Guiding Constructive Search
with Statistical Instance-Based Learning

Orestis Telelis Panagiotis Stamatopoulos
Department of Informatics and Telecommunications
University of Athens
157 84 Athens, Greece
{telelis,takig @di.uoa.gr

Abstract

Several real world applications involve solving combimgtboptimization prob-
lems. Commonly, existing heuristic approaches are dedign@ddress specific
difficulties of the underlying problem and are applicabldyowithin its frame-
work. We suspect, however, that search spaces of combiaapyoblems are
rich in intuitive statistical and numerical informationhigh could be exploited
heuristically in a generic manner, towards achievemenptifiized solutions. Our
work presents such a heuristic methodology, which can bguedely configured
for several types of optimization problems. Experimengsults are discussed,
concerning two widely used problem models, namely the SeitiBaing and the
Knapsack problems. It is shown that, by gathering stasisfitformation upon
previously found solutions to the problems, the heurisgialle to incrementally
adapt its behaviour and reach high quality solutions, ediogethe ones obtained
by commonly used greedy heuristics.

1. Introduction

An important issue to notice in combinatorial optimizati(@O) problems that
emerge from real world applications is that they exhibit samherent structural and
statistical properties. These properties constitute viakde common knowledge for
the humans that are in charge of solving the problem. The huswmperience trans-
forms into heuristic tools for obtaining a satisfactoryw@n. In most heuristic al-
gorithms, important knowledge concerning a particularppem is embedded in an
abstracted and more generic form, so that it can be appligulitiple instances of the
same problem model. This abstraction, however, is an dlestacecognizing specific
numerical and structural properties of the particularanse being solved.

The application of machine learning towards achievemempimized solutions
is a relatively recent aspect. However, there have been semarkable, as well as
pioneering, works dealing with it. We discuss here some effrtlby reporting briefly
their point of view.

A reinforcement learning approach has been described byBand Moore for
learning evaluation functions of startup search statesaftwcal search algorithr.

Reinforcement learning methofishave gained great attention because of their state-
reward policy, which seems to fit well in the search stategigra imposed by problem
solving. Another related work addresses a job-shop scivegipfoblem through ap-
plication of reinforcement learnin§. Accumulation of scheduling control knowledge
through reinforcements has also been exploited for obtginepaired schedulés.
Applications of machine learning for deciding the best sbauolicy on a problem, as
well as for configuring specific problem solving methods ¢itate an alternative re-
search directiofi-'4. Analytical learning techniques have also been used fobsyin
heuristic inductiont®.

Four main research directions of statistical machine liegrapplication to combi-
natorial optimization are surveyed fn The approach presented in our paper shares a
common part with theearch space understandidgection because it gathers statis-
tical information relative to properties of the search spdaring the solving process.
It also lies in part within thesvaluation function learningliscipline, since &ernel
RegressiorfKR) scheme is employed for the approximation of an evaluatimetion,
which shares its optimum with the objective function of tlmetgem.

Within the framework of evaluation function learning, tenmain directions of ap-
plication to combinatorial optimization have appearedeanent literature, according
to 3. One is to learn an evaluation function for guiding localrsba@ ! to obtain
improved solutions over a single instance of some CO probléhe second, mostly
ambitious and interesting approach, focuses on learniafuation functions generi-
cally applicable across several instances of the same Cllgmnd?3:!-'6, Finally a
third approach?, within which our work falls, is about guiding the direct ctruc-
tion of solutions to the problem. In particular, the apptoagentioned ir?, is about
learning a global policy for guiding constructive searclotigh reinforcement learn-
ing methods, while we investigate the dynamics of a locataxmation scheme for
learning evaluation functions.

To our knowledge, machine learning techniques have beetynioegrated in lo-
cal search procedures. In this paper, we present a heutistation which employs
KR and is designed to cooperate wablution constructive search methdds global
optimization. This aspect is of particular interest in $o8yCO problems, since con-
structive search methods are able to preserve the validlity mroblem’s constraints
during the search. This is not the case with local searchguha®s. They often visit
invalid search states, and thus it is harder to even find éfleasolution.

In the following, the proposed methodology is presentetiity at a higher level
and then, the machine learning based heuristic algorithteseribed in more detail.
The application of the approach on two specific problems,atathe knapsack prob-
lem and the set partitioning problem, is discussed next. i@ents on the experimental
results are made and, finally, the concluding remarks arsepted and further work is
briefly described. A preliminary version of our work has agges in'°.

2. Framework Overview

Constructive searclhs the kind of solving procedure exploited in this work. By
the term constructive search, we designate the construofi@ solution to the CO
problem by assigning a value to each decision variable im, tand thus by searching

a tree of variable assignments. This search policy comesnirast with the various
local search techniques, such as hill climbing and simdlateealing, which alter an
already known complete assignment of all decision vari&bfethe problem at each
step, in order to obtain a new one.

As far as optimality is concerned, the main interest in tesreh is associated with
selecting dynamically the most promising combination afalsle and value to assign,
in order to proceed towards a near-optimal solution (in teofithe problem’s objec-
tive function value). Several problem-specific heuriségist, which provide an upper
(or lower) bound to the expected quality of the solution {atbably lies beneath the
current state of the search. Other heuristic policies d¢ateubased on incomplete
information) an expected quality of the solution under ¢arion. However, incom-
pleteness of available information during the intermeslages of construction is the
curse of heuristics. Their estimations often prove to bednaate, thus misleading the
search towards suboptimum search space regions.

