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Abstract

To demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via
next-generation sequencing, potentially important functional members associated with specific health outcomes
and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome
datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative
agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other.
Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-
level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the
same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional
group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria
that show consistent co-abundant behavior and likely to work together to contribute to the same ecological
function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and
sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively
contribute to human health and diseases.
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Background
In the past decade, high-throughput sequencing has rev-
olutionized microbiome research, leading to an explosive
growth of studies on the associations between gut
microbiome and human diseases. These microbiome
studies have linked changes in the human gut micro-
biome with many disease outcomes, including obesity,
type 2 diabetes, liver diseases, various forms of cancer,
allergies, and neurodegenerative diseases [1, 2]. However,
in most cases, there is still a need to identify key gut mi-
crobial members and demonstrate their causative role in

the etiology and progression of a specific disease
phenotype.
Microbiome-wide association studies, powered by

next-generation sequencing, have the goal of identifying
candidate bacteria that may alleviate, induce, or aggra-
vate a disease phenotype. These putative causative
agents can be isolated into either a pure culture or a
consortium with defined membership and then inocu-
lated into germ-free animals to reproduce the disease
phenotype. In these gnotobiotic models for human dis-
eases, one can elucidate the molecular crosstalk between
the colonizing bacteria and host to establish the molecu-
lar chain of causation between specific gut bacteria and
human disease endpoints. Such bacteria and their ef-
fector molecules can become biomarkers and targets for
diagnosis, prediction, treatment, and prevention of rele-
vant diseases. Thus, identifying bacterial candidates asso-
ciated with specific health outcomes and disease
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phenotypes is the first step for demonstrating the causa-
tive role of gut microbiome in human diseases.
However, due to the complexity and diversity of hu-

man gut microbiota, microbiome datasets are highly di-
mensional, low rank, and highly sparse in nature,
making it very challenging to identify putative causative
agents of a particular disease phenotype. High dimen-
sionality and low rank refer to a large number of vari-
ables for a smaller number of samples. While in a highly
sparse dataset, many variables are zeros in most samples.
These two characteristics of microbiome dataset are pri-
marily a consequence of the high strain-level diversity of
the human microbiome. Strains refer to populations that
are the non-dividable and basic building blocks in mi-
crobial ecosystems, often recognized by isolation or se-
quencing [3]. The human gut microbiota has been
shown to have an exceedingly high strain-level diversity
among individuals. For instance, based on the 1590 gut
metagenomic samples from nine human-associated data-
sets, Truong et al. [4] found that, on average, only
35.31% species were shared between two unrelated indi-
viduals. Even among individuals whose guts were colo-
nized by the same species, only 3.67% of the strains were
common [4].
When the dimension of a highly sparse microbiome

dataset increases, it becomes substantially more difficult
to identify patterns relevant to specific health outcomes
and disease phenotypes. At present, two customary ap-
proaches, a taxon-based method and a gene-centric
method, are frequently used to reduce the dimensional-
ity and sparsity of a microbiome dataset. While the
current popular methods effectively reduce data dimen-
sionality and sparsity, they often heavily depend on prior
knowledge and aggregate bacterial members into func-
tionally heterogeneous groups, thus often leading to con-
troversial results. Here we propose a more ecologically
relevant aggregation method that collapses individual
microbiome members into ecological functional units,
namely “guilds,” providing a more ecologically sound ap-
proach for the search of putative causative agents to hu-
man disease phenotypes in the gut microbiota.

Microbiome analysis pitfalls in taxon-based analysis
Currently, a common strategy for reducing dimensional-
ity is to collapse bacterial strains based on nearest neigh-
bor taxonomy [5, 6], which assigns a microbiome
sequence to a taxon if the sequence’s similarity to a
known bacterium passes a certain threshold. The higher
the taxon level bacteria are collapsed into, the lower di-
mensionality and sparsity one can achieve. Such analysis
has been commonly used in microbiome-wide associ-
ation studies [7–10], in which sequences representing in-
dividual microbial populations are collapsed into
different taxonomic levels from “species,” “genus,”

