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Abstract. The Internet provides a wealth of useful information in a vast number
of dynamic information sources, but it is difficult to determine which sources are
useful for a given query. Most existing techniques either require explicit source
cooperation (for example, by exporting data summaries), or build a relatively
static source characterization (for example, by assigning a topic to the source).
We present a system, called InfoBeacons, that takes a different approach: data and
sources are left “as is,” and a peer-to-peer network of beacons uses past query
results to “guide” queries to sources, who do the actual query processing. This
approach has several advantages, including requiring minimal changes to sources,
tolerance of dynamism and heterogeneity, and the ability to scale to large numbers
of sources. We present the architecture of the system, and discuss the advantages
of our design. We then focus on how a beacon can choose good sources for a
query despite the loose coupling of beacons to sources. Beacons cache responses
to previous queries and adapt the cache to changes at the source. The cache is
then used to select good sources for future queries. We discuss results from a
detailed experimental study using our beacon prototype which demonstrates that
our “loosely coupled” approach is effective; a beacon only has to contact sixty
percent or less of the sources contacted by existing, tightly coupled approaches,
while providing results of equivalent or better relevance to queries.
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1 Introduction

There is an explosion of useful data available from dynamic web sources, such as “deep-
web” data sources [7], web services, web logs and personal web servers [3]. One reason
that this information is so useful is that it is being constantly maintained and updated by
a huge number of humans and software programs. The Internet and web standards make
it possible and easy to contact a source and retrieve information. But the proliferation
of sources creates a challenge: how to find the right source of information at a given
point in time? Search engines are a useful tool for searching the “surface web” but most
deep web data is not reachable via crawling, and much of it changes more quickly than
search engines can keep up with.

A system which allows users to find the right information sources must deal simul-
taneously with four challenges.
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• Scale - there are millions of potential sources and a huge amount of aggregate data

• Dynamism - new sources are appearing and old sources are disappearing frequently,
and the information in many sources is being updated constantly

• Heterogeneity - information structure and semantics vary widely between sites

• Limited source cooperation - while sources are willing to provide basic search and
retrieval via HTML forms or a web services interface, they are frequently unwill-
ing to export all of their data, change their query model, run foreign software, or
otherwise modify their functionality

Existing source discovery systems deal with some of these challenges, but the most
utility comes from addressing all of them.

We are developing a peer-to-peer middleware system called InfoBeacons to guide
users to information sources while dealing with these four challenges. The functionality
of InfoBeacons is based on that of a search engine over static web pages: a user submits
a query to a beacon, and the beacon returns results. The user can then use these results,
and may go directly to the information sources and perform more complex queries or
browsing. If the beacon is unable to provide enough results, it routes the queries to
neighbor beacons in the peer-to-peer overlay. Our InfoBeacons prototype operates on
keyword queries, a “lowest common denominator” approach that works across a variety
of sources, including text [1], XML [26] and relational data [21] and is intuitive to users.

The InfoBeacons system is designed around two basic principles. First, the system
is composed of a set of beacons, lightweight middleware components that are loosely-
coupled to several information sources. The loose coupling means that the beacons use
the source’s existing search and retrieval interface, without attempting complex seman-
tic integration or requiring extra functionality on the part of the sources. This principle
allows InfoBeacons to make the best of the limited cooperation from heterogeneous
sources. Second, the system pushes most of the query processing to the sources them-
selves, while the beacons act mainly to choose sources and retrieve results. This princi-
ple ensures that the system scales to many sources, by utilizing the aggregate resources
of the sources themselves and minimizing the load on each beacon. Also, processing
queries at the sources ensures that the most current information is available to users.

One distinguishing feature of our system compared to other peer-to-peer systems
is that the beacon cannot expect information sources to cooperate by exporting content
summaries or notifying the beacon of changes. How can we choose good sources for
queries in this situation? It is too expensive to broadcast the user query to all of the
sources. Our approach is that beacons remember the results of previous user queries,
and use these results to guide future queries. Unlike previous caching schemes (such
as [27]), the InfoBeacons cache is not used to answer queries but instead to direct
queries to the sources themselves. We introduce a function, called ProbResults, that
ranks sources for a given query based on past results stored in the beacon’s cache. We
have also developed a heuristic, called experience weighting, that dynamically adapts
the beacon cache based on the changing results returned by sources. Experiments with
our InfoBeacons prototype on data gathered from the World Wide Web shows that a
beacon using ProbResults and experience weighting can find high-quality information,
without having to query a large number of sources and despite having limited infor-
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mation. For example, a beacon using ProbResults contacts less than one quarter of the
sources compared to a beacon using a random ordering, and only sixty percent of the
sources compared to a beacon using a more tightly-coupled approach, even if sources
are frequently changing their information. This results in less load on sources, as well
as more than a factor of two decrease in query response time.

This paper presents the InfoBeacons architecture and explores our design choices.
We then focus on one challenge faced by our architecture: how can a beacon choose
good sources for a query despite limited cooperation from those sources? Since the
beacon is the basic unit of functionality in our system, we must address this challenge
before we can explore other aspects of the system. In ongoing work, we are address-
ing other issues, such as techniques for using multiple beacons to answer a query, and
preliminary results are discussed in [13].