In this paper, we propose a heuristic methodology for CO jgrolk, which embeds
simple machine learning methods for recognition and wtilan of specific numerical
problem properties. On every search state of the solvink, @dternative choices are
evaluated by &R scheme. The evaluation of each choice is an estimation afxthe
pected objective function value, under the assumptiontlieasolving path extends in
favour of the respective choice. Solutions previously fdiby the proposed method-
ology are utilized as training examples, for evaluationpaftial solutions on each
search state. The core assumption of our work is that goadisné lie somewhere
nearbythe best ones already found. Thus, we actually explore thecsespace by
visiting neighbouring areas of known solutions, hoping talfbetter ones. The notion
of neighbourhood is a rather geometric one as will be shaglyarent, and should not
be confused with its corresponding definition in local shditerature.

The huge search spaces of the CO problems faced in this werkarexpected
to supply consistent training sets. Therefore, the widelgwn Leave One Out Cross
Validation(LOOCYV) test adjusts th&R approximator’s parameters with respect to the
underlying training set, so that a minimal estimation ersachieved.

3. The Search Schema

The algorithmic schema is iterative. An overview of the aygmh is presented in
Fig. 1. If I is a problem instance to be solved, the first thing to do is éosasne simple
heuristic method to obtain initial solutio$s A simple method might be Bepth First
SearchDFS), guided by a common heuristic that intuitively fits freblem. This step
stops after a limited time interval, which suffices for obtag some initial solutions.
The setS is then used for the production of an initial training gefor the machine
learning algorithm employed by the heuristic.

The first step of the iterative process shown in Fig. 1 is aqaegssing procedure,
which adapts th&R approximator to the training set, in order to achieve higtrer
diction accuracy with respect to the underlying training &e The problem instance
is then solved by some constructive search algorithm, guidiristically by theKR
supported heuristic. The search stops when some critesim, as a time limit, is met.
The training set is augmented with information extracted from newly fountlions

Find sone solutions S to I using a "sinple" method
Produce training set £(S)
Iterate until end criterion net
Adapt KR approximator to £(S) using LOOCV
Cbtain new solutions & with KR-Heuristic
S+ Sus
Produce training set £(S)
Return Best Sol ution

Figure 1: The overall algorithmic schema

and the process is repeated. The number of iterations iesiLiloj experimentation. It
is important to note that there is no constraint dictatirgf golutions obtained in each
iteration should be better than those found in the previterations. The absence of
such a constraint contributes to the enrichment of theitrgiset with feasible solutions
of varying qualities, which contribute to a more detailedtpie of the search space.

The algorithm presented in Fig. 1 should terminate if in aieyaition is unable
to produce at least one new (not df) solution. Indeed, the predictions of theR
approximator depend solely on the training §65). Once the search within the loop
fails to augmens with new solutions (cas&8' C S), the heuristic’s suggestions remain
unchanged for the next iteration. Then the search has toasdahe algorithm is unable
to proceed further. This case should be incorporated witiérend criterion mentioned
in Fig. 1. This weakness can be easily overcome through raimbal restart of each
iteration. However, our preference in constructive seaerhains justified, due to its
ability of handling complicated constraints and, thus,nigesuitable for real world
applications, which also offer a great potential of stat#&tinformation.

A simple data-flow representation of the algorithm appeaiSig. 2 and presents
the main parts of our implementation. The dotted line ereddke iteratively interact-
ing parts.

4. Integration of Instance-based Learning

In this section, various aspects of the heuristic algoridrendiscussed concerning
the instance-based learning method, the representatitmaiofng examples and the
dynamicKR approximator selection.

4.1. Kernel Regression on Nearest Neighbours

The machine learning methodology exploited within the josgd framework be-
longs to the family of memory-based or instance-based ndstho Memory-based
learning methods explicitly store all training examplesyttare shown. Only at pre-
diction time do they perform non-trivial amounts of comgida, which is their main
disadvantage. We use tKernel RegressiofKR) method for approximating the value
of areal function. Th& R method is also known dcally Weighted Averagind here
is a generic scheme f&tR, which might be configured in many different ways as is the
case folocally weightedearning methodologies

The exact configuration dkR used in this work follows. Th&R algorithm is

Approximator
Selection

(K, k)=— Loocv

Known
Feasible
Solutions

(Training Set),

Evaluation Function
Guided

Solution
Production

Search

Figure 2: Parts of the implemented system and data flows leetthem

used here for real function value estimation. The functiemf approximated can be
considered asf : " — R.

The training set for th&R algorithm contains pairs of input vectors faand their
correspondingf-outputs. Thus, iff € R" is an input vector to the function, the
respective training example contained in the training skt the pair(z, f(¥)).

Let z; be a query to th&R algorithm. The predictiorf(a?,l) is calculated by the
algorithm as follows:

flay) === (1)

In formula (1),d(;, 2) denotes the Euclidean distance of the query vegtdrom
thei-th training example vectaf;. Thek parameter stands for the number of training
examples nearest t§),, that contribute their knowyi-values to the predictioﬁ(m}).