“family,” all the way up to “phylum.” However, correlat-
ing these taxa with disease phenotypes to derive micro-
biome biomarkers can often lead to controversial results.
For example, in the study of gut microbiome and obes-

ity, collapsing data to “phylum” level had generated a
decade-long debate over controversial results of the rela-
tionship between obesity and the ratio of phyla Firmi-
cutes/Bacteroidetes (F/B ratio) [11, 12]. Many studies
showed that the F/B ratio was positively associated with
obesity, while other studies found no such relationship
or even an opposite trend [13–15]. Two meta-analyses
[9, 16], based on datasets from 11 studies, concluded
that there was no consistent difference in F/B ratio be-
tween non-obese and obese individuals. It became ap-
parent that while numerous differences existed at finer
resolutions between the lean and obese human gut
microbiota, these differences were not observed at
higher taxonomic levels such as phylum [16]. Even at
the lowest taxonomy level—“species” similar conflicting
findings in microbial signatures of the same disease have
been reported, e.g., the substantial controversy regarding
the abundance of Escherichia coli in the colonic mucosa
of ulcerative colitis patients [17].
One potential cause for such controversial, sometimes

spurious and misleading results from the taxon-based
analysis is the assumption that all members in the same
taxon have the same relationship with a particular dis-
ease phenotype. While in reality, bacterial strains in the
same taxonomic group have been found to vary in their
relationships with the host bio-clinical parameters, sug-
gesting that they each may have a distinct impact on
host health [18, 19]. By definition, a bacterial species is
the collection of “strains with approximately 70% or
greater DNA-DNA relatedness” [20]. For years, species
identification and classification were conducted by
DNA-DNA hybridization following this definition. When
DNA sequencing became widely available, microbiolo-
gists found that the 70% DNA-DNA hybridization value
recommended for species identification corresponded to
95% average nucleotide identity (ANI) and 69% con-
served DNA [21]. At present, species identification can
be done by genomic sequencing. Members (strains) in
the same bacterial species should have higher than 70%
genomic homology (95% ANI), roughly equivalent to
97% homology between 16S rRNA genes. This standard
means that some species could be more genetically het-
erogeneous than others and that two strains belonging
to the same bacterial species could have up to 30% dif-
ference in their genomic makeup. Due to this high gen-
etic diversity within a species, strains in the same species
can show contrasting phenotypes, e.g., virulent or non-
virulent, positively or negatively responding to high fiber
supplementation [22]. This strain-level genetic and func-
tional diversity is critical to understanding the host-
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bacteria symbiosis in health and diseases. For example,
the variation in the capsular polysaccharide biosynthesis
loci in Bacteroides thetaiotaomicron strains contributed
to their fitness in the host gut [23], and the difference
between Bifidobacterium breve strains in their ability to
utilize carbon source is key to their adoption in the gut
ecosystem [24]. If members in a taxon have opposite as-
sociations with the same disease phenotype, lumping
them into one taxon variable will produce a null or a
spurious correlation with the disease phenotype.
Another critical limitation of taxon-based analysis is

that it often excludes novel bacteria from disease associ-
ation studies. At present, the generally used practice in
taxon-based analysis is assigning bacterial DNA se-
quence taxonomic names based on their similarity to the
nearest neighbor recorded in a reference database [5, 6].
In this practice, one will categorize all sequences that do
not meet the similarity cut-off to sequences with known
taxonomy as unclassified, and in most cases, unclassified
sequences will be left out of the subsequent taxon-based
data analysis. This practice limits analysis of microbiome
data to what is known and available in existing
databases.

Microbiome analysis pitfalls in gene-centric analysis
Compared with target region sequencing, e.g., hypervari-
able regions in the 16S rRNA gene, shotgun metage-
nomics reveals all genetic information from the gut
microbial ecosystem. It provides us with more compre-
hensive and in-depth insights into the gut microbiota in
a high-throughput manner. Due to the large amount of
genetic information of the gut microbiome and limita-
tion of the current sequencing capacity, deep sequencing
with short reads is most commonly used in metage-
nomic studies. The raw data obtained from metage-
nomic sequencing is usually composed of tens of
millions of 100–150 bp short reads per sample. The
short reads are then ordered and merged into longer
genetic fragments (contigs) using various strategies, such
as a form of de Bruijin graph based on the k-mer fre-
quency pattern of reads [25]. Recent advances in assem-
bly algorithms and related methodologies have
significantly improved the accuracy and efficiency of
metagenomic assembly [26]. Individual genes identified
via reads assembly and de novo prediction [27–29] are
the basic units with biologically relevant information for
assembly-based metagenomics. The non-redundant gut
microbial gene catalog constructed in human metage-
nomic studies typically contains millions of genes from a
few hundreds of samples, once again leading to the
problem of high dimensionality and sparsity.
To reduce data dimensionality and sparsity, one often