1.1 Related Work

Several peer-to-peer systems have been developed to provide information discovery, in-
cluding multimedia filesharing systems (such as Kazaa and Gnutella), “unstructured”
networks [11, 25] and distributed hash tables [31]. Each of these systems assumes the
active participation of information sources to export content summaries to aid in source
selection and query routing. However, many sources are unwilling to export their data,
even those that provide free searching over their information. These sources may not
want to expend the bandwidth necessary, may wish to protect their intellectual property
by only serving individual results and not the whole collection, or may simply be un-
willing to modify their existing server infrastructure. Our approach deals with sites that
offer such limited cooperation. Also, our approach goes beyond previous P2P routing
strategies that leverage result information (such as [25]) since we use whole document
contents to achieve higher accuracy.

Similarly, several peer-to-peer systems have been developed to provide source inte-
gration [20, 22, 29]. Such systems can provide high retrieval accuracy but require either
complex schema mappings between sites [4] or assume that all data is structured sim-
ilarly [22]. In a large scale system such as the Web, it is too expensive to construct all
the required mappings, and data is structured in a wide variety of ways.

The “source discovery” problem has been examined by a variety of investigators,
including those in the fields of information retrieval [8], databases [17] and distributed
systems [33]. Again, the dominant approach is to ask the source to export all of its data
to a central broker, as in GlOSS [18] or CORI [16], or at least to export a summary of
its data, as in YouSearch [3] or Galanis et al [17]. Such tight coupling works only if
sources are willing to export data, and many are not. An alternate approach is to use
query probes to build source content summaries or classify uncooperative sources [9,
19]. However, in a highly dynamic network, with lots of sources appearing and dis-
appearing, and sources constantly updating their information, it may be difficult and
expensive to keep these classifications accurate. In Section 5 we present experimen-
tal results comparing this approach to our techniques. Some systems assume a consis-
tent classification scheme or topic hierarchy to which sources can be assigned (such as
in [23, 32]), but it is not clear that sources can always be assigned a single, unambigu-
ous topic or that a single hierarchy is equally useful to all users. Some systems combine
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these two approaches, such as BrightPlanet [7]. The Harvest system was an early pio-
neer in database selection, with “brokers” similar to our beacons [6]. Harvest combined
source data export with search engine-style crawling of static content through modules
called “gatherers.” Other systems focus on the mechanics of extracting structured data
once a source has been found; an example is DeLa [34]. Such an extraction and transfor-
mation component could be added to the InfoBeacons system, which currently returns
data to users in its raw form.

Caching of data to improve performance has been well studied in many contexts,
including the web [2], database systems [15] information retrieval [27] and peer-to-peer
search [5]. The most common use of caching in these systems is to cache data from a
known source to hide latency. Search engines, such as Google or BrightPlanet, can be
thought of as web caches that have the same goal as ours: directing users to sources that
the users did not previously know about.

There are other types of systems that search across multiple sources, including data
integration systems [10] and search engines [30]. Again, we are designing the InfoBea-
cons system to be more loosely coupled, so that tight data integration or centralized
search engine summaries are not required. While the query semantics in InfoBeacons
is consequently weaker than in a federated database, the system is more able to scale to
very large numbers of sources since it avoides expensive schema and data integration.
Moreover, search engines have difficulty dealing with frequently changing sources and
data stored in “deep-web” databases, and our InfoBeacons architecture aims to address
these challenges.

1.2 Contributions and Overview

In this paper, we examine InfoBeacons and show that a beacon can make good decisions
about which sources to contact, without being tightly coupled to sources or building an
a priori source classification. In particular, we make the following contributions:

• We describe the InfoBeacons architecture and our implemented prototype, and de-
scribe its benefits for finding web information sources (Section 2).

• We present ProbResults, a function for ranking sources based on previous results
cached by the beacon (Section 3).

• We present experience weighting, a heuristic for online adaptation of the beacon
cache to deal with changes at sources (Section 4).

• We report the results of a detailed experimental study that examines the perfor-
mance of our beacon prototype on real web data. These experiments demonstrate
that a beacons system, despite being loosely coupled to sources and having partial
information, can find high quality information sources at low cost (Section 5).

Finally, in Section 6, we discuss conclusions and future work.

2 InfoBeacons Architecture

The InfoBeacons architecture is comprised of three basic elements: autonomous infor-
mation sources, users and a peer-to-peer network of beacons. This architecture is shown
in Figure 1.
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Fig. 1. InfoBeacons architecture.

Information sources provide an interface for searching and retrieving information.
Examples of sources include databases searchable via HTML forms or web services
that provide a SOAP interface. Each source has its own interface and query language, al-
though we assume that they provide at least basic keyword search. Each source also has
its own locally-defined semantics for keyword searching. For example, some sources
may return documents matching all of the keywords, while others may return docu-
ments that are most similar to the query (even if some query words are missing). We
envision that the InfoBeacons network should scale to at least thousands of sources and
eventually to millions. We assume that sources process searches and return results free
of charge, as many web sources do. The documents returned by sources may be of a
variety of types, including HTML files, XML files, PDF files, relational tuples, and so
on. Our current prototype deals with documents encoded in ASCII, although filters can
be added to deal with other document types (such as PDF).

Users pose keyword queries in order to locate information sources. Users in our
system are very similar to users of a traditional web search engine. For example, if
they do not like the returned results, they will refine and resubmit their query. On the
other hand, when a user gets a result that he likes, he may simply retrieve the matching
document, or may go directly to the result source to browse and/or search more directly.