The functionK : ® — R is thekernelfunction, which assigns a smaller weight
to the contribution off (;) to the sum, as much as greater is the distancg dfom
the query vector;. Thus, the contribution of less significant values, i.euealthat
correspond to more distant vectors, is punished. The kéunetion to be used at each
iteration of the search schema is determined dynamically®®CV, from a repertoire
of available kernel functions. Dynamic selection of kerfgiction is a part of the
KR approximator's adjustment, and will be discussed in a faithg paragraph in more
detail. When the algorithm is presented with a query, alilaites are scaled down
to the[0, 1] range. This normalization helps avoiding the dominatiofacde-ranged
attributes in computations.

4.2. Representation of Training Examples

An important issue for the applicability &fR is the implicit definition of thef
function, mentioned in the previous paragraph, whose vialg®ing to be estimated.
The function input consists of vectors in the Euclidean spg&¢ which describe fea-
sible solutions to the CO problem. The function value forheafthese vectors is the
value of the objective function of the problem for the copmsding solution.

Each training example for thKR approximation scheme is a pair of a solution
descriptive vectoF', known as théeatures vectgrand the respective objective function
valueobj(F). Thus, the training set can be defined as

& = {(F,obj(F)) | F: extracted from a solutiog .

The features (i.e. the dimension values) of the featuretreare real arithmetic
values that correspond to specific properties of the saiutticthe optimization prob-
lem. Each feature should be an aggregate function on thgrasents of the problem
variables. As in every step of the search a decision varialdelected to be assigned
a value, the features of each vector should be calculated tigosolution path. The
only limitations on the features that might belong in a feaswector are imposed by
the problem structure. As discussed later, a solution castelseribed through statisti-
cal information that is considered to be characteristithefgolution’s quality in terms
of the objective function value.

4.3. Selection of KR Approximator

ThelLeave One Out Cross ValidatighOOCYV) test appears to be quite appropriate
for adapting a&KR approximator to the training set of each iteration in Fig.AlLdis-
cussion on cross validation tests can be fountl iWvithin our study we have limited
the selection of a propd€R approximator to the selection of/avalue and a kernel
function K from a set of available kernel functions. A brief overviewagfmmonly
used kernel functions can be foundfin

Each different pair ofc-value (number of nearest neighbours contributing to the
estimation) and kernel function yields a differédR approximator. For each candidate
approximator, each training example is estimated, as i&#& ewnovel example, using as
training set the remaining training examples. The distarfahis estimation from the
actual target value is a measure of the error in predictidve Selected approximator is
the one that yields the lowest average prediction error alléraining examples.

To illustrate, assume that the gét= {K; | i = 1,...,n} contains the available
kernel functions. If€ is the available training set, then the test is going to exami
each training example = (f,v) € &, using as training sef — {e}. Thus, thek
parameter receives a value{i, ..., |E| — 1}. For every parameter pafis;, k), the
resulting approximator is tested over all training exarsgle&. The approximator,
that is the pai K;, k), which minimizes the average errerr g, ;) over all training
examples is selected as the most appropriate with respebetanderlying training
setf. Figure 3 describes the testing procedure. Although thegmore might seem
time consuming because of the triple for-loop, a more efficimplementation than

—

the one depicted in the figure is possible. In fact, the quahtiR(K;, k, £ — {e}, f)

foreach K; e K
fork=1...||—-1
err(r; k) < 0
foreache= (f,v) €&
&+ & —{e}
err (K, k) < erT(K, k) + \KR(Ki,k,E’,f_j — v
err i, k) < errir, i /€|
returnargming, p{errk, r)}

Figure 3: Leave-One-Out Cross Validation ¥R approximator selection

can be calculated incrementally for increasing valuels, efhile keeping the rest of its
arguments constant. This can be easily verified from thedidar{ll). Except from that,
as will be clarified from our system’s experimental configima, the cardinalitie$/C|
and|€| remain within acceptable bounds, so that the test procethe® not burden the
system’s time requirements.

As the proposed methodology is supposed to solve probleat&titlose proper-
ties in a rather statistical than precisely defined manr&inihg data collected during
the solving process are expected to be inconsistent. Sepates of CO problems
are extremely large and different solutions to a CO probleightrbelong to different
neighbourhoods of the problem’s search space. The feaiseskfor the description of
the solutions are chosen empirically as representativesptoblem’s a priori known
statistical properties. However, the selected featurghtgirove to be insufficient for
the discrimination of certain solutions. It is expected $@me solutions might belong
to different neighbourhoods, whereas their discriminaiioterms of distance of fea-
tures vectors might be inaccurate. Such inconsistencyeofriining data is handled
via the dynamic approximator selection.

4.4. The Heuristic Function

During the construction of a potential solution, the syst&multaneously con-
structs a path of variable assignments towards the bottatimeo$earch tree. On each
node of the tree visited, decisions must be taken, so thatakestep down the tree is
the most promising for the solution quality among all avaliéachoices. We describe
the heuristic function which guides the search by explgitine previous experience
acquired by the system.