uses functional annotation of the predicted genes to ag-
gregate individual genes into orthology groups, modules,

and pathways incorporated in various tools [30–33] and
applied in many studies [34–36]. This type of aggrega-
tion relies on existing databases to reduce dimensional-
ity. For example, pathway analysis characterizes
microbial functions based on pathway enrichment; it re-
duces data dimensionality and sparsity via assigning mil-
lions of individual genes into hundreds of pathways in a
community-wide manner using databases such as KEGG
[37] and MetaCyc [38], and subsequently identify the
pathways that are relevant to host phenotypes. However,
due to the limitation of current reference databases and
annotation methods, many genes are annotated as un-
known function/hypothetical proteins. For instance, 54%
of the 17 million genes in KEGG cannot be annotated
with KO (KEGG Orthology) number [39], and only
41.1% are annotated on KO and 60.4% annotated on
eggNOG (evolutionary genealogy of genes: Non-
supervised Orthologous Groups) in the IGC [40], an in-
tegrated catalog of reference genes in the human gut
microbiome based on 1267 samples. Thus, analysis at
the KO or eggNOG level could exclude around half of
the genes. Overlooking these novel genes will lead to in-
complete or spurious findings on the gut microbiome’s
role in human health and diseases.
Gene-centric analysis also overlooks the important

reality that genes contributing to the same function may
come from different bacterial carriers. Thus, these genes
may show conflicting patterns of abundance change be-
cause their respective bacterial carriers may have distinct
growth trajectories within a given environment. For ex-
ample, in our study of patients with type 2 diabetes [41],
a high-fiber dietary intervention increased the gut micro-
bial community’s capacity to produce butyrate, as evi-
denced by significantly higher fecal content of butyrate
after 28 days of intervention. Associated with this in-
crease was a significant increase in the community-wide
abundance of the terminal gene but in the production
pathway of butyrate. However, among the 30 prevalent
bacterial strains that harbored the butyrate-producing
pathway, only five strains were selectively promoted by
the high-fiber diet, and these five were likely to be the
main drivers of butyrate production. This finding sug-
gests that strains possessing the same pathway may dif-
fer in their contribution to the community-wide
expression of that pathway function. Gene-centric
microbiome analysis overlooks this fact and may con-
found our understanding of gut microbiota-host
interactions.

Ecological guilds as units for microbiome data
reduction
Members of an ecosystem seldomly live independently
from each other; instead, they develop local interactions
and form inter-member organizations to influence
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higher-level patterns and functions of the ecosystem
[42]. In macro-ecology, an important form of inter-
member organization is called “guild,” a term initially
coined to represent “a group of species that exploit the
same class of environmental resources in a similar way”
[43]. Later, guilds became synonymous with “functional
groups,” and members of the same guild also encompass
those who perform similar functions within a commu-
nity [43]. In this context of “guild” definitions, members
of a guild tend to exhibit co-abundance patterns by
thriving or declining together without regard to their
taxonomic positions whenever resources become avail-
able or depleted.
Like macro-ecosystems, e.g., a rain forest [44], the hu-

man gut microbiome is a complex ecosystem, and pat-
terns and functions of a complex ecosystem emerge
from localized interactions among its individual compo-
nents and inter-member organizations [42, 45]. Group-
ing bacterial members into potential guilds and studying
individual organisms’ guild-level organization could help
us understand the gut microbiota’s structural and func-
tional relationships and highlight the individual compo-
nents that are key to system processes and functions.
We see a value in translating the concept of guild from
macro-ecology to the study of microorganisms because
guild focuses on interactions among individual members
of an ecosystem without regard to their taxonomic posi-
tions. In addition, grouping bacterial members into
guilds acknowledges the possibility of different species
possessing potential molecular mechanisms that effect-
ively “bind” them together to perform a specific func-
tional role in the gut ecosystem. An example of a
possible molecular mechanism is how one bacterium
could produce a metabolic product used by another as a
nutrient in a syntrophic relationship. Such a molecular
mechanism could lead to these bacteria consistently in-
creasing or decreasing in abundance and working to-
gether to fulfill certain metabolic functions or be more
ecologically competitive. We propose that members of
the same bacterial guild [46] are likely to work together
to exert ecological functions and show consistent co-
abundant behavior, which may be derived from exploit-
ing the same resources in a similar way or possessing
certain interactive molecular mechanisms.
The concept of guild has been used in various macro-

