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1 Introduction

Major technological developments and facilities have revolutionized our society during the last

couple of decades. Today, nearly everything can be measured, stored and analyzed because of

the technological advances that have changed our ability to generate and store vast amounts

of data. Sophisticated statistical methods can be the golden key to turning the overwhelm-

ing amounts of information into useful knowledge. The goal is to gain insight by identifying

patterns and understand hidden, and often very complex, relationships. The potential value

is tremendous. Combined, the availability of data, efficient algorithms and clever statistical

methodology can help solving yet unanswered real world problems in areas like medicine, busi-

ness and climate research.

High-dimensional data are often referred to as one of the most challenging topics to deal with in

modern statistics (Donoho, 2000; Bickel et al., 2009; Johnstone and Titterington, 2009; Ferraty,

2010; Fan and Lv, 2010). The field of high-dimensional statistics covers a wide range of models

aiming at different aspects of learning from data of high dimension. This includes supervised

methods in regression and classification models, as well as unsupervised approaches for clus-

tering, multiple testing or even graphical models (Bühlmann and van de Geer, 2011). Methods

should take care of the important, sometimes critical, effects high dimensionality has on the

statistical analysis and handle the large data sets through computationally efficient algorithms,

as well as answering relevant questions in the specific area of application.

One of the main statistical challenges with high-dimensional data analysis is in regression where

the number of predictors by far exceeds the number of observations. In these situations stan-

dard estimation techniques, such as the method of ordinary least squares, cannot be applied.

Therefore, huge efforts have been made to develop sufficient statistical approaches and today

a wealth of methods and techniques handling the high-dimensional regression problem exists,

typically employing some kind of regularization, dimension reduction and/or screening.

The so-called lasso, proposed by Tibshirani in 1996, is by far one of the most popular methods.

By construction, the lasso does not only fit the regression model, it simultaneously performs

variable selection by putting some of the regression coefficients exactly to zero. In this sense,

it is suitable for prediction and by producing a sparse solution it also extracts the most impor-

tant variables and constructs models that are easy to interpret. In many applications, however,

the underlying patterns are more complex than what is possible to model by a standard lasso

regression model. For example, the effects of the covariates might derail from linearity, they

might interact with each other or even with other measurable quantities outside the data. In

many situations, the data might also be of such a high dimension that even well implemented

and efficient algorithms are insufficient.

Hence, even if solving the dimensionality problem, the standard lasso might not be adequate to

answer the real questions in practice. As a consequence, the standard lasso has been extended

and modified to deal with more complex data situations that appear in high-dimensional data

applications resulting in numerous new lasso-type methods. We consider these modifications

as a way of guiding the lasso, and by retaining many of the desirable properties and advantages

of the standard lasso, such a guiding makes room for an extensive and flexible framework for

1



sparse high-dimensional regression.

Many of the methods within such a framework are developed to answer complex questions

in the context of genomics. Although appearing in various other areas of application such as

text classification or protein mass spectrometry (Hastie et al., 2009), genomics is somewhat the

mother lode of high-dimensional data. The amount of such data in genomics is massive and

the problems often involve predictive models with several thousands explanatory variables (e.g.

gene expressions) though limited to a small number of observations (individuals/samples). Un-

derstanding the biological basis of disease may also require more information than provided by

one type of data alone (Hamid et al., 2009), or need statistical methods guided by assumptions

arising from relevant (biological) knowledge.

This thesis addresses different ways of guiding the lasso, aiming specifically at three problems

where the standard lasso meets its limitations. Although thought as general methods for high-

dimensional regression to be applied in any field, the proposed methods are indeed motivated

in the light of applications from genomics. Incorporating external (biological) knowledge or

assumptions in the regression analysis can easily be seen as a way of guiding the lasso, and is

one of the main objectives of the thesis. This can be considered in the context of data integration,

but can also refer to situations where certain assumptions, for example on the functional shape

on the estimated effects, are imposed. Another important problem, especially in genomics,

is connected to the eternal increase in the dimensionality of the data. To do some kind of

preselection or screening of covariates prior to fitting the lasso has been shown to be necessary

(Fan and Lv, 2008; El Ghaoui et al., 2011; Tibshirani et al., 2012), and useful in settings where

the dimension of the problem becomes too large to be easily handled by standard statistical

software. To preselect variables is, however, not without risk and special attention is needed to

avoid overfitting and preselection bias. We address these issues in the lasso setting and suggest

a more safe approach to preselection which can also be considered as a way of guiding the lasso

in ultra high dimensions.

The thesis is organized as follows: In Section 2 we introduce the general problem of regression

with high-dimensional data, as well as pointing to more specific applications and challenges

in genomics. We review the standard lasso in Section 3, which is the building block for what

follows in Section 4 about guided lasso methods. The aims of the thesis are given in Section

5, before presenting the methodology used to achieve these aims in Section 6. In Section 7

summaries of Papers I-III are given. A final discussion of the results obtained, as well as topics

for further research, are given in Section 8. Papers I-III follow at the end of this introductory

part of the thesis.

2 High-dimensional Regression Problems

The problem of regression is that of relating one or more covariates to a dependent variable

which we call the response. The interest is in exploring how the response varies with changes

in any one of the explanatory variables. That is, how the response is influenced by the covariates.

Given observations (yi, xi), i = 1, ..., n, the aim is to build a model describing this relationship
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through a regression function f(·) by assuming a model

yi = f(xi) + εi, (1)

where yi is the response value for observation i, xi is the corresponding covariate vector and

the εi’s are i.i.d. error terms with E(εi) = 0. Written in this general form, the model is highly

flexible and the regression function can take on any shape. By using suitable techniques to

estimate f(·), the regression model can be used to understand patterns, quantify relationships

in the data and identify which explanatory variables are specifically relevant for describing the

response. Regression models are often used for prediction, where the objective is to predict

the outcome in future data from a set of relevant variables. Simple examples can be to predict

the price of a stock from a set of economic variables or whether a cancer patient is likely to

experience a relapse of his disease based on clinical variables such as tumor characteristics.

Typically, f(·) in (1) is assumed to be a linear combination of the covariates and we have a

linear model. That is, using matrix notation,

y = Xβ + ε, (2)

where y is the vector of responses, the covariates are organized in the n × P design matrix X ,

ε is the vector of error terms with E(ε) = 0 and β is the vector of unknown parameters to

be estimated. The estimation problem is usually solved through ordinary least squares (OLS)

where the parameters are estimated by the values minimizing the residual sum of squares ||y −
Xβ||22. Provided X is of full rank, such that XT X is nonsingular and can be inverted, this

gives β̂ = (XT X)−1XT y.

High-dimensional regression is, in a similar manner, concerned with relating a potentially very

large number of covariates to a response of interest. By large we typically think of problems

where the number of covariates P exceeds the number of observations n, that is P > n or even

P >> n. These problems are common in genomic applications which are described in Section

2.1, as well as for example in text classification problems where a large number of words may

act as covariates to classify a text to be of a certain subject. Regression with P ≤ n, and the

regression idea itself, is an old topic that has been subject to comprehensive amounts of research

and applied in all kinds of disciplines. The high-dimensional problems, on the other hand, have

evolved during the last (couple of) decade(s), with new challenges and interesting aspects still

arising both in statistical theory and from an application point of view.

From a statistician’s perspective, high-dimensional regression problems are interesting because

they cannot be solved by classical estimation procedures like the method of ordinary least

squares. The standard procedures rely on the assumption that XT X is nonsingular, otherwise

XT X cannot be inverted and the parameters cannot be uniquely estimated. This obviously

does not hold when P > n, as the covariate matrix does not have full column rank. There

are no other differences in the model than the fact that P > n, but this highly influences the

estimation problem. Thus to cope with regression when P >> n, some kind of preselection or

regularization is needed. There are a number of both simple and more advanced methods avail-

able, successful to various extents. The most intuitive approach is maybe through preselection,
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that is, to simply pick out a smaller subset of the covariates (≤ n) based on a certain relevant

criterion and fit the (standard) model to these covariates only. This is, however, dangerous as

it may exclude relevant variables and traditional ideas like best subset selection become com-

putationally too expensive in high dimensions (Fan and Lv, 2010). Another approach is to use

methods like principal components regression or partial least squares. These methods derive

a small number of linear combinations of the original explanatory variables, and use these as

covariates instead of the original variables. This may be reasonable for prediction purposes, but

models are often difficult to interpret (Hastie et al., 2009).

The focus in this thesis is on a third regularization approach that has shown to be successful

in handling high-dimensional data, that is, penalized regression methods. Penalized regression

methods shrink the regression coefficients toward zero, introducing some bias to reduce vari-

ability. Shrinkage is done by imposing a size constraint on the parameters and the problem is

often expressed by adding a penalty to the residual sum of squares,

β̂ = argmin
β∈RP

{
||y − Xβ||22 +

P∑
j=1

Jλ(|βj|)
}

. (3)

The penalty Jλ(|βj|) depends on a tuning parameter λ that controls the amount of shrinkage, and

can take on various forms, typically involving λ|βj|r and some proper value of r distinguishing

different methods. Among the most famous is ridge regression (Hoerl and Kennard, 1970) with

a penalty Jλ(|βj|) = λ|βj|r with r = 2. The lasso (Tibshirani, 1996), which is discussed in

detail in Section 3 and which is the main building block of methods proposed in this thesis, is

defined by putting r = 1.

All regularization methods depend on one or more tuning parameters controlling the model

complexity, that is, the number of variables preselected in subset selection, the number of de-

rived inputs to use in principal components regression or the amount of shrinkage in shrinkage

methods. Choosing the tuning parameters is an important part of the model fitting. If aiming

at prediction, the tuning parameters should find the right balance between bias and variance to

minimize prediction error. Methods for choosing the tuning parameters are further described in

Section 3.2 and Section 6.3.

2.1 High-dimensional Regression Problems in Genomics

Much of the research on high-dimensional regression has been related to applications in ge-

nomics and molecular biology. The objective of such studies is often to improve the under-

standing of human diseases such as cancer, and to identify suitable biomarkers. In medicine,

biomarkers are used to indicate the severity or presence of a disease and can help to give an

early diagnosis. They are also used to predict the effect of treatment or to choose the appro-

priate treatment for the patient (Simon, 2011). Genetic biomarkers can typically be a group of

genes or sequences of DNA that are associated with a certain disease and relevant for prognosis.

The discovery of genetic biomarkers can enable treatment that is tailored for the specific patient.

For example, in cancer patients the target is often to quantify how aggressive the cancer is to be
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able to assign the proper treatment.

With this objective in mind, one of the primary interests in analyzing genomic data, is to relate

genomic measurements (e.g. gene expression) to a phenotype of interest, for example time to

relapse of a disease or subtypes of a disease. When technological advances made it possible

to make simultaneous measurements of thousands of genes, suitable statistical methods and

tools which could cope with high-dimensional regression models became essential. The high-

dimensionality of these problems is apparent; while the number of genomic measurements can

be very large, typically tens of thousands or even more, the number of samples is often very

limited.

Aiming at finding genomic features and relationships that can be used as prognostic indicators,

regression models should capture the most important information in the current data, as well

as being useful for prediction. The major concern is the problem of overfitting as the high

dimensionality makes it possible to construct models that fit the current data perfectly, but are

useless for prediction purposes (Bickel et al., 2009). Validation and proper tuning of the model

is therefore crucial as findings can only be considered as potential biomarkers if supported

in independent studies. To avoid overfitting to the data at hand, regression models used for

discovery of important genetic components influencing disease should be tuned for prediction.

It is also believed that only a small part of the genomic data plays a role in disease mechanisms

(Bickel et al., 2009; Bühlmann and van de Geer, 2011). To take this into account and to ease

interpretation, it makes sense to do some kind of variable selection to extract the genomic

features that are the most relevant.

Not only have the amounts of genomic data increased during the last decades. The size of the

data has grown and different types and structures of data have evolved (Hamid et al., 2009).

As it becomes more common to have different kinds of genomic data available for the same

study, the interest is no longer limited to understanding the relationships within one type of

measurement and its association with a phenotype or response of interest, but also between the

molecular entities that drive the biological processes. Incorporating biological knowledge and

relationships in the statistical models may lead to deeper understanding and is believed to be

of great importance and promise (Bickel et al., 2009). Gene expression data have traditionally

constituted the covariates in high-dimensional regression analyses in genomics. The expression

of a gene is the first process by which mRNA, and eventually protein, is synthesized from

the DNA (Lee, 2004). Copy number variations (CNVs) and single nucleotide polymorphisms

(SNPs) are other types of data produced by high-throughput technologies in genomics. These

distinct data types capture different and complementary information about the genome. To

provide a unified view of the whole genome, data integration becomes an essential part of the

modeling to capture more information than is provided by considering only one single type of

data. Also, results are more likely to be reliable if they are confirmed in multiple sources of

data (Hamid et al., 2009).

To have a concrete example in mind, consider for example gene expressions and copy num-

ber data. Genetic gains and losses regulate the expression level of genes and are considered

as motive forces of disease development (Lando et al., 2009). Not all overexpressed genes

are amplified, and not all amplified genes are highly expressed, but the genes that are both
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highly expressed and amplified are interesting and considered as potential driving forces for

disease development (Albertson, 2006). Studying correlation between expression and copy

number is therefore often considered as relevant when combining the two types of data in sta-

tistical analyses. Various studies have aimed at integrating gene expression with copy number

to identify disease causing genes (Pollack et al., 2002; Lando et al., 2009; Solvang et al., 2011;

Fontanillo et al., 2012). For example, in a study of cervix cancer in Lando et al. (2009) we

combined data on gene dosage alterations with expression profiles of the same tumors. The

study revealed genes that are regulated primarily by the genetic events and hence to be con-

sidered as candidate driver genes that represent novel biomarkers in cervix cancer. Combined

information from the two data sets strengthens the evidence for the new biomarkers really be-

ing regulated by recurrent and predictive gene dosage alterations. Relevant biological infor-

mation may also enter the modeling in another form. For example Li et al. (2006); Tai and

Pan (2007); Pan (2009) and Pan et al. (2010) consider information about known functional

relations or pathways from biological literature or databases such as Gene Ontology (GO,

http://www.geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes

(KEGG, http://www.genome.jp/kegg/). In general, if different sources of data point

to the same findings, they are less likely to be false positives (Holzinger and Ritchie, 2012).

Rapid technological advances not only lead to many different types of data; the size of the data

is also increasing. While gene expression data typically measure the expression level for about

20-30,000 genes simultaneously, the number of SNPs measured can be more than three million

in genome wide association studies (Lai, 2001). Handling 20-30,000 covariates in a regres-

sion model is no longer a problem from a technical/computational perspective, but regression

models with 1-3 millions of covariates obviously meet practical challenges. Also, there is an

increased interest in gene-gene and gene-environment interactions as these are believed to play

a crucial role in more complex diseases (Liang and Kelemen, 2008; Wu et al., 2009; Cantor

et al., 2010). Even if reduced to pairwise interactions the potential number of covariates be-

comes rapidly prohibitive. There are P (P − 1)/2 possible first-order interactions and with the

large P occurring in these applications this will present an extensive computational challenge.

