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Abstract

Single particle tracking is an essential tool in the study of complex systems and biophysics

and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the

diffusive trajectories. However, past work has shown that MSDs are susceptible to signifi-

cant errors and biases, preventing the comparison and assessment of experimental stud-

ies. Here, we attempt to extract practical guidelines for the estimation of anomalous time

averaged MSDs through the simulation of multiple scenarios with fractional Brownian mo-

tion as a representative of a large class of fractional ergodic processes. We extract the pre-

cision and accuracy of the fitted MSD for various anomalous exponents and measurement

errors with respect to measurement length and maximum time lags. Based on the calculat-

ed precision maps, we present guidelines to improve accuracy in single particle studies. Im-

portantly, we find that in some experimental conditions, the time averaged MSD should not

be used as an estimator.

Introduction

The analysis of single particle trajectories has become a standard procedure in the analysis of

experimental and theoretical systems [1–7]. In biological systems, that are intrinsically stochas-

tic in nature, single particles have been measured in all cellular environments and stages, both

in vivo and in vitro [8–17].

Since cellular environments are complex microscopic systems with a strong thermal compo-

nent [17], the motion of single particles, even if directed, incorporates a random diffusive com-

ponent, which must be characterized in order to build a physical picture of the system [18–24].

A common tool by which the diffusion of a single particle is classified is the time averaged

mean square displacement (TAMSD) [14–17, 25–31]:
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defined here for a trajectory x(t) of length L, taken at sampling time-intervals δ and the averag-

ing window is τ = nδ. For normal diffusion (not necessarily Brownian or Gaussian [32]) the

MSD is linear in time d2ðtÞ ¼ D
1
t, where D1 is the generalized diffusion coefficient which in-

cludes all constant prefactors, depending on the diffusion mechanism.

The TAMSD may be of any functional form, but in many cases it is a power law function

over long times, d2ðtÞ ¼ D
a
t
a [33, 34]. The anomalous exponent α is related to fundamental

characteristics of the stochastic process, such as temporal correlations and the distribution of

particle steps and it is necessary for predicting the future particle motion, first passage times

and more [35].

There are various classes of anomalous diffusion and they all result from the breaking of the

assumptions behind normal Brownian diffusion, see [36] for a recent review. Continuous time

random walks (CTRW) which have long tailed jump distributions or waiting times between

jumps exhibit weak ergodicity breaking of a normal TAMSD. Variation in the surrounding

space may lead, among other models, to heterogeneous diffusion processes (HDP) and ob-

structed diffusion, both with unique characteristics. If the stochastic process is not Markovian

and there is a temporal correlation between steps, another class of anomalous diffusion is

exhibited. Fractional Brownian motion (FBM) for example has self-similar Gaussian steps with

a correlation that decays as a power law. A general description of processes with temporal step

correlations can be obtained through the ARFIMA framework that generalizes fractional

dynamics through a discrete generating process [37].

The TAMSD is normally fitted through the logarithm of eqn. 1 as a function of τ up to a

maximal τM, Fig. 1:

log ðd2ðtÞÞ ¼ log ðD
a
Þ þ a log ðtÞ; t ¼ 1; . . . ; tM: ð2Þ

Fig 1. Fitting a time averaged MSDwith various maximum time lags. A trajectory with α = 0.7, L = 29, σ =
0.5 was simulated (black squares) and fitted for various τM values. While the small τM fitting (red τM = 10 and
blue τM = 50) underestimated α, the large τM (green τM = 150) gives an overestimation. Clearly, selecting the
optimal τM value is not trivial as both small and large values may lead to erroneous results. Graphically
assessing the quality of the fit does not help select the best τM either.

doi:10.1371/journal.pone.0117722.g001
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Several studies have shown that the TAMSD is a problematic estimator [25, 38, 39]. The in-

ternal correlations between the averaged quantities merit the central limit theorem inapplicable

and large variations are introduced with increasing τ. In addition, measurement errors lead to

short time artifacts in the estimated TAMSD. For example, when a normally distributed mea-

surement error (with variance σ2 and zero mean) is introduced to ergodic anomalous diffusion

measurements, the theoretical TAMSD is [40, 41]

d
2ðtÞ ¼ D

a
t
a þ 2s

2 ð3Þ

For a discussion of the influence of various error mechanisms on the TAMSD of CTRW dif-

fusion, see [42].

For normal diffusion various alternative and complementary techniques have been devel-

oped [39, 43] that overcome these problems. In addition, anomalous diffusion can be efficiently

estimated when an ensemble of trajectories is available [41]. However, when analyzing single

trajectories of particles that exhibit anomalous diffusion, these techniques are inadequate and

one is left with the direct estimation of the functional form of the TAMSD.

