
Guiding Constructive Search
with Statistical Instance-Based Learning

Orestis Telelis Panagiotis Stamatopoulos
Department of Informatics and Telecommunications

University of Athens
157 84 Athens, Greeceftelelis,takisg@di.uoa.gr

Abstract
Several real world applications involve solving combinatorial optimization prob-

lems. Commonly, existing heuristic approaches are designed to address specific
difficulties of the underlying problem and are applicable only within its frame-
work. We suspect, however, that search spaces of combinatorial problems are
rich in intuitive statistical and numerical information, which could be exploited
heuristically in a generic manner, towards achievement of optimized solutions. Our
work presents such a heuristic methodology, which can be adequately configured
for several types of optimization problems. Experimental results are discussed,
concerning two widely used problem models, namely the Set Partitioning and the
Knapsack problems. It is shown that, by gathering statistical information upon
previously found solutions to the problems, the heuristic is able to incrementally
adapt its behaviour and reach high quality solutions, exceeding the ones obtained
by commonly used greedy heuristics.1. Introdution

An important issue to notice in combinatorial optimization(CO) problems that
emerge from real world applications is that they exhibit some inherent structural and
statistical properties. These properties constitute observable common knowledge for
the humans that are in charge of solving the problem. The human experience trans-
forms into heuristic tools for obtaining a satisfactory solution. In most heuristic al-
gorithms, important knowledge concerning a particular problem is embedded in an
abstracted and more generic form, so that it can be applied inmultiple instances of the
same problem model. This abstraction, however, is an obstacle in recognizing specific
numerical and structural properties of the particular instance being solved.

The application of machine learning towards achievement ofoptimized solutions
is a relatively recent aspect. However, there have been someremarkable, as well as
pioneering, works dealing with it. We discuss here some of them by reporting briefly
their point of view.

A reinforcement learning approach has been described by Boyan and Moore for
learning evaluation functions of startup search states fora local search algorithm5.

Reinforcement learning methods8 have gained great attention because of their state-
reward policy, which seems to fit well in the search state paradigm imposed by problem
solving. Another related work addresses a job-shop scheduling problem through ap-
plication of reinforcement learning16. Accumulation of scheduling control knowledge
through reinforcements has also been exploited for obtaining repaired schedules12.
Applications of machine learning for deciding the best search policy on a problem, as
well as for configuring specific problem solving methods constitute an alternative re-
search direction6;14. Analytical learning techniques have also been used for symbolic
heuristic induction10.

Four main research directions of statistical machine learning application to combi-
natorial optimization are surveyed in4. The approach presented in our paper shares a
common part with thesearch space understandingdirection because it gathers statis-
tical information relative to properties of the search space during the solving process.
It also lies in part within theevaluation function learningdiscipline, since aKernel
Regression(KR) scheme is employed for the approximation of an evaluation function,
which shares its optimum with the objective function of the problem.

Within the framework of evaluation function learning, three main directions of ap-
plication to combinatorial optimization have appeared in recent literature, according
to 13. One is to learn an evaluation function for guiding local search 5;1 to obtain
improved solutions over a single instance of some CO problem. The second, mostly
ambitious and interesting approach, focuses on learning evaluation functions generi-
cally applicable across several instances of the same CO problem 13;1;16. Finally a
third approach3, within which our work falls, is about guiding the direct construc-
tion of solutions to the problem. In particular, the approach mentioned in3, is about
learning a global policy for guiding constructive search through reinforcement learn-
ing methods, while we investigate the dynamics of a local approximation scheme for
learning evaluation functions.

To our knowledge, machine learning techniques have been mostly integrated in lo-
cal search procedures. In this paper, we present a heuristicfunction which employs
KR and is designed to cooperate withsolution constructive search methodsfor global
optimization. This aspect is of particular interest in solving CO problems, since con-
structive search methods are able to preserve the validity of a problem’s constraints
during the search. This is not the case with local search procedures. They often visit
invalid search states, and thus it is harder to even find a feasible solution.

In the following, the proposed methodology is presented initially at a higher level
and then, the machine learning based heuristic algorithm isdescribed in more detail.
The application of the approach on two specific problems, namely the knapsack prob-
lem and the set partitioning problem, is discussed next. Comments on the experimental
results are made and, finally, the concluding remarks are presented and further work is
briefly described. A preliminary version of our work has appeared in15.2. Framework Overview

Constructive searchis the kind of solving procedure exploited in this work. By
the term constructive search, we designate the construction of a solution to the CO
problem by assigning a value to each decision variable in turn, and thus by searching

a tree of variable assignments. This search policy comes in contrast with the various
local search techniques, such as hill climbing and simulated annealing, which alter an
already known complete assignment of all decision variables of the problem at each
step, in order to obtain a new one.

As far as optimality is concerned, the main interest in tree search is associated with
selecting dynamically the most promising combination of variable and value to assign,
in order to proceed towards a near-optimal solution (in terms of the problem’s objec-
tive function value). Several problem-specific heuristicsexist, which provide an upper
(or lower) bound to the expected quality of the solution thatprobably lies beneath the
current state of the search. Other heuristic policies calculate (based on incomplete
information) an expected quality of the solution under construction. However, incom-
pleteness of available information during the intermediate stages of construction is the
curse of heuristics. Their estimations often prove to be inaccurate, thus misleading the
search towards suboptimum search space regions.

