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ABSTRACT 

Near-surface velocities from an acoustic doppler instrument are 

used in conjunction with CTD/Oz data to produce estimates of the abso- 

lute flow field off of Cape Hatteras. The data set consists of two 

transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in 

August 1982. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn inverse procedure is applied which makes use of both the 

acoustic doppler data and property conservation constraints. Velocity 

sections at approximately 7 3 O W  and 71OW are presented with formal errors 

of 1-2 cm/s. The net Gulf Stream transports are estimated to be 

116 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 Sv across the 'south' leg and 161 f 4 Sv across the 'north'. 

A Deep Western Boundary Current transport of 4 +. 1 Sv is also 

estimated. While these values do not necessarily represent the mean, 

they are accurate estimates of the synoptic flow field in the region. 
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1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

The determination of absolute velocity fields from hydrographic 

data leads to the familiar problem of how to reference the geostrophic 1 

I 
calculations. Historically this reference velocity problem has been 

solved by a somewhat arbitrary choice of a level of no motion. This 

assumption has been made simply out of necessity due to the scarcity of 

good direct velocity measurements. For a high velocity region such as 

the Gulf Stream, the level of no motion assumption can be an especially 

poor one. Attempts have been made to get a better estimate of the abso- 

lute velocities and transports in the Gulf Stream through the use of 

I 

I 

I 

neutrally buoyant floats (eg. Volkmann, 19621, discrete current meters 

(eg. Richardson, 1977), or shipborne transport measurements (Halkin and 

Rossby, 1985). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn inherent drawback with any of these methods is the 

relatively wide spacing of the current measurements which can lead to 

spatial aliasing. The acoustic doppler instrument used in the present 

study has the advantage of providing very dense spatial coverage of 

near-surface absolute velocities, eliminating this type of aliasing. 

An innovative approach to the reference velocity problem making use 

of linear inverse theory was introduced by Wunsch (1978). This technique 

combines pure geostrophy with simple assumptions of conservation of mass 

and other properties within a certain volume of the ocean. The geo- 

strophic inversion method offers a formal and objective technique for 

determining absolute velocities when only hydrographic and property data 

are measured: the 'pure' hydrographic inversion. It has the capability, 

however, to easily incorporate any other data (eg. velocity data) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-3- 



might be available into the inverse calculation. The problem will typ- 

ically be an underdetermined one; a principle of maximum simplicity is 

used to choose the best estimate from the range of possible solutions. 

As part of the study of warm core ring 82B off of Cape Hatteras, 

two transects were made from the Slope Water, across the Gulf Stream, and 

well into the Sargasso Sea. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO n  20-25 August 1982, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR/V Endeavor was 

used to obtain these two series of CTD/O* stations at approximately 

73"W and 71"W (fig. 1). These sections were occupied to identify the 

water mass characteristics of the 'undisturbed' regions on either side of 

ring 82B (Olson et al., 1985). Simultaneous with the collection of 

hydrographic data, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa shipborne acoustic doppler instrument measured 

absolute current velocities near the surface (Joyce, Bitterman, and 

Prada, 1982). 

This data set provides the tempting opportunity to use the acoustic 

doppler velocities as a reference for geostrophic calculations, yielding 

a complete picture of the circulation in the region. The errors in the 

velocities and transports associated with this direct method prove to be 

substantial, however. The convenient geometry of the transects allows 

transport budgeting constraints to be imposed, suggesting the use of a 

pure geostrophic inversion (Wunsch, 1978). These constraints are used in 

combination with the measured velocities to yield a more accurate 

absolute flow field. 

This combined inversion technique was first used by Joyce, Wunsch, 

and Pierce (1986) who applied it to the EN86 data set from June 1982. 

The present study closely follows this work, applying a similar inversion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-4- 



method to the EN88 data from August 1982. Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 shows the positions 

of both the EN86 and EN88 transects; they are quite similar, although the 

EN86 sections do not extend as far on the Sargasso Sea side. The 

successful use of these methods with the EN86 data set helped motivate 

.the application to the EN88 case. In both cases, the combined inversion 

technique makes use of all of the available information about the system, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

both the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACTD/02 and the acoustic doppler data, to produce the best 

possible estimate of the circulation in the region. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADescription of Data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A brief discussion of the operation of the acoustic doppler instru- 

ment is provided here; a full description of the system is given by Joyce 

et al. (1982). From the Ametek-Straza transducer mounted in the hull of 

the ship, a 300 kHz acoustic pulse is emitted every 1.2 seconds in four 

beams oriented fore, aft, port, and starboard, all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30" from vertical. 