When analyzing experimental data, one has a limited trajectory length and for single particle

trajectories, it is often shorter than 103 time points. This raises another fundamental problem in

implementation of eqn. 2. Since the variance of the TAMSD increases with τ, taking large τM re-

duces the accuracy of the estimation. However, since the data is limited, the MSD also fluctuates

at small τ values. In addition, as seen above, measurement errors introduce an offset at small τ’s.

Thus one must find an optimal τM that balances between the need to fit several τ’s in eqn. 2

while avoiding the fluctuating nature of the TAMSD at large times. We stress that simply taking

very small or large τM values does not improve the estimation of α, as can be seen in Fig. 1.

To the best of our knowledge, there is no systematic study of the optimal τM value for the es-

timation of the anomalous exponent in the presence of measurement errors. As a result, there

are no standards or guidelines for fitting the TAMSD, which introduces difficulty in assessing

the accuracy and precision of extracted values and comparison between studies. Furthermore,

we show that the data analysis can be optimized by realizing the specific experimental

conditions.

In what follows we study the performance of the TAMSD as an estimator for the anomalous

exponent, depending on trajectory length, measurement error and the true anomalous expo-

nent. This is done through the simulation of thousands of trajectories and fitting their individ-

ual TAMSDs. We study FBM diffusion, which we chose as an experimentally observed motion

and a representative of the common class of ergodic anomalous diffusion [24]. We calculate

the accuracy and precision of the TAMSD estimator as a function of the maximal fitted time

lag, τM, for different combinations of the diffusion parameters. The results allows us to identify

an optimal M in each case and by taking all the extracted information together, we identify sev-

eral guidelines, or best practices, for fitting of anomalous TAMSDs. We find that even a rough

estimation of the measurement error and the expected regime of the anomalous exponent can

greatly improve the accuracy of the extracted parameters.

Our approach can be applied to any process with a defined α that one can simulate in order

to find the best estimation conditions, even if Dα varies between trajectories such as in CTRW

or HDP. Although we focus on the more difficult experimental case of short trajectories, our

general guidelines apply also for longer trajectories.

Methods

Trajectories {xi(t)} were simulated using the MATLAB wfbm function [44] which is a common

method for the simulation of fractional Brownian motion through a wavelet implementation,
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as proposed in [45]. In addition, we normalized the standard deviation of the increments for

each trajectory to one, so that Dα = 1. Notice that FBM has stationary Gaussian increments, so

normalizing the standard deviation uniquely defines the stochastic process for a given α.

A series of independent normally distributed measurement errors {εi(t)} with zero mean

and standard deviation σ was added to each trajectory. Since all trajectories were normalized,

the relative magnitude of the measurement error compared to {xi(t)} is set only by σ. Also, note

that for any uncorrelated measurement noise distribution that has a defined second moment,

the magnitude of σ is enough to characterize its effect on the TAMSD.

We look into four representative cases of anomalous diffusion: strong subdiffusion α = 0.3,

weak subdiffusion α = 0.7, weak superdiffusion α = 1.3 and strong superdiffusion α = 1.7. In

each case, three error regimes are studied: low σ = 0.1, medium σ = 0.5 and strong σ = 1.

For each pair of α and σ we study trajectories of length L = 10 to 2000. For each trajectory

we fit the TAMSD according to eqn. 2 for all possible τM up to L/2. We then repeat the calcula-

tion of the TAMSD and its fitting for 1000 trajectories for each L and τM. Thus for each (α, σ)

pair we have a set of αi(L, τM) with i = 1, . . . , 1000 for every (L, τM) combination.

We are now faced with the problem of identifying what is a ‘good’ fitting regime. One ap-

proach is to characterize the distribution of P(αi) for each (L, τM) pair in each (α, σ) mapping.

Then, one can estimate the probability of the fitted value to fall in a certain range around the

true anomalous exponent. However, this approach is problematic as P(αi) is not necessarily

normal. In fact, past studies have shown that the distribution of hδ2(τ)i is highly non Gaussian

[46, 47], leading to similar expectation for P(αi). As a result, analytically estimating probabili-

ties will demand the characterization of general distributions.

Thus we take a different, more applicable approach where for each (L, τM), we extract the

fraction F(α, σ)(L, τM) of αi that are in the range [α − 0.1, α + 0.1]. We chose these limits since

they provide reasonable accuracy in biophysical studies while maintaining reasonable F values

for different (α, σ) maps. F is an intuitive parameter for the precision of the fitting, as higher

values mean more precise fitting.

In some cases, one can extract multiple trajectories of the same stochastic process. This is

for example the case in various simulation studies. Thus by averaging over fitted single

particle αi’s, one may hope to converge with hαii to α. We define the bias as B(α, σ)(L, τM) =

hαii(L, τM) − α. This bias is a measure of the accuracy of the MSD estimator.

