclude it
from occurring in other healthy or patient populations. An
inspection of the Poincaré plot (a scatterplot where each point
represents two consecutive heart periods) for regularity may be

Figure 3. A tachogram illustrating an ectopic beat in an R–R interval
time series. An ectopic beat appears as a short R–R interval (480 ms;
R–R interval 16) followed by a compensatory pause (1080 ms; R–R
interval 17).
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sufficient to reveal the presence of erratic sinus arrhythmia,160,162

and should be performed on IBI series with inexplicably high HRV.
Consequently, how beat inspection was performed, the percen-
tage of beats identified per participant and any exclusions
because of abnormal sinus rhythm should be explicitly stated.

IBI data loss

There are many reasons for discarding data apart from persistent
arrhythmia. These include hardware/software errors, wire loss,
poor electrode contact, extraneous magnetic or line noise,
excessive movement artifacts, EMG artifacts, experimenter error,
file corruption, physical loss and accidental duplication. ECG signal
characteristics, such as wide QRS complexes or tall t-waves, can
also contribute to peak detection difficulties. These errors also
influence how the viability of the experimental model is
confirmed. For instance, movement-based tasks may destroy
inappropriately filtered signals or experiments may use incorrect
electrode sites or fail to manage data collection properly.
Data loss as a difference between groups is also concerning. For

instance, a stress induction would conceivably cause more errors
in a psychiatric sample compared with a control group. This leaves
the investigator with a task by outcome interaction, which needs
to be accounted for before normal task effects. The percentage of
beats removed from the sample has a direct impact on accuracy,
thus reporting that this percentage can be instructive. Ideally, the
percentage of removed beats should be equivalent between
groups to ensure that differences are because of the autonomic
nervous system rather than artifact. Some methods preserve
accuracy with data loss well; however, all methods perform badly
when long sections are lost.163 This frequently happens with
photopletysmography recordings because movement artifacts
destroy adaptive filters, which often require 5–6 s to ‘re-adapt’.
Five percent is the commonly stated threshold for R-peak data loss
to render a series unusable (for example, Heathers et al.164), which
to our knowledge has no empirical basis. However this, again, is a
convention instead of an analytic barrier; therefore, the threshold
used should be noted.

IBI cleaning

When adjusting for errors, as above, the beat replacement method
can directly affect measurement outcome. Just removing the beat
is problematic, especially for shorter recordings and frequency
domain calculations.153 Linear correction and cubic spline inter-
polation are acceptable solutions, but both potentially introduce
errors (for a review of beat replacement techniques, see
Peltola165). Time-domain methods, which are less sophisticated,
also have the benefit that errors can simply be removed
proportionally. Multiple consecutive errors cannot be handled
the same way as single errors. If the researcher expects
frequencies of up to 0.4 Hz in signals, then the loss of several
beats in a row requires a different approach, such as discarding
the sample entirely. However, work frequently combines and
compares time and frequency domain methods of HRV. Conse-
quently, a single correction method for replacement should be
used before smoothing or decimation.

HRV CALCULATION

Method of analysis used

There are more than 70 published metrics for calculating
HRV.166,167 Methods may be time domain (such as the s.d. of
the NN interval), frequency domain (such as the Fast Fourier
Transform), time–frequency domain (such as the continuous
wavelet transform) or ‘nonlinear’ methods, many of which are
not strictly nonlinear (for example, correlation dimension,
detrended fluctuation analysis, approximate entropy and sample

entropy). Several direct equivalencies exist between these
methods.168,169 Frequency domain analysis is typically computed
by fast Fourier transform or autoregressive techniques, which are
almost equivalent for the HF band (r= 0.96 Hayano et al.170). Other
techniques include the Lomb–Scargle periodogram171,172 and
smoothed pseudo Wigner–Ville distribution.173

Although these methods may be similar, they should not be
assumed directly equivalent under all circumstances.174 The
resolution of a peak frequency in particular may be different
between methods because of the smoothness of the power
spectral density.175 All analytical results are subjected to a series of
methodological assumptions (for example, windowing method,
window length, overlap and frequency bands in frequency
domain analysis). Therefore, the explanation of the analytic
method chosen should be stated in enough detail such that a
competent external researcher could reproduce the analysis with
sole access to the manuscript. However, the exact details that this
includes will differ with each method. As s.d. of the NN interval
and power spectral density analysis (HF and LF powers) are the
best characterized HRV metrics in terms of clinical use41 and
historically the most commonly used metrics,176 continued
reporting of these measures will aid replication and meta-
analysis. If novel HRV methods are used, researchers should
follow recent recommendations from the European Society of
Cardiology, who suggest that novel methods should be reported
in tandem with traditional HRV measures.41