ecological system studies, e.g., to explore the effects of
environments on bird communities [47] or the assem-
blage of fish [48]. However, it is important to note that
the definition of guild membership is sometimes arbi-
trary in macro-ecology because it is impossible to study
all species living in an ecosystem at once, nor it is pos-
sible to monitor every member of a bird or fish commu-
nity over an extensive period to capture their co-
abundance patterns. In contrast, in the world of gut

microbiota, one could capture data on every detectable
member of the gut ecosystem, using high-throughput se-
quencing and along sizable spatial and temporal gradi-
ents, thus making it possible to statistically describe co-
abundance patterns among all detectable members. This
gives microbiome research the advantage to redefining
guilds in the context of microbial ecosystems in a data-
driven manner. The first step of partitioning potential
guilds is to analyze bacterial abundance variations quan-
titatively. Whenever abundance data of genome markers
(16S rRNA genes) or genomes are available, one could
identify potential guilds by clustering co-abundance
groups (CAGs) based on microorganisms’ co-variation
of abundance, i.e., all members of the same potential
guild (CAG) are positively correlated in the context of
abundance changes. Consequently, clustering bacterial
genomes into CAGs based on their abundance correla-
tions could be the most parsimonious first step to study
guild-level organization in microbiome research. The
second step of studying guild-level organization is to in-
vestigate the relationships between guilds and host phe-
notypes. One effective strategy is to correlate guild
abundance changes with variations of host bio-clinical
parameters. The abundance of guilds can be represented
by the sum of its members’ abundance since guild mem-
bers have a concerted response to changes in the gut en-
vironment, e.g., increased availability of carbohydrates.
Such correlation analysis can identify guilds into three
categories: positively associated (potentially pathogenic),
negatively associated (potentially beneficial), or have no
association (potentially neutral) with disease phenotypes
[46]. In this manner, guild-based analysis can potentially
recapitulate the ecological interaction network of key
members of the gut microbiota [49] and their relation-
ship with host phenotypes.
Guild-based analysis can be an ecologically relevant

aggregation method for identifying bacterial functional
groups while reducing dimensionality and sparsity in
data analysis. The concept of co-abundance group
(CAG) was first introduced to the human microbiome
field by Claesson et al. in 2012 [50]. Claesson and col-
leagues clustered correlated genera into six CAGs and
investigated the transition of the gut microbiota, com-
paring between healthy community-dwelling subjects
and frail long-term care residents. However, they clus-
tered taxonomic groups instead of unique bacterial ge-
nomes and did not explore potential relationships
between CAGs and host phenotypes. Since then, the
concept of co-abundance group or co-abundance net-
work has been applied in several dozens of microbiota
studies [51–73]. Most of these studies [51–64], including
Claesson et al. [50], first collapsed unique bacterial ge-
nomes into taxonomic units and then clustered taxo-
nomic units into CAGs. The remaining publications
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[65–73] grouped unique genomes, operational taxo-
nomic units (OTUs), or amplicon sequence variants
(ASVs) into CAGs. However, these studies [65–73] did
not treat CAGs as functional units nor directly investi-
gated potential relationships between CAGs and host
phenotypes. Though the concept of co-abundance ana-
lysis is not entirely new, our proposed strategy is differ-
ent from previous work in two important aspects. First
of all, we emphasize the importance of identifying CAGs
at the highest resolution level possible (e.g., genome or
strain in whole shotgun metagenome, OTU or ASV in
16S rRNA gene sequencing data), instead of analyzing
co-abundant relationships at genus or higher taxon
levels [50, 74]. Secondly, we treat CAGs as units with
ecological functions (guilds) and directly explore their
relationship with host phenotypes in down-stream
analyses.
In practice, we suggest choosing suitable correlation