The reflected signal is then received in a frequency-locked loop in 31 

time intervals of 10 msec each. These intervals correspond to vertical 

depth averaging bins of 6.4 m thickness in the water column. From the 

doppler frequency shifts along the axes of each of the four beams, we can 

solve for the horizontal velocity components at each depth bin. The 

noise level inherent within the instrument yields a resolution of about 

21 cm/s for each raw doppler velocity. 

An averaging interval of 10 minutes is chosen to reduce the pres- 

ence of ship roll or heave in the raw velocity data. Each 10 minute 

value is the vector average of every 'good' velocity measured within that 

interval, where the return signal strength was above a certain thres- 

hold. While the nominal depth to which the acoustic signal penetrates is 

150 m, the percentage of good data drops off rapidly below about 100 m. 

The data return also varies with the amount of scatterers (eg. plankton, 

temperature microstructure) present in the water column. 

The shipborne doppler data must be added to an accurate ship veloc- 

ity to yield absolute velocities relative to the earth. Ship velocity is 

found by differencing two positions separated in time, which depends upon 

precise navigation. The Northstar 6000 Loran receiver used is found to 
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have a noise level of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20.1 psec or 230 m in ship location. Over 

the ten minute averaging time, this translates to a ship speed uncer- 

tainty of 210 cm/s. Another source of error arises from the possible 

misalignment of the transducer mounting with the axis of the ship's gyro 

compass. If the ship is moving forward at a speed U, a small error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA68 

in the transducer angle will generate an apparent velocity perpendicular 

to the ship's path of size Usin68. This error ought to be systematic 

in nature once the instrument has been mounted in the ship; the offset 

will be either to the right or the left of the ship track. An angular 

error of 0.3' might be expected in the alignment. For a typical ship 

speed of 5 m/s, this produces an offset error of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.6 cm/s in the athwart- 

ship velocity. A systematic error of approximately this size might 

therefore be expected. 

The data set from Endeavor cruise EN88 consists of two sections of 

CTD/O* casts as well as the continuously measured 10 minute blocks of 

acoustic doppler velocities. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACTD data set was collected with an NBIS 

instrument and processed by the WHO1 CTD group. Acoustic doppler velo- 

cities from four depth bins between 60 m and 99 m were ultimately used in 

the reference velocity calculation. Data from depths shallower than this 

might be affected by the ageostrophic surface mixed layer, while below 

100 m the quality of the data drops off sharply in most cases. Figure 1 

shows some representative velocity vectors from the 60 m depth. Between 

each CTD station pair, the components of the vectors perpendicular to the 

station pair are averaged to yield a single normal velocity at a certain 

depth. These velocities are then integrated via the thermal wind to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I 

common depth, 100 db, and a vertical average weighted by the data return 

at each depth is performed. The resulting velocity picture is referenced 

by data at four different depths depending on how much data was available 

at each depth. As noted above, navigational uncertainty results in an 

estimated error of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA210 cm/s for each 10 minute doppler velocity. 

Between 10 and 15 of these go into the horizontal averaging to yield a 

single velocity between each station pair, reducing this presumably 

random error to approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 cm/s. This is the predicted noise 

level in the acoustic reference velocity for each station pair. 

Throughout the discussion the section consisting of stations 47-56 

will be known as the 'south' section and stations 56-71 as the 'north' 

section (fig. 1). Plots of potential temperature, salinity, oxygen, and 

potential density referenced to the surface appear in figs. 3 (south) and 

4 (north). The Gulf Stream region is clearly identified by the strongly 

sloping isolines of all of the properties. The surface temperatures 

greater than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26OC and sub-surface salinity maximum (greater than 

36.6 ppt) are both typical of the Gulf Stream at this time of year. In 

the Slope Water region to the north (stations 68-71, fig. 4), the 

intrusion of shelf and Slope water is identified by the inversions of 

temperature, salinity, and oxygen in the upper 100 m (Stalcup et al., 

1985). At the Sargasso Sea comer of the triangular area (sta. 56, figs. 