Let P be the so far constructed path during the search. Thiparial path. Each
search step consists of two choices: the selection of arsigmesl decision variable of
the problem and the determination of a value to be assignédltet .4 be the set of
all possible (i.e. feasibility preserving) such assignteemd, consequently, the set of
all possible ways to augment the partial pathThe heuristic function should dictate
an assignment fromd as the next step for the extensionf

As already discussed, the training examples§®rare features vectors calculated
upon feasible solutions of the problem, i.e. upon completihg However, even a
partial path can be used to calculate such a vector, if thesigi@ed decision variables

get Best Assi gnnent (£, P, A)
For each assignment a=(zx; =v)e A
P« PU{a}
Cal cul ate Fp
vala + KR(E, Fp)
Choose g€ A such that wvalg is optimm
return g8

Figure 4: TheKR supported heuristic function

are ignored. If statistical or aggregate information isdugedescribe the partial path
extension by using a features vector, then it is reasonabpedfer extensions whose
features present similarity to these of the best known goistcontained in the training
set. In this way, portions of the search space that havequelyi produced good solu-
tions are explored further. Lg% be the partial path resulting after augmentigyith

a choice fromA4. The features vecto’?}3 is calculated upof®. TheKR approximation

scheme is requested to produce an objective function vatira&tion forﬁf,. The ex-
tension of P which yields the optimum estimation is preferred over afletchoices.
An overview is presented in Fig. 4.

5. Application on Two Problems

The heuristic methodology was tested on two well known CCblenms, namely
theknapsacland theset partitioningproblems. These are described below.

decision variables and some capadte Z7,

n
maximizeZ = » _ p;x;
i=1

n
subjectto " wjz; < C .

J=1

Set Partitioning (SP). Given am x n binary matrixA = {a;;}, a n-dimensional
cost vectorC = (c1,...,cn) With ¢; € Z* and the n-dimensional vectot =
(x1,...,z,) of binary decision variables, we want to

n
minimize Z = > ¢;x;
i=1

n
subjectto» ajz; =1, i=1...m .
j=1

5.1. Generation of Problem Instances

An important assumption mentioned in the very beginnincghid paper is that the
CO problems faced have some a priori known properties. Fopthvious problems,
instances were generated that have such properties?, la generation method for
knapsack instances is briefly discussed. Thevector mentioned previously is deter-
mined from a normal distribution, while the fractign/w; is also calculated from a
normal distribution. Eacl; element of theP vector is computed gs; = w; - p; /w;.
The knapsack instances created in this way tend to assgeestteip; values to greater
w; values. These problems have been shown to be more diffitulntuitively one
can understand the difficulty that emerges as follows: amegdy heuristic trying to
collect as many of the most profitable items within the knagsa punished by their
increased weight. This rough monotonicity correspondé&msteeen weight and profit
is also a realistic matter, corresponding to real life eiqrage.

For the SP problem, instances were generated in a similaawdgr the knapsack
problem. The number of 1s contained in theolumn of 4,,,, and the ratio of the
column cost:; to the number of 1s were determined by two different normsirdli
butions, while the:; quantity was computed as a dependent variable. Thus, celumn
containing more 1s, tend to have higher cost vatye®ecause the 1s in each column
are decided via a uniform distribution, the mentioned propes slightly depressed
by the satisfiability of the problem’s constraints. Greellyking in this case, would
impose construction of solutions by including columnsief ., which cover as much
rows as possible. This practice tends to punish our choigésdorring higher costs.

For the SP and knapsack instances, optimum solutions wargegl in a simple
manner.

5.2. Selection of Features

The selection of features that assemble the features geistanostly important
for the accuracy of the predictions of thé&k scheme. Features that encapsulate some
information relevant to the objective function’s value greferred, since they are ex-
pected to provide a quantitative partition of the searcltsjiato regions with expected
objective function value. For each of the aforementionexblams, their features are
presented, which were selected intuitively.

Knapsack. Three features constitute the features vector for the kapsroblem:

1. The mean value of the fractign/w; for js such that;; = 1 in the solution.

2. The mean value of the profijts which participate in the objective function value,
i.e. forjs such that; = 1.

3. The weighted average of profits that participate in thecibje function value.
The contribution of eachp; profit to the average is weighted by the inverse cor-
respondingv; value.

Set Partitioning. For the SP problem, the features vector constituted of tatufes:

1. The mean value of the number of 1s contained in the colurfitiseobinary
matrix A that participate in a solution.

2. The mean value of the costs of the columns of matrikat constitute the solu-
tion.

Thej-th column of the matrix4 is part of a solution ifr; = 1.

6. Experimental Results

Experiments were carried out on 10 instances for each pmoblde instances were
of varying sizes.

6.1. Experimental Configuration

For each problem, a heuristic solving method was chosen grif@most com-
monly used. The chosen method provided the best resultedardrresponding prob-
lem, within the experimentation time interval, and was ewgpH for the construction
of the initial training set. The results obtained by the mregd methodology were com-
pared to those provided by the common method in the same @mly.solutions found
by the common method within the first 10 minutes were considiéor the construc-
tion of the initial training set. The common methods werelgopfor 4200 seconds.
The overall running time of the iterative part of our methtodyy was arranged to last
for 3600 seconds, so that summed to the initial training sestruction time equals to
4200 seconds.