methods based on specific dataset structures, such as the
workflow proposed by Weisis et al. [75]. How to com-
pare and select the best correlation methods for different
microbiome datasets is beyond the scope of this article.
However, in the next two sections of this opinion article,
we present two guild-based analysis examples using two
different correlation methods to demonstrate the possi-
bility of integrating various correlation methods into
guild-based analysis. Specifically, we recommend a
dichotomic and tree-based group identification method
for partitioning potential guilds without presetting the
number of groups. In brief, the correlation coefficients
between two genomes, two OTUs, or two ASVs could
then be converted into distance metrics (1- correlation
coefficient) and clustered using the Ward clustering al-
gorithm [76]. From the top of the clustering tree, per-
mutational multivariate analysis of variance (PERM
ANOVA test) is used to sequentially determine whether
any of the two clades are significantly different [50]. For
example, if the clustering tree has two big clades (A and
B) and each one has two small clades (C and D belong-
ing to A, and E and F belonging to B), PERMANOVA
will be used to test the two larger clades first. If they are
significantly different, one can test the two smaller
clades under each big clade separately. If there is no sig-
nificant difference between the smaller clades (C vs. D, E
vs. F), the clustering will stop here and conclude that
there are two potential guilds (A and B). The method we
described above only serves as one example of clustering
stop. Many conditions can be adopted to optimize the
clustering results. One essential issue to note is that a
minimum of 25 samples is needed for a robust co-
abundance network analysis in microbiota studies [49].
Based on in silico stimulation work, Berry and Widder
proposed several recommendations for applying co-
abundance network analysis in microbiota studies [49].

A larger sample size (> 25 samples) will increase sensitiv-
ity for identifying more robust co-occurrence events.
Lastly, we acknowledge that several other algorithms,
such as autoencoding neural nets [77], and algorithms
based on Singular Value Decomposition (SVD) [78],
could also be used to reduce the dimensionality. How-
ever, whether these mathematical methods reflect the
biological reality of the microbiome community remains
elusive. These methods often reconstruct the dataset
variables into new analysis features, such as encoder
layers or principal components, making it more challen-
ging to interpret the original variables (in this case, the
individual bacterial strains). And finally, various trad-
itional (e.g., model-based) and modern clustering (e.g.,
spectral graph theory based) algorithm [79] are also
worth testing for the identification of guilds in future
works.

Guild-based analysis for metagenomic datasets
We first applied the concept of guild in a clinical trial to
understand the role of gut microbiota in body weight
regulation of obese children [46]. Genetically obese chil-
dren with Prader-Willi syndrome (PWS) lost a signifi-
cant amount of weight by consuming a diet enriched
with non-digestible carbohydrates for 90 days. Fecal
samples were collected at four time points (days 0, 30,
60, and 90) to track the associated gut microbiota
changes [46] and deep metagenomic sequencing was
performed on a total of 109 time series fecal samples (in-
cluding two time point samples from a group of obese
children with no genetic cause within the same interven-
tion). 76.0 ± 18.0 million (mean ± s.d.) high-quality reads
were obtained from each sample using the Illumina
HiSeq platform. After de novo assembly with IDBA-UD
[80], gene prediction with MetaGeneMark [81], and gene
de-redundancy with CD-HIT [82], we generated a non-
redundant gut microbial gene catalog containing ~ 2
million genes. The gene abundance matrix had a sparsity
at 79% with more than 2 million dimensions (variables)
for only 109 samples.
Instead of searching the existing database for closest

neighbors, we binned non-redundant genes into draft
genomes based on the fact that the abundances of two
genes located on the same genomic DNA molecule will
highly correlate with each other across multiple samples
[83]. A total of ~ 28,000 draft genomes (including both
low-quality and high-quality ones) were binned and
identified using a “canopy-based” algorithm [83]. Among
all draft genomes, 376 had more than 700 genes and
were identified as distinct bacterial genomes [83]. We
further selected 161 genomes for subsequent analysis be-
cause they were shared by more than 20% of the samples
and considered the prevalent gut bacteria. These se-
lected genomes could be considered the predominant
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members of the gut microbiota because, together, they
accounted for more than 60% of the total metagenomic
sequences. At this point, we reduced the dataset to 161
variables with a sparsity of 52%. Then we calculated
bootstrapped Spearman correlation coefficient to deter-
mine the associations between these 161 genomes. After
converting the correlations into correlation distance, we
clustered the 161 genomes into 18 guilds using the
Ward clustering algorithm [76]. At this point, the guild
abundance matrix was further reduced to a sparsity of
16%. Here we showed that a significant reduction of
matrix dimensionality and sparsity is possible when we

moved from genes to genomes and genomes to guilds
(Fig. 1).
Our PWS study explored the relationship between

these 18 identified guilds and disease phenotypes: three
guilds showed negative correlations while nine guilds
showed positive correlations with at least one disease
phenotype. This result suggests that the former three
guilds could potentially be beneficial, while the other
nine guilds may be pathogenic and detrimental. The
remaining six guilds had no correlations with any host
disease phenotypes, indicating that they might be com-
mensals. In addition, after reducing the data