3 or 4), the Eighteen Degree Water has a thickness of approximately 

175 m, defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 17.9 2 0.3 O C  and S = 36.5 f 0.1 ppt. An 

intriguing aspect of the Cape Hatteras region is the presence of the Deep 

Western Boundary Current (DWBC) and the nature of its crossing underneath 

-10- 



the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGulf Stream. The DWBC is identified in both the south and north 

sections by the oxygen maximum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( > 6 . 2  ml/l) at about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3400 m. These deep 

waters with high oxygen spread to the south and west, in opposition to 

the Gulf Stream. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
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A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 3a-d. Property distributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf o r  the south section 

(approximately 73"W): potential temperature, salinity, 02, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Qe. Vertical exaggeration is 50:l. 
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B. 
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OXYGEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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OXYGEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAbsolute Velocity Estimation 

The absolute velocity field across each of these sections will be 

estimated in two ways: direct use of the acoustic velocities to refer- 

ence the geostrophic calculations, and the combined use of the acoustic 

velocities along with mass, salt, and 02 conservation constraints. 

Both of these methods rely upon the assumption of pure geostrophy in this 

region. The acoustic doppler instrument might offer the possibility of 

testing this assumption directly, since it simultaneously measures veloc- 

ities at different depths; the acoustic shear can be compared to the geo- 

strophic shear. In this case, however, the reliable data only cover a 

depth range of 40 m, and the measured shears over such a small Az are 

below our noise level. Better depth penetration of the doppler signal 

would be required for such a direct test of geostrophy. 

Within our region the Gulf Stream takes a broad turn to the east; a 

centripetal acceleration term might become important in the cross-stream 

momentum balance. To examine this possiblility, inspection of concurrent 

satellite sea surface temperature maps (Evans et al., 1984) confirms that 

the path of the Gulf Stream is approximately a curve of constant radius. 

Using the directional information contained in the acoustic doppler data, 

the center of rotation and the average radius of curvature is found by 

the 'center of momentum method' of Kennelly (1984). The likely size of a 

Gulf Stream 'cyclostrophic' term is estimated as about 0.02 the size of 

the Coriolis term in the momentum balance. Geostrophy still seems to be 

a good assumption even in this region of curvature; the correction from 

the addition of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV2/R term would be at the noise level of our results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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We assume that any flow across the coastal boundary of our trian- 

gular region is negligible. The Slope Water ends of both hydrographic 

sections extend close to the 200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm isobath at stations 47 and 71 

(fig. 1). Noting that Beardsley and Boicourt (1981) estimate the 

transport over the shelf to be 0.2 Sv, any transport across the shelf 

break should be insignificant relative to the huge fluxes across the 

south and north sections. To conserve mass within the area, the net mass 

fluxes across the two sections must be in balance. 

(3.1) Direct Use of Acoustic Velocities 

The average acoustic velocity between each station pair at the 

100 db level can be used to reference the geostrophic calculations 

throughout the water colk. After determining absolute velocities 

everywhere, the mass transports across the south and north sections are 

calculated. The total transports across each section are found to be out 

of balance by 50 Sv; since small errors in velocity cause huge errors in 

transport, this is not too surprising. As discussed previously, we 

suspect the acoustic velocities may contain a small systematic offset 

error consistently to one side of the ship. Since the ship traverses the 

two sections in opposite directions, the offset error would tend to 

increase the velocities along one section and decrease them along the 

other. By applying an offset error of 1.5 cm/s which decreases transport 

across the south section but increases it to the north, the net 

transports are balanced: 170 Sv across each. This systematic error is 

certainly within the bounds to be expected, and the total zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass flux 

balance between the two sections is maintained. In the EN86 case. 



* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Joyce et al. (1986) found this systematic velocity error to be 1.9 cm/s; 

the direct use of the acoustic velocities yielded a transport of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA82 Sv 

across the EN86 south and north sections. 

The resulting absolute velocity sections are shown in figure 5. We 

have achieved our goal of a complete synoptic view of the flow field 

across the south and north sections. We have removed a systematic error 

from the data, but an estimated random component of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 cm/s is still 

associated with the set of velocities between each station pair due to 

navigational uncertainties. This level of error in the velocity field 

unfortunately means we have little confidence in quoting transport cal- 

culations; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 cm/s in the velocity across the south section implies as 

much as 239 Sv in transport uncertainty. The total net transport of 

170 Sv does in fact seem high even for an instantaneous value. To 

examine aspects of the transport in different parts of the water column, 

the sections are divided into 13 layers defined by surfaces of constant 

potential density. Following Joyce et al. (1986), these layers are 

picked in an attempt to resolve the major water mass -features; Table 1 

lists the chosen isopycnals, average depths, and the mass transports 

across each section under 'direct acoustic'. 