When higher order interactions are considered, the problems become even more severe (Shah,

2012). Such ultra high-dimensional data sets call for preselection methods to reduce the num-

ber of covariates prior to the analysis to extend the applicability of high-dimensional regression

models also to these settings.

3 Standard Lasso for Linear Models

The lasso was proposed by Tibshirani in 1996 as a new method for estimation in linear models.

Inspired by the work of Breiman (1995) on the nonnegative garotte and wishing to improve upon

unsatisfactory properties of the ordinary least squares (OLS) estimates, he introduced regression

with a L1 penalty. The method was not intended for high-dimensional problems, which at the

time had not yet emerged as a hot topic in the statistical community (Tibshirani, 2011). It was,

however, at the time when large data problems began to evolve, mostly in genomics, that the

lasso started to receive more attention. The L1 penalty appeared to have desirable properties that
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could be exploited with great benefit in high-dimensional regression problems, and it is in the

P >> n problems that the lasso-type methods have really proven their superiority compared

to other existing methods. Today, the methods of the lasso-type are by far the most popular

group of methods solving regression problems when P >> n. In this section, we describe

the lasso pointing especially to why it has become such an appreciated tool for regression in

high-dimensional data.

Assuming the linear model in (2), the lasso estimator β̂ is defined by

β̂ = argmin
β∈RP

{
||y − Xβ||22 + λ

P∑
j=1

|βj|
}

, (4)

where λ is a tuning parameter controlling the amount of shrinkage. We call the penalty of this

form a L1 penalty. In addition to shrinking the coefficients toward zero, the L1 penalty has the

advantageous property of doing variable selection. In this way the lasso performs a kind of con-

tinuous subset selection. Indeed the lasso was introduced to combine the favorable properties of

both subset selection and ridge regression, and was not really intended on high-dimensional re-

gression situations. Tibshirani pointed to the fact that the ordinary least squares estimates often

had low bias, but could suffer from high variance. This could affect the prediction accuracy of

the model. At the same time he wanted to construct more interpretable models by determining a

smaller subset of the covariates that exhibited the strongest effects. While ridge regression im-

proves upon possible inefficiencies in terms of prediction capability through shrinkage, subset

selection provides interpretable models, though unstable. By using the L1 penalty, Tibshirani

was able to retain the good features of both ridge regression and subset selection (Tibshirani,

1996).

To understand in more detail how the lasso leads some regression coefficients to be exactly

equal to zero and how the lasso and ridge penalties differ, note first that (4) is equivalent to

minimizing the residual sum of squares with a size constraint of the form
∑P

j=1 |βj| ≤ s on the

parameters. Similarly for ridge regression, the residual sum of squares is minimized under a

size constraint
∑P

j=1 β2
j ≤ s. Here s is a tuning parameter that has a one-to-one correspondence

with the penalty parameter λ.

For both the lasso and ridge regression, and in fact all penalized regression methods having

similar size constraints, s controls the amount of shrinkage imposed on the estimates. By the

form of the size constraint
∑P

j=1 |βj|r ≤ s, smaller values of s correspond to more shrinkage,

forcing the estimates toward zero. For the lasso, smaller values of s will shrink all coefficients,

but in addition put some of them exactly equal to zero. This is a direct consequence of using

the L1 norm in the constraint. Since the lasso constraint is not differentiable at zero, the lasso

has the ability of producing estimates that are exactly equal to zero. The ridge constraint, on the

other hand, does not share this property as having r > 1 gives constraints that are differentiable

at zero (Hastie et al., 2009). That is, the difference really lies in the shape of the constraint

region. To illustrate this, we consider the simple situation with only two parameters in Figure

1. The figure shows the estimation picture for the lasso and ridge regression. The elliptical

contour lines represent the residual sum of squares centered at the OLS estimate, while the

shaded regions represent the constraint region for the lasso and ridge regression respectively. In
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Figure 1: Illustration of estimation picture in the (a) lasso and (b) ridge regression. The figure

is from the original paper of Tibshirani (1996).

both cases, the solution is at the first point where the elliptical contour lines of the residual sum

of squares hit the constraint region. The important advantage of the lasso is that because of the

diamond shape, it is more likely that the first time the elliptical contour lines hit the constraint

region is in the corner, hence one of the parameters is estimated to be exactly zero. In higher

dimensions the constraint region will have many corners and flat edges causing even more

estimates to be zero (Hastie et al., 2009). Since the size of the constraint region is controlled

by s, taking s small enough will force coefficients to be exactly zero. For ridge regression there

are no sharp edges making it less likely for the contour lines to hit a corner. Hence estimated

regression coefficients exactly equal to zero will rarely occur.

For a simple situation with only two estimated parameters, the example given in Figure 1 il-

lustrates how the lasso constraint leads to variable selection. We may also gain further insights

into the lasso if we consider the orthonormal case where (4) has an explicit solution in terms

of the unrestricted estimators β̂OLS
j . That is, the lasso estimator of βj corresponds to a soft-

thresholded version of β̂OLS
j , whereas the ridge regression estimator is subject to proportional

shrinkage (Hastie et al., 2009). Figure 2 shows how the threshold effect in the lasso results in

estimates of βj exactly equal to zero, compared to ridge regression and the unrestricted estima-

tor.

Up to this point, we have only considered the linear model introduced in (2), but the lasso

also extends naturally to generalized linear models (Tibshirani, 1996, 1997). For generalized

linear models, we apply the same L1 penalty, but the residual sum of squares is substituted by

the relevant negative (partial) log-likelihood, such that the estimation is done by minimizing a

penalized version of the negative log-likelihood. The properties of the lasso in the generalized

linear models are very similar to those of the linear model (Bühlmann and van de Geer, 2011).
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Figure 2: Estimators in the case of orthonormal design matrix X . The grey line corresponding

to an unrestricted estimate is added as a reference. The red line illustrates how the lasso puts

small coefficients exactly to zero, while ridge regression performs proportional shrinkage.

When the lasso puts regression coefficients to zero, we say that it is producing a sparse solution.

That is, only a few of the regression coefficients are estimated to be nonzero. This means that

using the lasso there is an underlying assumption about sparsity; we assume that there are

only a few of the covariates that are actually explaining the response. It is exactly this sparsity

assumption that makes the lasso such a successful tool in high-dimensional regression analysis.

Not only is sparsity a consequence of using the L1 constraint and an important theoretical aspect

to reduce the complexity and the number of effective parameters in the model, there are also

intuitive as well as practical and computational reasons to assume sparsity in high-dimensional

regression. The intention of producing more interpretable models is especially fruitful in the

high-dimensional context. It is obviously easier and more convenient to interpret results from

a lasso fit rather than a result involving estimated coefficients for all P covariates. In Section

2.1, we also discussed that in genomic applications we often assume from an application point

of view that there is only a small set of the genes that are actually relevant for explaining

the response. This is often the case in other types of problems as well, for example in text

classification there is no reason to believe that all words in a text are important to classify it to

be of a certain subject.

In standard regression models, the set of covariates is typically composed by a few variables

that are well chosen and believed to be relevant and contributing to the model. The difference

between the traditional setting and the high-dimensional problems is that the number of poten-

tial covariates is much larger, but more importantly, we do not know which of the covariates

that might be relevant. In this sense, the fact that the lasso does variable selection makes it ex-

tremely attractive in determining the relevant covariates exhibiting the strongest effects. In fact,

all constraints of the form
∑P

j=1 |βj|r with r ≤ 1 perform variable selection, but the lasso is

the only constraint that has the advantage of producing a sparse solution while at the same time

being convex. This also makes it an attractive method for computational reasons as non-convex
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constraints make the optimization much more difficult (Hastie et al., 2009; Bühlmann and van

de Geer, 2011).

3.1 Computational Algorithms

There is no closed form expression for the estimates in the lasso solution. The optimization

problem becomes that of a convex problem with inequality constraints that are typically solved

through quadratic programming (Friedman et al., 2007). Since the lasso is most frequently used

in the presence of large data sets, computations can become extremely heavy if not efficiently

implemented, hence much research has focused on computational efficiency.

Algorithms like the homotopy algorithm (Osborne et al., 2000) and the LARS algorithm (Efron

et al., 2004) exploit the piecewise linearity of the coefficient paths yielding efficient algorithms

that can solve the lasso problem for all values of λ. For generalized linear models the solution

paths are in general not piecewise linear (Hastie et al., 2009). Hence Park and Hastie (2007)

proposed another path algorithm solving the problem for generalized linear models which de-

termine the entire coefficient path through a predictor-corrector method.

Another approach which is simple and well-suited for optimization in large convex problems,

is the pathwise coordinate descent algorithm, which for the lasso problem has proven to be a

strong competitor to the LARS algorithm (Friedman et al., 2010, 2007). Different from the

exact path-following algorithms like LARS, the pathwise coordinate descent methods compute

the regularized solution path for a fixed grid of λ values. For fixed λ, coordinate descent algo-

rithms optimize successively over each parameter, that is, the optimization is done for one single

parameter at a time. By considering the optimization problem as a sequence of single param-

eter problems that are easily solved by applying a soft-threshold operator, this is an attractive

approach because each coordinate minimization can be done quickly and relevant updates are

done by cycling through the variables until convergence (Friedman et al., 2007, 2010). To ob-

tain the solution for the full grid of λ values, the procedure applies coordinate-wise descent for

each value of the regularization parameter, varying the regularization parameter down a path.

3.2 Selection of Penalty Parameter

The lasso is, similarly to other penalized regression methods, depending on a tuning parameter

λ controlling the model complexity. We know that different values of λ will influence how many

variables that are selected by the lasso as well as the bias imposed on the estimated coefficients.

It is therefore important to make a well deliberated choice of λ. There are several possible ways

to choose the tuning parameter, all of them involving fitting the model for a range of λ-values.

The final model is chosen from the set of candidate models based on some suitable criterion.

Which criterion to use depends on the aim of the analysis.

Model selection in general is often done by estimating the performance of different models

using criteria like the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC). Similar approaches can be used to choose the tuning parameter in the lasso if the focus
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is primarily on recovering the true underlying set of active variables (Bühlmann and van de

Geer, 2011). Another approach aiming at variable screening is to choose the λ corresponding

to a predefined number of nonzero regression coefficients in the fitted model. This is relevant in

situations such as in Wu et al. (2009) and El Ghaoui et al. (2011) where one has prior knowledge

or strong reasons to anticipate how many variables that are really active. As an alternative, one

can use the lasso as a screening method by considering the union of the variables selected for

the entire range of λ values, that is, without selecting one specific value for λ at all (Bühlmann

and van de Geer, 2011). Recently, stability selection based on subsampling was proposed to

determine the right amount of regularization. In this case, the data are perturbed by subsampling

many times before selecting variables that occur in a large fraction of the resulting selected sets

(Meinshausen and Bühlmann, 2010).

None of these approaches are considering prediction performance. As discussed in Section 2.1,

prediction is often a central part in the application of regression models. Therefore, maybe the

most popular way to choose λ, is through K-fold cross-validation which involves minimizing

an estimate of the prediction error. This is done by first splitting the data into K folds, typically

K = 10. Leaving one fold out at a time, the remaining data are used to fit the model before

computing the prediction error for the left out fold. The estimate CV (λ) of prediction error

is then obtained by aggregating over all folds and the model minimizing CV (λ) is considered

as the final model. In this case, the final model is tuned to be optimal for prediction, avoiding

overfitting to the current data.

3.3 Theoretical Properties

There has been rigorous research devoted to understanding the theoretical properties of the

lasso. The literature is extensive and it is not by any means possible to cover everything in detail

in this thesis. A short summary of the key properties will be given in this section, reviewing the

most central properties and relevant conditions for the standard lasso in the linear model. The

results are obtained from Bühlmann and van de Geer (2011) where this is thoroughly presented,

and which can be consulted for a comprehensive overview and further references. Specifically,

the necessary assumptions and conditions referred to in this section can be found in Chapters 2,

6 and 7 of the book.

Consider a linear model

Y = Xβ0 + ε,

with fixed design and with β0 being some true parameter vector. We also allow for the dimen-

sion P = Pn >> n as n → ∞. Let S0 = {j : β0
j �= 0, j = 1, ..., P} be the active set of

variables. Under no conditions on the design matrix or the non-zero coefficients, and rather

mild conditions on the error,

||X(β̂ − β0)||22/n = OP (||β0||1
√

log(P )/n).

That is, the lasso is consistent for prediction if a sparsity assumption ||β0|| <<
√

n/ log(P ) is

fulfilled. Optimal rates of convergence for prediction and estimation are obtained under certain
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assumptions on the design. Under a compatibility or restricted eigenvalue condition, we achieve

||X(β̂ − β0)||22/n = OP (s0φ
−2log(P )/n),

where s0 = |S0| and φ2 is the compatibility constant or restricted eigenvalue depending on

the compatibility between the design and the L1-norm of the regression coefficients. Different

from the prediction accuracy is the estimation accuracy of the parameter β. Under the same

compatibility assumptions on the design matrix X and on the sparsity s0, it follows that

||β̂ − β0||q = OP (s
1/q
0 φ−2

√
log(P )/n), q ∈ {1, 2}.

Since the lasso is also a method for variable selection, its ability to recover the true model

is essential. For any method doing variable selection, the procedure should find an estimate

Ŝ = {j : β̂j �= 0, j = 1, ...P} such that Ŝ = S0 with high probability. There are, however,

difficulties. For example, very small coefficients can be difficult to detect, and on the other

hand, the lasso also tends to select too many variables, not being able to avoid false positives.

Hence, consistency in variable selection requires the rather restrictive irrepresentable conditions

on the design matrix as well as assumptions on the regression coefficients. First, note that the

lasso has the variable screening property

P(S0 ⊆ Ŝ) → 1 (P ≥ n → ∞),

in the sense that the selected variables from the lasso include the relevant variables with high

probability, that is, we have S0 ⊆ Ŝ with high probability. This follows under the restricted

eigenvalue assumption and the so-called "beta-min" conditions

inf
j∈Sc

0

|β0
j | >> φ−2

√
s0 log(P )/n,

which require that the non-zero coefficients are not too small. Consistency for variable selection

P(S0 = Ŝ) → 1 (P ≥ n → ∞)

on the other hand, requires in addition either a neighborhood stability condition for X or the

equivalent irrepresentable condition. These are quite restrictive assumptions in practice, and

can often fail to hold if the design matrix exhibits too strong correlations.