Fig. 1 The reduction of dimensionality and sparsity from raw metagenomic dataset to genes, genomes, and guilds. In our PWS example, ~ 2
million non-redundant microbial genes were predicted from the 109 metagenomes. Seventy-nine percent of values in the corresponding
abundance matrix of these genes were zeros. These non-redundant microbial genes were further binned into ~ 28,000 draft genomes based on
their abundance correlations across the 109 samples. In the corresponding abundance matrix of these draft genomes, 72% of values were zeros.
We then selected 161 prevalent bacterial genomes, each with more than 700 bacterial genes and shared by more than 20% of the samples. In
the corresponding abundance matrix of these 161 genomes, 52% of values were zeros. Eighteen guilds were identified by clustering these
prevalent bacterial genomes. In the corresponding abundance matrix of these 18 guilds, 16% values were zeros
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dimensionality, the number of variables was smaller than
the sample size, allowing us to apply conventional/clas-
sical statistical models for modeling and predictions.
Using a linear mixed-effect model trained with the day 0
and day 30 datasets, we showed that the guilds at day 60
had a predicting capacity for the anthropometric
markers at day 90 (R2 = 0.64, P = 0.0002 for body mass
index; R2 = 0.43, P = 0.0054 for hip circumference; R2 =
0.55, P = 0.0010 for waist circumference).
Interestingly, in our PWS study, none of the guilds we

identified was taxonomically homogeneous. The nine ge-
nomes in guild #13 were from four different phyla (Fir-
micutes, Proteobacteria, Bacteroidetes, and
Actinobacteria; Fig. 2a). Meanwhile, bacteria that
belonged to the same taxon (e.g., species) were assigned
to different guilds that responded differently to the inter-
vention. For example, five high-quality draft genomes of
Eubacterium eligens were found in three different guilds:

one positively responded, one negatively responded, and
the third did not respond to the high-fiber intervention
(Fig. 2b). Specifically, from day 0 to day 30, one E. eli-
gens strain dramatically increased in abundance, while
the other four showed a sharp or steady decrease
(Fig. 3a). When these strains were collapsed at the spe-
cies level, the abundance change of these five strains
would have been added together and represented by the
black line in Fig. 3b. Such a process would have over-
looked the different response patterns of these E. eligens
strains to the intervention, leading us to a spurious con-
clusion that the abundance of these E. eligens strains
consistently decreased over the course of the interven-
tion (Fig. 3b). This observation indicates that taxa are
functionally heterogenous and do not serve as a coher-
ent functional unit for correlation analysis with host
phenotypes even at the species level. This result again
echoes the limitations of taxon-based analysis,

Fig. 2 The taxonomic heterogeneity of guilds identified in the PWS study. a This stacked bar plot shows the phylum assignment of genomes
belonging to each guild. b This table presents the distribution of species across guilds. The numbers in the table represent the number of
genomes belonging to each species found in each guild. For example, 5 different genomes of the Eubacterium eligens species were found in
guild#1, guild#12, and guild#13. A blank entry means that no genome from this species was found in this guild. “Up” denotes the guilds
increased after the intervention, while “Down” indicates the guilds decreased after the intervention
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suggesting that bacterial taxa (species to phyla) are func-
tionally heterogeneous units. By contrast, guild-based
analysis groups the E. eligens strains into three guilds
and accurately captures all three types of response pat-
terns to the intervention (Fig. 3b).

Guild-based analysis for 16S rRNA gene data
Guild-based analysis is also applicable for microbiome
studies based on 16S rRNA gene sequencing. Conven-
tionally, after quality control, reads are clustered into
OTUs with 97% similarity using UPARSE [84] or other
OTU picking methods. Recent advancement in the field
is to perform denoising, which models and corrects se-
quencing amplicon errors, obtaining amplicon sequences
variants (ASVs) with single-nucleotide resolution [85].
Studies can then identify guilds based on abundance cor-
relations between OTUs/ASVs. Using a 16S rRNA gene
V4 sequencing dataset from a study on green tea poly-
phenols, we found that the gut microbiome responded
to polyphenols as guilds, and some guilds were associ-
ated with the polyphenols’ effect on lowering blood glu-
cose in db/db mice [86]. In a series of studies on calorie
restriction and gut microbiota, we applied the guild-
based analysis to the 16S rRNA gene datasets. We iden-
tified a Lactobacillus murinus-dominated guild, which
showed a positive correlation with lifespan and meta-
bolic health and demonstrated a robust capacity to alle-
viate side-effects induced by a common
chemotherapeutic agent [87–89].
In a study of patients with polycystic ovary syndrome