Users are directed to sources by beacons. Beacons have several responsibilities:

• Maintaining connection information for multiple sources

• Providing a uniform search interface to the user for all of the beacon’s sources

• Submitting the user’s queries to appropriate sources and returning results to the user

• Caching query results to aid in selecting appropriate sources for future queries

• Submitting the user’s query to other beacons if the local beacon’s sources provide
inadequate results

As shown in Figure 1, each beacon contains several components in order to fulfill these
responsibilities: a user query interface that allows the user to submit keyword queries,
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a cache of query results, source rank logic to rank the desirability of sites for a given
query based on the information on the cache, and source wrappers to send queries to
sources and retrieve results. The site rank logic and cache are the subject of Sections 3
and 4. Techniques for generation of source wrappers have been studied by others; see
for example [34]. For now, our beacon implementation merges results from multiple
sources by ranking results by the local score returned by the source. More complex
merging techniques (such as those in [14]) may be more useful although we have not
yet investigated them.

Our goal is for beacons to be as lightweight as possible, so that they can run on a
commodity machine (such as a PC). To achieve this goal, each beacon is only respon-
sible for some of the sources, and cooperates with other beacons on other machines
to share the user load. In general, beacons can be run by users, data sources, libraries,
ISPs, and so on, and connect to each other in a peer-to-peer system. Techniques for
beacon cooperation are examined in more detail in [13].

Note that beacons are loosely-coupled to sources. That is, a beacon needs only to
know how to submit keyword queries to sources and retrieve results. The beacon does
not need other information, such as the database schema or query processing paradigm,
in order to guide users to sources. This allows beacons to manage multiple, heteroge-
neous sources without extensive data integration, and allows a beacon to add and re-
move sources from its list with minimal effort. There must be a mechanism for beacons
to discover new sources. For example, the beacon can probe UDDI registries or search
engines to find web sources. Alternatively, a specialized service can be developed to
discover sources and assign them to beacons.

Consider an example system with multiple beacons B1, B2...Bn, each of which
is responsible for several sources. A user might submit a query “houses for sale” to
beacon B3. Beacon B3 may be responsible for sources S1, S2...Sm, and must choose
an order in which to contact these sources. The beacon may decide to first submit the
query “houses for sale” to S5. Source S5 may not return any results, and so the beacon
next sends the query to S19. Source S19 may return 15 results, which the beacon returns
to the user. If the user wants more results, then the beacon will go to the next source
on its list, perhaps S11, and submit the query again. This process continues until the
user has gotten enough results. The number of desired results may be specified when
the query is first sent to the beacon, or may be determined interactively, with the user
requesting “more results” until he is satisfied. If the beacon B3 cannot find enough
results, it would forward the query to other beacons, say, B1 and B9, to find more
results. Our techniques must balance efficiency with the need to retrieve “good” results.
As with a search engine, a beacon may not return the “best” results in the system, but
as long as the results are good the user will be satisfied. In our experimental results
(Section 5) we see that the quality of the beacon’s results is in fact quite high.

The beacon must decide for each query which sources are most appropriate. To do
this, the beacon sorts its sources in decreasing order of “desirability” on a per query
basis, and then contacts the most desirable sources in order until enough results are
found. The beacon, which both submits queries to the source and retrieves results for
the user, can cache these results to aid source selection. If an information source returns
only a URL (and possibly an abstract) for each document, the beacon can use that
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URL to retrieve and cache the actual document. The issue of a good ranking function is
examined in Section 3, where we propose several alternative ways to use the result cache
to rank sources. If the beacon’s sources do not provide enough information, the beacon
must forward the query to other beacons until enough information is found. There are
several possible ways to choose remote beacons for a query, and we are examining this
issue in more detail in ongoing work [13].

2.1 Architecture Rationale

The InfoBeacons architecture provides a number of key advantages that allows it to
scale to large numbers of information sources despite the limited cooperation from
sources and a highly dynamic information environment.

First, InfoBeacons minimizes the requirements on sources. Sources continue to pro-
cess queries (as they were already doing) but do not have to run extra foreign software
to participate in the peer-to-peer system. Sources are not required to export their data to
the peer-to-peer system for indexing, which is something many sources are unwilling to
do for bandwidth or intellectual property reasons. Moreover, by intelligently selecting
sources, InfoBeacons avoids the load on sources associated with sending them lots of
irrelevant queries.

Second, new sources can be integrated into the system and searched by users with a
minimum of effort. By avoiding complex semantic integration and focusing on keyword
search, InfoBeacons reduces the problem of integrating a new source to the task of
connecting to the source, submitting keyword queries and retrieving results. As with a
search engine that intelligently selects sources, our middleware can provide high quality
results without understanding the data semantics.

Third, the system can scale to large numbers of sources simply by adding new bea-
cons. Each beacon is only responsible for some of the sources in the system, and thus the
processing and storage requirements for a beacon is limited. Also, most of the process-
ing is done by the information sources, as they process and answer keyword searches,
further reducing the load on the beacons themselves. Therefore, it is feasible to deploy
lots of lightweight beacons on commodity hardware scattered throughout the web.

Finally, beacons hide the complexity of connecting to and searching multiple in-
formation sources for most users. Only users that want to dig deeper into a particular
source need to contact that source directly and search it themselves.