4 Guiding the Lasso

Since the cardinal paper of Tibshirani in 1996, the lasso penalty has been considered as a pow-

erful and convenient method to handle the high-dimensional (generalized) linear regression

problem. The method does, however, have drawbacks and cannot be considered as a universal

approach. For example, it is limited to linear effects of the covariates and is not designed to cope

with parameter vectors carrying certain (group) structure. In addition, the theoretical variable
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selection properties require rather restrictive conditions on the design matrix, which are often

not fulfilled in practice. Therefore substantial research and interest in these problems have led

to new lasso-type methods being suggested and applied to a broad range of applications and

problems with huge success. By retaining the desirable features of the L1 penalty, these meth-

ods make up a flexible framework with extensive possibilities reaching far beyond the standard

linear model.

Relevant but often simple modifications to the standard lasso model have expanded the area

of use to problems of nonparametric regression, incorporation of information on the sparsity

structure of the parameter vector, as well as improving theoretical properties of the standard

method. We will call these kinds of modifications by the common term guide as they can all

be viewed as a way of guiding the lasso toward more stable, relevant or tailored analyses and

results.

A guide can either work directly on the model assumptions, enter as prior information in the

model or influence the way the lasso estimates are obtained by limiting the lasso search to a

smaller subset of the data. In the current section we will give an overview of some of the

most relevant methods that have been proposed to solve problems that cannot be solved through

the standard lasso model, hence working as lasso guides. We limit the section to methods of

regression only, though substantial contributions have also been made using the L1 penalty in

graphical modeling (Yuan and Lin, 2007; Friedman et al., 2008; Banerjee et al., 2008). Many

of the methods mentioned in this section also have equivalent counterparts appearing in the

context of generlized linear models, but may not be listed here.

4.1 Improving Theoretical Properties

As pointed out in Section 3.3, the traditional lasso estimator may not be fully efficient in variable

selection and may not be consistent. Several approaches have been suggested to guide the

standard lasso toward consistency.

One of the main reasons for the lasso not to be consistent is the common amount of shrinkage

that is imposed on the coefficients. Fan and Li (2001) proposed the smoothly clipped absolute

deviation (SCAD) penalty which penalizes similarly to the lasso for small coefficients, but re-

duces the shrinkage for large coefficients. Hence the penalty produces less biased estimates and

in fact SCAD possesses the oracle property which makes the method favorable in theory. How-

ever, the optimization criterion is not convex, which makes the computations more complicated

and the method more difficult to apply in practice. The adaptive lasso (Zou, 2006) is a two-step

procedure which was proposed to improve upon the theoretical properties of the standard lasso.

In the adaptive lasso, the standard lasso penalty is replaced by a penalty that is weighted by

the size of an initial estimator of the coefficients. When P < n, Zou (2006) suggested to use

the ordinary least squares to obtain the initial estimator, such that when the initial estimator is

a consistent estimator, the adaptive lasso is able to identify the true model consistently and the

final estimator performs as well as the oracle (Zou, 2006). For the high-dimensional case, the

lasso estimator itself can be used as an initial estimator (Bühlmann and van de Geer, 2011). The

intention is to penalize large coefficients less, based on the initial estimator. Similar as for the
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SCAD penalty, the result is less biased estimates and fewer false positives. A third approach

to reduce the bias of the lasso is also a two-step procedure. The relaxed lasso was suggested

by Meinshausen (2007) and involves fitting a standard lasso to obtain the set of nonzero coeffi-

cients, before fitting the lasso over again using only the variables in the nonzero set.

These modifications of the lasso are not changing the scope of the lasso per se, rather improving

the properties of the standard method. All three methods can be viewed as ways to guide the

lasso toward better theoretical properties by simple modifications in the penalty.

4.2 Linear Grouped Effects

In genomic applications there are often strong correlations among the covariates as they tend to

operate in molecular pathways (Hastie et al., 2009). In this case it can be reasonable to consider

them as being jointly relevant in the regression model, either by allowing for joint selection of

correlated variables or of predefined groups that are assumed to act together.

The elastic net was proposed by Zou and Hastie (2005), and is especially designed to handle

situations where there are strong correlations among the covariates. In blocks of correlated

variables the lasso tends to pick one variable at random, discarding all other variables in that

block. By adding a ridge penalty to the lasso penalty, the elastic net combines the advantages of

both methods. The ridge penalty shrinks the coefficients of correlated features toward each other

while the lasso penalty ensures sparsity among the averaged features. Another method proposed

by Tibshirani et al. (2005) is the fused lasso which can take the ordering of the covariates into

account by encouraging sparsity both of the coefficients and their differences.

Yuan and Lin (2006) developed the group lasso which is intended for situations where the

predictors belong to predefined groups. The groups can consist of variables which for some

reason are assumed to affect the response in a grouped manner, for example by belonging to

the same pathways. Through the group lasso penalty, sparsity is encouraged at the group level

such that the coefficients in a group should be either all zero or all nonzero. That is, covariates

belonging to the same group are shrinked and selected together. The idea of introducing an

adaptive step as discussed in Section 4.1 can also be applied for the group lasso to achieve better

selection of groups (Bühlmann and van de Geer, 2011). Friedman et al. (2010) also suggest a

sparse group lasso where sparsity can be achieved both at the group and at the individual feature

level.

Stronger assumptions can also be imposed on the group structure. Chiquet et al. (2012) for ex-

ample propose the cooperative lasso which does not only assume that groups should be selected

jointly, but also that coefficients corresponding to variables of the same group are sign-coherent.

That is, variables within a group influence the response in the same direction.

4.3 Nonlinear Effects

The lasso is designed to select linear effects, but meets limitations when the real effects derail

from linearity. The methods discussed in Section 4.2 are utilizing relationships in the data or
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incorporating information on known grouping structure of the covariates, but the selection is

still limited to linear effects. The group lasso is, however, a highly flexible approach which can

be used when the linearity assumption does not apply. Already in the initial paper, Yuan and Lin

(2006) discussed how the group lasso can be applied when the explanatory variables are cate-

gorical. By redefining them as dummy variables and letting the dummy variables representing

each covariate indicate the groups, a covariate is selected if its corresponding group of dummy

variables is selected.

Much efforts have also been done to extend the high-dimensional regression methods to apply

in high-dimensional nonparametric regression. Huang et al. (2010), Meier et al. (2009) and

Ravikumar et al. (2009) all suggest to use the group lasso penalty in combination with splines

to fit high-dimensional additive models. The covariates are represented through their spline ba-

sis expansions where the basis functions representing a covariate correspond to a group in the

group lasso. In this way they are extending the linear model to allow for nonlinear effects in the

individual components. By using B-splines and the adaptive group lasso, Huang et al. (2010)

achieves consistency in both estimation and variable selection, while Meier et al. (2009) use a

sparsity-smoothness penalty to control both sparsity and smoothness. Avalos et al. (2007) also

proposed a method allowing for parsimonious solutions by the use of the L1 penalty. Meth-

ods using lasso-type penalties or other penalization methods in partially linear models have

also been subject to much research in recent years (Wang et al., 2011; Lian et al., 2012; Du

et al., 2012). Typically this involves some spline representation for the nonparametric part and

separate types of penalties for the parametric and nonparametric components.

A somewhat different approach in high-dimensional additive models is the Lasso Isotone (LISO)

proposed by Fang and Meinshausen (2012). LISO fits an additive isotonic model where the

component effects are assumed to be isotonic increasing. By introducing an adaptive step, the

method also applies in more general situations where the direction of the functional components

is not known. In this case the functions can be estimated to be either increasing or decreasing

in the same model, but nevertheless the results are given as step functions.

4.4 Efficiency and Feasibility

Another type of problem that becomes hard and sometimes even impossible to solve by using

the lasso and standard algorithms, is the problem where the data are of ultra high dimensionality.

When the number of covariates becomes very large, standard algorithms become inefficient.

Recent research by El Ghaoui et al. (2011) and Tibshirani et al. (2012) is devoted to this topic,

proposing rules that discard variables which are not relevant for the regression for given values

of λ. While the SAFE rule of El Ghaoui et al. (2011) is really safe, meaning that none of the

variables that are active in the full lasso solution are eliminated by the rule, the STRONG rule of

Tibshirani et al. (2012) is not guaranteed to be safe, but can achieve substantial improvements in

terms of computational time. The rules operate by comparing the marginal correlation between

the covariates and the response with certain criteria depending on λ. By construction the rules

are able to discard a large proportion of the variables for large λ, but as λ decreases their

standard rules are not as efficient and most variables are retained in the model fitting. El Ghaoui
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et al. (2011) and Tibshirani et al. (2012) also provide sequential rules for which the elimination

is done sequentially when moving down the λ scale. When implemented in combination with a

lasso algorithm, especially the sequential STRONG rule is extremely beneficial and limits the

lasso search to a small proportion of the data in each step.

Fan and Lv (2008) also consider methods for reducing the dimension from large to moderate

based on correlation ranking and sure independence screening (SIS). Their aim is, however,

somewhat different from the STRONG and SAFE rules which aim at finding the exact lasso

solution. SIS does not guarantee that the screening does not exclude variables for which the

coefficients would really be nonzero in the full solution with all covariates.

5 Aims of the Thesis

The lasso as presented in Section 3 solves the high-dimensional regression problem by selecting

variables showing a linear effect on the response. Efficient algorithms exist, theoretical prop-

erties have been studied and are well deliberated, and the lasso has been widely appreciated

in applied research (Kooperberg et al., 2010; Kohannim et al., 2012; Sveen et al., 2012). In

more complicated problems the lasso has limitations and in Section 4 we addressed the fact that

modifications and extensions of the standard lasso approach are necessary in order to expand

the scope to include a broader range of applications. There exists a wide range of lasso-type

methods, each of them guiding the lasso toward more stable or relevant results.

The main aim of this thesis is to take care of three specific problems that cannot be solved effi-

ciently by the standard lasso itself. This includes problems where external (biological) knowl-

edge or assumptions are reasonable to incorporate in the analysis. In Section 2.1 we discussed

the need for methods taking this into account and that it might lead to deeper understanding,

and elucidate potential casual mechanisms. With this in mind, we consider situations where

external information enters the model by acting on the penalization scheme, either as a way of

doing data integration or including prior information about the covariates in the model in order

to tilt the analysis in a certain direction.

Another important problem is connected to the perpetual increase in the dimensionality of data.

To cope with ultra high dimensionality, safer methods for preselection could facilitate compu-

tations and make it possible to analyze data that are so large that they exceed the feasibility

limits in available algorithms and software. We address the issues that might arise when doing

preselection by proposing an algorithm that focuses the lasso on a smaller and manageable set

of relevant covariates. The aim is to make it possible to find the lasso solution in regression

problems where the number of covariates is so large that we are not able to easily fit the full

regression using all covariates.

Methods fitting nonparametric additive models through B-splines in combination with certain

(group) lasso penalties were described in Section 4.3. These methods are very flexible, while

in some situations it can be reasonable to assume certain shape restrictions on the functional

components of each covariate. We propose a way of guiding the lasso where the aim is to retain
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the monotonicity of the linear model, but allowing for nonlinearities in the estimated monotone

effects.

Paper I is concerned with combining information from different types of genomic data in a

weighted lasso. In Paper II we propose a strategy that enables analysis in ultra high-dimensional

lasso problems that cannot easily be solved using standard procedures and software. Finally,

Paper III deals with estimation and selection of nonlinear monotone effects. We approach the

aim of solving these problems by methods that can be seen as ways of guiding the lasso.

6 Methodology

In this section, the methodology used to achieve the aims in Section 5 is described. First, in

Section 6.1, the relevant penalization methods are described in the linear regression setting.

This involves the standard lasso, the weighted lasso and the cooperative lasso. How penalized

regression methods can be applied in generalized linear models is considered in Section 6.2.

All these methods require a strategy for selecting the penalty parameter λ, thus the concept of

cross-validation is described in Section 6.3. Finally, Section 6.4 considers monotone I-splines.

6.1 Penalization Methods

The current section considers the three lasso-type methods that are used to develop the proposed

guided methods. Since the standard lasso is discussed in Section 3, it will only be repeated

shortly in Section 6.1.1. Section 6.1.2 describes the weighted lasso with general weights, before

the cooperative lasso is described in Section 6.1.3.

Suppose that we have data {yi, xi}, i = 1, ..., n, where yi is the response value and xi =

(xi1, ..., xiP ) is the vector of covariate measurements for observation i. Without loss of general-

ity we assume that the intercept is zero and that all covariates xj = (x1j, ..., xnj)
T , j = 1, ..., P ,

are centered and measured on the same scale. Let the covariates be organized in an n×P design

matrix X and denote the response vector of length n by y. We consider the linear model,

y = Xβ + ε,

where β is the P -dimensional parameter vector and the components εi of ε are i.i.d. error terms

with E(εi) = 0.

6.1.1 Lasso

The lasso penalizes the regression coefficients by their L1 norm. Hence the lasso estimates of

the regression coefficients are given as

β̂L = argmin
β∈RP

{
||y − Xβ||22 + λ

P∑
j=1

|βj|
}

, (5)
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where λ > 0 is a penalty parameter controlling the amount of shrinkage. As mentioned in

Section 3, there exist several algorithms to fit the lasso. In Paper II it is important that the lasso

solutions are obtained for a fixed grid of λ and we use the coordinate descent algorithm as

described in Section 3.1.

6.1.2 Weighted Lasso

In some settings, one might want to penalize the regression coefficients individually. This leads

to the weighted lasso. That is, instead of a common penalty parameter λ, we consider a different

penalty parameter λj = λwj for each covariate such that each regression coefficient is penalized

individually depending on the nonnegative generic weight wj . The weighted lasso estimates can

then be found by

β̂WL = argmin
β∈RP

{
||y − Xβ||22 + λ

P∑
j=1

wj|βj|
}

. (6)

We use the weighted lasso in Paper I, where weights are determined from external data, but the

weighted lasso has previously been used in other contexts using weights chosen adaptively from

the data (Zou, 2006; Bühlmann and van de Geer, 2011). The optimization can be done using

any standard lasso algorithm, by using a simple reparametrization trick. That is, we rescale

the covariates such that x̃j = xj/wj and β̃j = wjβj , for j = 1, ..., P . Then we take x̃j as

covariates in the lasso algorithm to obtain estimates
ˆ̃βj and the weighted lasso estimates are

found by transforming back, such that β̂WL
j = ˆ̃βj/wj for all j.

6.1.3 Cooperative Lasso

The cooperative lasso is a group penalty proposed by Chiquet et al. (2012), assuming that regres-

sion coefficients corresponding to variables in the same group are sign-coherent. Let {Gk}K
k=1

indicate the predefined groups which are mutually exclusive. The cooperative lasso penalty is

then based on the group lasso norm

||v||group =
K∑

k=1

wk||vGk
||,

where || · || is the Euclidean norm and wk > 0 are fixed weights for each covariate that are used

to adapt the amount of penalty in each group. Then the cooperative lasso estimates are defined

as

β̂CL = argmin
β∈RP

{||y − Xβ||22 + λ||β||coop

}
, (7)

where λ ≥ 0 determines the amount of shrinkage and

||v||coop = ||v+||group + ||v−||group =
K∑

k=1

wk

(||v+
Gk
|| + ||v−

Gk
||) ,
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is the cooperative lasso norm with v+ = (v+
1 , ..., v+

p )T and v− = (v−
1 , ..., v−

p )T being the com-

ponentwise positive and negative part of v, that is, v+
j = max(0, vj) and v−

j = max(0,−vj).