The system was provided a set of kernel functions to choass, fin order to con-
figure aKR approximator, which would yield a minimum expected preditterror
during theLOOCV test. We let the system choose among the following kerned-fun
tions: K,(d) = 1/d* andE,(d) = 1/e*", fora = 1,2, 3. The formsK, andE, lie
among the most commonly usédParticularly for thek', form, rared = 0 cases were
handled by assigning the query vector an estimation equalkt&nown value for the
corresponding nearest (zero distance) neighbour. Valieggoeater than 3 were not
considered, since they would yield very low kernel values| thus, theKR estimation
would be dominated by the contribution of one unique nearesgthbour.

The training set expands from one iteration to the next. beoto avoid cases
where theLOOCYV test would decide large values fbr and thus, slowing down the
KR approximator, the size of the training set was kept stahlatonost, 25 training
examples. At the end of each iteration, the training examitiat represent solutions
of worse qualities are removed.

The measurement of success for the experiments preserités gection is defined
as the percentage of improvement achieved by our methogabwgards the optimal
solution, in comparison with the performance of the commeathod. Thus it:, is the
best solution found by the common methad,, is the best solution obtained by our
methodology andpt is the optimal solution, performance is measured as

o mlo

a =100 x &
co — opt

Instance Performance

n | n Co | ml, | opt | «
3000 15| 53848 | 54856 | 57499 | 27.6
4000| 20 || 73954 | 77976 | 78693 | 84.8
4000 | 40 || 140669| 143079| 151415| 22.4
4000 | 51 || 179656| 186341 | 189211| 69.9
4000 | 23 || 82385 | 83882 | 88849 | 23.1
4000 | 30 || 107621| 109785| 113112| 39.4
6000 | 30 || 108744 | 111043| 116577 29.3
6000 | 20 || 70956 | 71750 | 76909 | 13.3
8000 | 15| 56049 | 57100 | 60031 | 26.4
8000 | 23 || 90257 | 91352 | 96367 | 17.9

Table 1: Experimental results for the knapsack problem

6.2. Knapsack

For the knapsack problem, the simple heuristic policytof the most profitable
choice first”on a DFS proved to be quite successful in obtaining soon sagheguial-
ity solutions.

Twelve iterations, of 5 minutes each, were performed on gaoblem instance
after the construction of the initial training sdtimited Discrepancy Searcfi.DS) *
was used as constructive procedure for the proposed méthbd.quality of solutions
which were obtained for all instances significantly excektiee quality of solutions
found by the employed common heuristic method. Table 1 suizesthe results. The
characteristics of each problem are depicted, namely frerameter and an estimation
1 of the average number of “items” that fit in the knapsack, waled as the ratio of
the capacityC' to the mean value of the weights in vector.

6.3. Set Partitioning

The common method that provided the best results for the 8Blgm was the
heuristic policy‘try the column with the minimum cost firstvith DFS. The proposed
methodology performed significantly better on all instamckable 2 depicts the charac-
teristics of the SP instances and the performance of ouradetbgy. The dimensions
of the 4,,, «,, binary matrix are shown as the major characteristics forRimnStance.

Six iterations, of 10 minutes each, were performed on eacimn§&Bnce. Remark-
ably better solutions were found by the proposed methogalesingLDS, than those
obtained by the common heuristic policy.

6.4. Behaviour of the Methodology

The experimentations on the SP and the knapsack problenesagaiew of the
behaviour of the methodology during the solving procesgufé 5 gives a low level
view of a solving path followed by the heuristic function dgF4 for a knapsack in-

*LDSwas also tested with common heuristics on both problemnestbut did not outperform DFS.

Instance Performance

n | m Co | ml, | opt | Qa
4000| 15| 1175 | 1063 | 898 | 40.4
4000| 18| 1474 | 1401 | 1113 | 20.2
4000 | 20 900 481 452 | 93.5
5000 | 18 || 15698 | 12563 | 10669| 62.3
5000 | 25 993 910 544 | 18.5
5000| 30 || 2720 | 2538 | 1734 | 18.4
6000 | 20 754 580 407 | 50.1
6000 | 25 || 1148 | 893 593 | 45.9
6000| 30 || 1133 | 1088 | 779 | 12.7
7000| 25 || 1128 | 905 569 | 39.8

Table 2: Experimental results for the SP problem

knapsack (3000, 15) instance

known solutions ¢
solution construction - +--

feature 2 o

5000 o
4500 Fo gFSolution
4000 SR ;§¥4-~+ ®
3500 e

3000 '
2500 |

+
First Assignment

4000

113 114 e
116
feature 1

117
118 7572500

Figure 5: Solution construction path for a knapsack insanc

Set Partitioning (6000, 25) instance
1150 T T

T T
KR heuristic solving process——

1200fF - S TR EEEPERRERES SRR R .
1050 [: (8. Lo 1

1000} : : % SR R]

objective function

950 e/ S SN2 1

900 >
: : : : : Best
850 i i i i i Solutio|
0 600 1200 1800 2400 3000 3600
time (seconds)

Figure 6: Solving process for an SP instance

stance, whereas the overall solving performance of theqeeghiterative methodology
is depicted in Figures 6, 7, 8 and 9 for two set partitionind awmo knapsack instances
respectively.

