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Guidelines for wrist-worn consumer wearable assessment
of heart rate in biobehavioral research
Benjamin W. Nelson 1,2✉, Carissa A. Low 3, Nicholas Jacobson4,5, Patricia Areán6, John Torous7 and Nicholas B. Allen1

Researchers have increasingly begun to use consumer wearables or wrist-worn smartwatches and fitness monitors for
measurement of cardiovascular psychophysiological processes related to mental and physical health outcomes. These devices have
strong appeal because they allow for continuous, scalable, unobtrusive, and ecologically valid data collection of cardiac activity in
“big data” studies. However, replicability and reproducibility may be hampered moving forward due to the lack of standardization
of data collection and processing procedures, and inconsistent reporting of technological factors (e.g., device type, firmware
versions, and sampling rate), biobehavioral variables (e.g., body mass index, wrist dominance and circumference), and participant
demographic characteristics, such as skin tone, that may influence heart rate measurement. These limitations introduce
unnecessary noise into measurement, which can cloud interpretation and generalizability of findings. This paper provides a brief
overview of research using commercial wearable devices to measure heart rate, reviews literature on device accuracy, and outlines
the challenges that non-standardized reporting pose for the field. We also discuss study design, technological, biobehavioral, and
demographic factors that can impact the accuracy of the passive sensing of heart rate measurements, and provide guidelines and
corresponding checklist handouts for future study data collection and design, data cleaning and processing, analysis, and reporting
that may help ameliorate some of these barriers and inconsistencies in the literature.
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HEART RATE RESEARCH IN PSYCHOLOGY AND MEDICINE
Heart rate (HR) has long been used as a clinical indicator of overall
cardiac health. HR is predominantly influenced by the coordina-
tion of the sympathetic and parasympathetic branches of the
autonomic nervous system, which can be modified by biopsycho-
social factors including physical and relational stress, diet, physical
fitness, medication use, and substance use1; thus, offering a direct
and quantifiable connection to the stress diathesis model of
health. In this model, cardiovascular dysfunction has been
proposed to be a putative mechanism associated not only with
morbidity and mortality, but also with a range of psychiatric
disorders.
In terms of physical health, meta-analyses have shown that

resting HR above 80 beats per minute (bpm) is associated with a
33% increased risk for cardiovascular mortality and a 45% higher
risk for all-cause mortality2,3. In terms of HR dynamics, delayed HR
recovery after a stressor (i.e., the return to resting or baseline HR)
has also been shown to be associated with mortality4, whereas the
literature is more mixed on the association between HR reactivity
(i.e., the increase in HR from resting or baseline due to
psychobiological stressors) and health outcomes5. Furthermore,
dysfunction of the autonomic nervous system is also associated
with a range of psychiatric disorders6,7 including anxiety
disorders8, depressive disorders9, posttraumatic stress disorder10,
and schizophrenia11. In a large prospective, Swedish study of over
1 million male participants, elevated resting HR during late
adolescence was found to be associated with an increased risk of
obsessive-compulsive disorder, anxiety diagnosis, and schizophre-
nia, whereas lower resting HR was associated with substance use
disorders and violent criminality12.

In addition to these studies, there is strong evidence that
psychiatric diagnoses are associated with increased risk for
physical morbidity and mortality. For example, those with
psychopathology lose a median of 10 years of life13, with the
most common cause of death due to cardiovascular diseases6.
Cardiac activity therefore may be a biological factor that serves as
a mechanism linking mood and anxiety disorders with cardiovas-
cular and metabolic risk and mortality14,15. In other words, HR may
be a transdiagnostic biomarker with clinical utility for psychology,
psychiatry, and medicine to improve nosology and increase
identification of those at risk for the onset of psychiatric and
physical health disorders. Until recently, the quantification and
measurement of HR has been relegated to medical and research
settings, which has largely precluded the observation of HR during
patient and participant daily life, thereby limiting the general-
izability of findings to real-world living conditions.