In this paper, we propose a heuristic methodology for CO problems, which embeds
simple machine learning methods for recognition and utilization of specific numerical
problem properties. On every search state of the solving path, alternative choices are
evaluated by aKR scheme. The evaluation of each choice is an estimation of theex-
pected objective function value, under the assumption thatthe solving path extends in
favour of the respective choice. Solutions previously found by the proposed method-
ology are utilized as training examples, for evaluation ofpartial solutions on each
search state. The core assumption of our work is that good solutions lie somewhere
nearbythe best ones already found. Thus, we actually explore the search space by
visiting neighbouring areas of known solutions, hoping to find better ones. The notion
of neighbourhood is a rather geometric one as will be shortlyapparent, and should not
be confused with its corresponding definition in local search literature.

The huge search spaces of the CO problems faced in this work are not expected
to supply consistent training sets. Therefore, the widely knownLeave One Out Cross
Validation(LOOCV) test adjusts theKRapproximator’s parameters with respect to the
underlying training set, so that a minimal estimation erroris achieved.3. The Searh Shema

The algorithmic schema is iterative. An overview of the approach is presented in
Fig. 1. If I is a problem instance to be solved, the first thing to do is to use some simple
heuristic method to obtain initial solutionsS. A simple method might be aDepth First
Search(DFS), guided by a common heuristic that intuitively fits theproblem. This step
stops after a limited time interval, which suffices for obtaining some initial solutions.
The setS is then used for the production of an initial training setE for the machine
learning algorithm employed by the heuristic.

The first step of the iterative process shown in Fig. 1 is a preprocessing procedure,
which adapts theKR approximator to the training set, in order to achieve higherpre-
diction accuracy with respect to the underlying training set E . The problem instance
is then solved by some constructive search algorithm, guided heuristically by theKR
supported heuristic. The search stops when some criterion,such as a time limit, is met.
The training setE is augmented with information extracted from newly found solutions

Find some solutions S to I using a "simple" method
Produce training set E(S)
Iterate until end criterion met

Adapt KR approximator to E(S) using LOOCV
Obtain new solutions S 0 with KR-HeuristicS S [S 0
Produce training set E(S)

Return Best Solution

Figure 1: The overall algorithmic schema

and the process is repeated. The number of iterations is subject to experimentation. It
is important to note that there is no constraint dictating that solutions obtained in each
iteration should be better than those found in the previous iterations. The absence of
such a constraint contributes to the enrichment of the training set with feasible solutions
of varying qualities, which contribute to a more detailed picture of the search space.

The algorithm presented in Fig. 1 should terminate if in any iteration is unable
to produce at least one new (not inS) solution. Indeed, the predictions of theKR
approximator depend solely on the training setE(S). Once the search within the loop
fails to augmentS with new solutions (caseS 0 � S), the heuristic’s suggestions remain
unchanged for the next iteration. Then the search has to stop, as the algorithm is unable
to proceed further. This case should be incorporated withinthe end criterion mentioned
in Fig. 1. This weakness can be easily overcome through randomized restart of each
iteration. However, our preference in constructive searchremains justified, due to its
ability of handling complicated constraints and, thus, being suitable for real world
applications, which also offer a great potential of statistical information.

A simple data-flow representation of the algorithm appears in Fig. 2 and presents
the main parts of our implementation. The dotted line encloses the iteratively interact-
ing parts.4. Integration of Instane-based Learning

In this section, various aspects of the heuristic algorithmare discussed concerning
the instance-based learning method, the representation oftraining examples and the
dynamicKRapproximator selection.4.1. Kernel Regression on Nearest Neighbours

The machine learning methodology exploited within the proposed framework be-
longs to the family of memory-based or instance-based methods 11. Memory-based
learning methods explicitly store all training examples they are shown. Only at pre-
diction time do they perform non-trivial amounts of computation, which is their main
disadvantage. We use theKernel Regression(KR) method for approximating the value
of a real function. TheKRmethod is also known asLocally Weighted Averaging. There
is a generic scheme forKR, which might be configured in many different ways as is the
case forlocally weightedlearning methodologies2.

The exact configuration ofKR used in this work follows. TheKR algorithm is

Solution
Production

Evaluation Function
Guided
Search

(K, k) LOOCV

Approximator

Selection
Known
Feasible
Solutions

(Training Set)

Figure 2: Parts of the implemented system and data flows between them

used here for real function value estimation. The function being approximated can be
considered as:f : <n 7! <.

The training set for theKR algorithm contains pairs of input vectors tof and their
correspondingf -outputs. Thus, if~x 2 <n is an input vector to the function, the
respective training example contained in the training set will be the pairh~x, f(~x)i.