Assuming for the moment that the flow is entirely along these 

density layers, the transport within each layer should be in approximate 

balance between the south and north just as the total transport is. 

Figure 6 illustrates that the imbalances within each layer are in fact 

relatively large, particularly in some of the deep layers. Although a 

small amount of cross-isopycnal flow is expected, the vertical transports 
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required to yield a consistent picture are too large to be physically 

acceptable. To resolve this problem and to improve the accuracy of our 

velocity estimates, we get more information out of this data set through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ the use of inverse techniques. 

TABLE 1 

List of isopycnals and summary of mass transports within each layer, in 
units of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo9 kg/s = lo6 m3/s, positive north and east: 

layer ave. depth direct combined combined 
number of surface acoustic rank 33 rank 36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Qe (km) south north south north south north 

surface 
1 

24.000 .020 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

25.000 .OS1  
3 

26.500 .291 
4 

’ 27.000 .541 
5 

27.300 .684 
6 

27.500 .784 
7 

27.700 1.022 
8 

27.760 1.384 
9 

27.800 1.827 
10 

27.850 2.452 
11 

12 

13 

27.880 2.879 

27.898 3.219 

5.2 

4.4 

31.1 

31.4 

13.2 

6.8 

8.9 

9.1 

10.8 

16 .O 

11.5 

3.8 

17.5 

4.8 

5.7 

28.8 

29.0 

12.7 

8.2 

10.1 

11.6 

14.8 

16.7 

8.6 

7.1 

11.5 

5.2 

4.3 

29.2 

29.9 

12.6 

6.6 

8.4 

8.7 

9.5 

13.7 

9.1 

4.9 

11.1 

4.7 

5.6 

28.9 

28.8 

12.0 

7.7 

8.3 

8.9 

11.5 

12.8 

6.2 

6.1 

11.7 

5.1 

4.2 

29.5 

29.9 

12.4 

6.3 

8.0 

7.9 

8.9 

13.1 

9.3 

5 .O 

12.6 

4.7 

5.6 

28.4 

28.4 

12.1 

7.7 

9.1 

9.9 

12.3 

13.3 

6.2 

5.1 

9.6 
bottom 

Section totals: 170.0 170.0 153.0 153.0 152.0 152.0 



c--( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkrn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D/R€C 7 ACOUS T/C 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ 

Fig. 5. Direct acoustically determined velocities (cm/s) normal 
to the south (a.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand north (b.) sections. A bias error of 1.5 cm/s 
has been removed from the velocity fields. 
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DIRECT ACOUSTIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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-6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-6 -4  -2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 4 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NORTH-SOUTH DIFFERENCE (1 O**9 KG/S) 

DIRECT ACOUSTIC MASS TRANSPORT IMBALANCES 

Fig. 6. Mass transport imbalances within each density layer 
using the direct acoustic velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( l o9  kg/s lo6 m3/s). 
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( 3 . 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACombined Inversion Technique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

The inversion technique using the combined acoustic doppler and i 

I 
property data follows the same form as the procedures thoroughly devel- I 

oped by Wunsch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1978), Wunsch and Grant (1982), and Wunsch, Hu, and 
I 

Grant (1983). The estimation method is based upon purely classical I 

I 

assumptions regarding the ocean circulation; these simple principles I 

are applied in a formal and consistent manner. Conventional 

least-squares techniques are then brought to bear upon the problem to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

yield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas much useful information as possible. Lawson and Hanson (1974) 
l 

is a good reference for understanding the theory behind the solution of 

least-squares problems in general. The specific methods used here also 

closely follow those used by Joyce et al. (19861, who applied them to 

the similar EN86 data set. 

The best estimate of the absolute flow field across the EN88 

sections is required to satisfy the following set of constraints, all 

to within estimated errors: 

(a) The horizontal velocity estimates are consistent with the 

direct acoustically measured ones. 

(b)'Total mass and total salt are conserved within our area. 

(c) Mass and salt are conserved within each density layer. 