CURRENT LIMITATIONS IN CARDIOVASCULAR RESEARCH
The foundation of HR research has, until recently, been largely
constrained due to (1) lack of ecological validity (i.e., the degree to
which a laboratory or medical environment represents actual real-
world conditions), (2) inability to collect temporally detailed and
longitudinal HR measurements both within and across time (e.g.,
hours, days, weeks, months), and (3) prohibitive financial cost of
devices for everyday use.
In terms of ecological validity, HR recordings have historically

been collected in discrete laboratory or medical environments
that do not represent daily life and as such, can be anxiety-
inducing as medical phobia is common and novel environments
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may increase HR, which consequently could lead to overestima-
tion of resting HR16 as reflected in greater adrenergic activity in
clinical settings - a known phenomenon called “white-coat
hypertension or syndrome”17,18. In other words, research has
been historically limited to collecting data from medical patients
and research participants in novel settings that might not
generalize to their everyday lives, which creates the potential for
inaccurate baselines and therefore inaccurate measurement of HR
dynamics (i.e., reactivity/recovery). The law of initial values gives
further insight into this issue by highlighting that an initial value
has a large impact on the strength and direction of a response,
such that a higher pre-stimulus level will lead to a smaller post-
stimulus response or, in other words, a smaller response when
there is a greater initial value19–21. This is similar to a ceiling effect
limiting the magnitude of a reactivity response and this can
artificially constrain the range of measurements (e.g., reactivity)
within a specific construct, such as HR.
Second, collection of HR data in these environments lacks

temporal resolution within and across days as HR is usually
collected during a short recording within a single day, which has
precluded research from comprehensively investigating the
transition from acute to chronic stress22. Greater temporally
detailed longitudinal HR data collection may reveal important
within day as well as weekly, monthly, seasonal, and yearly
fluctuations in HR that are currently not captured and may contain
important diagnostic and predictive information. Lastly, the
accurate collection of HR has historically been financially
restrictive relegating these measurements to medical and
scientific contexts, and precluding the large-scale adoption and
democratization of these technologies by the general public.

WEARABLE TECHNOLOGICAL ADVANCEMENTS AND THE
SCALABILITY OF CARDIOVASCULAR RESEARCH
Currently, wrist-worn wearables provide an opportunity to
examine HR in real-world environments, across longer periods of
time, and with high resolution at a low cost, by using an optical

sensor (photoplethysmography; PPG), that allows these devices to
collect volumetric changes in blood profusion (i.e., pulse rate) that
can serve as a surrogate for HR (see Table 1 for summary of most
popular consumer wearable devices). Wearable PPG sensors can
use different colors of light, such as green or red, to index these
changes in blood profusion with each having different costs and
benefits. For example, green LED light is a shorter wave-length
and has been shown to be convenient, because it has good signal-
to-noise ratio and is resistant to motion artifacts, but is limited by
the amount of light that can pass through tissue, especially darker
skin tones. In contrast, red LEDs, which are more commonly used
in medical settings, are not absorbed as well by the skin allowing
the light to transmit deeper and allowing for detection of multiple
biological measures, but it has a lower signal-to-noise ratio and is
more susceptible to motion artifacts23. Overall, PPG devices allow
for in vivo examinations of the roles that resting HR and HR
dynamics (e.g., reactivity and recovery) have in medical and
psychiatric disorders in real-world settings. It is important to note
that while HR and pulse rate are often used interchangeably, they
are two distinct physiological signals with HR representing the
heart contraction via electrical impulses, whereas pulse rate
represents the rate of change in blood pressure due to
the ventricular ejection of blood. The latter of these two is the
predominant method for data collected with wrist-worn wearable
devices, although some more recent wrist-worn wearable devices,
such as the Apple Watch Series 4 and 5, have allowed for the
collection of HR via electrical impulses on par with a single-lead
electrode. Currently, this technology is limited, as users have to sit
still with their watch wearing wrist resting on a flat surface and
then close the circuit by putting a finger from the hand opposite
to the watch for 30 s. Therefore, this novel electrocardiogram
(ECG) technology only allows for the discrete, rather than
continuous, collection of data, which precludes the ability for
temporally detailed longitudinal ECG collection at this time. For
this reason, addressing accuracy of wearable ECG sensors is
outside the scope of the current review and will not be discussed
further. Furthermore, PPG can be used to index heart rate

Table 1. Summary of most popular consumer wearable devices.