(PCOS), 16S rRNA gene V3-V4 sequencing revealed the
gut microbiome difference between PCOS patients and
non-obese controls [90]. Out of 567 OTUs identified in
total, 225 OTUs were shared by at least 20% of the

samples and further clustered into 23 different guilds
based on their co-abundance correlations calculated
using the SparCC approach [91]. The abundance of
these 23 guilds accounted for 95.53 ± 5.42% of the total
sequences. The abundance of nine guilds showed a sig-
nificant difference between patients and controls. When
correlated with 26 host clinical parameters, three guilds
(guilds #1, #4, and #7) showed positive correlations with
disease parameters, and five (guilds #10, #11, #12, #13,
and #18) were negatively correlated [90].
We performed taxon-based analysis at the genus level

using the same OTU profile to demonstrate the differ-
ence between guild-based and taxon-based methods.
Among the 567 OTUs, 266 OTUs were annotated into
96 genera [90]; 301 OTUs had no taxonomy annotation
and were then excluded from subsequent analysis. We
further narrowed the dataset to the 64 genera shared by
more than 20% of the samples, a cut-off that was con-
sistent with the guild-based analysis described above.
These 64 genera, corresponding to 223 OTUs,
accounted for 81.77 ± 7.5% of the total sequences. Four-
teen genera showed a significant difference between the
groups. Six genera had negative correlations with disease
phenotypes, and four had positive correlations (Fig. 4a).
In this PCOS study, the taxon-based analysis excluded

nearly 20% of raw sequencing data, an indication that a
substantial part of the sequencing data was novel and
had no close neighbor at the genus level in the reference
database. Although using a similar number of OTUs as
the taxon-based method, guild-based analysis kept novel
sequencing data intact and did not restrict the analysis
dataset to OTUs known in a reference database. Further-
more, guild-based analysis and taxon-based analysis of
this PCOS dataset showed critical differences between

Fig. 3 Guild-based aggregation overcomes the pitfall of taxon-based analysis to reflect the variations in strain-specific responses. a and b
together illustrate why guild-based aggregation method produces a more accurate representation of strain-level microbiome response to dietary
intervention in a PWS study compared with taxon-based aggregation. a shows the abundance change of the 5 Eubacterium eligens strains over
time. If taxon-based aggregation is used, all 5 Eubacterium eligens strains could be collapsed into one species-level unit and represented by the
black line in b. In contrast, using the guild-based aggregation method, the same 5 Eubacterium eligens strains are grouped into 3 different guilds
(#1, #12, and #13). Each of the colored lines in b represents the abundance change over time of one guild. Abundance change pattern of the
three guilds in b accurately captures the three types of abundance change patterns among the 5 Eubacterium eligens illustrated in a. The dots on
each line in a and b represent the mean abundance (see S.E.M in Supplementary Table 1)
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their results on the potential role of specific OTUs in
human health and disease phenotypes. First, there were
discrepancies between results on Bacteroides from these
two analysis strategies. A total of 13 prevalent OTUs
were classified as Bacteroides. In taxon-based analysis,
genus-level results showed positive correlations between
Bacteroides genus and disease phenotypes (Fig. 4a), giv-
ing the impression that all OTUs in this genus may play
a detrimental role in host health. Guild-based analysis
clustered these 13 Bacteroides OTUs into seven different
guilds. Specifically, Bacteroides OTU4 (classified into
guild#1) showed a positive correlation with disease
phenotype and were potentially detrimental, while Bac-
teroides OTU7 and Bacteroides OTU63 (both classified

into guild#18) showed a negative correlation and were
potentially beneficial (Fig. 4b). This result suggests that
the assumed positive correlations between all OTUs in
the genus Bacteroides and disease phenotypes, derived
from taxon-based analysis results, could mislead our un-
derstanding of the roles of members of Bacteroides in
PCOS. Secondly, when OTUs were collapsed at the
genus level, the genus Alistipes did not correlate with
host clinical parameters. In contrast, using guild-based
analysis, we classified all eight prevalent Alistipes OTUs
into five different guilds. Interestingly, Alistipes OTU130
was classified into guild#12, a guild that showed a nega-
tive correlation with host clinical parameters, while Alis-
tipes OTU200 was classified into guild#4, a guild that