(d) Oxygen is conserved within each layer, except for the top 

two shallow layers. 



t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To begin the problem, the ocean is divided into density layers 

as listed in Table 1. To define the absolute flow field, we must solve 

for two sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof unknowns: the set of horizontal reference velocities, 

one for each station pair, and the set of cross-isopycnal velocities at 

each density surface, associated with between-layer transports. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA dis- 

cussion of the concept of a cross-isopycnal flow and its significance 

may be found in Wunsch et al. (1983). The horizontal reference 

velocities (at 100 db) are denoted as bj, j=1,24 station pairs, and 

w; is defined as the 'vertical' velocity across the isopycnal i 

between layers i and i+l, where i=1,12 isopycnals in the present case. 

The constraint (a) that the acoustic velocities remain 

consistent with our results is expressed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

bj= a1 2 cj, j=1,24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) 

where bj is the true reference velocity for each station pair at the 

100 db level, aj is the acoustically derived velocity, and cj 

represents the error in the acoustics. As discussed previously, the 

errors Ej are expected to contain a random component of 23 cm/s 

and a systematic bias of about 1.5 cm/s. 

The property conservation requirements (b)-(d) all take the form 

of linear equations balancing the inflow and outflow from any given 

layer. Let a generalized 'area' aij be defined as the area in the 

vertical plane within station pair j occupied by the property in layer 

i and multiplied by its concentration there. An analagous ai' is the 

'area' of the isopycnal surface i. Then a generalized form for the 
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j=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where: 4j= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 represents the sign of the unit normal to the vol- 

ume, and vij is the thermal wind component of the velocity such that 

column vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

I 
Now we can express the set of conservation requirements (2) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

& + Z = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  

where: is a matrix made up of the elements ail, ai' for each of 

the properties (mass, salt, 021, and - r represents the initial im- 

. balances of the properties given only the thermal wind component vij. 

The approximation sign used in ( 3 )  represents explicitly that the con- 

servation constraints are only maintained to within a certain level of 

error. To make an a priori estimate of the size of these errors, we con- 

sider a number of possible sources. Since the CTD/02 stations were 

occupied over a period of 4 days, there could be some temporal aliasing; 

this region is known for its time variability. Satellite data from the 

RSMAS remote sensing group (Evans et al., 1984) during the period con- 

firms this, indicating a shift of the shoreward edge of the Gulf Stream 

by about 20 km to the east along the south section. In the top two 

density layers we do not require oxygen conservation at all due to the 
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surface mixing; mass and salt conservation might also be adversely 

affected here. Finally, various observational errors associated with the 

property data contribute to the uncertainty of equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 ) .  We end up 

making a rough estimate that in the deeper layers the mass transport 

should be maintained to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20.3 Sv, while in the top two layers we only 

expect conservation to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20.9 Sv. The total mass conservation of all 

layers combined is a better assumption and we estimate it is maintained 

to 20.1 Sv. For the salt arid oxygen transports, we predict levels of 

error non-dimensionally equivalent to those zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf o r  the mass transports. 

The set of equations ( 3 )  defines the pure geostrophic inverse 

problem where only property data are observed. As Wunsch (1978) is quick 

to point out, however, the method allows for the addition of any other 

information about the ocean that might be available. In this case we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.5.  AI^ + - r '  = o (4) where: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8' = 

have the set of 24 acoustic constraints (1) which can be combined with 

the set ( 3 ) ,  forming the new problem 

J24: 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

r 
... :... , - r '  = ... 

- A 
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 2 4  is the 24x24 identity matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e is the 24x12 null matrix 

For each of equations (4), a row weighting factor is introduced 

which is inversely proportional to the estimated error in that con- 

straint; the set of equations becomes non-dimensional. This step 

requires the estimation of error levels a priori, as discussed above. A 

column weighting is also imposed upon the solution space of the system in 

the interest of numerical stability; weighting among the bj corrects 

for the artificial tendency of the solution to favor larger magnitudes in 
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the deeper station pairs (Wunsch, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1978). The relative magnitudes ex- 

pected for the b, as opposed to the solution wt are also reflected 

in the column weighting scheme. If the system is in fact overdetermined, 

the column weighting has no effect on the solution; it is only of 

significance for underdetermined problems. Lawson and Aanson (1974) 

fully discuss all of these points. 