Results

Fig. 2 shows a heat map of F with contour lines of the bias B for each measurement length L

and τM. As observed, it is easy to find the optimal τM for fitting, i.e. optimal F and B conditions.

For example, for a thousand time point trajectory in the weakly subdiffusive regime (α = 0.7)

with σ = 0.5, we find a maximal F� 0.63 for τM = 50. In addition, 0< B< −0.1 gives reason-

able results for averaged TAMSDs. However, if the trajectory is only 100 time points long, it is

best to use τM = 10, giving F� 0.36 and −0.1< B< −0.2.

We recommend the extraction of the optimal τM for each experiment depending on the

exact conditions. Table 1, however, gives a quick look-up table for optimal τM for L = 100 and

1000 depending on α and σ and can be used to quickly analyze experimental data.

We now describe several trends in the maps of F and B. The two fundamental observations

are that lower α or σ usually give better estimation results with the TAMSD. This is expected

according to equation 3 in [41], which shows that the estimation error is less significant at

smaller α and σ values. Beyond this first order behavior, however, F and B show a rich picture

depending on α, σ and L.
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Fig 2. Performance of the time averaged MSD estimator for various trajectory lengths L andmaximal time lags τM. Color bar gives the precision
Φ and black lines give representative bias values, B. Rows give various anomalous exponents with (a – c) strong subdiffusion α = 0.3, (d – f) weak
subdiffusion α = 0.7, (g – i) weak superdiffusion α = 1.3 and (j – l) strong superdiffusion α = 1.7. Measurement error changes between columns with (left) small
error σ = 0.1, (middle) medium error σ = 0.5 and large error σ = 1. The optimal τM is selected as the area whereΦ is maximal and jBj is minimal for a given
trajectory length L.

doi:10.1371/journal.pone.0117722.g002
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Small measurement error—when the experimental error is much lower than the average

diffusion step, i.e. σ = 0.1, the small τ error of the TAMSD disappears, eqn. 3. In small τ’s there

is less overlap between squared displacements leading to lower variation of the TAMSD. In-

deed, for almost all αmaps with σ = 0.1, we found that the best τM = 10, regardless of L (Fig. 2

left column). The one exception is for strongly subdiffusive motion, where τM = 20 is needed

for large L’s.

In addition, a monotonous increase in optimal F is seen from a typical 0.4 when L� 50 to

F! 1 for L! 103. The typical bias, B, is also usually better than −0.05, except for highly

superdiffusive motion where 0> B> −0.05 only for L> 103. Thus in the regime of weak ex-

perimental error, TAMSD fitting of the first few τ can give good estimation of anomalous expo-

nents. It is important to notice that for α = 0.3, B is positive, unlike other α values.

Mediummeasurement error—In the case of σ = 0.5, i.e. when the typical step size is twice

the measurement error, the optimal τM changes with L, Fig. 2 middle column. With the excep-

tion of α = 0.3 we find that the best F is obtained when taking τM at 10–20% of short trajecto-

ries and 4–7% of long trajectories (higher values are for higher expected α). The values of F are

lower than in the low localization error regime by a typical 0.2. In addition, caution should be

used when averaging short trajectories, L< 102 as bias can reach values worse than −0.2 for

superdiffusive motion.

Interestingly, strong subdiffusive motion can be analyzed with τM = 10 to give better results

than when σ = 0.1. This is possibly due to the measurement error lowering the extracted

Table 1. Recommended τM values.

α σ L Optimal τM

0.3 0.1 100 15

1000 20

0.5 100 10

1000 10

1 100 20

1000 200

0.7 0.1 100 10

1000 10

0.5 100 10

1000 40

1 100 40

1000 400

1.3 0.1 100 10

1000 10

0.1 100 10

1000 45

1 100 40

1000 150

1.7 0.1 100 10

1000 10

0.5 100 20

1000 75

1 100 50

1000 150

doi:10.1371/journal.pone.0117722.t001
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exponent and preventing high α values. Notice that if one uses the optimal τM that was found

for α> 0.3, excellent results are still received for the strong subdiffusion case.

Large measurement error—When σ is the same size of the average particle step, accurate

estimation of the anomalous exponent is hindered, Fig. 2 right column. For short trajectories,

F values are approximately 0.2 and B� −0.3. Thus if the measurement error is large, one

should not estimate TAMSDs of short lengths L� 300. Even for L� 103 we find values of

F� 0.4 with biases that can approach −0.15.

In fact, for α = 0.7 it is better to sub sample an L = 2�103 trajectory every 7 time points giving

an effective trajectory of L = 285 and σ = 0.5. Analysing this shortened trajectory with τM = 34

gives F = 0.49, compared to an optimal F = 0.42 obtainable from the original trajectory.

For strong subdiffusion, we find that best results are received when τM is 20% of L. However,

the bias is still significant with B� −0.1 for most conditions.