3 Choosing Data Sources

Beacons must intelligently choose which information sources will be sent user queries.
The simplest approach, which is to send the query to all sources, is too expensive, both
for the sources and for the beacons. Another simple approach is to contact the sources
in random order until the user has received enough results. The random approach may
reduce the cost, but beacons may potentially contact many sources that do not return
results. Our approach is for the beacon to rank the sources for each query based on the
likelihood that the source will return results for the query, and then contact the sources
in that order. Previous results are used to estimate the usefulness of a given source for
the current query.
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Although the beacon cache could retain whole documents, doing so may require
a large amount of memory, and our goal is to minimize the resource requirements of
the beacon. For this reason, the cache consists only of a set of statistics about the re-
sult data. Specifically, for each source s, the beacon cache consists of a set of pairs
((W1, CW s

1 ), (W2, CW s
2 ), ...), where Wi is a word and CW s

i is the count of Wi for
source s. The exact meaning of CW s

i is tied to the definition of ProbResults and is
described below. To update the cache with a new document, the beacon must parse
the document and extract its terms. Because the beacon cache stores only aggregated
counts, and not whole documents, the cache is very compact. Experimental results in
Section 5 show that high selection accuracy can be achieved with a cache that is only a
few tens of megabytes. We may want to place an upper limit on the size of the cache,
and then it is necessary to eject some of the (Wi, CW s

i ) pairs to save space if the cache
becomes too large. We examine this possibility in Section 5.5.

In this section, we examine ProbResults, a technique that we have developed for us-
ing the beacon cache to rank sources. Our goal is to minimize the number of information
sources contacted, while still providing useful results to users despite the incomplete-
ness of the cached data. We also compare qualitatively to existing techniques for source
selection. In Section 5 we present experimental results over real web data to compare
techniques quantitatively.

3.1 ProbResults

The ProbResults ranking is based on the probability that an information source will
return documents containing the query words if it is sent a query Q. We call this prob-
ability the ProbResults score for the site for a given query. The beacon will rank the
information sources in order of decreasing ProbResults score. Sites with the same Pro-
bResults score should be chosen in random order so that all sites that appear equally
good have a chance of being chosen.

More formally, a query Q is a set of nQ keywords (QW1, QW2, ...QWnQ). Differ-
ent queries may have different numbers of keywords. Consider a source s that we have
previously sent ks queries too. Each query may contain different words, and may differ
from Q. For each of these queries, s has returned zero or more results. The number of
results that contain word Wi (whether or not it was part of the query) is stored in the
cache as CW s

i . The expected number of results from s containing query word QWi is
PW s

i = CW s
i /ks.

The ProbResults score is the product of the PW s
i values of the query words:

ProbResultsScores
Q =

nQ∏

i=1

PW s
i =

nQ∏

i=1

CW s
i /ks

Taking the product gives higher weight to sources that will return results relevant to all
of the query words than to sources that are particularly relevant to one or two query
words but not to the others. As a result, taking the product resulted in better experi-
mental performance than the other ways we tried to combine the PW s

i values into one
score, including sum, max and min.
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A beacon using ProbResults depends on cached result data to choose sources, and
this may bias the beacon toward sources that have returned many results in the past at
the expense of new sources or sources with less content. It may be possible to mitigate
this bias by giving “extra credit” to new sources, by probabilistically choosing a low
score source over a high score source, or by proactively probing new sources. We are
examining these possibilities in ongoing work.

Minimum Probability. The beacon cache contains incomplete information about a
source; in particular, it may not contain all of a source’s documents. As a result, PW s

i

may be zero for a word that actually does appear in documents at a source. Because
ProbResultsScores

Q is the product of PW s
i values for a source, the effect is that a source

may be given a ProbResults score of zero and placed at the bottom of the ranking if there
is no cache information for one or more query words for that source.

To see why this is a problem, consider a query for words “exothermic reactions.” A
beacon may have cached documents from source s1 containing the word “exothermic,”
but no documents containing “reactions.” The same beacon may have a second source
s2, but no cached documents containing either “exothermic” or “reactions” for s2. In
this case, s1 should clearly be queried before s2, since s1 is more likely to have doc-
uments containing the query words. However, the ProbResults score for both sources
will be zero, as neither contains cached information for “reactions.”

We address this problem by using a special constant PWmin, 0 < PWmin ≤ 1,
instead of zero, for the PW s

i probability when we have no cached information for word
QWi for source s. Formally:

PW s
i =

{
CW s

i /ks if CWi > 0
PWmin otherwise

Our experience in building the InfoBeacons prototype has taught us that choosing a
good value for PWmin can have a big impact on system performance. In Section 5.2
we investigate appropriate values for PWmin using experiments. Alternatively, a good
value of PWmin can be learned adaptively by each beacon.

Note that other systems have also dealt with incomplete content summaries; see for
example [23], which uses a hierarchy of summaries to infer missing information. Our
PWmin technique is simpler than the techniques used in many of these systems, but
still produces good performance in practice.

Existing Techniques. The ProbResults ranking function is similar to the Ind ranking
function used in bGlOSS [18]. Ind ranks sources based on the content at sources, while
ProbResults ranks sources based on the behavior of those sources in response to queries.
In other words, if a source returns document D1 100 times and document D2 once, Ind
treats both documents as equally descriptive of a source, while ProbResults would place
more weight on the words in D1. This distinction allows ProbResults to better predict
what a source’s response to a query will be. Ind was developed to work with conjunc-
tive boolean query sources; that is, sources that only return documents containing all
of the query words. Our ProbResults function attempts only to characterize the results
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returned for queries, not the source’s query model, and thus works well across a variety
of sources, including boolean and vector space model sources (e.g. sources that re-
turn documents based on “similarity” to the query rather than exact match of all query
words).