Devicea Sensor type FDA status Sampling rate (i.e., how often
it samples)

Sampling
frequency

Cost Market
size/share
2019 Q478Green LED Red LED Infrared LED ECG

Apple79 X X X 510(k) class II
clearanceb

Variable
• Rest—every 10min
• Exercise—continuous

100 s ×
per second

$199 (v3) to
$399 (v5)

36.5%

Fitbit80 X None Variable
• Rest—5 s intervals
• Exercise—1 s intervals

Unknown $149 (Charge 4)
to $199 (Versa 2)

5.0%

Garmin81 X None Variable Variable
• High
Frequency

• Low
Frequency

$129
(vivosmart 4)

a

Samsung X None Manual Unknown Galaxy Fit ($99) 8.8%

Xiaomi X None Continuous Unknown Mi Band 4
($39.99)

10.8%

Huawei82 X None Default is set to manual. Can
turn on continuous, which
measures every 10min or
every 6–10 s during high-
intensity workouts

Unknown Huawei Band 4
($42.31)

7.8%

ECG, electrocardiogram; LED, light-emitting diode.
aData are presented on most recent wearable devices for each manufacturer. Garmin was not included in the top 5, so was listed under other.
bThis only applies to the ECG sensor and high heart rate notifications.
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variability (HRV), blood pressure, oxygen saturation, and cardiac
output24, but as of yet have not be widely rolled out in consumer-
use devices and therefore data collection other than HR will not be
discussed further.

INCREASED POPULARITY OF WRIST-WORN WEARABLE
DEVICES
Researchers are increasingly using consumer wearables or wrist-
worn smartwatches and fitness monitors for the digital measure-
ment of cardiovascular health and psychophysiological stress as
these devices allow for continuous, scalable, and unobtrusive, “big
data” collection of overall cardiac activity in real-world conditions
with large samples25–30. Between 2008 and 2018 there was a
580% increase in total articles published that contained “wear-
able” and “heart rate”, indicating that this is a burgeoning area of
research that may benefit from standardization of procedures to
increase generalizability and clinical utility of research findings.
Recent information on the reproducibility and replicability crisis

has swept the sciences and as such these issues are very
important for digital health and mHealth research, which includes
wrist-worn HR accuracy and any studies that utilize wearable HR
data, as this new field will allow for large data samples31 with
various sensors that will increase the ease for p-hacking. Recent
research has proposed using wearables in psychological
research32 and treatment settings33, whereas other research has
already begun to use mHealth data to show important global real-
world HR norms16, global differences in HRV by age, gender, and
time of day26, and allowing for surveillance of influenza
symptoms34, yet questions remain as to the accuracy and validity
of data collected from wearables35,36.

HOW ACCURATE IS HR DETECTION WITH WRIST-WORN
WEARABLE DEVICES?
Current research into the HR accuracy of wrist-worn wearable
devices attempt to compare the measurement between wearable
PPG and a reference method, such as an ECG, in order to
determine whether or not measurements between the devices are
outside of clinically important limits of agreement, so that devices
can supplement, eventually replace, or be used interchange-
ably37,38. Although some studies have attempted to address
wearable HR accuracy using the gold-standard reference method
of ECG, which directly measures HR via electrical impulses from
the heart and is used for clinical accuracy38–44, other studies have
used suboptimal reference methods, such as the chest straps45–47

or pulse oximeters48, which themselves have a degree of error
(varying between 0 and 40 bpm when compared to ECGs44). This
has the potential to introduce a degree of additional error into
wrist-worn wearable HR accuracy research as suboptimal referen-
cing methods can introduce unnecessary measurement error and
potentially undermine findings. Despite this caveat, current
research into wearable HR accuracy is promising as is discussed
below. Furthermore, some wearable devices, such as the Apple
Watch 4 and 5, have gained FDA 510(k) class II clearance for the
ECG feature and ability to detect arrhythmias49, indicating that
FDA clearance and conformance with IEC-60601(−2–47) guide-
lines may provide a path towards standardization of feature sets
and firmware for consumer wearables in the future, which raises
the important question of the interface between consumer
wearables and medical devices. Currently, in most instances,
consumer wearables are not medical devices, but this is an issue
that is evolving and in the future may influence legislation and
standardization. Below we mainly focus on HR accuracy of Apple
Watch and Fitbit as these are two of the most popular wearable
companies in the United States and have been more commonly
examined in empirical research to date, but it should be noted
that other consumer wearable brands, such as Garmin45,46,50,