Let ~xq be a query to theKR algorithm. The prediction̂f(~xq) is calculated by the
algorithm as follows: f̂(~xq) = kXi=1K(d(~xi; ~xq))f(~xi)kXi=1 K(d(~xi; ~xq)) (1)

In formula (1),d(~xi; ~xq) denotes the Euclidean distance of the query vector~xq from
thei-th training example vector~xi. Thek parameter stands for the number of training
examples nearest to~xq , that contribute their knownf -values to the prediction̂f(~xq).

The functionK : < 7! < is thekernel function, which assigns a smaller weight
to the contribution off(~xi) to the sum, as much as greater is the distance of~xi from
the query vector~xq . Thus, the contribution of less significant values, i.e. values that
correspond to more distant vectors, is punished. The kernelfunction to be used at each
iteration of the search schema is determined dynamically byLOOCV, from a repertoire
of available kernel functions. Dynamic selection of kernelfunction is a part of the
KRapproximator’s adjustment, and will be discussed in a following paragraph in more
detail. When the algorithm is presented with a query, all attributes are scaled down
to the[0; 1℄ range. This normalization helps avoiding the domination oflarge-ranged
attributes in computations.

4.2. Representation of Training Examples
An important issue for the applicability ofKR is the implicit definition of thef

function, mentioned in the previous paragraph, whose valueis going to be estimated.
The function input consists of vectors in the Euclidean space<n which describe fea-
sible solutions to the CO problem. The function value for each of these vectors is the
value of the objective function of the problem for the corresponding solution.

Each training example for theKR approximation scheme is a pair of a solution
descriptive vector~F , known as thefeatures vector, and the respective objective function
valueobj(~F). Thus, the training setE can be defined asE = fh~F ; obj(~F)i j ~F : extracted from a solutiong :

The features (i.e. the dimension values) of the features vectors are real arithmetic
values that correspond to specific properties of the solution to the optimization prob-
lem. Each feature should be an aggregate function on the assignments of the problem
variables. As in every step of the search a decision variableis selected to be assigned
a value, the features of each vector should be calculated upon the solution path. The
only limitations on the features that might belong in a features vector are imposed by
the problem structure. As discussed later, a solution can bedescribed through statisti-
cal information that is considered to be characteristic of the solution’s quality in terms
of the objective function value.4.3. Seletion of KR Approximator

TheLeave One Out Cross Validation(LOOCV) test appears to be quite appropriate
for adapting aKR approximator to the training set of each iteration in Fig. 1.A dis-
cussion on cross validation tests can be found in9. Within our study we have limited
the selection of a properKR approximator to the selection of ak-value and a kernel
functionK from a set of available kernel functions. A brief overview ofcommonly
used kernel functions can be found in2.

Each different pair ofk-value (number of nearest neighbours contributing to the
estimation) and kernel function yields a differentKRapproximator. For each candidate
approximator, each training example is estimated, as if it was a novel example, using as
training set the remaining training examples. The distanceof this estimation from the
actual target value is a measure of the error in prediction. The selected approximator is
the one that yields the lowest average prediction error overall training examples.

To illustrate, assume that the setK = fKi j i = 1; : : : ; ng contains the available
kernel functions. IfE is the available training set, then the test is going to examine
each training examplee � h~f; vi 2 E , using as training setE � feg. Thus, thek
parameter receives a value inf1; : : : ; jEj � 1g. For every parameter pair(Ki; k), the
resulting approximator is tested over all training examples in E . The approximator,
that is the pair(Ki; k), which minimizes the average errorerr(Ki;k) over all training
examples is selected as the most appropriate with respect tothe underlying training
setE . Figure 3 describes the testing procedure. Although the procedure might seem
time consuming because of the triple for-loop, a more efficient implementation than
the one depicted in the figure is possible. In fact, the quantity KR(Ki; k; E � feg; ~f)

foreachKi 2 K
for k = 1 : : : jEj � 1err(Ki;k) 0
foreach e � h~f; vi 2 EE 0 E � fegerr(Ki;k) err(Ki;k) + jKR(Ki; k; E 0; ~f)� vjerr(Ki;k) err(Ki;k)=jEj

return argmin(Ki;k)ferr(Ki;k)g
Figure 3: Leave-One-Out Cross Validation forKRapproximator selection

can be calculated incrementally for increasing values ofk, while keeping the rest of its
arguments constant. This can be easily verified from the formula (1). Except from that,
as will be clarified from our system’s experimental configuration, the cardinalitiesjKj
andjEj remain within acceptable bounds, so that the test proceduredoes not burden the
system’s time requirements.

As the proposed methodology is supposed to solve problems that enclose proper-
ties in a rather statistical than precisely defined manner, training data collected during
the solving process are expected to be inconsistent. Searchspaces of CO problems
are extremely large and different solutions to a CO problem might belong to different
neighbourhoods of the problem’s search space. The featuresused for the description of
the solutions are chosen empirically as representative of the problem’s a priori known
statistical properties. However, the selected features might prove to be insufficient for
the discrimination of certain solutions. It is expected that some solutions might belong
to different neighbourhoods, whereas their discrimination in terms of distance of fea-
tures vectors might be inaccurate. Such inconsistency of the training data is handled
via the dynamic approximator selection.4.4. The Heuristi Funtion

During the construction of a potential solution, the systemsimultaneously con-
structs a path of variable assignments towards the bottom ofthe search tree. On each
node of the tree visited, decisions must be taken, so that thenext step down the tree is
the most promising for the solution quality among all available choices. We describe
the heuristic function which guides the search by exploiting the previous experience
acquired by the system.