In Paper III, we use the cooperative lasso to ensure sign-coherence in the I-splines representation

of the covariates. To fit the cooperative lasso in Paper III, we use the R package scoop available

at http://stat.genopole.cnrs.fr/logiciels/scoop.

6.2 Penalization in Generalized Linear Models

Penalized regression also applies in the context of generalized linear models. It is not necessary

to make an extensive review of generalized linear models here, but we stress that the solution

can be obtained similarly as for the linear case by simply adding the desired penalty Jλ(|βj|) to

the relevant negative log-likelihood;

β̂GLM = argmin
β∈RP

{
−l(β) +

P∑
j=1

Jλ(|βj|)
}

. (8)

In the experiments performed in this thesis, we have made use of the logistic regression model

and the Cox proportional hazards model (Cox, 1972), in situations with binary and survival

responses respectively.

6.2.1 Logistic Regression

For the special case of logistic regression, with binary response yi ∈ {0, 1}, i = 1, ..., n, we

have the logistic regression model

P (y = 1|x) = p(β) =
exp(βT x)

1 + exp(βT x)
.

If xi = (1, xi1, ..., xiP )T is the vector of covariates for the ith observation and pi = P (yi =

1|xi), then the lasso estimate of the coefficient vector β is obtained by minimizing the penalized

negative log-likelihood in (8) where l(β) is replaced by the logistic regression log-likelihood

l(β) =
n∑

i=1

{yi log(pi) + (1 − yi) log(1 − pi)}. (9)

Here the parameter vector β also contains an intercept.

6.2.2 Cox Regression

Suppose we have observations (yi, xi, δi), i = 1, ..., n, where δi ∈ {0, 1} is the censoring indi-

cator and yi is the survival time for observation i which is completely observed if the δi = 1

and with corresponding covariate vector xi = (xi1, ..., xiP )T . Let t1 < ... < tn denote the times
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when events are observed assuming no tied events. In Cox proportional hazards models (Cox,

1972) the hazard function at time t given covariate vector x corresponds to

h(t|x) = h0(t) exp(βT x),

where h0(t) is the baseline hazard and β is the vector of unknown parameters. When P ≤ n

the regression coefficients can be estimated by maximizing the partial log-likelihood given by

l(β) =
n∑

i=1

δi

⎧⎨⎩βT xi − log

⎡⎣ ∑
k∈R(ti)

exp(βT xi)

⎤⎦⎫⎬⎭ ,

where R(ti) is the risk set at time ti. When P > n, penalized estimates of the regression

coefficients in the Cox proportional hazards model can be obtained by substituting l(β) in (8)

(Verweij and Van Houwelingen, 1994; Tibshirani, 1997).

6.3 K-fold Cross-validation

K-fold cross-validation is often used to decide the amount of shrinkage in penalized regression

methods. By dividing the observations into K folds, leaving one fold out at a time, the model is

fitted to the remaining data for all values of λ in a grid. Typically we use K = 10. The prediction

errors when predicting for the left out folds are aggregated to obtain the cross-validation score

CV (λ). That is, for the linear model, if fk is the set of indices of the samples in fold k,

CV (λ) =
1

n

K∑
k=1

∑
i∈fk

(yi − ŷ−k
i (λ))2, (10)

where ŷ−k
i (λ) is the fitted predicted value for observation i when fold k involving observation

i is left out of the estimation. Typically one uses the prediction mean-squared error as in (10),

but other measures of loss can also be considered.

For the generalized linear models we may express the cross-validation criterion in terms of the

log-likelihood functions l(β). For example for logistic regression, a typical choice is the mean

deviance which corresponds to minus twice the log-likelihood on the left-out data (Friedman

et al., 2010). For Cox regression the criterion used in Verweij and van Houwelingen (1993) and

Bøvelstad et al. (2007) can be used to choose the value of λ. That is, maximizing

CV (λ) =
K∑

k=1

{l(β̂(−k)(λ)) − l(−k)(β̂(−k)(λ))},

where l(−k)(β) is the log-likelihood function, and β̂(−k) is the estimate of β, when the kth fold

is left out.
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6.4 Monotone I-Splines

I-splines are a type of splines introduced by Ramsay (1988) which can be used to fit monotone

regression functions. By construction, the basis functions are all monotone, such that if they are

combined with nonnegative spline coefficients, the fitted regression function will be monotone

increasing. Similarly, if the spline coefficients are all nonpositive, the fitted regression function

will be monotone decreasing.

For an explanatory variable x, suppose that its values are transformed to [0, 1] and define the

knot sequence t by 0 = t1 = ... = tl < ... < tK+l+1 = ... = tK+2l = 1 where K is the number

of interior knots. The I-splines basis functions are defined as integrated versions of M-splines

(Ramsay, 1988). M-splines of order l are defined by the recursive formula

M
(l)
k (x) =

{
l[(x−tk)M

(l−1)
k (x)+(tk+l−x)M

(l−1)
k+1 (x)]

(l−1)(tk+l−tk)
, tk ≤ x ≤ tk+l,

0 otherwise,

for k = 1, ..., K + 1 and with

M
(1)
k (x) =

{
1

tk+1−tk
, tk ≤ x ≤ tk+1,

0 otherwise.

Then the I-splines basis functions are found by integrating

I
(l)
k (x) =

∫ x

t1

M
(l)
k (u) du,

for x ∈ [0, 1] and k = 1, ..., K + l. Hence with a suitable set of basis functions I
(l)
k (x), k =

1, ..., K + l, a monotone piecewise polynomial of order k associated with knot sequence t can

be represented as the linear combination

g(x) =
K+l∑
k=1

βkI
(l)
k (x),

if βk, k = 1, ..., K + l, are of the same sign. That is, either all nonnegative or all nonpositive.

7 Summary of the Papers

7.1 Paper I

Bergersen, L. C., Glad, I. K., and Lyng, H. (2011). Weighted lasso with data integration. Sta-
tistical Applications in Genetics and Molecular Biology, 10(1)

In the first paper we propose to use a weighted lasso for data integration in high-dimensional

regression models. Our method is intended for high-dimensional regression models where more
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than one measurement are available for each covariate. We suggest to let the additional data

enter the model not directly, but by acting on the penalization scheme. Hence our approach

is guided by the available external information and tuned to obtain the optimal solution for

prediction through cross-validation.

General weights for data integration are introduced, as well as weighting schemes specifically

designed and applied to two relevant data problems. The first example is an analysis of a data set

where both gene expression and copy number data are available. The example illustrates how

the method can be used to combine two types of genetic measurements available from the same

study. Gene expression measurements are used as covariates in a Cox regression model with

a lasso penalty weighted by information depending on copy number data for the same group

of patients. The second example illustrates how the weighted lasso can be used to incorporate

external information that is not a part of the specific data at hand. Literature annotations are

used to define weights in a logistic regression analysis with gene expressions as covariates to

describe metastasis/no metastasis in a data set of head and neck cancer patients. The results are

validated either on a new independent data set or in the biological literature.

Performance in terms of both prediction and variable selection is also evaluated in simulation

studies, and compared with the standard lasso and the adaptive lasso. When the external infor-

mation is relevant, we find that the weighted lasso with data integration improves upon variable

selection and prediction, as well as reducing the bias of the estimated coefficients.

7.2 Paper II

Bergersen, L. C., Ahmed, I., Frigessi, A., Glad, I. K., and Richardson, S. (2013a). Preselection

in lasso-type problems by cross-validation freezing. Submitted manuscript

In ultra high-dimensional regression problems the full solution is often computationally difficult

to obtain and it is necessary to use some initial preselection or screening strategy. Paper II

addresses this issue by suggesting a way to find the full solution of a sparse regression problem

by using a smaller subset of the covariates only. The proposed algorithm works in combination

with cross-validation to find the solution optimal for prediction and is guided by a property we

call freezing to ensure that all relevant covariates are included in the subset.

The concept of cross-validation freezing is introduced and illustrated in the context of the stan-

dard lasso regression model. By sequentially comparing the cross-validation curves of increas-

ing subsets of covariates, the proposed algorithm recovers freezing patterns which is used to

determine whether the relevant covariates are included in the preselected subset or not, and

hence when the preselected set is sufficient to obtain the full solution.

In several simulation and real data experiments, we demonstrate that we are able to find the full

cross-validated lasso solution based on a smaller subset of the data. One of the examples is a

GWAS data example where we are not able to fit the full regression problem using standard

software, but by using freezing patterns and the proposed algorithm we are able to find the full

solution.

22



7.3 Paper III

Bergersen, L. C., Tharmaratnam, K., and Glad, I. K. (2013b). Monotone splines lasso. Submit-
ted manuscript

In the third paper, we turn to regression problems where the effects are assumed to be monotone,

but not necessarily linear. We consider an additive model where the component effects, that we

want to estimate, are unknown functions of each variable. Our aim is to introduce a flexible

alternative to the standard linear model, by allowing for the effects to take nonlinear shapes, but

still preserving monotonicity.

We introduce the monotone splines lasso (MS-lasso), which by combining I-splines and the

cooperative lasso penalty, selects important (nonlinear) monotone effects. Each variable is rep-

resented by its I-spline basis and the set of basis functions for each variable constitute a group

in a cooperative lasso procedure. The combination of I-splines and the cooperative lasso is es-

sential. For the I-splines to produce monotone functions, the spline coefficients need to be of

the same sign. This is guaranteed by the cooperative lasso which provides sign-coherence for

coefficients within a group. We also introduce the adaptive MS-lasso, which similarly to other

adaptive lasso procedures, is shown to reduce the number of false positive selections.

Important differences and similarities with other existing methods for high-dimensional regres-

sion are pointed out. We also compare the MS-lasso and the adaptive MS-lasso with these meth-

ods in various simulation experiments. The performance is evaluated in terms of estimation and

variable selection and the results indicate that if nonlinearities are present in the component

effects, there can be a lot to gain by applying the (adaptive) MS-lasso instead of standard mod-

els. For illustration, we also apply the procedure in two data examples where the monotonicity

assumption is relevant and discuss the findings.

8 Discussion

Problems of high-dimensional regression continue to challenge statisticians. The size of the data

keeps growing and the scope of the analyses is no longer limited to finding significant linear

relations or to analysis of a single data type alone. Standard (penalized) regression methods are

not designed to cope with these kinds of complexities, and the need for adequate methodology

solving the new challenges will keep evolving with the new types of data.

The aim of this thesis was to provide methods dealing with challenges where the standard

penalized methods do not apply. We have focused on three specific problems of this type:

combining data from different sources (Paper I), regression in ultra high dimensions (Paper II)

and nonparametric monotone regression (Paper III). In Paper I we allow for incorporation of

additional information on the covariates, while in Paper III we add flexibility to allow for the

estimated effects to take on nonlinear shapes. In both cases we are changing the objective and

assumptions of the model. The strategy introduced in Paper II is in some way different from

those presented in Paper I and III. This is in the sense that the aim of Paper II is not to modify
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the objective of the standard lasso, but rather to extend its applicability to ultra high dimensions

where it is computationally difficult or infeasible to obtain the solution without reducing the

number of covariates. Hence, the proposed methods aim at different issues and aspects of the

lasso, but by making use of the flexibility of the L1 penalty, our contributions are all to be

considered as part of the guided lasso framework which we deliberated over in Section 4.

The main contribution of Paper I is to illustrate how the weighted lasso can be used to combine

information from different sources. We have applied the procedure to data from genomics, with

the main example being the one where both gene expression and copy number data are available

together with survival data in a study of cervix cancer. We are aware that there are numerous

possible approaches that can be considered to extract combined information from several data

sets, and which might elucidate and uncover underlying dynamics of disease more accurately

than the weighted lasso approach. The proposed procedure can, however, be seen as a conve-

nient tool to include prior information in the regression analysis and even to tilt the analysis

in a certain direction. As discussed in Section 4.1 about the adaptive lasso, the weighted lasso

has been widely studied in the literature when the weights are decided from initial (consistent)

estimators of the parameters. The weights are differentiating the penalization imposed on the

coefficients, such that if the initial estimator is large in absolute value, the corresponding co-

efficient is penalized less and hence encouraged in the selection. We use the same reasoning,

but allow for the weights to be determined from some prior information obtained from external

data. A variable is given an advantage in the regression if the external information indicates

that the variable is relevant. Based on biological knowledge, for example that genes with high

correlation between their copy number and expression value are assumed to be driving forces

in disease development, we are giving certain genes an advantage in the regression.

In future work it would be interesting to apply the procedure to other types of data. In Section

2.1 we pointed out that in genomic applications, it becomes more and more common to have

data from multiple sources available for the same study (e.g. gene expression, copy number

data, SNPs, methylation). It is also possible to construct weights based on several different

types of external data. This should, however, be considered in combination with biological

knowledge about the relations between the different biological processes.

In Paper I, we have used a fully frequentistic point of view, although including prior information

in this way makes it natural to take on a Bayesian perspective. The standard lasso itself has a

Bayesian interpretation; it is the mode of the posterior distribution of the regression coefficients

when having a Gaussian likelihood and that each parameter is independently distributed with a

double exponential prior (Hans, 2009). The variance of the prior distribution has a one-to-one

correspondence to λ. Hence introducing individual penalty parameters λj = λwj in the lasso, is

the same as assuming double exponential priors with variances depending also on the external

information. If the weights indicate that a variable is relevant, the prior will have more mass

distributed away from zero making it more likely for the estimated coefficient to be nonzero.

However, to take advantage of the multiple types of data available and do data integration one

may want to consider a fully Bayesian approach. See for example Jensen et al. (2007) who

perform variable selection and integrate several data sets through a Bayesian hierarchical model.

In Paper II we document the presence of preselection bias when variables are preselected based
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on their marginal correlation with the response. Although it is well known that preselection

may have an important impact on the results of the analysis, screening based on univariate as-

sociation with the response variable is often done in practice, without recognizing the potential

undesirable effect. The main focus of Paper II is the proposed algorithm which can be used

to obtain the full solution by using only a subset of the covariates. The pattern in the cross-

validation curves which we call freezing is used to provide the value of λ which would have

been chosen by cross-validation when using the full set of covariates, but more importantly, it

indicates when a preselection can be considered as safe. Hence freezing acts as a guide for

preselection in lasso-type problems.