Another version of GlOSS, vGlOSS, was designed to work directly with vector
space model sources. The vGlOSS system uses the Max metric to rank sources. Max
attempts to predict the scores a source will give different documents for a given query,
and then uses these scores to predict the number of documents that will have a score
greater than some user-defined threshold l. As a result, vGlOSS must understand the
source’s query model, and in particular, the source must send a list of documents, words
and word frequencies to vGlOSS. The full definition of Max given in [18].

In CORI [16], each database is ranked as a function of two statistics: dfs
i , the number

of documents at source s containing QWi, and sfi, the source frequency (number of
sources that have documents containing QWi). A source gets a high score for a query if
the query contains words that appear frequently in the source and infrequently in other
sources. The formula for CORI is given in [16].

Ind, Max and CORI require the source to export all of its data to a central index
before any queries are processed. If a source refuses to export its data, Callan and Con-
nell [9] have suggested building a source characterization by sending a set of randomly
selected words, or query probes, to collect a subset of the source’s documents (again,
before any queries are processed). Then, Ind, Max or CORI can be used to select sources
based on these collected documents.

In contrast, in our approach the beacon cache is continually updated as new re-
sults arrive. Therefore, the information the beacon has about each source continually
improves as time progresses. Moreover, the beacon cache is updated with data that
matches the queries users are actually asking for, so that the cached data is focused on
information that users are interested in. In pre-caching, all documents are cached, and in
query probing, the set of cached documents depends on randomly chosen query probes.
By utilizing the results of past queries to load the cache, beacons can form accurate
source characterizations even without explicit source cooperation.

In Section 5 we present experimental results comparing our ProbResults ranking
and caching techniques against Ind, Max and CORI with both pre-caching and query
probing.

4 Cache Forgetting and Experience Weighting

When a beacon cache contains a word for a given source, the beacon has some reason
to believe that future queries containing the word will return results from that source.
However, experience may prove otherwise for two reasons. First, the data at sources
may be changing frequently, and thus the cached information may have become out of
date. Second, just because a source returns a document containing a given word does
not necessarily mean that the word is a useful query term for that source. For example,
a source of weather information may have the word “weather” in all of its documents.
However, many searching techniques (such as TF/IDF weighting in information re-
trieval [1]) give a query term very low weight if it is too common, and a query for
“weather” will not produce any results from that source.
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A common solution is to use a forgetting factor µ to decrease the importance of
old samples relative to new samples; this technique is used in areas such as control
systems and reinforcement learning [24]. In our context, we would periodically multiply
each CW s

i value in the cache by µ. (Recall that the beacon cache maintains for each
source s a set of (word,count) pairs ((W1, CW s

1 ), (W2, CW s
2 ), ...).) The effect is that

truly stale information (such as that representing documents removed from the system)
would slowly be “forgotten,” while up to date information (such as that representing
new documents or old documents that are still in the system) would be refreshed by
the results of new queries. One potential disadvantage of a forgetting factor is that even
old information can be useful in characterizing a source, especially if there is little new
information. Another potential disadvantage is that the forgetting factor deals primarily
with the issue of stale cache data and does not directly address the second issue listed
above, that it is difficult to predict the weight a source will assign to a term.

We have developed another technique that allows the cache to dynamically adapt to
align with the results that sources are actually producing. We call this heuristic experi-
ence weighting. The basic idea is that we weight the word counts in the cache based on
the beacon’s experience with each word as a query term. Then, when a beacon receives
a query with a given word, the beacon is more likely to send the query to a source
that has produced results before for queries with that term than sources that have been
queried with that term and produced no results.

Experience weighting operates as follows. We specify an experience factor EF ≥
1. After each query, the beacon updates the cache count CW s

i of each query word QWi

for each contacted source s:

• If the source returned results, CW s
i is multiplied by EF

• If the source returned zero results, CW s
i is divided by EF

Note that EF = 1 is equivalent to no experience weighting.
After applying the experience weighting heuristic to the cache, the ProbResults

score no longer has a strict probability interpretation. However, the general intuition
behind each function still applies: sources are given a higher score if they are more
likely to provide good result for a query.

The magnitude of the impact on the cache from forgetting and experience weighting
depends on the value of the forgetting factor µ and the experience factor EF . Appropri-
ate values can be found using experiments, and in Section 5.2 we examine results that
identify good values these parameters, as well as examine the effectiveness of forgetting
versus experience weighting. Alternatively, EF or µ can be set adaptively, based on the
experience of the beacon.

5 Experimental Results

We have run a set of experiments to evaluate our architecture and techniques. We ex-
amine two types of metrics: cost and quality. Our cost metric is the number of sources
that are contacted for each query. Contacting fewer sources is better because the load
on sources and beacons is reduced, and response time and throughput are improved.

To measure the quality of results returned by our system, we use the cosine distance
with TF/IDF weighting, a common measure of relevance in information retrieval sys-
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Table 1. Data and workload values.