LetP be the so far constructed path during the search. This is apartial path. Each
search step consists of two choices: the selection of an unassigned decision variable of
the problem and the determination of a value to be assigned toit. Let A be the set of
all possible (i.e. feasibility preserving) such assignments and, consequently, the set of
all possible ways to augment the partial pathP . The heuristic function should dictate
an assignment fromA as the next step for the extension ofP .

As already discussed, the training examples forKR are features vectors calculated
upon feasible solutions of the problem, i.e. upon complete paths. However, even a
partial path can be used to calculate such a vector, if the unassigned decision variables

getBestAssignment(E ,P,A)
For each assignment � � hxj = vi 2 AP̂ P [f�g
Calculate ~FP̂val� KR(E ; ~FP̂)

Choose � 2 A such that val� is optimum
return �
Figure 4: TheKRsupported heuristic function

are ignored. If statistical or aggregate information is used to describe the partial path
extension by using a features vector, then it is reasonable to prefer extensions whose
features present similarity to these of the best known solutions contained in the training
set. In this way, portions of the search space that have previously produced good solu-
tions are explored further. Let̂P be the partial path resulting after augmentingP with
a choice fromA. The features vector~FP̂ is calculated upon̂P . TheKRapproximation
scheme is requested to produce an objective function value estimation for~FP̂ . The ex-
tension ofP which yields the optimum estimation is preferred over all other choices.
An overview is presented in Fig. 4.5. Appliation on Two Problems

The heuristic methodology was tested on two well known CO problems, namely
theknapsackand theset partitioningproblems. These are described below.

Knapsack. Given the n-dimensional vectors: profits~P = hp1; : : : ; pni with pj 2Z+, weights~W = hw1; : : : ; wni with wj 2 Z+, ~X = hx1; : : : ; xni a vector of binary
decision variables and some capacityC 2 Z+,

maximizeZ = nXj=1 pjxj
subject to

nXj=1 wjxj � C :
Set Partitioning (SP). Given am � n binary matrixA = faijg, a n-dimensional
cost vector~C = h1; : : : ; ni with j 2 Z+ and the n-dimensional vector~X =hx1; : : : ; xni of binary decision variables, we want to

minimizeZ = nXj=1 jxj
subject to

nXj=1 aijxj = 1, i = 1 : : :m :

5.1. Generation of Problem Instanes
An important assumption mentioned in the very beginning of this paper is that the

CO problems faced have some a priori known properties. For the previous problems,
instances were generated that have such properties. In14, a generation method for
knapsack instances is briefly discussed. The~W vector mentioned previously is deter-
mined from a normal distribution, while the fractionpj=wj is also calculated from a
normal distribution. Eachpj element of the~P vector is computed aspj = wj � pj=wj .
The knapsack instances created in this way tend to associategreaterpj values to greaterwj values. These problems have been shown to be more difficult14. Intuitively one
can understand the difficulty that emerges as follows: any greedy heuristic trying to
collect as many of the most profitable items within the knapsack is punished by their
increased weight. This rough monotonicity correspondencebetween weight and profit
is also a realistic matter, corresponding to real life experience.

For the SP problem, instances were generated in a similar wayas for the knapsack
problem. The number of 1s contained in thej column ofAm�n and the ratio of the
column costj to the number of 1s were determined by two different normal distri-
butions, while thej quantity was computed as a dependent variable. Thus, columns
containing more 1s, tend to have higher cost valuesj . Because the 1s in each column
are decided via a uniform distribution, the mentioned property is slightly depressed
by the satisfiability of the problem’s constraints. Greedy thinking in this case, would
impose construction of solutions by including columns ofAm�n which cover as much
rows as possible. This practice tends to punish our choices by incurring higher costs.

For the SP and knapsack instances, optimum solutions were planted in a simple
manner.5.2. Seletion of Features

The selection of features that assemble the features vectors is mostly important
for the accuracy of the predictions of theKR scheme. Features that encapsulate some
information relevant to the objective function’s value arepreferred, since they are ex-
pected to provide a quantitative partition of the search space into regions with expected
objective function value. For each of the aforementioned problems, their features are
presented, which were selected intuitively.

Knapsack. Three features constitute the features vector for the knapsack problem:

1. The mean value of the fractionpj=wj for js such thatxj = 1 in the solution.

2. The mean value of the profitspj which participate in the objective function value,
i.e. for js such thatxj = 1.

3. The weighted average of profits that participate in the objective function value.
The contribution of eachpj profit to the average is weighted by the inverse cor-
respondingwj value.