Figure 5 depicts the features vectors (as independentpuirthe diagram) for
known solutions to thén = 3000, u = 15) knapsack instance that belong to the train-
ing set. It also demonstrates the trajectory of a solutiamstroction using the given
training set. Every cross point in the trajectory representeatures vector calculated
upon a partial path, after a new assignment to some decisioable is performed. At
every search step, the heuristic function chooses theramsigt which brings the fea-
tures vector of the extended path closer to specific feattge®rs of the best known
solutions. As is clearly visible from the diagram, althouglke trajectory in the fea-
tures space is somewhat awkward, it leads to the construcfia complete solution,
with statistical properties (as indicated by its featurestar), which locate it within
a desirable cluster of known solutions. When the choseresgmtation features are
indeed relevant to the objective function’s value, thenrtbely constructed solution is
expected to be of comparable quality to the solutions of thster.

The overall functionality of our methodology for the SP pierh is demonstrated
in Fig. 6 and 7, on thén = 6000, m = 25) and(n = 4000, m = 18) SP instances.
Subsequent iterations of the algorithm in Fig. 1 are sepdray the vertical grid lines
on the diagrams. Within the iterations each solution shbeltetter than the previous
found. The best solution is found in the last iteration fog {h = 6000, m = 25)
instance. A natural explanation for this fact is that Kie-heuristic provided the most
accurate predictions during this iteration, having acclatea in its training set an
appropriate representation of the search space duringou®\¥terations. However
this was not the case for all instances.

One can notice in Fig. 7 that the best solution was found dutie fifth iteration,
whereas the system was tragically misled during the suleseqieration. This is pos-

Knapsack (4000, 18) instance

T T
‘ ‘ KR heuristic solving pocess——
P e L E-- -

objective function

0 600 1200 1800 2400 3000 3600
time (seconds)

Figure 7: Solving process for an SP instance

sibly due to introduction of inconsistent data in the tragniset during the previous
iteration. However, we expect that the heuristic is ablemiprove its behaviour in
subsequent iterations, since solutions of lower qualiéystored in the training set and
contribute to future estimations. This fact confirms thechi information acquisi-
tion and exploitation regarding the search space, in omlexplore its most promising
portions.

Figures 8 and 9 depict the solving process for two knapsasthites. Analogous
situations to the ones discussed for the set partitioniisg can be observed. To be
precise, one can certainly notice the heuristic’s poor bislua during the first iter-
ations, and how it subsequently improves towards discogesome good solutions.
For both instances, solutions found during iterationsrafte first 2100 seconds are of
comparable quality.

6.5. Depth-First Search Experiments

In order to assess further the heuristic value of our mettogyowe experimented
with it in a pure manner by using the simple DFS procedure.abit,fa multi-restart
variant of the original DFS scheme was used: each time aisoligt found the search
backtracks to the root of the tree. Thus, one can think ofsbéch procedure as draw-
ing multiple depth-first explorations down the tree, stagtfrom the next preferable
choice at the root, every time a new solution is found. Welské&r to it asmodified
DFS (mDFS. This strategy is not a complete one, in contrast to theiposly used
LDS and its performance heavily depends on the heuristicesinencloses a DFS
scheme.

As already discussed in section 2, it is generally known, tbamstructive search
heuristics tend to make mistaken decisions on early intdiate stages of the search,
that is near the top of the search tree. By enforcing the bganredure to restart from

objective function

objective function

Knapsack (3000,15) instance

55500

KR heuristic solving process —+—
55000
54500 j sz
54000 T\
53500 ZK
53000
52500

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
time (seconds)
Figure 8: Solving process for a Knapsack instance
Knapsack (4000,20) instance

79000

KR heuristic solving process <—
78000 f\ﬂ
77000 fs\ //g\
76000 / f
75000 /
74000

& j
73000 \ I \&i
72000 /
71000
70000
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

time (seconds)

Figure 9: Solving process for a Knapsack instance

Instance Performance

n [p | mh | o [a opg]| T
3000 | 15| 55299 | 39.9 12.1 3.7
4000 | 20 || 74947 | 20.9 -63.9 5.1
4000 40 || 141893 11.3 -11.1 4.2
4000 | 51 || 181723| 21.6 -48.3 34
4000 | 23 || 84114 | 26.7 3.6 5.3
4000 | 30 || 109800| 39.6 0.2 3.6
6000 | 30 | 112421| 46.9 17.6 3.2
6000 | 20 | 74557 | 60.4 47.1 3.6
8000 | 15| 57985 | 48.6 22.2 35
8000 23| 91141 | 144 -3.5 3.1

Table 3: Experimental results withDFSfor the knapsack problem

the next preferable choice from the root (according to theriséc’s decision), we
intend to investigate the heuristic’s sensitivity to thiatter. For a knapsack instance
with n decision variables, the meaningful available assignrradritee root of the search
tree are exactly, (z; = 1,j = 1...n). The same holds for a set partitioning instance
with n decision variables. Regarding the problem instances usedr experiments,
this size reaches the order of a few thousands. It is shovipdhaverage per iteration
of the search schema (Fig. 1), trying only a small fractiotheke alternatives suffices
for reaching high quality solutions. This fact confirms theukistic’s robustness with
respect to its early decisions.