Samsung42,43,48,51, and Microsoft42,47 have also had studies
examining their HR accuracy.
Current research verifying wearables to the gold-standard ECG,

which uses electrodes to directly measure cardiac muscular
contractions from electrical activity of the heart, have shown that
on average wearables slightly and negligibly underestimate (−0.9
to −7.2 bpm) absolute HR40,41,44,52 with the Apple Watch having
slightly greater accuracy than Fitbit devices (Apple Watch: −1.3
bpm, Fitbit: −9.3 bpm42–44), as well as lower overall error with the
Apple Watch models ranging from 1.20 to 6.70% error and Fitbit
models ranging from 2.38 to 21.36% error39,42,45, lower mean
difference standard deviation43, and higher agreement with ECG
than Fitbit devices39,44. Furthermore, recent research has indicated
that consumer wearables, such as the Apple Watch and Fitbit are
more accurate than research-grade wearables, which are much
more expensive yet provide the benefit of raw data50. These
findings have led some researchers to conclude that wearables
detect HR with acceptable accuracy in both laboratory and real-
world settings for research, but importantly not medical
settings38,42 as more research needs to be done. For example,
researchers compared the accuracy of ambulatory ECG, Apple
Watch 3, and Fitbit Charge 2 data within an individual across 24 h
and found that while devices slightly underestimated HR when
values were aggregated within and across different daily activities,
which indicated high HR accuracy, any individual HR observation
could deviate from ECG by significantly large margins that would
be likely be problematic in medical settings38. This finding
indicated that while overall, summary statistics after outlier
detection and data cleaning may be very accurate for research
purposes, any single observation in real-time may have a large
degree of error, which could be significant for moment-to-
moment observations in medical settings. These preliminary
findings suggest that researchers can utilize wearable HR to
accurately assess HR, especially resting HR, when using aggre-
gated data across activities and removing outliers. The next steps
for consumer wearable HR device accuracy research will require
meta-analyses in order to summarize the current state of
consumer wearable HR accuracy. Despite the promise of wearable
HR accuracy, replicability and reproducibility in the future utilizing
wearable HR as a transdiagnostic marker of psychiatric and
physical health will likely be limited due to lack of standardization
of data collection, study design, and data processing as well as
inconsistencies in the reporting of technological, biobehavioral,
and demographic characteristics that introduce unnecessary noise
into the literature and cloud interpretation and generalizability of
findings.

DISADVANTAGES TO NON-STANDARD REPORTING
The lack of “metadata standards” or guidelines and standards for
describing, reporting, and creating meaning from collected data in
order to increase transparency, accountability, and interpretability
of data in mHealth is likely to create a number of issues related to
noise/signal ratio, contradictory results, lack of generalizability,
and false positive and negative findings, which have historically
undermined replicability (i.e., the ability to replicate a study with a
new data set) and reproducibility (i.e., the ability to replicate
findings from the same data set). Therefore, many researchers
have begun to push for increased focus on reproducible and open
practices in science31,53–55. Below we outline data collection,
cleaning, and protocol design issues as well as technological,
biobehavioral, and demographic factors that may influence
reproducibility and replicability before turning to guidelines that
the field can use in order to increase scientific rigor and
generalizability of findings.
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STUDY PROTOCOL DESIGN AND DATA COLLECTION:
ADDRESSING DESIGN, BIOBEHAVIORAL, AND DEMOGRAPHIC
ISSUES THAT CAN INFLUENCE REPRODUCIBILITY AND
REPLICABILITY
There are many researcher degrees of freedom when it comes to
decisions related to study protocol design and data collection,
cleaning, and processing that are important to note as standardiz-
ing this process may help ameliorate some barriers and
inconsistencies in the literature.