Apparently there are several similarities between the SAFE and STRONG rules for variable

elimination and our approach. All three methods are specifically intended for lasso-type prob-

lems and can achieve substantial reductions in the number of covariates by using marginal

correlation with the outcome to indicate the relevance of the covariates. It is, however, impor-

tant to note that there are also some essential differences. While SAFE and STRONG operate at

fixed values of λ, our method aims at finding the full lasso solution in the optimal value of λ for

prediction. Also, the focus of SAFE and STRONG is mostly on computational efficiency and

time, while our focus is on feasibility of problems that become too computationally demanding

or even infeasible because of the large number of covariates. That is, our strategy might not

necessarily save computational time. The computational time of the complete procedure will

depend on how the subsets are chosen, the correlation structure in the design matrix and how

soon the cross-validation curves freeze which depends on which λ that turns out to be optimal

for the full data set. It is also important to note that the success of the SAFE and STRONG rules,

in terms of number of variables they are able to discard, becomes limited for smaller values of

λ. That is, when the lasso solution is not very sparse. For example in the GWAS example in

Paper II, the STRONG rule will not be able to discard any variables when using the amount of

penalization indicated by cross-validation while we will only use 2.5% of the covariates.

As for Paper III, the main contribution is the introduction of the new method MS-lasso which

is designed to estimate and select relevant nonparametric monotone effects in additive models.

Importantly, the proposed method is not only relevant in high dimensions, but may also be

useful if one wants to do variable selection and at the same time ensure monotonicity in lower

dimensions.

For the computations in Paper III, we use the algorithm available in the R-package scoop

developed by Chiquet et al. (2012). The algorithm provides the necessary sign-coherence for

the spline coefficients in the MS-lasso, but it does not scale to the necessary level to be able

to fit the MS-lasso if the number of covariates becomes too large. Note that in the MS-lasso

where each covariate is represented by m basis functions, the number of inputs in the algorithm

is really m × P , which can become extremely expensive in problems with P = 20, 000 −
30, 000 variables. One possible approach to deal with the computational issues is to use cross-

validation freezing and the algorithm proposed in Paper II. Even if the strategy in Paper II is

developed in the standard setting of the linear model, the concept has promising potential also

in other settings. Especially in already high-dimensional settings where the covariates are to be

represented by basis functions. We give an illustration for the specific case of the MS-lasso.
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Figure 3: Illustrative example of cross-validation curves for the MS-lasso where the indicated

subsets are determined from the initial ranking using Spearman correlation. The figure shows

the results from a single simulation run from the experiments using Model A as described in

Section 3.1 in Paper III.

Since the MS-lasso utilizes a group lasso type penalty, one should rank groups instead of single

inputs in the algorithm. In our case, however, this is equivalent since each group represents

one explanatory variable. Also, as the MS-lasso aims at finding nonlinear monotone effects,

Spearman correlation (which is not limited to linear associations) between each covariate and

the response could be a reasonable choice of initial ranking. An example is given in Figure 3

which indicates the characteristic freezing behavior, and that the procedure proposed in Paper

II will extend naturally to the MS-lasso problem. Hence extending the algorithm in Paper II to

nonparametric problems, as well as to other guided lasso methods, are interesting and relevant

topics for future investigations.

As a final remark we point to another important problem that was briefly mentioned in the end of

Section 2.1, and which has become a vibrant topic in genomics as well as in the statistical com-

munities recently. That is, the problem of fitting models that include interaction effects between

the covariates - in high dimensions. There is much recent work studying the interaction prob-

lem, typically involving selection of which interactions to include in the modeling. To mention

a few examples, Bien et al. (2012) introduce a lasso for hierarchical interactions which imposes

a hierarchy restriction such that an interaction is only included if its main effects are marginally

important. Also, Shah (2012) propose a method that iteratively builds up sets of candidate in-

teractions to include in the regression procedure. Hall and Xue (2012) discuss how to provide

a proper ranking of the covariates and their pairwise interactions together. As a consequence

of the increasing parameter space, it is common to all approaches to identify which interac-

tion terms seem relevant such that only these are included in the model. Since the problem of

fitting regression models with interactions is often considered challenging even in lower dimen-

sions, limiting the number of interaction terms in the analysis through certain restrictions or

preselection becomes an extremely essential part of the high-dimensional interaction problems.

Extending the preselection strategy proposed in Paper II to interaction problems can possibly

take the lasso to even higher dimensions in the future.
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1 Introduction

High throughput technologies in molecular biology allow to collect simultaneous
information about thousands of individual characteristics, such as gene expressions,
SNPs or proteins. Current genome wide association studies are easily based on a
million SNPs per sample (Donnelly, 2008). The weak aspect of such studies is
the insufficiently large sample size; studies today typically include around a hun-
dred, sometimes a few thousand, individuals. The aims of genome wide studies
can be several, for example to generate reliable classification or prediction rules
for an outcome, say some time to event, based on a selection of genetic covariates.
Such biomarkers can be used to predict outcome for future patients with the same
medical conditions. Also, the selection per se of such covariates associated with
the outcome, is of great interest, as it generates hypotheses for causal mechanisms.
This situation leads to regression models (linear, logistic, Cox or others) where the
number of covariates p by far exceeds the number of observations n, p >> n. Under
such conditions, standard statistical theory breaks down.

The recent statistical literature is rich of exciting ideas and methods for han-
dling such ultra high-dimensional models. Among the most popular are various
penalization approaches, including the lasso (Tibshirani, 1996) and its many vari-
ations (Yuan and Lin, 2006, Zou, 2006, van de Geer et al., 2010, Meinshausen,
2007), the Dantzig (Candés and Tao, 2007), the SCAD (Fan and Li, 2001), the elas-
tic net (Zou and Hastie, 2005) and SIS (Fan and Lv, 2008). Efficient algorithms
are now available for most of these methods, and theoretical studies have estab-
lished that under various types of sparsity assumptions and regularity conditions
on the design, many of these reach asymptotically reliable results, in terms of both
prediction and variable selection. However, many problems remain in practice.
Variable selection is highly unstable (Ein-Dor et al., 2005, Michiels et al., 2005,
Meinshausen and Bühlmann, 2010), prediction rules are difficult to validate on new
data (Chanock et al., 2007, McCarthy et al., 2008), known biological factors are
not selected (Ioannidis, 2007). Low signal to noise ratios, technical noise in the
covariates, inhomogeneous sample populations, and unmeasured confounders, are
among the reasons for such difficulties.

In order to improve, strengthen and guide penalization based results, it is
possible to incorporate more knowledge into the inferential exercise. In many situ-
ations, there is unexploited additional information available about which covariates
are more likely to explain the outcome. For example, when the aim is to predict sur-
vival based on gene expressions, other genetic measurements for the same individ-
uals might be available, like SNPs or copy number alterations. In cancer diseases,
one can for instance expect that genes with increased copy number play a role in
tumor progression and therefore are more likely to affect patient survival (Albert-
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son, 2006). Moreover, lack of heritability of the baseline expression level of a gene
(Morley et al., 2004) could be an indication that the gene is not involved in devel-
opment of heritable diseases (Ferkingstad et al., 2008). In this paper we exploit the
availability of several sources of relevant information to modulate the level of pe-
nalization, thus guiding the variable selection procedure. We propose a framework
for genewise penalization, where the penalty parameter varies for each covariate
and is modulated by external weights reflecting the expected relevance of the co-
variate (gene) for the outcome. Through two-dimensional K-fold cross-validation
the method is data driven and the data decide the relative strength of the external
weights, also allowing for no weights in case the additional source of information
would turn out not to be really informative.

Other recent methods use relevant extra knowledge in the inference as well.
In group lasso (Yuan and Lin, 2006, Ma et al., 2007), grouping of genes can be
viewed as introducing additional information. Tai and Pan (2007) used prior group-
ing of genes in penalized classifiers and in penalized regression (Pan et al., 2010).
Slawski et al. (2010) use prior structural information on genes to guide an elastic
net regression procedure, while Percival et al. (2010) assume that nonzero covari-
ates cluster together and incorporate this as an additional constraint. The work of
Charbonnier et al. (2010) is related to our approach in that they use the weighted
lasso formulation to incorporate structural information in inference for regulation
networks from temporal data. Genes are assumed to belong to typically two classes
of connectivity and penalized differently according to class membership. Also Xie
et al. (2007) divide genes into two classes based on gene expression data, and then
shrink the test-statistics for genomic location data only for the genes belonging to
one of the two classes, enhancing power and reducing false discoveries. None of
these approaches make however use of an additional dataset as we do.

Our method is one way to perform data integration, maintaining a hierarchi-
cal structure of the information: external data enters the model not directly but only
by acting on the penalization scheme. This avoids a further increase in the number
of covariates but allows to combine several measurements on the same genes in the
analysis. The method also allows to use external information to bias the search in
specific directions. For example, one might be interested in selecting genes whose
effect on the outcome is complementary to, and thereby masked by, other known
factors (Nowak and Tibshirani, 2008). The method can also be used to perform a
joint analysis of independent datasets on the same disease, e.g. gene expressions
measured on different patients in different labs. Ultimately, it is the appropriateness
of the additional information that makes our approach advantageous. Bayesian in-
terpretation of penalization schemes have been discussed (Park and Casella, 2008,
Hans, 2009), as the penalization structure represents a prior model on the regression
parameters. While we focus on a pure penalized likelihood setting, our method can
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easily be seen in this context. Data integration can be implemented into Bayesian
inference through hierarchical models.

Section 2 gives a brief introduction to the general penalized likelihood meth-
ods with special emphasis on the lasso and the weighted lasso. The new method-
ology designed to incorporate external information is presented in Section 3. In
Section 4 we illustrate our method on two cancer datasets with gene expressions as
covariates in a Cox and a logistic regression setting using gene copy numbers and
literature annotations as external information. We investigate the behaviour of our
approach on simulated data in Section 5 and close with a discussion in Section 6.

2 Penalized Likelihood and the Lasso

Suppose we have data (yi,xi), where yi is the response and xi = (xi1, ...,xip) is the
vector of p covariates, for i = 1, ...,n. Assume that the covariates are standardized.
When p > n, classical statistical methods fail as there are infinitely many solutions
to the estimating equations. It is necessary to add constraints to select the interest-
ing solutions. Often, there are biological reasons to assume sparsity, that is, only
few of the p covariates are actually associated to the outcome. Shrinkage and/or
variable selection is then performed by maximizing a penalized version of the log-
likelihood,

1
n

l(β )−
p

∑
j=1

Jλ(|β j|)

with respect to the regression parameters β . Here l(β ) is the conditional (partial)
log-likelihood of yi given covariates xi and Jλ(|β j|) is a penalty function controlling
model complexity (Fan and Li, 2001, 2002). The penalty function is constructed so
that the regression coefficients are shrunk towards zero or set equal to zero, resulting
in a sparse solution. Various penalty functions Jλ(|β j|) have been proposed, see Fan
and Lv (2010). Most common is to use a penalty of the form λ ∑p

j=1 |β j|r, where
λ is the penalty parameter. The lasso corresponds to r = 1 and ridge regression
(Hoerl and Kennard, 1970) to r = 2. Although the ideas presented in the following
sections apply to other penalty functions as well, we concentrate on the lasso.

The lasso usually performs well for prediction, but for consistent variable
selection the conditions on the design matrix are rather restrictive. These fail to
be true for example in situations with strong correlations among covariates (van de
Geer et al., 2010). Furthermore, the lasso does not possess oracle properties (Fan
and Li, 2001). With oracle property we intend that the method can correctly select
the nonzero coefficients with probability converging to one, and that the estimators
for the nonzero coefficients are asymptotically unbiased and normally distributed.
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The oracle property does not automatically imply optimal prediction performance,
but for variable selection (finding the correct lists of genes) it is of course advanta-
geous.

The lasso is sometimes presented as a special case of the weighted lasso
(Zou, 2006, van de Geer et al., 2010, Grandvalet and Canu, 1998), where the penalty
parameter λ is generalized to p values λ j, such that each covariate is penalized
individually, which could possibly improve the performance of the selection and
estimation. We write λ j = λwj for generic non-negative weights wj, so that

1
n

l(β )−λ
p

∑
j=1

wj|β j| (1)

is maximized with respect to β . Note that by defining α j = wjβ j, we can estimate
the α j’s by standard lasso procedures substituting each entry in the data matrix with
xi j/wj. Transforming back gives β̂ j = α̂ j/wj.

3 Weighted Lasso with Data Integration

In the weighted lasso setting, the weights are used to modulate the strength of the
penalty of each covariate, based on what information we have from additional data.
For a large value of wj the regression coefficient for variable j is subject to a larger
penalty and therefore is less likely of being included in the model, and vice versa.

Let the additional data be Z, where Z is either a m× p matrix or a vector z
of length p. We typically have m = n, but this is not necessary. In the most general
form, we allow weights which capture specific relations between the additional data
Z, the response y and the covariates X. Define these weights as wj(y,X,Z). These
weights should be nonnegative and could take various forms depending on the data
and question at hand. In our analyses we have found it useful to define weights as

wj(y,X,Z) =
1

|η j(y,X,Z)|q , (2)

for some function η j, j = 1, ..., p. Here q is a parameter controlling the shape of
the weight function. We assume that η j increases in the expected relevance of the
covariate. There are various possibilities for η j. For example, η j could depend
only on elementwise external information z j, or on the relation between y and Z, or
between X and Z. To have a concrete example in mind, let X be a matrix of gene
expressions, Z a matrix of gene copy numbers, and y a vector of right-censored
survival times. For this example we will consider two important types of weights:
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W1 Spearman Correlation Coefficients We exploit the information in the corre-
lation between gene expression and copy number: genes showing high correlation
between expression and copy number are considered as possible driving forces for
cancer progression (Albertson, 2006). We therefore use η j(x j,z j) = ρ̂ j if ρ̂ j > 0
and η j(x j,z j) = {minρ̂ : ρ̂ > 0} if ρ̂ j ≤ 0. Here ρ̂ is the vector of Spearman cor-
relation coefficients ρ̂ j. Negative correlations are adjusted to the smallest positive
observed correlation, since gene expressions which are negatively correlated with
gene copy number express more complex dynamics. We also adjust when ρ̂ j = 0 to
avoid division by zero in wj.

W2 Ridge Regression Coefficients Here we wish to exploit the association of
gene copy number with survival. Genes whose changes in copy number explain
survival, should be given less penalty than others. Since a copy number alteration
influences survival by first affecting the expression level, the genes within these
aberrated regions are more likely to explain survival through their expression as
well. A quantity that captures the influence of copy number on survival, should be
appropriate. We find such a quantity by fitting a Cox-ridge regression model to the
copy number data to obtain estimates for the ridge regression coefficients γ j. For
gene j the weights are defined as η j(y,Z) = |γ̂ j|, j = 1, ..., p.

In (1), the penalty parameter λ controls the amount of shrinkage imposed on
all the coefficients simultaneously, while the tuning parameter q in (2) controls the
relative strength of the weights across all covariates. The q is real and positive and
is not restricted to integers. In order to determine the pair of parameters (q,λ ) most
suited, we do full K-fold cross-validation with optimization on a two-dimensional
grid.