Number of documents 169,902
Total data size 4.04 GB
Information sources 100
Documents per information source 111...5,517
Queries 100,000
NQ: Terms per query 1...6
DT : Document turnover 0%, 50%
T : User result threshold 10

tems [1]. In this metric, both documents and queries are represented as term vectors,
and the relevance of a query to a document is calculated as the cosine distance between
the two vectors (e.g., the inner product). Term vectors are weighted based on the inverse
document frequency (IDF); terms that appear less frequently are more descriptive and
are given higher weights. We calculated IDF over all documents in the system. Thus,
the TF/IDF score for a document returned for a query represents how relevant that doc-
ument is compared to all documents at all sources. The “quality” of a query’s results is
the total TF/IDF score of documents found by the beacon for the query.

In the following sections, we examine the performance of using a beacon to choose
information sources. In summary, our results show:

• The ProbResults ranking has lowest cost, especially in scenarios where there are
frequent updates of source data (contacting 40 to 45 percent fewer sources than
CORI, Ind or Max).

• The ProbResults ranking also find the highest quality documents, with an average
total TF/IDF score of 3.1 versus 3.0 or less for CORI, Ind or Max.

• Our prototype took 4.3 seconds per query on average to select sources for queries,
query those sources over the Internet, and retrieve, cache and return results to the
user. In comparison, a beacon choosing sources randomly required 11.8 seconds per
query.

• The cache of the beacon is quite compact, requiring only a few tens of megabytes
in our experiments. If we limit the cache size, the performance degrades gracefully.

• Our conclusions hold even as we change the number of sources.

5.1 Experimental Setup

The characteristics of our data and workload are shown in Table 1. We discuss these
values in this section.

Our InfoBeacons prototype is written in C++, and currently runs on Unix and Linux
platforms. A beacon accepts user queries and returns results via XML over HTTP.

To ensure our experiments were repeatable, we created our own information sources
on machines in our lab, and populated them with HTML documents downloaded from
100 .com, .net, .gov, .edu and .org websites. (In the extended version of this paper [12],
we discuss results for searching across larger numbers of sites and sites with differ-
ent numbers of documents.) Each information source managed documents downloaded
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from one website, and processed keyword searches using TF/IDF weighting and the
inner product of the document and query vectors. We set each source to return only
“relevant” documents, that is, those that had a score of at least 0.1 (on a scale from 0 to
1). The beacon contacted each source using XML over HTTP. Some sources had many
documents and some had few, just as we would expect to find on the actual web.

We used synthetically generated keyword queries so that we could evaluate our
system with a very large query set. For each query, we randomly selected NQ words
from a randomly selected document. Within our query set the NQ value varied between
one and six. The probability that a given word was chosen was a normally distributed
function of the total number of occurrences of the term in all documents in the system.
The mean µ of the normal distribution was equal to the average number of occurrences
of any term in all documents, and the standard deviation was σ = µ/2. As a result, the
most frequent terms are terms that are neither too common nor too rare in the document
corpus. This distribution of query terms matches the observed distribution of several
real query sets as reported in [8].

We assume that each user has a threshold T : the number of desired document re-
sults. This is similar to a search engine, where users usually only look at the first page
or two of results. Although we used T = 10 in the results presented here, other experi-
ments (omitted here) show that our results and techniques generalize to other values of
T . For example, the number of sources contacted under each ranking function increases
with T , but for all values of T , ProbResults was the best ranking function in terms of
cost, and the advantage of ProbResults over other functions increased as T increased.
We also experimented with an alternate model, where a user wanted T sources instead
of T results; this model is examined in [12].

We examined two scenarios: a static scenario and a dynamic scenario. In the static
scenario, the documents at sources do not change. In the dynamic scenario, some docu-
ments are added and removed during querying. The document turnover was 50 percent;
that is, 50 percent of the total documents were added and 50 percent of the total docu-
ments were removed while queries were being processed. The dynamic scenario models
sources that are changing frequently, adding and removing information.

5.2 Tuning ProbResults with PW min and Experience Weighting

PW min. First, we examine the effect of using the minimum probability PWmin on
the beacon’s performance. Recall that the PWmin value determines the score assigned
to a word for a source if that source has no information cached about the word. Figure 2
shows the effect of PWmin on the performance of a beacon using ProbResults in the
static scenario with EF = 1. As the figure shows, choosing the right PWmin value
can have a large effect on performance. The best value, PWmin = 0.0001, results
in only 10.0 sites contacted on average. This represents a 64 percent decrease over
PWmin = 0 (27.8 sites contacted) and an 86 percent decrease over PWmin = 1
(70.0 sites contacted). In other words, carefully selecting a PWmin that is non-zero
and less than one is key to achieving good performace. Similar results (not shown)
were obtained for the dynamic scenario, and for EF �= 1. These results also show that
a carefully chosen PWmin is important, and that PWmin = 0.0001 works best.
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Fig. 2. Effect of PW min on ProbResults.
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Fig. 3. Cache adaptation with ProbResults: (a) Experience factor EF , (b) Forgetting factor FF .

Experience Weighting Versus Forgetting Factor. The experience factor is also key
to performance. Recall that EF = 1 is equivalent to no experience weighting, while
EF �= 1 means weighting the cache to reflect the results that sources are returning.
Figure 3(a) shows the effect of the experience factor on the performance of ProbResults
in the static scenario with PWmin = 0.0001. As the figure shows, using experience
weighting can have a significant effect: the best value, EF = 10, results in 8.3 sources
contacted on average, 17 percent less than no experience weighting (EF = 1, 10.0
sources contacted). Note that increasing the experience factor beyond 10 does not pro-
vide any further improvement. Again, results are similar for the dynamic scenario.