Protocol design
Summary metric calculation. Hardware differences between
devices determine HR measurement second to second, which has
large implications on overall interpretability of the data, such that
sampling rate can introduces researcher degrees of freedom for
calculating bpm. Unfortunately, there is currently a lack of
transparency from manufacturers on underlying algorithms and
raw data outputs are often times not provided, which prevents
researchers from dealing with this issue and creating a standardized
protocol for transforming raw data to HR. For example, Fitbit logs
HR data at 1 s intervals during exercise tracking and 5 s intervals at
other times, whereas the Apple Watch samples HR data every
10min, except during workouts, which are continuous. Relatedly,
some devices, such as the Apple Watch can take multiple HR
measurements within a minute allowing researchers to use various
calculations, such as the mean or median within this minute to
calculate bpm, which may alter wearable data values. Researchers
should report how bpm or other summary metrics are calculated
(e.g., mean or median). Therefore, summary metric calculation
should also be clearly reported in publications.

Data cleaning: outlier detection and dealing with missing data. In
addition, the methods researchers select to clean and process raw
data prior to analyses can also affect results and conclusions and
should be reported in detail. These choices include how missing
data values are handled (listwise deletion, pairwise deletion, and
multiple imputation), and how outliers or biologically implausible
values are handled (e.g., some devices record HR values of zero
when devices are not worn).
Data cleaning can be an important step in data pre-processing

in ambulatory HR assessments. There is a strong need to
customize the methods of data cleaning to the device being
used and the models being adopted, rather than adopting a
universal pre-processing pipeline due to device-specific differ-
ences and based on the study research questions. For example,
outliers in linear models may strongly impact linear estimators,
and some studies may therefore adopt a modeling strategy
wherein values are winsorized (e.g., extreme values can be
truncated at the 2.5th and 97.5th quantiles56). However, if a study
were interested in HR arrythmias using wearable assessments
(such as atrial fibrillation), then these extreme values may be of
vital interest and should not be removed or altered27. Moreover,
for some, but not all devices will report missing HR data with zero
values and these values should be removed and filled in with
missing data rather than winsorized (which would otherwise
substantially bias parameter estimates unless the degree of
missing HR points was trivial). Other strategies (e.g. spectral
frequency filters), will depend upon the type of the sensor being
utilized in the wearable sensor57. Rather than proposing universal
standards, we rather recommend that researchers thoughtfully
approach data cleaning, altering their decisions to both their own
research questions and to the devices being used, and reporting
their utilized methodology.
The practice of completely removing persons from studies due

to proportions of missing data (i.e. listwise deletion) is known to
bias estimation and adversely impact the standard error of point
estimates across modeling strategies58. More specifically,

simulation studies with intensive longitudinal data suggest that
multiple imputation and full-information maximum likelihood
reliably produce better parameter estimates than listwise dele-
tion59. Moreover, dynamic models of HR captured in daily life can
be effectively estimated even with very large proportions of
missing data (e.g. >70% missingness for each subject) using full-
information maximum likelihood estimation60. Based on this, we
recommend that authors aim to be as inclusive as possible, using
appropriate model-based strategies for dealing with missing data.

Defining non-wear-time: device charging and non-adherence. For
long-term field studies, information about participant adherence
and wear-time should be considered and reported since these
issues can affect data quality. The definition of wear-time and any
minimum wear-time thresholds for data inclusion (e.g., days with
wear-time less than 1000min excluded34; valid day of wear-time
defined as at least 600 1-min epochs of nonzero HR values within a
calendar day)61. One issue reported by multiple users on the online
Fitbit Community Forum is occasional logging of HR values (often
higher and more variable than typical, e.g., 100–150 bpm) when the
devices are not being worn, suggesting that supplemental non-
wear-time diaries may be required for some devices or protocols.

Standardizing wrist data feature collection. There are a number of
study design features related to the wrist that have been shown to
have effects on HR accuracy. Larger wrist circumference has been
shown to be associated with reduced HR accuracy42, although these
outcomes have not been found in all studies44,46. In addition to wrist
circumference, there are a number of other factors including wrist
placement, tightness of device, dominant vs non-dominant hand
use, and degree of wrist movement that have consistently been
shown to influence the accuracy of HR measurement39, which may
be due to the fact that greater wearable movement is associated
with decreased PPG accuracy as discussed below62. These are likely
some of the most important factors influencing HR accuracy. As
such, wrist placement, tightness of device, dominant vs non-
dominant hand use, and whether wearable devices are naturalis-
tically placed by participants as opposed to explicit instructions by
experimenters should be reported.