Set Partitioning. For the SP problem, the features vector constituted of two features:

1. The mean value of the number of 1s contained in the columns of the binary
matrixA that participate in a solution.

2. The mean value of the costs of the columns of matrixA that constitute the solu-
tion.

Thej-th column of the matrixA is part of a solution ifxj = 1.6. Experimental Results
Experiments were carried out on 10 instances for each problem. The instances were

of varying sizes.6.1. Experimental Con�guration
For each problem, a heuristic solving method was chosen among the most com-

monly used. The chosen method provided the best results for the corresponding prob-
lem, within the experimentation time interval, and was employed for the construction
of the initial training set. The results obtained by the proposed methodology were com-
pared to those provided by the common method in the same time.Only solutions found
by the common method within the first 10 minutes were considered for the construc-
tion of the initial training set. The common methods were applied for 4200 seconds.
The overall running time of the iterative part of our methodology was arranged to last
for 3600 seconds, so that summed to the initial training set construction time equals to
4200 seconds.

The system was provided a set of kernel functions to choose from, in order to con-
figure aKR approximator, which would yield a minimum expected prediction error
during theLOOCV test. We let the system choose among the following kernel func-
tions:Ka(d) = 1=da andEa(d) = 1=eda , for a = 1; 2; 3. The formsKa andEa lie
among the most commonly used2. Particularly for theKa form, rared = 0 cases were
handled by assigning the query vector an estimation equal tothe known value for the
corresponding nearest (zero distance) neighbour. Values of a greater than 3 were not
considered, since they would yield very low kernel values, and thus, theKRestimation
would be dominated by the contribution of one unique nearestneighbour.

The training set expands from one iteration to the next. In order to avoid cases
where theLOOCV test would decide large values fork, and thus, slowing down the
KR approximator, the size of the training set was kept stable to, at most, 25 training
examples. At the end of each iteration, the training examples that represent solutions
of worse qualities are removed.

The measurement of success for the experiments presented inthis section is defined
as the percentage of improvement achieved by our methodology towards the optimal
solution, in comparison with the performance of the common method. Thus ifo is the
best solution found by the common method,mlo is the best solution obtained by our
methodology andopt is the optimal solution, performance is measured as� = 100� o �mloo � opt :

Instance Performancen � o mlo opt �
3000 15 53848 54856 57499 27.6
4000 20 73954 77976 78693 84.8
4000 40 140669 143079 151415 22.4
4000 51 179656 186341 189211 69.9
4000 23 82385 83882 88849 23.1
4000 30 107621 109785 113112 39.4
6000 30 108744 111043 116577 29.3
6000 20 70956 71750 76909 13.3
8000 15 56049 57100 60031 26.4
8000 23 90257 91352 96367 17.9

Table 1: Experimental results for the knapsack problem6.2. Knapsak
For the knapsack problem, the simple heuristic policy of“try the most profitable

choice first”on a DFS proved to be quite successful in obtaining soon some high qual-
ity solutions.

Twelve iterations, of 5 minutes each, were performed on eachproblem instance
after the construction of the initial training set.Limited Discrepancy Search(LDS) 7
was used as constructive procedure for the proposed method.� The quality of solutions
which were obtained for all instances significantly exceeded the quality of solutions
found by the employed common heuristic method. Table 1 summarizes the results. The
characteristics of each problem are depicted, namely then parameter and an estimation� of the average number of “items” that fit in the knapsack, calculated as the ratio of
the capacityC to the mean value of the weights in vector~W .6.3. Set Partitioning

The common method that provided the best results for the SP problem was the
heuristic policy“try the column with the minimum cost first”with DFS. The proposed
methodology performed significantly better on all instances. Table 2 depicts the charac-
teristics of the SP instances and the performance of our methodology. The dimensions
of theAm�n binary matrix are shown as the major characteristics for an SP instance.

Six iterations, of 10 minutes each, were performed on each SPinstance. Remark-
ably better solutions were found by the proposed methodology usingLDS, than those
obtained by the common heuristic policy.6.4. Behaviour of the Methodology

The experimentations on the SP and the knapsack problems gave a view of the
behaviour of the methodology during the solving process. Figure 5 gives a low level
view of a solving path followed by the heuristic function of Fig. 4 for a knapsack in-�LDSwas also tested with common heuristics on both problem instances but did not outperform DFS.

Instance Performancen m o mlo opt �
4000 15 1175 1063 898 40.4
4000 18 1474 1401 1113 20.2
4000 20 900 481 452 93.5
5000 18 15698 12563 10669 62.3
5000 25 993 910 544 18.5
5000 30 2720 2538 1734 18.4
6000 20 754 580 407 50.1
6000 25 1148 893 593 45.9
6000 30 1133 1088 779 12.7
7000 25 1128 905 569 39.8

Table 2: Experimental results for the SP problem

First Assignment

Solution

knapsack (3000, 15) instance

known solutions
solution construction

113 114 115 116 117 118 119feature 1 2500
3000

3500
4000

4500
5000

feature 3

2500
3000
3500
4000
4500
5000

feature 2

Figure 5: Solution construction path for a knapsack instance

Best
Solution

850

900

950

1000

1050

1100

1150

0 600 1200 1800 2400 3000 3600

ob
je

ct
iv

e
 fu

nc
tio

n

time (seconds)

Set Partitioning (6000, 25) instance

KR heuristic solving process

Figure 6: Solving process for an SP instance

stance, whereas the overall solving performance of the proposed iterative methodology
is depicted in Figures 6, 7, 8 and 9 for two set partitioning and two knapsack instances
respectively.