We have used the cross-validation criterion of Verweij and van Houwelingen
(1993) and Bøvelstad et al. (2007), but included the new parameter q so that the
cross-validation criterion

CV (q,λ ) =
K

∑
k=1

{l(β̂(−k)(q,λ ))− l(−k)(β̂(−k)(q,λ ))}

is maximized leading to (q̂, λ̂ ). By including q = 0 in the grid, the procedure is
allowed to choose the standard lasso in case the weights (or the additional data) are
not informative. Note that if the weights depend on the relation between y and X,
the weights have to be recalculated inside each cross-validation step, as in Kramer
et al. (2009).

Properties of the externally weighted lasso method will depend on the actual
weights. Let βtrue

k , k = 1, ..., p be the true parameters in the regression model. The
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general weighted lasso is shown to possess oracle properties if for the active set
A = {k : βtrue

k �= 0}, all weights wj, j ∈ A, are bounded, and all weights wj, j /∈ A,
go to infinity as p and n grow (adapted from Huang et al. (2006)). Less strict
conditions on the weights are possible, see Zou (2006), Huang et al. (2008) and
van de Geer et al. (2010) for the precise theory. These conditions should be kept
in mind when constructing the external weights, aiming at weights that give large
enough penalty to the non active set and small enough penalty to the active set.
As the bias (shrinkage towards zero) increases with the penalty parameter, smaller
weights for the active set should also ensure less bias in the estimation. In Section 5
we present finite sample simulations when the conditions on the weights are fulfilled
to various controlled degrees.

3.1 Relation to the Adaptive Lasso

Our approach has similarities to the adaptive lasso (Zou, 2006, Zhang and Lu, 2007,
Huang et al., 2008, van de Geer et al., 2010) where they maximize

1
n

l(β )−λ
p

∑
j=1

1

|β̂ j|γ
|β j| for fixed γ > 0,

where β̂ j’s are OLS estimates when p ≤ n (Zou, 2006). When p > n, Huang et al.
(2008) use estimated coefficients from p univariate regressions of each covariate on
y. A recent version of the adaptive lasso (van de Geer et al., 2010) apply the results
from a standard lasso run as the β̂ j’s. Hence the coefficients that were set to zero in
a first lasso run, are left out in the second round, while the coefficients with largest
β̂ j receive the smallest penalty and hence smaller bias. This two step procedure is
shown to possess oracle properties under certain conditions on the design matrix
(van de Geer et al., 2010) and is employed in several recent papers, for example in
Kramer et al. (2009) and Benner et al. (2010). The adaptive lasso is an example
of a weighted lasso. The difference with our approach is that in the adaptive lasso
the weights are constructed from a preliminary analysis of the same data y and X.
In our approach there is data integration through the exploitation of additional data
sets Z.

4 Gene Signatures for Cervix and Head and Neck
Cancer

We demonstrate our approach on two different data sets; cervix cancer and head
and neck cancer. Gene expressions constitute the covariates X in both cases, while
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the response y is right-censored survival time or presence/absence of metastasis, re-
spectively, calling for Cox proportional hazard and logistic versions of the weighted
lasso. The additional data used for genewise weighting are: a matrix Z of array
comparative genomic hybridization data (aCGH, gene copy numbers) for the cervix
cancer analysis; a p-vector z of literature annotations from Pubgene (Jenssen et al.,
2001) for the head and neck cancer analysis. Unless otherwise specified, we have
applied the lasso implementation in the R package (Park and Hastie, 2007)
with 10-fold cross-validation, for all methods, in all analyses and simulations.

4.1 Example 1: Cervix Cancer Data

We have two datasets containing survival data for patients diagnosed with cervix
cancer. Clinical information and details regarding the aCGH and gene expression
experiments are presented in Lando et al. (2009).

The first set of data contains 102 patients. We have survival data and cDNA
microarray gene expression data for n = 100 of these patients and aCGH data for
97 of them. Both measurements are available for 95 of the patients. The genomic
data contain measurements for p = 7754 genes with unique gene identification. The
aCGH data measure genetic gains and losses, which may cause changes in the gene
expression levels. These may disturb the primary function of the genes and lead
to highly aggressive disease and poor clinical outcome (Albertson, 2006). With
weighted lasso penalization we integrate the aCGH data as additional information
on each gene, thus giving genes within aberrated regions a larger chance to be
selected.

In addition we have a separate data set for validation of the prediction per-
formance. The validation set is an independent data set containing survival data and
gene expression measurements (but no aCGH measurements) of the same genes for
41 new patients. These gene expressions are obtained from Illumina gene expres-
sion beadarrays.

We considered two different weighting schemes of the form in Eq.(2). The
quantity η j in Eq.(2) will be either W1: the correlation between the gene copy
number and gene expression (Spearman correlation coefficients), or W2: the effect
on survival of the gene copy numbers (estimated by ridge regression coefficients),
as described in Section 3. The correlation coefficients ρ̂ in W1 were calculated from
the vectors x j and z j, j = 1, ..., p, for the 95 patients where both measurements were
available. The ridge coefficients in W2 were calculated from the 97 patients with
copy number and survival data available.
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Figure 1: Cross-validation results for W1: Spearman correlation coefficients. The
optimal value of q is marked by the red star. (a) Optimal λ values for various
q. (b) Cross-validation curve as function of q, with optimal values λ∗q inserted
for λ . (c) Number of nonzero estimated regression coefficients for various q and
corresponding optimal λ .

version of the Cox partial log-likelihood, as in Eq.(1), using two-dimensional 10-
fold cross-validation.

4.1.1 Results

The results are summarized in Figure 1 and 2 for W1 and W2 respectively. In Figure
1(a) and 2(a) the optimal values of λ , λ∗q = argmaxλCV (q,λ ), are plotted versus q.
As q increases the optimal value of λ decreases, leaving more of the penalization
to the weights. The cross-validation curve as a function of q for given λ∗q is plotted
in Figure 1(b) and 2(b). Maximizing CV (q,λ ) over the two-dimensional grid gives
the pair (q̂, λ̂ ), where λ̂ = λ∗q̂ , is used to fit the final model. We found (q̂, λ̂ ) =
(1.500,1.625) for W1, and (q̂, λ̂) = (2.750,0.003) for W2. In both situations, the
cross-validation prefers to include the external information through the weighted
penalties instead of fitting a standard lasso model (q = 0). Figure 1(c) and 2(c)
show the number of nonzero estimated coefficients for each q (with λ = λ∗q ). In the
final model 8 genes are selected for W1 and 21 genes for W2. The lasso surprisingly

The weighted lasso estimates are then obtained by maximizing the penalized
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Figure 2: Cross-validation results for W2: Ridge regression coefficients. The op-
timal value of q is marked by the red star. (a) Optimal λ values for various q. (b)
Cross-validation curve as function of q, with optimal values λ∗q inserted for λ . (c)
Number of nonzero estimated regression coefficients for various q and correspond-
ing optimal λ .

finds only one gene (with λ̂ = 25.030). With the adaptive lasso also this gene is
discarded in the second run. Here we used lasso in the first step and recalculated
the weights within each cross-validation fold.

From Figure 3 it is obvious that genes corresponding to large values of |η j|q̂
are promoted in the analysis. Note, however, that the selected genes not necessarily
have the largest values of |η j|q̂. As long as the weights do not insist too strongly
they should be penalized out, genes with lower |η j|q̂ can be selected if their expres-
sion shows a strong effect.

4.1.2 Validation

To evaluate survival predictions based on the selected set of genes, we use the in-
dependent test data set of 41 patients to calculate a prognostic index PI = XT

newβ̂
(Bøvelstad et al., 2007), using the estimated coefficients β̂ calculated from the train-
ing data. Following Bøvelstad and Borgan (2011) we ranked the 41 patients accord-
ing to their PI, divided them into two groups, and performed a simple log-rank test
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Figure 3: External information: Plot of |η j|q̂, where q̂ is found by cross-validation.
The selected genes are marked in red. (a) Spearman correlation coefficient between
expression and copy number for each gene, (adjusted at zero). (b) Ridge regression
coefficient indicating the copy number effect of each gene on survival (absolute
value).

in order to test whether the hazard rates of the two groups were significantly differ-
ent. In both training and test data, 1/3 of the patients show good prognosis and 2/3
bad prognosis, hence we maintain the same ratio in the division into two groups. For
this test, the single lasso gene gave a P-value P = 0.031, the W2 gave P = 0.025 and
the correlation weights W1 gave P = 0.002, indicating that the selected genes are
able to discriminate between high-risk and low-risk patients. Following the argu-
ments of Bøvelstad and Borgan (2011) we also computed a time-integrated version
of the area under the ROC curve (iAUC) in addition to the log-rank test. As the
results of the log-rank test might depend on how the patients are divided into the
two groups, Bøvelstad and Borgan (2011) argue in favor of the iAUC measure since
it examines all possible divisions into high-risk and low-risk groups. For the lasso
we find iAUC = 0.561, for W2 iAUC = 0.610 and for W1 iAUC = 0.753, compared
to the benchmark value of 0.5 where all covariate information is ignored. Thus for
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these data, both criteria found the simple correlation between gene expression and
copy number to yield more robust results.

4.2 Example 2: Head and Neck Cancer Data

We re-analyze data concerning head and neck cancer from Roepman et al. (2006),
using gene expressions as explanatory variables, while the response is binary (metas-
tasis/metastasis free). A penalized logistic regression model is fitted. From the 3064
genes analyzed in Roepman et al. (2006) we extract only those for which there exists
a unique gene symbol. The resulting data consist of gene expression measurements
for 2060 genes in 65 samples.

The weighted penalties were determined through relevant literature anno-
tations. Pubgene is a database providing associations between genes and other bi-
ological terms through text mining of the literature, see Jenssen et al. (2001) and

. Pubgene provides a list of gene symbols published
together with a chosen keyword. It gives a score related to how often each gene is
mentioned in connection with the keyword of interest. The score can be the number
of articles in which both the gene and the biological keyword were found, which
can be utilized to tilt the search in specific directions by weighting.

For illustration we used the biological keyword anoxia. Anoxia, or lack
of oxygen, influences the expression of genes and has been shown to sometimes
promote metastasis formation in cancer diseases (Gort et al., 2008). Many anoxia
regulated genes have nothing to do with metastasis formation, and metastasis genes
are regulated by a variety of other processes too (copy number alterations, muta-
tions). However, in the search for genes associated with metastasis, it should be
of help to know how strongly they are associated with anoxia. Hence we used
η j(z) = log(z j), where z j is the number of articles associating gene j with anoxia
reported by Pubgene. Genes never linked to anoxia in the literature were given a
small positive value of z j, smaller than the smallest positive count. The logarithm
was used to reduce extreme effects of some very large values of z j. We normalized
all η j to values 0 < η j ≤ 1.

4.2.1 Results

The results are summarized in Figure 4. We found optimal values (q̂, λ̂) = (4.750,

0.080), leading to 8 selected genes for the weighted lasso. For the lasso, λ̂ = 2.484
and 15 genes were selected. Again the adaptive lasso discarded all of these. In
Figure 5 the transformed η j values are plotted for each gene in the analysis with the
two gene lists highlighted.
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Figure 4: Cross-validation results for Example 2: Head and neck cancer data. The
optimal value of q is marked by the red star. (a) Optimal λ values for various
q. (b) Cross-validation curve as function of q, with optimal values λ∗q inserted
for λ . (c) Number of nonzero estimated regression coefficients for various q and
corresponding optimal λ .

We did a biological validation of the resulting gene lists, comparing them
with previous findings of association between genes and metastasis, as reported in
the literature, see Tables 1 and 2. Both gene lists include genes that had previously
been associated with metastasis and the signs of the estimated regression coeffi-
cients were in correspondence with previous findings. For the lasso analysis, how-
ever, more genes that have not been reported before as associated with metastasis
were selected; 8 out of 15 for lasso, versus 2 out of 8 for weighted lasso. Although
some of the unknown genes may play a role in metastasis development, the number
of false positives might be higher in the lasso analysis. Lasso tends to select only
one variable from groups of highly correlated variables (Zou and Hastie, 2005),
while the external weighting is accommodating this by including relevant external
information in the selection. The gene list we obtain with the weighted lasso should
be viewed as a list of genes explaining the chance of metastasis, where the selection
is guided by information on previously found associations with anoxia. Here all
but two genes have previously been related to metastasis, which supports that the
weights might have helped select more relevant genes.
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Table 1: List of the 8 genes selected by the weighted lasso. The last column indi-
cates whether the selected genes have previously been associated with metastasis.
Genes marked “-” are unknown in relation with metastasis.

Gene symbol Pubgene β̂ j λ̂ j Biological validation
1 CD40 17 -0.208 2.086 -
2 FOS 60 0.049 0.527 Montell (2005)
3 IFNG 28 0.238 1.150 -
4 REN 143 0.927 0.249 Ino et al. (2006)
5 SERPINE1 23 0.004 1.441 Speleman et al. (2007)
6 MMP2 44 3.125 0.712 Danilewicz et al. (2003)
7 F3 30 1.332 1.065 Kasthuri et al. (2009)
8 HIF1A 598 0.190 0.090 Xueguan et al. (2008)

Table 2: List of the 15 genes selected by the standard lasso. The last column indi-
cates whether the selected genes have previously been associated with metastasis.
Genes marked “-” are unknown in relation with metastasis.

Gene symbol Pubgene β̂ j Biological validation
1 TCAP 0 -0.106 -
2 CXCL10 0 -0.063 Jiang et al. (2009)
3 COL6A3 0 0.179 Sherman-Baust et al. (2003)
4 GFRA1 0 0.624 Iwahashi et al. (2002)
5 ZNF852 0 -0.462 -
6 HDAC5 1 0.065 Krivoruchko and Storey (2010)
7 RWDD2B 0 0.144 -
8 MYBPH 0 0.079 -
9 FN1 1 0.114 Wong et al. (2009)

10 LLGL2 0 -0.757 -
11 SPARC 1 0.690 Wong et al. (2009)
12 XKR8 0 0.238 -
13 BMPR1A 1 0.002 -
14 HNRNPL 1 0.140 -
15 TGFBI 0 0.810 Joshi and Cao (2010)
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Figure 5: Plot of η j for each gene j in Example 2. The genes selected by the lasso
are marked in green, whereas the genes selected by the weighted lasso are marked
in red.