Fig. 4 Comparing taxon-based and guild-based analysis in the PCOS study. a shows that the correlations between clinical parameters and
prevalent genera are significantly different among PCOS patients and non-obese controls. The color of spots represents R value of the Spearman
correlation between each genus and clinical parameter (+FDR < 0.05, ++FDR < 0.01, +++FDR < 0.001). b and c show the different abundance
distributions of Bacteroides genus and 3 Bacteroides OTUs or Alistipes genus and 2 Alistipes OTUs in different patient groups. Bacteroides OTU4
belonged to a guild that was positively correlated with disease phenotype, while Bacteroides OTU7 and Bacteroides OTU63 belonged to a
negatively correlated guild. Alistipes OTU200 belonged to a guild that was positively correlated with disease phenotype, and Alistipes OTU130
belonged to a guild that was negatively correlated with disease phenotype. a For leucocyte, neutrocyte, lymphocyte, and hirsutism, n = 46; for
the other parameters, n = 48. BMI, body mass index; WHR, waist hip ratio; FSH, follicular stimulating hormone; LH, luteinizing hormone; FPG,
fasting plasma glucose; PPG, 2 h postprandial plasma glucose; FINS, fasting plasma insulin; P2hINS, 2 h postprandial plasma insulin; HbA1c,
hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate transaminase; GGT, γ-glutamyltransferase; TCH, total cholesterol; TG, triglyceride;
PYY, peptide YY; SDS, self-rating depression scale; SAS, self-rating anxiety scale. b, c CN, non-obese control group (n = 9); CO, obese control group
(n = 6); PN, non-obese PCOS group (n = 12); PO, obese PCOS group (n = 21)
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was positively correlated with disease phenotypes
(Fig. 4c). This finding suggests that different members of
the same genus may affect the host in an opposite man-
ner, some (as part of a guild) are positively associated
with the disease phenotype, while others are negatively
associated. When all the OTUs are collapsed into the
same genus and used as a single variable in the analysis,
OTUs with opposite relationships with the same disease
phenotype could cancel each other out, resulting in a
genus-level result of no correlation with the disease
phenotype. Thirdly, only one OTU was annotated as
Akkermansia at the genus level in the PCOS dataset. In
the taxon-based analysis, this Akkermansia OTU80 had
significantly different abundance among the groups and
showed negative correlations with the host phenotype.
In the guild-based analysis, the Akkermansia OTU80
was clustered into a guild, which also had significantly
different abundance among the groups and showed
negative correlations with the host phenotype. In
addition to identifying Akkermansia as a potentially
beneficial bacterium to host health, guild-based analysis
revealed that Akkermansia OTU80 was co-abundant
with one Clostridium IV OTU236 and another 8 OTUs
without annotation at the genus level (unclassified
OTU318, OTU272, OTU281, OTU397, OTU303,
OTU300, OTU398, and OTU328). These findings sug-
gest that the beneficial role of this Akkermansia OTU
may require interactions with other bacteria [92]. Thus,
guild-based analysis provides a complete picture of the
ecological interactions between OTUs relevant to host
health.

Conclusions
The guild-based analysis we proposed here is a reference
database independent and ecologically meaningful way
for data aggregation that may lead to dissection of eco-
logically meaningful functional groups and identification
of putative causative members of gut microbiota to spe-
cific disease phenotypes. This strategy overcomes two
primary pitfalls of conventional taxon-based and gene-
centric approach: (1) combining bacteria or genes that
may have opposite relations with human health or dis-
eases into new spurious variables and (2) focusing on
bacteria or genes that are similar enough to those known
in existing reference databases while ignoring the un-
known and novel ones. Aggregating the microbial popu-
lations (strains) into guilds, or new variables that
consider the ecological interactions between the micro-
biota members, will facilitate pattern recognition be-
tween microbiome and host phenotype or other
metadata. It is pivotal for the microbiome research field
to build new analytical methods or use existing methods,
such as metabolic network reconstruction and modeling
[93] or reverse ecology [94–96], to understand why and

how guild members, especially those significantly corre-
lated with host phenotypes, work together. Such investi-
gation should eventually guide the isolation of bacterial
strains as a consortium (functional groups) rather than
single isolates. In mechanistic studies, these recognized
patterns and isolates can help identify key functional gut
bacteria contributing to human health and diseases
causatively [97]. Guild-based analysis may create a para-
digm shift towards an ecologically meaningful approach
for understanding the relationship between the gut
microbiome and human health.
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