Figure 5 depicts the features vectors (as independent points in the diagram) for
known solutions to thehn = 3000; � = 15i knapsack instance that belong to the train-
ing set. It also demonstrates the trajectory of a solution construction using the given
training set. Every cross point in the trajectory represents a features vector calculated
upon a partial path, after a new assignment to some decision variable is performed. At
every search step, the heuristic function chooses the assignment which brings the fea-
tures vector of the extended path closer to specific featuresvectors of the best known
solutions. As is clearly visible from the diagram, althoughthe trajectory in the fea-
tures space is somewhat awkward, it leads to the construction of a complete solution,
with statistical properties (as indicated by its features vector), which locate it within
a desirable cluster of known solutions. When the chosen representation features are
indeed relevant to the objective function’s value, then thenewly constructed solution is
expected to be of comparable quality to the solutions of the cluster.

The overall functionality of our methodology for the SP problem is demonstrated
in Fig. 6 and 7, on thehn = 6000;m = 25i andhn = 4000;m = 18i SP instances.
Subsequent iterations of the algorithm in Fig. 1 are separated by the vertical grid lines
on the diagrams. Within the iterations each solution shouldbe better than the previous
found. The best solution is found in the last iteration for the hn = 6000;m = 25i
instance. A natural explanation for this fact is that theKR-heuristic provided the most
accurate predictions during this iteration, having accumulated in its training set an
appropriate representation of the search space during previous iterations. However
this was not the case for all instances.

One can notice in Fig. 7 that the best solution was found during the fifth iteration,
whereas the system was tragically misled during the subsequent iteration. This is pos-

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

0 600 1200 1800 2400 3000 3600

ob
je

ct
iv

e
fu

nc
tio

n

time (seconds)

Knapsack (4000, 18) instance

KR heuristic solving process

Figure 7: Solving process for an SP instance

sibly due to introduction of inconsistent data in the training set during the previous
iteration. However, we expect that the heuristic is able to improve its behaviour in
subsequent iterations, since solutions of lower quality are stored in the training set and
contribute to future estimations. This fact confirms the need for information acquisi-
tion and exploitation regarding the search space, in order to explore its most promising
portions.

Figures 8 and 9 depict the solving process for two knapsack instances. Analogous
situations to the ones discussed for the set partitioning case can be observed. To be
precise, one can certainly notice the heuristic’s poor behaviour during the first iter-
ations, and how it subsequently improves towards discovering some good solutions.
For both instances, solutions found during iterations after the first 2100 seconds are of
comparable quality.6.5. Depth-First Searh Experiments

In order to assess further the heuristic value of our methodology, we experimented
with it in a pure manner by using the simple DFS procedure. In fact, a multi-restart
variant of the original DFS scheme was used: each time a solution is found the search
backtracks to the root of the tree. Thus, one can think of thissearch procedure as draw-
ing multiple depth-first explorations down the tree, starting from the next preferable
choice at the root, every time a new solution is found. We shall refer to it asmodified
DFS (mDFS). This strategy is not a complete one, in contrast to the previously used
LDS, and its performance heavily depends on the heuristic, since it encloses a DFS
scheme.

As already discussed in section 2, it is generally known that, constructive search
heuristics tend to make mistaken decisions on early intermediate stages of the search,
that is near the top of the search tree. By enforcing the search procedure to restart from

52500

53000

53500

54000

54500

55000

55500

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

ob
je

ct
iv

e
fu

nc
tio

n

time (seconds)

Knapsack (3000,15) instance

KR heuristic solving process

Figure 8: Solving process for a Knapsack instance

70000

71000

72000

73000

74000

75000

76000

77000

78000

79000

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

ob
je

ct
iv

e
fu

nc
tio

n

time (seconds)

Knapsack (4000,20) instance

KR heuristic solving process

Figure 9: Solving process for a Knapsack instance

Instance Performancen � mlo � �� �LDS �r
3000 15 55299 39.9 12.1 3.7
4000 20 74947 20.9 -63.9 5.1
4000 40 141893 11.3 -11.1 4.2
4000 51 181723 21.6 -48.3 3.4
4000 23 84114 26.7 3.6 5.3
4000 30 109800 39.6 0.2 3.6
6000 30 112421 46.9 17.6 3.2
6000 20 74557 60.4 47.1 3.6
8000 15 57985 48.6 22.2 3.5
8000 23 91141 14.4 -3.5 3.1

Table 3: Experimental results withmDFSfor the knapsack problem

the next preferable choice from the root (according to the heuristic’s decision), we
intend to investigate the heuristic’s sensitivity to this matter. For a knapsack instance
with n decision variables, the meaningful available assignmentsat the root of the search
tree are exactlyn (xj = 1; j = 1 : : : n). The same holds for a set partitioning instance
with n decision variables. Regarding the problem instances used in our experiments,
this size reaches the order of a few thousands. It is shown that, on average per iteration
of the search schema (Fig. 1), trying only a small fraction ofthese alternatives suffices
for reaching high quality solutions. This fact confirms the heuristic’s robustness with
respect to its early decisions.