We also compared the effectiveness of using experience weighting versus a for-
getting factor. Figure 3(b) shows the results, with various forgetting factors (FF=X),
EF = 10, and no cache adaptation at all (neither experience weighting nor forgetting;
marked “None”). Again, PWmin = 0.0001. As the figure shows, the experience factor
is more effective than the forgetting factor, with EF = 10 resulting in 8.3 sources con-
tacted on average, 17 percent less than the best forgetting factor (FF = 0.99999, 9.9
sources contacted on average). In fact, for other forgetting factors, forgetting actually
produces worse results than no cache adaptation at all. This is because forgetting can
cause the cache to lose what little information it has about some sources, and thus the
beacon begins to make bad decisions. Experience weighting retains all cache informa-
tion, but weights the most useful information most heavily.
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Fig. 4. Comparison of ranking functions - static scenario: (a) overall average, (b) running average.

For the rest of our discussion, we will use PWmin = 0.0001 and EF = 10 for
ProbResults.

5.3 Comparison – Static Scenario

Performance. We can now examine the performance of various ranking functions used
by the beacon. In this section, we first look at the number of sources contacted, and
second at the quality of results. We compare four ranking functions:

• ProbResults: our ranking function based on the probability that a source returns
results

• CORI: the ranking function from the CORI system

• Max: the ranking function from the vGlOSS system

• Ind: the ranking function from the bGlOSS system

• Random: sources are selected in random order (similar to a random walk [28])

We found that the Ind ranking performed significantly better if we used a minimum
probability PWmin = 0.0001 in the same way as in ProbResults. Like ProbResults, if
a cache count for a query word is zero or missing, the source score will be zero. Using
a PWmin value avoids ranking promising sources low simply because the cache is
incomplete, resulting in a factor of two improvement in performance for Ind. Therefore,
the result we report represent Ind modified to use a minimum probability.

The results for the static scenario, averaged over all 100,000 queries, are shown in
Figure 4(a). Consider first the uncooperative source scenario (gray bars), which is our
focus in this paper. In our experiment, CORI, Max and Ind use query probing to deal
with uncooperative sources. As the figure shows, ProbResults performs better than the
other functions. A beacon using ProbResults contacts 8.3 sources on average, compared
to 15.3 for CORI, 13.8 for Max and 17.4 for Ind. Random is significantly worse. By
accurately characterizing a source’s behavior instead of just its content, ProbResults is
best able to predict which sources will return results for a given query.

In fact, the performance of ProbResults continually improves as its cache becomes
more accurate. Figure 4(b) shows a running average of the performance of each function
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Fig. 5. Quality comparison of ranking functions - static scenario.

in the uncooperative sources scenario, with averages calculated every 1,000 queries. As
the figure shows, initially ProbResults performs poorly, but after about 6,000 queries,
ProbResults begins to perform better than all the other functions. After 100,000 queries,
a beacon using ProbResults only has to contact 6.0 sources on average, less than half of
the sources contacted using CORI, Max or Ind. Clearly, the combination of ProbResults,
result caching and experience weighting is significantly better than previous methods.

Recall that CORI, Max and Ind were originally designed to operate on a full mir-
ror of each source’s content, which requires that the sources export all of their data.
Although uncooperative sources are unlikely to export data, it is interesting to com-
pare ProbResults to the performance of CORI, Max and Ind when using a full mirror.
This “cooperative sources” scenario is also shown in Figure 4(a) (white bars). ProbRe-
sults with or without source cooperation outperforms CORI and Ind, even when those
functions have source cooperation. This is because that characterizing the behavior of
sources can be as important as, or more important than, characterizing their content,
and ProbResults accurately characterizes source behavior. With cooperative sources,
Max performs best overall, contacting only 5.4 sources on average compared to 7.3 for
ProbResults. Thus, ProbResults is most appropriate for the uncooperative scenario.

Quality. Next, we examine the quality of the results found by the beacon. Recall that
we use TF/IDF weighting and cosine distance as our quality metric; this metric is a com-
mon measure of relevance in information retrieval. Figure 5 shows the results for the
static scenario. As the figure shows, a beacon returns the highest quality documents with
ProbResults (3.1), CORI (3.0) and Ind (3.0). Max and Random provide lower quality
results (2.1 each). While ProbResults does not provide significantly more quality than
CORI or Ind, it does provide high quality results when compared to these traditional
functions. This result shows that the improved performance of ProbResults reported in
the previous section does not cause a corresponding decrease in the quality of results.

5.4 Comparison – Dynamic Scenario

In the dynamic scenario, documents are added and removed from sources as the ex-
periment progresses so we can measure the performance of the various techniques for
dynamic sources. Due to space limitations, the full results are presented in the extended
version of this paper [12]. In summary, the ProbResults performance continued to offer
the best performance, contacting 45 percent fewer sources than CORI, Max or Ind while
still providing the highest quality information.
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Table 2. Machine characteristics.

Internet LAN

Beacon Dell 4 x 2.0 GHz Dell 8 x 550 MHz
Xeon, 6 GB RAM Xeon, 4 GB RAM

Sources HP RX2600 HP RX2600
2 x 900 Mhz Itanium II 2 x 900 Mhz Itanium II
6 GB RAM 6 GB RAM

Ping 69.9 ms < 1 ms

Random ProbResults
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Fig. 6. Time and memory: (a) time to process 10,000 queries, (b) limiting cache size.