Open science and data transparency. Lastly, from a study design
perspective, mHealth research will be particularly susceptible to a
number of research practices, which have been shown to degrade
the quality, consistency, generalizability, and therefore replicability
and reproducibility of findings31 as data sensors in this research
field allow for the vast collection of big data samples, which will
be vulnerable to some of the “four horsemen of the reproduci-
bility/replicability apocalypse”, including (1) publication bias63, (2)
P-hacking, (3) hypothesizing after the results are known or
HARKing54, and (4) low power64, the last of which likely will not
be an issue for mHealth research as large samples sizes will be
relatively easy to collect even in samples with low base rates in the
population. Therefore, we urge future wearable HR studies and
digital passive sensing mHealth studies in general to take up free
open science practices (http://osf.io/), such as study preregistra-
tion, open code, and open data and where open data cannot be
released due to clinical population or privacy issues, releasing
simulated data sets that preserve data set characteristics where
applicable65. On the editorial and reviewer side, we join other
researchers in urging for editors and reviewers to allow for null,
inconclusive, and contradictory data results without putting
undue pressure on researchers to come up with coherent
narratives that might not fit the data66.

Biobehavioral and demographic data
Individual differences and variability in both biobehavioral and
demographic factors have the potential to influence the collection
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of HR during research studies and should therefore be strongly
considered in descriptive reporting as well as statistical modeling
in studies using HR measurement collected from wearable
devices.

BMI and biological sex. Higher body mass index, which likely
covaries with larger wrist circumference as described above, has
been shown to be associated with reduced HR accuracy42,62,
although again these outcomes have not been found in all
studies44,46. Nevertheless this variable should be collected,
reported, and potentially controlled for in research. In addition,
research has not always reported participant biological sex, but
research has found higher device error in males compared to
females42, indicating that participant biological sex should be
collected and possibly controlled.

Skin tone and hair follicle density. Evidence is starting to
accumulate on the importance of skin tone when it comes to
accuracy and generalizability of wrist-worn wearable studies with
darker skin tone (and tattoos) being found to be associated with
reduced wrist-worn HR accuracy as they absorb more green
light67, yet this is not found in all studies43,50. The importance of
this point cannot be overstated as historically, science and
medicine have paid less attention to recruiting minority groups68,
which has resulted in blunted health gains in these populations
making it of utmost importance to identify how HR accuracy varies
by race and ethnicity factors in order to ensure that findings
generalize to these populations as future research might have
direct implication for patient healthcare. Currently, the vast
majority of wrist-worn wearable studies incorporating HR mea-
surements do not report or control for participant race and
ethnicity, which undermines the ability to look at potentially
important group differences in health outcomes and therefore
decreases the ability of results to generalize to large segments of
the population. These demographic characteristics should be
collected, reported, and controlled for in all wearable HR studies
moving forward and researchers should collect data related to
participant skin tone (e.g., Fitzpatrick skin type). Furthermore,
wearables that use red light will likely be more effective on darker
skin tones as it is not absorbed by melanin, which may allow for
more accurate HR measurements23. In addition to skin tone, some
research indicates that hair follicle density and sweat can
influence device measurement69.

Motion artifacts and physical activity. Importantly, two related
factors identified as influencing wearable HR accuracy are motion
artifacts23 and level of physical activity46. Specifically, research has
shown that at rest, wearables can perform similarly to an ECG, with
some research showing that absolute error during activity is 30%
higher than rest50, and a substantial amount of research showing
that wearable devices are more accurate during rest and low
intensity exercise when compared to higher intensity exercise,
when wearable devices can begin to deviate more from ECG
recordings38,39,44,46,70–73, although this has not been found in all
studies42,45,47,51, with some studies finding that accuracy of HR
measurement was comparable across resting baseline or vigorous
activity45, whereas a second study found that the accuracy of HR
measurement was highest during running51, and a third found
that measurement during walking, running, and cycling was more
accurate for some devices than during sitting42. Other research
found that across four consumer wearables and two research-
grade devices all were “reasonably accurate” during rest or during
prolonged HR that was elevated and that differences in accuracy
tended to arise during changes in activity50. Therefore, it is
possible that activity intensity may be less important to device
accuracy than the degree of erratic wrist movements and
corresponding position of the wearable device during an
activity74, which cause motion artifacts and may or may not co-