For each instance of both problems, the methodology wasvedldL2 iterations,
of 5 minutes each, that is, a total of one hour. Results arevanmed in Tables 3
and 4. Table 3 shows, for each Knapsack instance, the immeweover the greedy
heuristic’s performance of Table 1. The last columpghows the average number of
restarts per iteration, performed by the modified DFS praced

The improvements achieved on some instances are unexpeicgulessive. On
four out of ten instances the results were poorer than the obtained withLDS.
However, in their entirety we consider them to be quite emagimg, since they only
exhibit the heuristic’s guiding ability, and still they asnificantly improved relative
to the greedy heuristic. By combining information from aldg known feasible solu-
tions, KR provided useful heuristic predictions, thus guiding thagie mDFSsearch
towards improvements. In fact, we get a confirmation of oitidhassumption that
improved solutions lie nearby already known solutionseimts of euclidian distances
between their features vectors (we wish to remind the reafleig. 5 and the corre-
sponding discussion). The small values of theounter indicate that the heuristic’s
initial decisions are generally quite informed. It actyakploits only a small fraction
over the thousands of choices at the root of the search teggity performance is at
least satisfactory.

The heuristic proved to be quite successful with our Setititaring dataset. Solu-
tions found on almost all instances were near-optimal, aedtty exceeded the heuris-

Instance Performance
n | m ml, | « | a—a ps | T
4000 15 935 | 86.6 46.2 8.1
4000| 18 || 1171 | 83.9 63.7 4.75
4000 20 461 | 97.9 4.4 5.6
5000 | 18 || 10987 | 93.6 31.3 7.2
5000 | 25 544 | 100 81.5 4.8
5000| 30| 1734 | 100 81.6 8.1
6000 | 20 409 | 99.4 49.3 7.1
6000 | 25 738 | 73.8 27.9 6.6
6000| 30| 1011 | 34.4 21.7 4.7
7000| 25 692 | 77.9 38.1 9.7

Table 4: Experimental results withDFSfor the SP problem

tic's performance with.DS. Table 4 summarizes the results. These results convincingl
confirm the value of the heuristic and the existence of an siiffumctional relation be-
tween the statistical characteristics (features) of atewiwand its quality.

Another aspect we examine concerns the heuristic’'s behawiith respect to the
underlying training set. In particular, we measure for eiéetation the deviation of the
best found solution from the best one contained within thaning set. Lets; be the
objective function value for the best solution found duritggation: of the algorithm
in Fig. 1. Suppose that the best solution contained withintthining set of théth
iteration was of qualityr. Then for a maximization problem we define the following
improvement ratio on iteratioi

*

S; — S;
IR; = !
' U-L
whereU and L are the highest and the lowest among the valyes;,i = 1,...,1.

The quantityl R; is the fraction, by which the heuristic exceeded (or misgedase
of s; < s7), its best known solution (always contained within itstiiag set) on iter-
ationi. For a minimization problem théR; quantity is defined similarly, but with an
opposite sign, in order to preserve it positive when realrmepment occurs.

Figures 10 and 11 depict thig?; measure for three instances of each problem. It
would have been an ideal situation, if the curves were kept aero, thus implying
a constant improvement over the best known solution, fromitaration to the next.
However, what the reader can actually observe is a satisfastability on the method’s
behaviour, only partially disturbed by great improvememtfsses.

Particularly on all three knapsack instances (Fig. 10) ompments on iteratioi
are followed with big losses during iteration 2. The curvestinue thereafter with only
small positive or negative deviations from the best knowitsans. This behaviour
implies that, even though the heuristic’s predictions megdme spurious with respect
to the underlying training set of some iteration, accumaltabf training examples
helps guiding the search more conservatively during subsetgjiterations, towards
informed solution constructions.

3000,15> instance
6000,30> instance

0.8 8000,;15> instanci

it

0.6

0.4

0.2

Improvement Ratio (IR)
o

0.2 |

-0.4

-0.6

-0.8

Iteration

Figure 10: Improvement per Iteration on Knapsack

For the Set Partitioning instances (Fig. 11) there is anagmals behaviour, with the
difference of great improvements happening in iteratiolsibsequent iterations also
provided small improvements and losses. Although positikteleaps are generally
desirable since they indicate optimization, we should tdebcomfortable with small
movements around zero, because they exhibit the existésceomth functional corre-
spondence between the chosen solution descriptive faadnkthe objective function
value. This statement stems from the way the heuristic tagdace the newly con-
structed solution somewhere in the geometric space definéd training examples.

7. Conclusions and Further Work

In this paper, we propose a heuristic methodology for cotioinal optimization,
which employs instance-based learning and function appraton through kernel re-
gression, for guiding any constructive search procedutds Work is not concerned
with the achievement of feasible solutions to a problems(ibsue is addressed suc-
cessfully by sophisticated implementations of constuacsiearch methods, e.g. back-
tracking), but with the guidance of search to promising oegiof the search space, as
far as optimality is concerned.