To solve the system of equations (4), the singular value decompo- 

sition (SVD) method is used (Wunsch, 1978); this technique is one which 

allows a complete analysis of the structure of a solution. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASVD 

solution takes the form 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-c) I 
!I= C Y 1  (5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

1=1 X1 

where: _ _  AATgl = x:g, 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI A ~ A V  --I = x:y, 

and Ayl = Xlgl 9 -  A'Ii = Xiyi 

The rank k of the system represents the number of non-zero singular 

values X; k also equals the degree of linear independence among the 

constraint equations. The value of k must be determined to know where to 

stop the summation of (5). If k is known, the SVD yields the solution 

that simultaneously minimizes the solution norm and the residual norm, 

respectively 

IIslI 3 I t  4s + I  I t  

The system (4) consists of a total of M = 63 constraint equations 

in N = 36 unknowns. The degree of independence among the constraints is 

defined by the rank k; if k is actually equal to 36, the system is a 

fully determined one, a regression problem, whereas if k < 36 we have a 

rank deficient or inverse Droblem. A number of methods can be used to 



estimate the rank of a problem (Lawson and Hanson, 1974). One of the 

methods used here is the Levenburg-Marquardt analysis illustrated in 

figure 7. The curve indicates the magnitude of the residuals left in the 

constraint equations vs. the solution magnitude, for the range of pos- 

sible solutions. The optimal solution to a least squares problem is in- 

terpreted to be the one lying at the base of the steep decrease in 

residual (fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ) ;  at this point the solution magnitude is increasing 

only slightly to yield a great reduction in residual. In our case this 

point occurs almost at the end of the curve, indicating a nearly fully 

determined problem. The rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 solution lies just at the base of the 

steepest part of the curve. The rank 36 choice, however, is only 

slightly beyond this point; a small increase in solution norm allows the 

rank 36 solution, which represents a fully determined system. While the 

evidence is strong that the rank of the system is somewhere between 33 

and 36, it is difficult to decide exactly where; other methods of 

analysis yield a similar uncertainty. Fortunately, we will discover that 

the solution is actually relatively stable within this range, insensitive 

to the exact choice of rank. Both the rank 33 and 36 solutions are 

presented, representing the limits of our uncertainty. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lo-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-33- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 7. Levenburg-Marquardt analysis showing the decrease in 

residual norm with increasing solution norm. The arrows mark the 
locations of our rank 33 and rank 36 solutions on this curve. 
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4 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults of the Combined Inversion 

The calculated reference velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbj in conjunction with the 

thermal wind yield the absolute velocity sections of fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 (rank 33)  and 

fig. 9 (rank 36) .  Once again we have a complete picture of the synoptic 

flow field across the sections. The differences between these velocity 

fields and the direct acoustic ones of fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are qualitatively very 

slight. Referring to Table 1, however, we note some significant changes 

in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass transports. The total transports for the combined inversions 

are decreased by about 20 Sv from the direct acoustic case, while the 

north vs. south fluxes for each layer reveal greatly reduced imbalances. 

Moreover, the imbalances that exist are a result of cross-isopycnal mass 

transfers that are explicitly solved for by the calculation; the w; 

are shown in fig. 11. 

The SVD technique also provides us with full information regarding 

the nature and accuracy of our solution. In equation (5) we introduced 

the column vectors - U I  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVI  in our statement of the SVD solution. 

In the SVD these vectors make up matrices of dimensions M and N respec- 

tively, where M is the number of constraints and N is the number of un- 

knowns (Wunsch, 1978). It can be shown that the diagonal elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ET and ET have a straightforward interpretation; the rank k of the 

solution will be such that k = traceUJT = traceWT. Each diagonal 

element of - UUT corresponds to one of the constraints, and the value of 

this element is a measure of the contribution of this constraint to the 

total solution. Similarly, the values of the diagonal elements of WT 

give a measure of how well resolved each of our unknowns is; if k < N, 
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the rank k will be split up amongst the N elements according to our con- 

fidence in each of the N solution elements. 