5.5 Time and Memory

Next, we ran a set of experiments to measure the time and memory requirements for our
beacon prototype. To do this, we constructed two scenarios. In the Internet scenario, the
beacon ran on a machine at Stanford University, while the data sources ran on a ma-
chine at Georgia Tech1. Thus, the beacon had to communicate with the sources using
the Internet, incurring high latency for every roundtrip. In the LAN scenario, the data
sources ran on the same machine at Georgia Tech, but now the beacon ran on another
nearby Georgia Tech machine. In this scenario, the beacon contacted sources via giga-
bit Ethernet. In both scenarios, a client program, running on the same machine as the
beacon, connected to the beacon via HTTP to submit queries and retrieve results. The
characteristics of the machines involved are listed in Table 2. The average ping time
between the beacon machine and the source machine was 69.9 ms in the Internet sce-
nario, and less than 1 ms in the LAN case. We expect the Internet scenario to be most
representative of a system of beacons querying real web sources.

In our experiment, we warmed the beacon’s cache using the first 90,000 queries of
our query set. (This was done using sources local to the beacon machine to save time in
conducting the experiment.) Then, we measured the time required to process the next
10,000 queries of our query set.

The results are shown in Figure 6(a) for ProbResults (MP = 0.0001, EF = 10).
The figure also shows the time for the beacon to process the same 10,000 queries using
the Random ranking function. As the figure shows, in the Internet scenario, the beacon

1 We would like to thank the Database Group at Stanford University for the use of their machine.
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performs 2.7 times as fast using the ProbResults function (4.3 seconds per query) than
when using the Random ranking (11.8 seconds per query). This difference shows how
intelligently selecting sources can improve the response time of beacon queries, in addi-
tion to other benefits such as not overloading sources. The response time improvement
of ProbResults versus Random is not quite as dramatic as the decrease in the number
of sources contacted shown in Figure 4(a). While the number of sources contacted is
less under ProbResults, the amount of data transferred once good sources are found is
roughly constant under both methods, and this data transfer incurs large latency.

In the LAN scenario, the two methods perform almost equally: 0.144 seconds per
query under ProbResults versus 0.158 seconds per query under Random. Because net-
work latency is low, most of the performance improvement from contacting less sources
is mitigated by the time the beacon takes to parse and cache the documents in the Pro-
bResults method, a process that is not necessary in the Random case.

We also measured the memory requirements of the beacon. After 100,000 queries,
the ProbResults cache required 64.6 MB of RAM: 28.7 MB for the document words
and associated counts, and 35.9 MB for a set of hashtables, one per source, to index the
words. These results demonstrate that even with a moderate cache size the beacon can
make good decisions about which sources to contact.

Nonetheless, a user may wish to limit the size of the beacon cache. In our beacon
implementation, a user can set a cache size limit. When the cache exceeds this limit,
the beacon will eject words and associated counts (e.g., (Wi, CW s

i ) pairs) from the
cache until the size is under the limit. The beacon ejects words in order of increasing
|CW s

i − PWmin| (where |A| is the absolute value of A) so that the counts are closest
to PWmin, which have the least useful information, are ejected first.

The results are shown in Figure 6(b), where the horizontal axis shows the cache size
limit (in terms of the size of the cached document words and associated counts). As
the figure shows, the beacon’s performance degrades gracefully as the cache becomes
smaller. Even for a very small cache of 5 MB, the beacon using ProbResults contacts
only about twice the sources of a beacon with unlimited cache, and has performance
roughly equivalent to a beacon using Ind, Max or CORI (e.g., Figure 4). We can see
from these results that the beacon is quite effective at choosing information sources,
even with limited cache size.

5.6 Beacon Scalability

In most of our experiments, the beacon was responsible for 100 sources. We also ex-
amined results for different numbers of sources to see how the beacon scaled to larger
source sets. Due to space limitations, these results are discussed in the extended version
of this paper [12]. In summary, the performance of our techniques was not negatively
impacted as we increased the number of sources.

6 Conclusions and Future Work

We have presented InfoBeacons, a system designed to process information from large
numbers of diverse web information sources. The design philosophy behind our sys-
tem is to loosely couple beacons to web sources, so that no modifications are needed
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to the sources and so our beacon can adapt quickly to changes. This approach results
in a number of benefits: many more sources can participate in the system, the system
can scale well despite heterogeneity and dynamism, and the most up to date informa-
tion can be located and retrieved. However, because beacons have limited informa-
tion about sources, beacons must make the best of the information they have in order
to select sources for queries. We presented ProbResults, a ranking function that uses
cached information from previous queries to choose sources. We also described expe-
rience weighting, a heuristic that allows a beacon cache to adapt effectively to changes
at sources. Experimental results show that a beacon using ProbResults and experience
weighting can find high quality results while contacting forty to forty-five percent fewer
sources than existing techniques. Our focus in this paper has been on the architecture
and the source selection aspects of InfoBeacons. Another important aspect is the dis-
tributed cooperation of multiple beacons. The good performance of the ProbResults
function suggests that it may be useful as the basis of a routing function that can choose
beacons in a manner analogous to how beacons choose sources. We are examining
this possibility in ongoing work [13]. Overall, our results show that the InfoBeacons
framework is a promising middleware architecture for distributed information source
discovery.
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