occur with more vigorous physical activity. Furthermore, research
has described the “cross-over effect” when repetitive motion and
activity causes underlying algorithms to mistake the movement
cadence for cardiac activity50,75. As mentioned previously, one
strength of PPG green light is that it is less susceptible to motion
artifacts, whereas PPG red light is more susceptible to motion
artifacts indicating that wearables that use green PPG or a
combination of green and red PPG are likely to perform better
during movement and physical activity23. Future studies may want
to control for wearable actigraphy data in order to remove HR
accuracy variance that is influenced by wrist movement.

Technological factors that can influence reproducibility and
replicability
In addition to the high heterogeneity in study protocol design as
described above, various technological factors have the potential
to influence the collection of HR during research studies and
should therefore be strongly considered in descriptive as well as
statistical modeling when using wearable devices. Specifically, due
to the variety of wearable devices within and across technology
companies, versions of devices, and the fast pace of technological
advancement (especially in consumer products) there are a
number of technological factors that should be reported and
potentially controlled for in mHealth studies. First, as described
above, there are currently various wearable devices and versions
on the market that have the potential to use different hardware,
which may introduce differences in HR recordings. One such
hardware difference between devices is sensor type. For example,
the Apple Watch uses both PPG green light-emitting diode (LED)
lights and infrared LED light, whereas Fitbit uses only PPG
green LED.
In addition to hardware differences, researchers should also

consider software differences between devices. Wearable manu-
facturers use proprietary algorithms to translate PPG signals to HR
measurements, which may influence accuracy23. These algorithms,
while often simplistic, may be altered with firmware updates, yet
most studies fail to report firmware information. Not controlling
for firmware version may lead to poorer reproducibility and
replicability as two studies investigating the same device with two
or more different firmware versions might actually come to
different conclusions even if all other variables are held constant.
Due to the high heterogeneity in device type, version,

hardware, software, and sampling rate, these should be con-
sistently collected and reported in descriptive tables for both
cross-sectional and longitudinal studies. In addition, if a study uses
multiple types of devices or a single device in a longitudinal study
that covers a period of time when there are firmware updates,
then statistical models should control for device type and
firmware version.

GUIDELINES
Here we join other researchers in the call for the establishment of
“metadata standards” or guidelines for collecting, processing,
describing, reporting, and creating meaning of collected HR and
other biological data in order to increase transparency, account-
ability, and interpretability of data28,76,77. With this in mind, we
have created two checklists. The first checklist (Table 2) addresses
standards for reporting study characteristics, including how the
study was designed, technological hardware and software used;
participant characteristics; and data cleaning, analysis, reporting,
and transparency. Note that we suggest that researchers report
the reliability of their metric and justify why this reliability
threshold is sufficient for the given study. We make this
recommendation purposefully and do not adopt a single global
threshold for all of research. We do this because research is heavily
context dependent. For example, a very high standard might be
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needed when HR is used to classify heart disease. However, in
contrast to this situation, when HR is only one of many potential
avenues of information it might be sufficient that HR signal is
reliably better than complete noise. For instance, adopting a
merely better-than-noise standard in a multi-component machine
learning model could still improve performance and may be
preferable when researchers are focused on scalable low-cost
devices. In the second scenario, imposing an arbitrary standard
might make a model less accurate because it might otherwise
require the researchers to drop HR signal entirely.
The second checklist (Table 3) provides potential covariates in

regards to technological factors and both biobehavioral and
demographic factors that have also been shown to influence
accuracy of HR measurements and dynamics. We propose that
future research utilizing wearable HR should report in methods
sections that study design protocol, biobehavioral, participant
demographic, and technological variables have been reported in
accordance with these standardized guidelines and include these
checklists in supplemental materials. Utilizing these guidelines and
referencing them in methods sections has the potential to decrease
non-standard reporting, increase reproducibility and replicability,
while also leading to greater generalizability of results, which may
increase the clinical utility of findings in this field.