For each instance of both problems, the methodology was allowed 12 iterations,
of 5 minutes each, that is, a total of one hour. Results are summarized in Tables 3
and 4. Table 3 shows, for each Knapsack instance, the improvement over the greedy
heuristic’s performance of Table 1. The last column (�r) shows the average number of
restarts per iteration, performed by the modified DFS procedure.

The improvements achieved on some instances are unexpectedly impressive. On
four out of ten instances the results were poorer than the ones obtained withLDS.
However, in their entirety we consider them to be quite encouraging, since they only
exhibit the heuristic’s guiding ability, and still they aresignificantly improved relative
to the greedy heuristic. By combining information from already known feasible solu-
tions,KR provided useful heuristic predictions, thus guiding the simplemDFSsearch
towards improvements. In fact, we get a confirmation of our initial assumption that
improved solutions lie nearby already known solutions, in terms of euclidian distances
between their features vectors (we wish to remind the readerof Fig. 5 and the corre-
sponding discussion). The small values of the�r counter indicate that the heuristic’s
initial decisions are generally quite informed. It actually exploits only a small fraction
over the thousands of choices at the root of the search tree, yet, its performance is at
least satisfactory.

The heuristic proved to be quite successful with our Set Partitioning dataset. Solu-
tions found on almost all instances were near-optimal, and greatly exceeded the heuris-

Instance Performancen m mlo � �� �LDS �r
4000 15 935 86.6 46.2 8.1
4000 18 1171 83.9 63.7 4.75
4000 20 461 97.9 4.4 5.6
5000 18 10987 93.6 31.3 7.2
5000 25 544 100 81.5 4.8
5000 30 1734 100 81.6 8.1
6000 20 409 99.4 49.3 7.1
6000 25 738 73.8 27.9 6.6
6000 30 1011 34.4 21.7 4.7
7000 25 692 77.9 38.1 9.7

Table 4: Experimental results withmDFSfor the SP problem

tic’s performance withLDS. Table 4 summarizes the results. These results convincingly
confirm the value of the heuristic and the existence of an almost functional relation be-
tween the statistical characteristics (features) of a solution and its quality.

Another aspect we examine concerns the heuristic’s behaviour with respect to the
underlying training set. In particular, we measure for eachiteration the deviation of the
best found solution from the best one contained within the training set. Letsi be the
objective function value for the best solution found duringiterationi of the algorithm
in Fig. 1. Suppose that the best solution contained within the training set of theith
iteration was of qualitys?i . Then for a maximization problem we define the following
improvement ratio on iterationi: IRi = si � s?iU � L
whereU andL are the highest and the lowest among the valuessi, s?i , i = 1; : : : ; I .
The quantityIRi is the fraction, by which the heuristic exceeded (or missed,in case
of si < s?i), its best known solution (always contained within its training set) on iter-
ationi. For a minimization problem theIRi quantity is defined similarly, but with an
opposite sign, in order to preserve it positive when real improvement occurs.

Figures 10 and 11 depict theIRi measure for three instances of each problem. It
would have been an ideal situation, if the curves were kept over zero, thus implying
a constant improvement over the best known solution, from one iteration to the next.
However, what the reader can actually observe is a satisfactory stability on the method’s
behaviour, only partially disturbed by great improvementsor losses.

Particularly on all three knapsack instances (Fig. 10) improvements on iteration1
are followed with big losses during iteration 2. The curves continue thereafter with only
small positive or negative deviations from the best known solutions. This behaviour
implies that, even though the heuristic’s predictions may become spurious with respect
to the underlying training set of some iteration, accumulation of training examples
helps guiding the search more conservatively during subsequent iterations, towards
informed solution constructions.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Im
pr

ov
em

en
t R

at
io

 (
IR

)

Iteration

<3000,15> instance
<6000,30> instance
<8000,15> instance

Figure 10: Improvement per Iteration on Knapsack

For the Set Partitioning instances (Fig. 11) there is an analogous behaviour, with the
difference of great improvements happening in iteration 1.Subsequent iterations also
provided small improvements and losses. Although positiveIR leaps are generally
desirable since they indicate optimization, we should alsofeel comfortable with small
movements around zero, because they exhibit the existence of smooth functional corre-
spondence between the chosen solution descriptive features and the objective function
value. This statement stems from the way the heuristic triesto place the newly con-
structed solution somewhere in the geometric space defined by its training examples.7. Conlusions and Further Work

In this paper, we propose a heuristic methodology for combinatorial optimization,
which employs instance-based learning and function approximation through kernel re-
gression, for guiding any constructive search procedure. This work is not concerned
with the achievement of feasible solutions to a problem (this issue is addressed suc-
cessfully by sophisticated implementations of constructive search methods, e.g. back-
tracking), but with the guidance of search to promising regions of the search space, as
far as optimality is concerned.