5 Simulation Study

To assess the overall performance of our weighted lasso, and to compare it to the
lasso and the adaptive lasso in settings where p > n, we present several simula-
tion studies. The simulation experiments are designed to mimic real data situa-
tions similar to that of weighting scheme W1 in the cervix cancer example, where
gene expressions correlated with their corresponding copy number were favored
in the penalization. Covariates and external information (x j,z j) were generated as
detailed below. The response variables were simulated from y = Xβ + ε , where
ε ∼ Nn(0,σ2I). The Spearman correlation coefficient was used to determine the
weights and the vector of regression coefficients β was chosen in several ways,
creating different degrees of sensible weighting to be spelled out below. We ran
two-dimensional 10-fold cross-validation to find the best combination of penalty
parameters λ and q for the weighted lasso, as described in Section 3. The penalty
parameter λ ′ for the standard lasso was found through 10-fold cross-validation.
To save computational costs we used the implementation of Kramer et al. (2009),
which recalculates the adaptive weights within each cross-validation fold for the
adaptive lasso.
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5.1 Simulation 1

Covariates and external information (x j,z j) were simulated from a bivariate stan-
dard normal distribution with correlation ρ = 0.8 for j = 1, ...,10, forming a group
of 10 covariates x j highly correlated with the external information z j. For j =
11, ..., p, x j and z j were drawn from uncorrelated standard normal distributions.
The sample size n = 50 was kept fixed, whereas p was 100,1000 and 10000, giving
various degrees of sparsity. Two noise levels were considered; σ = 1 and σ = 5.

By choosing the true regression coefficients in various ways, five settings A-
E were designed to account for scenarios where the weights are in correspondence
with the true model to different degrees.

Setting A In the first scenario the true model has regression coefficients
(β1, ...,β12) = (−2,−2,−2,−2,−2,2,2,2,2,2,0,0) and (β13, ...,βp) = 0. This cor-
responds to situations where our assumption is correct; the ten covariates x j ex-
plaining the response are those which are highly correlated with z j. We expect the
weighted lasso to do well when we use the Spearman correlation coefficients to
determine the weights.

Setting B Next we consider the same scenario as in Setting A but exclude two
variables correlated with z j from the model, (β1, ...,β12) = (−2,−2,−2,−2,2,2,2,
2,0,0,0,0) and (β13, ...βp) = 0. Hence two variables that are not supposed to be in
the model, have favorable weights. We show that variables which are not related to
the response are not included just because of favorable weights.

Setting C It is of interest to select variables that are important for the response,
without having as favorable weights as some of the other important variables. We
let (β1, ...,β12) = (−2,−2,−2,−2,−2,2,2,2,2,2,5,−5) and (β13, ...βp) = 0. Re-
member that only the ten first covariates are simulated to have favorable weights,
thus two of the covariates which are not designed to have advantages through the
weighting scheme are set to have nonzero regression coefficients.

Setting D We combine scenario B and C, and let (β1, ...,β12) = (−2,−2,−2,−2,
2,2,2,2,0,0,5,−5) and (β13, ...βp) = 0. This reflects the situation where both vari-
ables not influencing the response are given a small penalty, and variables influenc-
ing the response are given a large penalty.

Setting E In the last scenario the variables given a favorable weight are not associ-
ated with the outcome. This scenario illustrates the effect of applying the weighted
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lasso when the information we include is completely useless. (β1, ...,β10) = 0,
(β11, ...,β20) = (−2,−2,−2,−2,−2,2,2,2,2,2) and (β21, ...,βp) = 0.

100 pairs of training and test sets were generated to evaluate the performance.
Variable selection was assessed by sensitivity and specificity. The prediction mean
squared error, PMSE = n−1∑n

i=1(yi−yi)2, where ŷi is the fitted value of the training
data, and yi is the response value in the test data, was also evaluated.

5.2 Simulation 2

Covariates x j and external information z j of the cervix cancer data were used di-
rectly as covariates and for computation of weights to account for a more com-
plex dependence structure between the covariates by conserving the dependencies
among the variables from the data. The Spearman correlation coefficients r were
used to define two groups;

• Group 1: Gene expression highly correlated with copy number (r > 0.5, 71
genes),

• Group 2: Gene expression less correlated with copy number, (r ≤ 0.5, 7683
genes).

In each simulation we draw pact = 10 variables x1, ...,x10 from either Group
1 or Group 2 to constitute the variables with nonzero regression coefficients as
follows.

(β1, ...,β10) = βact = (−2,−2,−2,−2,−2,2,2,2,2,2)
(β11, ...,βp) = 0

The rest of the covariates were included in different manners, leading to different
scenarioes A′,B′ and E ′ comparable to A,B and E of Simulation 1. 100 simulated
data sets were generated with σ = 1 and 5 as in Simulation 1.

Setting A’ x1, ...,x10 were randomly drawn from Group 1 to form the active set
(the true model). All genes in Group 2 were included as covariates, whereas the
rest of Group 1 was kept out of the analysis. This corresponds to a scenario where
the weights are well designed and less penalization are given to the active set as in
Setting A of Simulation 1. We fit a model with p = 7693 covariates.
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Setting B’ x1, ...,x10 were randomly drawn from Group 1 to form the active set
(the true model). The rest of Group 1 was also included as covariates, along with
all genes in Group 2. This corresponds to a setting where the weights are partly
informative, as in Setting B of Simulation 1. Some of the covariates included in the
analysis will be penalized less, even if they are not a part of the true model. Here
the total number of covariates is p = 7754.

Setting E’ x1, ...,x10 were randomly drawn from Group 2 to form the active set
(the true model). The rest of Group 2 was included as covariates, as well as 10
random variables from Group 1. This corresponds to a setting where the weights are
nonsense; the 10 covariates from Group 1 are subject to less penalization compared
to the active set which are subject to a larger amount of penalization. We fit a model
with p = 7693 covariates.

5.3 Results

Variable Selection The results for variable selection are summarized in Figure
6, 7 and 8 and Supplementary Tables 1, 2 and 3 in the Supplementary material.
The sensitivity and specificity are reported in the bar charts of Figure 6, 7 and 8.
Methods having sensitivity and specificity close to 1 will have bars close to the
ideal value of 2. Sensitivity measures the proportion of the true positive set, that is
actually selected. Overall, the weighted lasso does much better in selecting the right
variables, than both the lasso and the adaptive lasso. In situations B-D, where the
weighting is not perfectly designed as in A, the weighted lasso still performs at least
as well as the two other methods in terms of sensitivity. Standard deviations given in
Supplementary Tables 1,2 and 3 are similar, almost always smaller for the weighted
lasso than for the lasso. In situation E the results are comparable with the lasso with
little price paid by introducing weights based on contradictory information.

In Simulation 1 we can study the effect when the number of covariates in-
creases. Even if the lasso selects more covariates than the weighted lasso, sensitivity
is decreasing for the lasso, while staying close to one for the weighted lasso. We
observe a remarkable improvement for the weighted lasso compared to both the
other methods for higher dimensions (p = 1000 and p = 10000), see Figure 6 and
7. It seems that the lasso overfits the training data, while the weighted lasso con-
structs more robust estimates and is able to select the right variables even when p
is large. In the adaptive lasso, we see that the lasso used in the first step forces the
right variables out, leaving no possibilities to adaption, see Benner et al. (2010).
The same tendencies are seen in Simulation 2. Specificity measures the proportion
of the true null set that is not selected, and is always high due to the sparse design of
the simulations. Note that as p grows, the size of the active set remains unchanged.
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p = 100
#β �= 0 WL Lasso AL

A 10 13.6 36.6 10.5
(6.4) (7.2) (1.1)

B 8 12.8 32.2 8.2
(6.4) (7.2) (0.5)

C 12 34.6 40.0 12.0
(7.5) (5.9) (2.1)

D 10 31.6 36.7 10.0
(8.0) (6.7) (0.9)

E 10 35.4 35.4 10.4
(7.2) (7.2) (1.3)
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p = 1000
#β �= 0 WL Lasso AL

A 10 15.1 27.6 6.6
(8.2) (16.6) (6.3)

B 8 13.8 32.2 7.0
(6.9) (14.9) (4.8)

C 12 27.8 29.0 6.9
(13.2) (14.1) (5.2)

D 10 32.9 32.5 7.3
(12.2) (11.9) (4.0)

E 10 25.5 24.8 7.1
(15.0) (15.2) (6.5)
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p = 10000
#β �= 0 WL Lasso AL

A 10 15.3 12.6 1.7
(8.6) (15.8) (3.6)

B 8 15.6 16.4 2.0
(10.7) (17.3) (3.9)

C 12 23.3 18.9 4.5
(13.6) (15.3) (4.5)

D 10 24.4 23.5 3.9
(14.7) (16.3) (3.7)

E 10 18.1 13.9 2.0
(15.5) (15.6) (3.8)
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Figure 6: Simulation 1, σ = 1: Comparison of the weighted lasso, the standard
lasso and the adaptive lasso. To the left, the average number of selected variables,
β̂ �= 0, is reported for each of the three methods, with standard deviations given in
parentheses. To the right, sensitivity and specificity are reported as stacked bars for
the different scenarioes A-E. The dark colors (on top) represent the sensitivity and
the lighter colors (lower part of bars) the specificity. The reported measures are the
means over the 100 simulated data sets.
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p = 100
#β �= 0 WL Lasso AL

A 10 14.3 21.2 5.9
(7.5) (13.1) (5.4)

B 8 13.5 17.9 5.2
(8.4) (12.9) (5.3)

C 12 25.1 26.4 8.5
(10.0) (12.3) (5.6)

D 10 24.4 25.3 8.4
(9.7) (9.8) (5.9)

E 10 22.6 22.9 7.4
(14.4) (14.2) (6.4)
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p = 1000
#β �= 0 WL Lasso AL

A 10 18.3 12.4 2.6
(11.3) (15.6) (4.7)

B 8 15.2 13.5 2.5
(10.7) (14.7) (4.0)

C 12 24.1 21.2 4.8
(13.1) (15.9) (5.2)

D 10 23.6 20.2 5.4
(14.4) (13.8) (4.8)

E 10 18.6 15.2 2.6
(15.5) (15.7) (4.4)
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p = 10000
#β �= 0 WL Lasso AL

A 10 16.4 13.3 2.1
(9.4) (16.9) (4.6)

B 8 19.4 10.1 2.1
(13.2) (13.6) (4.7)

C 12 20.9 17.8 3.2
(14.1) (17.5) (4.0)

D 10 20.1 15.1 3.0
(14.1) (16.2) (4.1)

E 10 19.3 12.0 1.4
(17.2) (16.0) (3.2)
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Figure 7: Simulation 1, σ = 5: Comparison of the weighted lasso, the standard
lasso and the adaptive lasso. To the left, the average number of selected variables,
β̂ �= 0, is reported for each of the three methods, with standard deviations given in
parentheses. To the right, sensitivity and specificity are reported as stacked bars for
the different scenarioes A-E. The dark colors (on top) represent the sensitivity and
the lighter colors (lower part of bars) the specificity. The reported measures are the
means over the 100 simulated data sets.
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σ = 1

#β �= 0 WL Lasso AL
A’ 10 25.3 57.2 8.4

(10.8) (21.2) (3.4)
B’ 10 40.0 53.2 8.3

(12.8) (25.9) (3.7)
E’ 10 55.1 52.9 7.2

(20.6) (22.7) (3.0)
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A’ 10 18.3 31.4 1.4

(14.7) (10.6) (3.0)
B’ 10 18.5 32.6 1.7

(17.1) (10.7) (3.5)
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Figure 8: Simulation 2: Comparison of the weighted lasso, the standard lasso and
the adaptive lasso. To the left, the average number of selected variables, β̂ �= 0,
is reported for each of the three methods, with standard deviations given in paren-
theses. To the right, sensitivity and specificity are reported as stacked bars for the
different scenarioes A’, B’ and E’. The dark colors (on top) represent the sensitivity
and the lighter colors (lower part of bars) the specificity. The reported measures are
the means over the 100 simulated data sets.
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All three methods, in both simulations, have more problems finding the cor-
rect variables when noise increases. The weighted lasso, however, does much better
than the lasso. Although the lasso now sometimes selects fewer variables than the
weighted lasso, it tends to select the wrong ones. It is similar for the adaptive lasso.

Prediction Performance We investigated the prediction performance in Simula-
tion 1 (for Simulation 2 we do not have test data); the results are given in terms
of prediction mean squared error (PMSE) in Table 3. In situation A and B, where
the weights are informative, the weighted lasso is clearly better than both the lasso
and the adaptive lasso in terms of PMSE. For A and B the PMSE ratios are far be-
low 1 in 23 out of 24 cases, as high-lighted in Table 3. We are here able to select
the correct variables and estimate their coefficients more accurately leading to very
good predictions. Note that when p increases, the effect of the external weighting
improves even more upon the prediction performance and the weighted lasso per-
forms remarkably much better than both other methods in situation A and B. For
σ = 1 and p = 100 we see that also the adaptive lasso predicts the response quite
well for situation A and B. As we saw for variable selection, the weighted lasso
is able to select all the relevant variables, while the adaptive lasso exludes some
of them. However, it seems that the adaptive lasso is able to explain the response
based on its selected variables quite well, even if not all of the nonzero coefficients
are found.

When the noise increases the prediction performance of the weighted lasso
is always better or comparable with the two others, and fairly stable across different
values of p.

In situations where the external information is not reasonable, the weighted
lasso is more similar to both the lasso and the adaptive lasso. Actually q = 0 was
selected for several of the replications in situation C, D and E; when the external
weights are not informative, the standard lasso is selected.

Bias Reduction It is also interesting to compare the values of the estimated re-
gression coefficients to comment on the bias. The lasso is known to overshrink
the final coefficients (James and Radchenko, 2009). Several methods help reduc-
ing this bias, for example the elastic net (Zou and Hastie, 2005), the adaptive lasso
(Zou, 2006), the relaxed lasso (Meinshausen, 2007) and SIS (Fan and Lv, 2008).
Our approach also produce remarkably less biased estimates than the lasso. This
is illustrated in Figure 9, where the first 15 regression coefficients are plotted for
Simulation 1 with p = 1000: the standard lasso estimates become biased towards
zero as a consequence of overshrinking. When different amounts of penalization
are imposed on the coefficients in the weighted lasso, the estimates are less biased,
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Table 3: Simulation 1: Comparison of the prediction performance for the weighted lasso,
the standard lasso and the adaptive lasso.The reported measures are the means over the 100
simulated data sets, standard deviations given in parentheses. WL/L and W L/AL are the
means of the ratio of PMSE for the weighted lasso and the two other methods respectively.