CONCLUSION
HR has long been used as a clinical indicator of overall cardiac
health that has been conceptualized as a transdiagnostic biomarker
with clinical utility in psychology, psychiatry, and medicine to
improve nosology, and increase identification of those at risk for the
onset and relapse of psychiatric and physical health conditions.
Cardiovascular dysfunction has been proposed to be a putative
mechanism associated not only with morbidity and mortality, but
also with a range of psychiatric disorders. Until recently, real-world
continuous collection of HR in medical patient and research
participant lives has been limited by technological and financial
factors. The recent introduction of consumer wearables or wrist-
worn smartwatches and fitness monitors for the digital measure-
ment of cardiovascular health and psychophysiological stress has
allowed for the continuous, scalable, and unobtrusive, “big data”
collection of overall cardiac activity in real-world conditions with
large samples that allow for the collection of passive, large-scale,
and ecologically valid data. This has the potential to improve the
study of cardiovascular health in medicine and psychophysiological
stress in psychiatry and psychology.
The current literature indicates that these devices can provide

acceptable accuracy for the measurement of HR for research
settings, especially when scalability and ecological validity of
measurement settings are critical considerations that may
outweigh the need to offer gold-standard assessment. It is
important to note that PPG technology can be used to index
blood pressure, oxygen saturation, and cardiac output, which
will likely be slowly rolled out into wearable technology moving
forward. In addition, PPG can index HRV, which is derived from
beat to beat intervals calculations in the time-domain, such as
root mean squared of successive differences or the standard
deviation of NN intervals, the latter of which is used in the Apple
Watch, but only with sporadic recordings throughout the day.
Currently, many commercial wearables do not provide beat to
beat interval data to users, although some researchers have
worked with industry partners to derive measurements of HRV26.
The guidelines provided above will be necessary to apply to
research when studying PPG data at more fine grained detail
than HR.
Given the variations in both hardware and software in these

devices, variation in study design protocol, as well the way in
which individual differences across both biobehavioral and
demographic characteristics may affect the accuracy of

Table 2. mHealth wearable heart rate metadata checklist 1:
descriptive reporting of sample.

Describe

Study design protocol

Naturalistic or laboratory □
Group (Psychiatric group diagnostic or symptom selection criteria)□
Recruitment source □
Inclusion/exclusion criteria (presence or absence of conditions,
age range)

□

Technological factors

Device manufacturer □
Device type □
Device version □
Firmware version □
Hardware (sensor type) □
Sampling rate □
Device reliability and justification for why this level of reliability
is adequate for the study design

□

Participant characteristics

Age □
Race □
Ethnicity □
Biological sex □
Gender □
Skin tone (e.g., Fitzpatrick skin type) □
Body mass index □
Wrist circumference □
Wrist placement (e.g., dominant or non-dominant) □
Medical condition □
Cardioactive medication use □

Data cleaning, handling, and analysis

Summary bpm metric calculation (e.g., mean, median) □
For multiple samples per minute, how was final bpm calculated □
Definition of non-wear-time and reason for data loss
(battery life, device failure, participant attrition)

□

Dealing with missing data □
Listwise deletion (not recommended) □
Pairwise deletion (not recommended) □
Model-based (e.g. full-information maximum likelihood,
multiple imputation)

□

Outlier identification and correction □
Wrist circumferenc □
Wrist placement □
Dominant or non-dominant □
Tight vs loose □
Naturalistic use by participants vs explicit instructions by
experimenters

□

Data reporting

Reporting descriptives (e.g., mean, standard deviation, range
for overall sample and by group)

□

Data transparency

Preregistration □
Large passive sensing data sets will be ripe for p-hacking.
Pre-register analyses prior to viewing data collected or try to
draw predictions from out of sample predictions.

□

Open code and data □
Provide access to code and data, if applicable □
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measurement, the field requires standards of reporting that will at
the very least allow for the characterization of these factors when
comparing studies. In this paper, we have proposed a pair of
reporting checklists that indicate the details that should be
included in any paper using this form of HR measurement.
Overall, although consumer wearable devices that collect HR

likely are not yet advanced enough to be replacing medical-grade
ECG anytime soon, these devices can be used to supplement
medical-grade devices and continuously collect HR data on
research subjects when risk for acute cardiac events is not of
immediate concern. This has the potential to advance research
into cardiovascular health and psychophysiological stress in order
to better understand how HR influences overall physical and
psychological health.
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