By inspection of the diagonal values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa*, we summarize in 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 the contribution of each set of constraints to the solution. The 

direct acoustic case is included simply as a suggestion that we can think 

of this as an inverse problem using only the acoustic velocities as con- 

straints. In the rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 and 36 solutions, we note that the mass and 

salt equations contribute roughly equal amounts; this is not surprising 

since the mass and salt equations are actually highly correlated. Oxygen 

contributes less since fewer equations were written for it. The dominant 

contributions come from the acoustic equations; they are still providing 

most of the information for our solution. We note how much less infor- 

mation we would have available without the acoustics; a pure hydro- 

graphic inversion is typically a largely underdetermined problem. The 

direct acoustic column, on the other hand, reminds us of how poorly we do 

using only the acoustic data. Each set of constraints contributes sig- 

nificantly to our result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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TABLE 2 

Contribution of each category of constraint to the total solution: 

constraints direct acoustic rank 33 rank 36 

Mass layers 1-13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& total - 5.05 5.39 

Salt layers 1-13 & total - 4.93 5.10 

Oxygen layers 3-13 - 2.94 3.39 

Total property conservation - 12.92 13.88 

Acoustic velocities 24 20.08 22.12 

Total rank 24 33 36 
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Figure 10 presents the values of the rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 and 36 solution bj's 

relative to the direct acoustic values; these are the residuals left in 

the set of acoustic constraints. In the rank 33 case the acoustic values 

are maintained with a bias error of -1.7 cm/s across the south section, 

0.4 cm/s across the north, and a random component of 23.0 cm/s over- 

all. For rank 36 the biases are -2.3 cm/s and 0.7 cm/s and the random 

error is 21.9 cm/s. These biases are of the correct sign and magnitude 

to be explained by the transducer angle error. The random components of 

the residuals are consistent with our estimate of navigational 

uncertainty; in the rank 36 case the 21.9 cm/s is even better than we 

predicted. 

The representative error bars shown on fig. 10 indicate our formal 

confidence in any particular reference velocity; this is typically 

21-2 cm/s. In the rank 33 or underdetermined case, the error bars have 

two contributors; the failure to be fully resolved and the observational 

noise. Inspection of the E' diagonal elements reveals that at rank 

33, nearly all of the bj's have been determined to 0.999 or better. 

The only exception to this is the middle of the three error bars shown 

for the south section (fig. 9a); this velocity is only resolved to 0.946, 

which implies 28.6 cm/s has been left undetermined. The remaining 

error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo r  this bj and the dominant error associated with every other 

bj is due to observational noise. The solution technique determines 

the variance due to inaccuracies in the data explicitly (explained by 

Wunsch, 1978). For rank 33 this is typically 21.7 cm/s and for rank 36 

it is 21.4 cm/s. Since rank 36 is the fully determined case, there is 
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no error from lack of resolution; all unknowns are formally resolved. 

The difference between the rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 and rank 36 solutions in fig. 10 can 

be taken as an additional uncertainty due to our inability to choose the 

rank exactly. 

The reference velocity that deviates the most from the acoustic 

value is between stations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA51-52 (5th from the left on fig. 9a). 

Inspection of the raw doppler data reveals that for stations 51-52 the 

data return within our 10 minute averaging blocks was at its lowest; at 

the 60 m depth only 46% of the emitted pulses were being received, vs. an 

overall section average of 68% return. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAamount of scattering material 

present was at a minimum, and apparently the accuracy of the doppler 

estimate begins to be affected at this level. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe difficulty that the 

combined inversion technique had in resolving this particular velocity 

has taught us something about the quality of the acoustic data. 

The cross-isopycnal mass transfers w; are also presented with 

some representative error bars (fig. 11). In the rank 33 case the solu- 

tions are dominated by the errors, making most of the values indistin- 

guishable from. zero; the w; tend to be less well resolved than the 

horizontal velocity components. In the fully determined case we see a 

broad structure to the solution with generally positive values in the 

deep water and some downward transfer among the top few layers. 

To summarize the vertical distribution of the horizontal trans- 

ports, the flux densities per unit depth are given for mass, salt, and 

oxygen (fig. 12a-c). These are integrated flux densities across the 

whole south and north sections for each layer; the mass flux densities 
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multiplied by the thickness of each layer will yield the transports found 

in Table 1. The salt and oxygen flux densities have very similar struc- 

ture to the mass case, illustrating the redundancy inherent in the flux 

budgeting constraints. Although much of the structure of the solution is 

lost in the section average, we note the increase in the transport 

density among the upper layers from south to north, corresponding to the 

thinning of these density layers. Another interesting feature is the 

noticeable minimum of layer 12 in the south sections, representing the 

effects of southwestward moving water within this layer. 