Problem models grown from real world applications usually enclose vast contents
of numerical information, which can be statistically handled for the construction of
optimized solutions. The objective functions of such problems are generally designed
upon desirable facts and dictate the intuitive policy for their optimization. We suggest
that known solutions to these problems are represented via statistical information cal-
culated upon each solution’s structural constituents. Theproposed policy constructs a
solution by minimizing its distance (in terms of its statistical properties) from the best
(in terms of objective function value) known solutions, which lie nearby.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Im
pr

ov
em

en
t R

at
io

 (
IR

)

Iteration

<4000,20> instance
<5000,30> instance
<7000, 25> instance

Figure 11: Improvement per Iteration on Set Partitioning

Experimental results were carried out on two widely used models of real world
combinatorial problems, namely the knapsack and the set partitioning problems. These
problems model important real world applications, such as nuclear waste packing and
crew scheduling. The methodology performed satisfactory on these problems and ob-
tained solutions whose quality exceeded the quality of solutions obtained by other
heuristic methods, common for each of the problems.

Some directions for further research are drawn from questions that arise quite nat-
urally. In our experiments, the proposed framework performs satisfactory for an initial
training set created by some simple methods.However, which is the proper way for sys-
tematically sampling initial solutions of a useful qualitydistribution from the problem’s
search space?This is an important issue, which could possibly boost the performance
of the heuristic function, since an initial set of solutionswith known quality distribution
is actually a detailed picture of the search space.

The complexity of the heuristic function depends on the sizeof the training set. Us-
ing big training sets slows down the search, while small setsprovide little information
about the search space. We have started to examine the optionof partitioning the train-
ing set into consistent clusters, each of which represents asmall portion of the search
space. Each of these clusters is meant to be used as a separatetraining set, for searching
the corresponding sections of the search space in a locally exhaustive manner.

As an aspect of future work, extended experimentations on a variety of optimization
problems is expected to reveal valuable statistical features, strongly informative and
representative of the corresponding search spaces.

Referenes
[1] Justin A.Boyan and Andrew W. Moore. Learning evaluationfunctions to improve optimiza-

tion by local search.Journal of Machine Learning Research, 1:77–112, 2000.
[2] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learning.

Artificial Intelligence Review, 11(1–5):11–73, February 1997.
[3] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1996.
[4] Justin Boyan, Wray Buntine, and Arun Jagota (Eds.) Statistical machine learning for large-

scale optimization.Neural Computing Surveys, 3:1–58, 2000.
[5] Justin A. Boyan and Andrew W. Moore. Learning evaluationfunctions for global optimiza-

tion and boolean satisfiability. InProceedings of the 15th National Conference on Artificial
Intelligence AAAI-98, pages 3–10, Madison, Wisconsin, July 1998. AAAI Press.

[6] Diane J. Cook and R. Craig Varnell. Maximizing the benefits of parallel search using machine
learning. InProceedings of the 14th National Conference on Artificial Intelligence AAAI-97,
pages 559–564, Providence, Rhode Island, July 1997. AAAI Press.

[7] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. InProceedings of
the 14th International Joint Conference on Artificial Intelligence IJCAI-95, pages 607–613,
Montréal, Québec, Canada, August 1995. Morgan Kaufmann.

[8] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W.Moore. Reinforcement learning:
A survey.Journal of Artificial Intelligence Research, 4:237–285, 1996.

[9] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. InProceedings of the 14th International Joint Conference on Artificial Intelligence
IJCAI-95, pages 1137–1145, Montréal, Québec, Canada, August 1995. Morgan Kaufmann.

[10] Steven Minton. An analytic learning system for specializing heuristics. InProceedings of
the 13th International Joint Conference on Artificial Intelligence IJCAI-93, pages 922–929,
Chambéry, France, August 1993. Morgan Kaufmann.

[11] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[12] Kazuo Miyashita. Learning scheduling control knowledge through reinforcements.Interna-

tional Transactions in Operational Research, 7(2):125–138, March 2000.
[13] Robert Moll, Andrew G. Barto, Theodore J. Perkins, and Richard S. Sutton. Learning

instance-independent value functions to enhance local search. Advances in Neural Infor-
mation Processing Systems, 11:1017–1023, 1999.

[14] M. J. Realff, P. H. Kvam, and W. E. Taylor. Combined analytical and empirical learning
framework for branch and bound algorithms: The knapsack problem. Artificial Intelligence
in Engineering, 13(3):287–300, July 1999.

[15] Orestis Telelis and Panagiotis Stamatopoulos. Combinatorial optimization through statistical
instance-based learning. InProceedings of the IEEE 13th International Conference on Tools
with Artificial Intelligence ICTAI-2001, pages 203–209, November 2001.

[16] Wei Zhang and Thomas G. Dietterich. A reinforcement learning approach to job-shop
scheduling. InProceedings of the 14th International Joint Conference on Artificial In-
telligence IJCAI-95, pages 1114–1120, Montréal, Québec, Canada, August 1995. Morgan
Kaufmann.