Problem models grown from real world applications usuafiglese vast contents
of numerical information, which can be statistically hasttifor the construction of
optimized solutions. The objective functions of such peoi$ are generally designed
upon desirable facts and dictate the intuitive policy faitloptimization. We suggest
that known solutions to these problems are representedatiatsal information cal-
culated upon each solution’s structural constituents. Aeposed policy constructs a
solution by minimizing its distance (in terms of its stdtiat properties) from the best
(in terms of objective function value) known solutions, athiie nearby.

4000,20> instance —<—
5000,30> instance -+--
0.8 7000, 25> instance g3
06+
0.4
3
o 0.2
T
o
5 0 y
2 >
5 -0.2 [I U S
E -
0.4
-0.6
-0.8
-1
1 2 3 4 8 9 10 11 12

Iteration

Figure 11: Improvement per Iteration on Set Partitioning

Experimental results were carried out on two widely used ef®of real world
combinatorial problems, namely the knapsack and the s8tipaing problems. These
problems model important real world applications, suchwadear waste packing and
crew scheduling. The methodology performed satisfactorjhese problems and ob-
tained solutions whose quality exceeded the quality oftswig obtained by other
heuristic methods, common for each of the problems.

Some directions for further research are drawn from quaestibat arise quite nat-
urally. In our experiments, the proposed framework perfsgatisfactory for an initial
training set created by some simple methddiswever, which is the proper way for sys-
tematically sampling initial solutions of a useful qualitigtribution from the problem’s
search spaceThis is an important issue, which could possibly boost thégpmance
of the heuristic function, since an initial set of solutiavith known quality distribution
is actually a detailed picture of the search space.

The complexity of the heuristic function depends on the sfzbe training set. Us-
ing big training sets slows down the search, while small getside little information
about the search space. We have started to examine the oppartitioning the train-
ing set into consistent clusters, each of which represestsall portion of the search
space. Each of these clusters is meant to be used as a sé@anatg set, for searching
the corresponding sections of the search space in a locdiustive manner.

As an aspect of future work, extended experimentations @miaty of optimization
problems is expected to reveal valuable statistical featustrongly informative and
representative of the corresponding search spaces.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Justin A.Boyan and Andrew W. Moore. Learning evaluationctions to improve optimiza-
tion by local searchJournal of Machine Learning Researchi77-112, 2000.

Christopher G. Atkeson, Andrew W. Moore, and Stefan &thhocally weighted learning.
Artificial Intelligence Reviewl1(1-5):11-73, February 1997.

D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic ProgrammingAthena Scientific, 1996.
Justin Boyan, Wray Buntine, and Arun Jagota (Eds.) Stiadl machine learning for large-
scale optimizationNeural Computing Survey8:1-58, 2000.

Justin A. Boyan and Andrew W. Moore. Learning evaluationctions for global optimiza-
tion and boolean satisfiability. IRroceedings of the 15th National Conference on Artificial
Intelligence AAAI-98pages 3—-10, Madison, Wisconsin, July 1998. AAAI Press.

Diane J. Cook and R. Craig Varnell. Maximizing the berssdit parallel search using machine
learning. InProceedings of the 14th National Conference on Artificigdlligence AAAI-97
pages 559-564, Providence, Rhode Island, July 1997. AAés$r

William D. Harvey and Matthew L. Ginsberg. Limited diggancy search. IRroceedings of
the 14th International Joint Conference on Atrtificial Idtgénce IJCAI-95pages 607-613,
Montréal, Québec, Canada, August 1995. Morgan Kaufmann.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew Woore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research:237-285, 1996.

Ron Kohavi. A study of cross-validation and bootstrap decuracy estimation and model
selection. IrProceedings of the 14th International Joint Conference difigial Intelligence
IJCAI-95 pages 1137-1145, Montréal, Québec, Canada, August M®§an Kaufmann.
Steven Minton. An analytic learning system for spdeial heuristics. InProceedings of
the 13th International Joint Conference on Atrtificial Idigénce IJCAI-93 pages 922-929,
Chambeéry, France, August 1993. Morgan Kaufmann.

Tom M. Mitchell. Machine Learning McGraw-Hill, 1997.

Kazuo Miyashita. Learning scheduling control knowdedhrough reinforcementsnterna-
tional Transactions in Operational Reseayd{2):125-138, March 2000.

Robert Moll, Andrew G. Barto, Theodore J. Perkins, andhard S. Sutton. Learning
instance-independent value functions to enhance locattse@dvances in Neural Infor-
mation Processing Systenid:1017-1023, 1999.

M. J. Realff, P. H. Kvam, and W. E. Taylor. Combined amtiall and empirical learning
framework for branch and bound algorithms: The knapsacklpr. Atrtificial Intelligence
in Engineering 13(3):287-300, July 1999.

Orestis Telelis and Panagiotis Stamatopoulos. Coatbital optimization through statistical
instance-based learning. Rroceedings of the IEEE 13th International Conference asisTo
with Artificial Intelligence ICTAI-2001pages 203—-209, November 2001.

Wei Zhang and Thomas G. Dietterich. A reinforcementrié@y approach to job-shop
scheduling. InProceedings of the 14th International Joint Conference atifiéial In-
telligence 1JCAI-95 pages 1114-1120, Montréal, Québec, Canada, August M@Fan
Kaufmann.