σ = 1, p = 100 σ = 5, p = 100
PMSEWL PMSEL PMSEAL WL/L W L/AL PMSEWL PMSEL PMSEAL W L/L WL/AL

A 1.48 3.93 2.33 0.38 0.64 38.12 56.40 58.64 0.68 0.65
(0.41) (3.14) (3.66) (15.33) (14.70) (14.73)

B 1.39 2.44 1.38 0.57 1.01 36.32 52.03 54.16 0.70 0.67
(0.37) (0.94) (0.36) (11.93) (13.94) (13.56)

C 3.18 5.56 8.33 0.57 0.38 63.65 68.18 68.22 0.93 0.93
(1.69) (4.56) (11.44) (28.37) (20.25) (20.95)

D 2.76 4.38 3.64 0.63 0.76 59.35 59.72 61.47 0.99 0.97
(1.40) (4.49) (5.33) (38.01) (15.75) (17.64)

E 4.31 4.29 2.64 1.04 1.63 59.00 56.78 59.11 1.04 1.00
(4.78) (4.78) (4.45) (17.31) (14.94) (15.01)

σ = 1, p = 1000 σ = 5, p = 1000
PMSEWL PMSEL PMSEAL WL/L W L/AL PMSEWL PMSEL PMSEAL W L/L WL/AL

A 1.45 34.17 36.26 0.04 0.04 37.51 66.60 67.43 0.56 0.56
(0.40) (12.60) (13.47) (9.92) (13.97) (13.75)

B 1.42 20.58 20.54 0.07 0.07 37.97 58.17 60.06 0.65 0.63
(0.44) (11.24) (14.41) (11.72) (12.42) (13.40)

C 47.45 55.60 52.37 0.85 0.91 90.20 97.54 95.42 0.93 0.95
(25.10) (15.63) (16.70) (25.50) (27.35) (28.74)

D 35.19 40.87 34.96 0.86 1.01 86.59 85.96 83.80 1.01 1.03
(23.98) (16.18) (15.04) (25.70) (23.73) (27.12)

E 34.71 33.52 35.00 1.04 0.99 72.93 68.21 69.41 1.07 1.05
(11.05) (9.87) (11.04) (21.54) (15.40) (15.23)

σ = 1, p = 10000 σ = 5, p = 10000
PMSEWL PMSEL PMSEAL WL/L W L/AL PMSEWL PMSEL PMSEAL W L/L WL/AL

A 1.47 41.93 42.53 0.04 0.03 36.64 66.68 68.78 0.55 0.53
(0.44) (8.09) (8.70) (11.22) (14.18) (16.36)

B 1.43 32.98 34.05 0.04 0.04 38.83 57.97 59.11 0.67 0.66
(0.45) (6.92) (7.54) (11.41) (11.89) (13.94)

C 72.66 76.32 70.40 0.95 1.03 112.74 113.72 111.58 0.99 1.01
(19.36) (19.68) (24.63) (28.24) (23.22) (25.88)

D 61.84 65.87 56.18 0.94 1.10 97.44 99.52 101.02 0.98 0.97
(28.30) (22.00) (22.91) (25.75) (22.94) (28.37)

E 45.21 41.87 43.78 1.08 1.03 72.82 67.15 67.99 1.08 1.07
(11.70) (7.87) (9.56) (19.21) (15.63) (17.93)

since the weighted lasso penalizes less on the nonzero regression coefficients. In
setting A and B, the estimates of the weighted lasso are perfectly centered around
the true value, whereas the lasso estimates are strongly biased toward zero. In set-
ting C and D the estimates of the weighted lasso and the lasso are more similar. This
is probably because the lasso is a special case of our weighted lasso (q = 0) and is
in fact selected in some replications if the weighting is not informative. This is
also clearly apparent in Setting E corresponding to the situation where the weights
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are not informative. The bias of the estimates for the regression coefficients in the
active set (β̂11, ..., β̂20) are very similar to the lasso.

We also see that if the weights in the weighted lasso are informative, as in
Setting A and B, the estimates are clearly less biased than estimates of the adaptive
lasso. The adaptive lasso is constructed to reduce the bias for large coefficients
(Zou, 2006). We see this in setting C and D, where the adaptive lasso gives less
biased estimates for the two large coefficients, than the other two methods. Overall
in setting C and D, that is, for all of the variables in the active set, the weighted
lasso does better in reducing the bias. As discussed, in setting E the weighted
lasso performs similarly to the lasso. Hence the adaptive lasso is slightly better in
estimating the nonzero true coefficients when our weights are nonsense.

6 Discussion

We have proposed a method for weighted penalization with data integration. Vari-
ables that are important due to external information are promoted in the analysis.
We have focused on the lasso, but the idea of incorporating external information in
the penalties can of course be used with any other type of penalty.

The proposed approach is general and does not require the specific choice of
weight function (2). Problem specific weight functions with alternative shapes can
be designed for example inspired by Green (1990). For more flexibility in the shape
of weights, one could introduce a second tuning parameter in the weight function,
at the cost of having one more dimension in the cross-validation.

From a Bayesian perspective, introducing λ j instead of a common λ in
a lasso regression model corresponds to a Bayesian regression approach where
Laplace priors with unequal variances are assumed for the regression coefficients.
The external information thus determines the variance of the prior distributions of
the regression coefficients.

Depending on what kind of additional information is included in the anal-
ysis, there are different interpretations of the resulting selected variables. In the
cervix cancer example we had both expression and copy number data for each gene
for the same patients. We used two biologically justified weights based on gene
copy numbers to guide the analysis. Not surprisingly the genes selected in each
analysis differ, as different aspects of copy number alterations are exploited. In one
case, the analysis favored genes with high correlation between expression and copy
number, in the second case, genes whose copy number explains survival. Both lists
were confirmed by validation, and can include possible driving forces for cancer
progression. Integrating data through weighting can provide stronger predictors, in
the search for new biomarkers.
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Figure 9: Plot of regression coefficients, weighted lasso (◦), the lasso (×) and the
adaptive lasso () for the situation with p = 1000 and σ = 1. The true values are
marked as horizontal lines. In Situation A and B the weighted lasso gives clearly
less biased estimates than both the lasso and the adaptive lasso.
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In other situations, one might want to incorporate external information that
is not a part of the specific data at hand. The head and neck cancer example is of this
type, where literature information is included in the weights. Including information
of this type could lead to more stable results because the penalization is based on
information from previous studies, and thus suppress the effects of random artifacts
in the data at hand. On the other side, new discoveries would be penalized. Using
literature annotations as external information and defining weights appropriately
can also be used to tilt the search for relevant associations away from known factors,
thus encouraging new discoveries.
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1 Results of Simulation Study

The details of the results of Simulation 1 are given in Supplementary Table S1 and
S2 for σ = 1 and σ = 5 respectively. Supplementary Table S3 reports the results
of Simulation 2.
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Supplementary Table S1.

Table 1: Simulation 1: Comparison of the weighted lasso, the standard lasso and
the adaptive lasso. Sensitivity and specificity are reported for variable selection.
The reported measures are the means over the 100 simulated data sets, with stan-
dard deviations given in parentheses.

σ = 1, p= 100
The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A 10 13.6 0.960 1.000 36.6 0.705 0.999 10.5 0.994 0.893

(6.4) (0.071) (0.000) (7.2) (0.081) (0.010) (1.1) (0.016) (0.041)
B 8 12.8 0.947 1.000 32.2 0.737 1.000 8.2 0.998 0.876

(6.4) (0.070) (0.000) (7.2) (0.079) (0.000) (0.5) (0.005) (0.013)
C 12 34.6 0.743 1.000 40.0 0.681 0.994 12.0 0.991 0.861

(7.5) (0.085) (0.000) (5.9) (0.066) (0.030) (2.1) (0.020) (0.139)
D 10 31.6 0.759 1.000 36.7 0.703 0.997 10.0 0.986 0.782

(8.0) (0.089) (0.000) (6.7) (0.074) (0.022) (0.9) (0.007) (0.074)
E 10 35.4 0.717 0.990 35.4 0.717 0.990 10.4 0.983 0.889

(7.2) (0.078) (0.059) (7.2) (0.078) (0.059) (1.3) (0.014) (0.072)
σ = 1, p= 1000

The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A 10 15.1 0.995 1.000 27.6 0.977 0.483 6.6 0.996 0.275

(8.2) (0.008) (0.000) (16.6) (0.015) (0.297) (6.3) (0.005) (0.262)
B 8 13.8 0.994 1.000 32.2 0.973 0.689 7.0 0.997 0.469

(6.9) (0.007) (0.000) (14.9) (0.013) (0.292) (4.8) (0.004) (0.328)
C 12 27.8 0.980 0.711 29.0 0.976 0.443 6.9 0.996 0.265

(13.2) (0.013) (0.235) (14.1) (0.013) (0.172) (5.2) (0.004) (0.115)
D 10 32.9 0.974 0.718 32.5 0.973 0.585 7.3 0.996 0.284

(12.2) (0.012) (0.219) (11.9) (0.011) (0.190) (4.0) (0.003) (0.176)
E 10 25.5 0.979 0.443 24.8 0.980 0.480 7.1 0.996 0.279

(15.0) (0.014) (0.273) (15.2) (0.014) (0.259) (6.5) (0.005) (0.246)
σ = 1, p= 10000

The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A 10 15.3 0.999 1.000 12.6 0.999 0.103 1.7 1.000 0.032

(8.6) (0.001) (0.000) (15.8) (0.001) (0.128) (3.6) (0.000) (0.068)
B 8 15.6 0.999 1.000 16.4 0.999 0.188 2.0 1.000 0.054

(10.7) (0.001) (0.000) (17.3) (0.002) (0.192) (3.9) (0.000) (0.102)
C 12 23.3 0.998 0.646 18.9 0.998 0.156 4.5 1.000 0.133

(13.6) (0.001) (0.239) (15.3) (0.001) (0.103) (4.5) (0.000) (0.089)
D 10 24.4 0.998 0.599 23.5 0.998 0.225 3.9 1.000 0.095

(14.7) (0.001) (0.255) (16.3) (0.002) (0.129) (3.7) (0.000) (0.074)
E 10 18.1 0.998 0.100 13.9 0.999 0.125 2.0 1.000 0.033

(15.5) (0.001) (0.119) (15.6) (0.001) (0.135) (3.8) (0.000) (0.067)
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Supplementary Table S2.

Table 2: Simulation 1: Comparison of the weighted lasso, the standard lasso and
the adaptive lasso. Sensitivity and specificity are reported for variable selection.
The reported measures are the means over the 100 simulated data sets, with stan-
dard deviations given in parentheses.

σ = 5, p= 100
The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A 10 14.3 0.948 0.963 21.2 0.832 0.610 5.9 0.972 0.313

(7.5) (0.085) (0.106) (13.1) (0.126) (0.264) (5.4) (0.039) (0.228)
B 8 13.5 0.935 0.945 17.9 0.858 0.594 5.2 0.973 0.302

(8.4) (0.091) (0.137) (12.9) (0.120) (0.314) (5.3) (0.040) (0.246)
C 12 25.1 0.831 0.852 26.4 0.796 0.705 8.5 0.963 0.411

(10.0) (0.106) (0.162) (12.3) (0.119) (0.219) (5.6) (0.041) (0.211)
D 10 24.4 0.819 0.814 25.3 0.799 0.719 8.4 0.950 0.369

(9.7) (0.103) (0.206) (9.8) (0.097) (0.200) (5.9) (0.047) (0.196)
E 10 22.6 0.815 0.598 22.9 0.815 0.630 7.4 0.957 0.358

(14.4) (0.137) (0.296) (14.2) (0.134) (0.286) (6.4) (0.049) (0.243)
σ = 5, p= 1000

The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A 10 18.3 0.991 0.974 12.4 0.989 0.157 2.6 0.998 0.051

(11.3) (0.012) (0.073) (15.6) (0.014) (0.186) (4.7) (0.004) (0.081)
B 8 15.2 0.992 0.953 13.5 0.988 0.212 2.5 0.998 0.084

(10.7) (0.011) (0.106) (14.7) (0.013) (0.214) (4.0) (0.003) (0.137)
C 12 24.1 0.983 0.628 21.2 0.982 0.247 4.8 0.997 0.145

(13.1) (0.014) (0.247) (15.9) (0.015) (0.166) (5.2) (0.004) (0.112)
D 10 23.6 0.982 0.550 20.2 0.983 0.297 5.4 0.996 0.135

(14.4) (0.014) (0.244) (13.8) (0.013) (0.164) (4.8) (0.004) (0.094)
E 10 18.6 0.983 0.176 15.2 0.987 0.182 2.6 0.998 0.056

(15.5) (0.015) (0.169) (15.7) (0.015) (0.177) (4.4) (0.004) (0.087)
σ = 5, p= 10000

The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A 10 16.4 0.999 0.976 13.3 0.999 0.045 2.1 1.000 0.012

(9.4) (0.001) (0.062) (16.9) (0.002) (0.077) (4.6) (0.000) (0.038)
B 8 19.4 0.999 0.946 10.1 0.999 0.051 2.1 1.000 0.016

(13.2) (0.001) (0.110) (13.6) (0.001) (0.097) (4.7) (0.000) (0.049)
C 12 20.9 0.999 0.593 17.8 0.998 0.099 3.2 1.000 0.077

(14.1) (0.001) (0.248) (17.5) (0.002) (0.083) (4.0) (0.000) (0.078)
D 10 20.1 0.998 0.501 15.1 0.999 0.102 3.0 1.000 0.039

(14.1) (0.001) (0.266) (16.2) (0.002) (0.095) (4.1) (0.000) (0.053)
E 10 19.3 0.998 0.037 12.0 0.999 0.038 1.4 1.000 0.010

(17.2) (0.002) (0.068) (16.0) (0.002) (0.069) (3.2) (0.000) (0.036)
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Supplementary Table S3.

Table 3: Simulation 2: Comparison of the weighted lasso, the standard lasso and
the adaptive lasso. The reported measures are the means over the 100 simulated
data sets, with standard deviations given in parentheses.

σ = 1
The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A’ 10 25.3 0.998 0.995 57.2 0.993 0.230 8.4 0.999 0.327

(10.8) (0.001) (0.022) (21.2) (0.003) (0.153) (3.4) (0.000) (0.176)
B’ 10 40.0 0.996 0.968 53.2 0.993 0.217 8.3 0.999 0.304

(12.8) (0.002) (0.057) (25.9) (0.003) (0.175) (3.7) (0.000) (0.187)
E’ 10 55.1 0.993 0.202 52.9 0.993 0.218 7.2 0.999 0.240

(20.6) (0.003) (0.139) (22.7) (0.003) (0.146) (3.0) (0.000) (0.139)

σ = 5
The weighted lasso The lasso The adaptive lasso

#β �= 0 #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit. #β̂ �= 0 Specif. Sensit.
A’ 10 18.3 0.998 0.497 31.4 0.996 0.033 1.4 1.000 0.010

(14.7) (0.002) (0.331) (10.6) (0.001) (0.057) (3.0) (0.000) (0.030)
B’ 10 18.5 0.998 0.239 32.6 0.996 0.027 1.7 1.000 0.012

(17.1) (0.002) (0.185) (10.7) (0.001) (0.047) (3.5) (0.000) (0.041)
E’ 10 21.2 0.997 0.023 32.1 0.996 0.046 2.4 1.000 0.010

(18.6) (0.002) (0.051) (9.5) (0.001) (0.063) (3.2) (0.000) (0.030)
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