Discussion

After identifying the trends and pitfalls in F and B, we now discuss the best practices for anom-

alous exponent estimation with the TAMSD. It is clear that with more knowledge regarding

the regime of the anomalous exponent and the measurement error, a better decision of τM can

be taken. We divide the recommendations into the following cases: a) perfect knowledge of σ

and no necessary knowledge of α; b) approximate knowledge of both σ and α; and c) unknown

σ. Finally we discuss the implications of having repeated realizations of the same process.

Case a: Perfect knowledge—If there is perfect knowledge of σ than a simple correction can

be performed to bring the trajectory into the σ! 0 regime. Simply, for the analyzed TAMSD

one should fit bd2ðtÞ ¼ d
2ðtÞ � s

2 to a power law. Even if there is no knowledge of the expected

α, a limit of τM = 10 when fitting b
d
2 will give the best results. Notice that if α is known to be

strongly subdiffusive, it may be beneficial to take a slightly larger τM.

Case b: Approximate knowledge—When the magnitude of the measurement error is only

approximately known, the correction performed in case (a) will leave some residual σ> 0. If

b
d
2ðt ¼ 1Þ > s

2 > 0 we are in the regime of medium error. In such a case, knowledge regarding

the expected α regime will help select the optimal τM.

It is important to notice, that even if some measurement error is suspected but actually

σ<< 0.5, the recommended τM values will not lower the expected F. Rather, F will usually in-

crease with reduction in σ even for sub optimal τM. The benefit of knowing that σ<< 0.5 is

that one can take even more efficient τM values.

Case c: Unkown σ—If there is no estimation of the measurement error, extraction of the

anomalous exponent can lead to significant errors. Specifically, for short trajectories (L� 300),

the possibility that σ� 1 leads to an inability to estimate α, unless the process is strongly sub-

diffusive (i.e. α� 0.3). Since it is possible that σ> 1, Fmay be even lower than in the cases

studied in this work. Thus, if the magnitude of σ is unknown, it is advised not to perform esti-

mation of trajectories unless L� 103, and only if it can be assumed that σ is not significantly

larger than unity.

For this reason, we advise that in all TAMSD studies an estimation of the measurement in-

accuracy be given. Without this estimation, or the clear statement of its lacking, it is impossible

to assess the anomalous exponent results.

Multiple identical realizations—In some studies, it is possible to extract many trajectories

of the same stochastic process, where the underlying α is identical or comes from a narrow dis-

tribution around an average value. In such cases, one may average over many instances of the

process, and F becomes irrelevant.
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However, as we have seen, in cases of high measurement inaccuracy, B is still significant for

many L’s. It is thus necessary to correct for the bias by adding an expected error factor to the

extracted average exponent, hαi. Another option is to study the large τ behavior of the particle

averaged TAMSD hd2ðtÞi, in the domain that is not affected by the measurement error or fit

the particle averaged TAMSD directly to eqn. 3.

In biological and complex systems, this is usually not the case, and P(α) is widely distributed

(a standard deviation of σα = 0.2 is considered wide). If the distribution can be approximated

by a normal distribution, than hd2ðtÞi can be analyzed with previous techniques [41]. Other-

wise single particle analysis is needed and the typical bias, B(L, σ, α) should be added to all tra-

jectories based on L and some estimation of the anomalous diffusion regime.

Special care should be taken when estimating weakly non ergodic processes as the diffusion

coefficient varies between trajectories, thus changing the relative size of σ [36, 48]. Since vary-

ing relative σ values leads to a varying bias in α, one will suffer a varying bias for each trajectory.

Hence it may appear that α is distributed—in contradiction to the expectation for HDP and

CTRW. Thus when characterizing weakly non ergodic processes with the TAMSD, one must

strive to know the magnitude of the measurement error precisely.

Conclusions

We have studied the efficiency of the MSD technique in the estimation of the anomalous expo-

nent depending on the various underlying parameters. The main picture that arises is that the

TAMSD is not an efficient technique when looking at short trajectories, or superdiffusive pro-

cesses with non ideal measurements. When analyzing measured trajectories it is important to

estimate beforehand the measurement error and the expected regime of the anomalous expo-

nent. Then one must choose the maximal time lag, τM, based on the efficiency of the MSD esti-

mator and not according to a visual fit to the MSD. Importantly, for some experimental

scenarios the TAMSD is highly inaccurate and it should not be used.

According to our findings, when specifying extracted parameters of anomalous diffusion

processes, it is important to describe the means by which the specific fitting regime was selected

including the expected accuracy and precision. This will enable to compare different experi-

ments and more objectively validate proposed theories.

Finally we encourage the development of new estimation techniques for anomalous diffu-

sion single particle trajectories. Without the advancement of theses techniques, the study of ac-

curate anomalous exponents in complex experimental systems will not be possible.
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