Selection and interpretation of frequency bands

Frequency domain analysis of IBI data is computationally
straightforward. Whereas there are recommendations for bands
to use in adults (LF, 0.04–0.15 Hz; HF, 0.15–0.4 Hz), children and
infants (LF, 0.04–0.24 Hz; HF, 0.24–1.04 Hz) at rest because of
spontaneous breathing rates, these are not necessarily important
in other circumstances. For instance, some athletes have
respiratory rates sufficiently slow as to interfere with the
traditional interpretation of the measured HF band.74 Population
characteristics should be considered when bands are chosen,
either by looking at past research or by calculating respiratory
rates of the data in question.
Disagreements over the teleology and mechanics of HF are

minimal at present (but see Billman176), especially compared with
disagreements over the nature of LF and the ratio between the
bands LF/HF.105,177,178 For instance, LF is variously reported as a
measure of ‘sympathetic activation’, a component of activity in
‘sympathovagal balance’ or a measure of sympathetic nervous
system activity instead of activity of the baroreflex in response to
vasomotor tone.105,179 Subsequently, the Task Force paper7

requests reporting and analysis of raw LF and HF powers in
addition to additional interpretation of those bands. Likewise, the
parameters of those bands and their putative interpretation
should be declared. These bands should also always be reported
in standard format (that is, as LF and HF power in ms2/Hz) before
further calculation. Finally, it is important to not overextrapolate
short-term experimental recordings against established 24-h HRV
findings.

ADDITIONAL CONSIDERATIONS FOR REPORTING HRV STUDIES

Data and analysis script archiving

Development of new signal analytic techniques, confirmation of
existing findings and meta-analyses rely on access not just to both
existing results and the raw data from those results. Instead of
relying on effect size comparison between studies with different
methodologies for meta-analysis, pooling individual data points
using mega-analysis would help adjust for within-subject differ-
ences in methodology.180 Mega-analyses have already been
applied to other areas of biobehavioral research.181–183 The largest
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HRV meta-analysis in psychiatry to date, which included 170
studies, suggested that only 20–25% of observed heterogeneity
was because of sampling error.14 This indicates that other factors,
such as HRV calculation methodology, are contributing to
heterogeneity in effect sizes. Moreover, mega-analyses can
determine the degree to which differences in methodology
contribute to heterogeneity compared with other heterogeneity
sources.184 However, given the complexities surrounding data
sharing,185 such as the precarious balance between openness and
privacy, we feel that this cannot be included as a strict
recommendation to publication. Nevertheless, the increasing
movement from many publishers toward open-access sharing of
data as an essential publishing requirement may mean that many
of these heterogeneity issues could be addressed in future
analyses of pooled individual data. Finally, the availability of the
precise details of statistical analysis (that is, analysis scripts) may
also improve reproducibility of research, as it offers the reader and
reviewers the opportunity to closely examine how results were
generated.

CONCLUSION

The discipline of ‘meta-research’ is a relatively recent proposal to
accelerate the translation of scientific research by improving
research methods, reporting, reproducibility and evaluation.42 HRV
research in psychiatry tends to under-report important methodo-
logical details required for critical evaluation. For this reason, we
have designed guidelines that consider important details related
to this research to streamline reporting. These are not additional
requirements for analysis, rather are criteria by which decisions
that are made in every paper by necessity. The requested
information already exists, in every paper, regardless of whether
or not it represents a conscious decision by the author or has been
omitted for the sake of brevity in the publishing process. We have
summarized these guidelines in a 13-item checklist (Table 1 and
Supplementary Table 1) and expect that adherence to these
guidelines will improve reproducibility, expand the ability to
perform meta-analyses, improve critical evaluation and expedite
the peer-review process. Moreover, these guidelines will enhance
the clarity of HRV research in psychiatry. Consideration of these
guidelines at early stages of project planning will also aid study
design. We make no attempt to recommend how HRV studies in
psychiatry ought to be conducted because of sheer impracticality.
The central question when assessing a methods section is to
determine how the study reached its conclusions; therefore, the
singular purpose of these guidelines is to facilitate the clear
communication of research findings to accelerate the translation
of psychiatric research.
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