Useful information about the structure of our inverse solution can 

sometimes be gained by study of the residuals left in the property con- 

straints. The residuals left in the mass, salt, and oxygen conservation 

equations for each layer are shown in fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. We see that the con- 

straints have been maintained well below our a priori requirements of 

20.3 Sv or the equivalent salt/Oa levels, another check on the con- 

sistency of our solution. Beyond this, the residuals represent those 

aspects of the data set which have not been explained by our solution; if 

we feel that we have extracted all of the useful information out of our 

data, the residuals should appear to be random noise. The mass residuals 

(fig. 13a) for either the rank 33 or 36 cases do not appear random; some 

sort zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof structure with .depth is apparent. Since rank 36 is the fully 

determined case, any remaining structure in the residuals might indicate 

missing physics from the model. While the magnitude of the residuals is 

slightly less at rank 36, the structure is not diminished; the modifica- 

tions to our model that might be indicated are some sort of mass storage 
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terms with depth. Considering we are at the level of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20.1 Sv, however, 

it does not seem worthwhile to attempt a more sophisticated model. 

The residuals for salt and oxygen (fig. 13b-c) also exhibit some 

organized structure, but they are different from the mass residuals. 

These differences might reflect the fact that different rates of 

cross-isopycnal flux occur for each of the properties. While the 

residuals for oxygen are somewhat large, they correspond well with some 

ideas regarding the non-conservation of oxygen: production of 02 near 

the surface, consumption in the deeper water, and the minimum of layers 5 

and 6 agrees with the oxygen concentration minimum at about this level 

(see figs. 3c or 4c). 

We have presented solutions throughout for both the rank 33 and 36 

cases, and the inspection of our results confirms the difficulty in 

choosing the exact rank of the problem. The two cases are remarkably 

similar, and neither one seems clearly mo.re appropriate. Joyce et al. 

(1986) in the EN86 case also found an uncertainty associated with the 

choice of rank; they present both the rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 and rank 30 solutions in 

their results. The difference between the rank 33 and 36 cases 

represents our uncertainty; although small, this is the largest formal 

uncertainty associated with the calculation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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RANK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

5 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 8. Rank 33 combined inversion velocity (cm/s), normal to the 

south (a) and north (b) sections. 



RANK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 6 
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RANK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 9. Rank 36 combined inversion velocity (cm/s), normal to the 

south (a) and north (b) sections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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RANK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. 
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ACOUSTIC VELOCITY RESIDUALS 
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Fig. loa-b. Differences between the rank 36 (solid) and rank 33 
(dashed) solutions from the direct acoustic values. Two sets of error 
bars are shown for the rank 33 case; inner set is due to failure to 
resolve, while outer set includes additional error due to observational 
noise. Error bars for the rank 36 solution are wholly due to noise, 
since this is the fully determined case. 
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Fig. 11. Vertical mass transfers across isopycnal surfaces for the 
rank 33 (a) and rank 36 (b) case. Error bars follow convention of 
fig. 10. 

-46- 



a. MASS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFLUX DENSITY (109kg/s)/km 
SOUTH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

50 100 150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 12. Layer flux densities per unit depth for mass (a), 
Shading represents difference between ranks 33 salt (b), and oxygen (c ) .  

and 36. Properties are scaled with equivalent units. 
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b. SALT FLUX DENSITY IO6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkg/s /km 
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c. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOXYGEN FLUX DENSITY (ml/I) x 109kg/s/km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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A. MASS RESIDUALS ( io9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKG/SEC) 

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 . 0.3 0.4 
RANK 36 

Fig. 13a-c. Residuals left in the conservation constraints for 

mass, salt, and oxygen. Properties are scaled using equivalent units. 

Compare (a) to fig. 6. 
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5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiscussion: the Synoptic Flow Field 

Through the combined inversion we have achieved our best possible 

estimate of the synoptic flow field off of Cape Hatteras on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20-25 August 

1982. We emphasize that this is a nearly instantaneous description of 

the flow field and does not represent an average condition; the region is 

well known for its time variability. Yet large-scale features of our 

solution can be usefully compared with ideas about the time-average 

condition. 

Our velocity sections (figs. 8,9) reveal a Gulf Stream core moving 

at speeds as high as 110 cm/s across the south and 130 cm/s across the 

north. The Gulf Stream flow extends to the bottom on both sections, and 

to the north we see an especially strong eastward flow at the bottom. In 

the deep waters of the south section, two components of southwestward 

flow of high oxygen water are evident, identifying the Deep Western 

Boundary Current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(DWBC). The stronger of these is just east of the Gulf 

Stream axis between stations 52 and 54, while further up the Slope is the 

other component, better defined at rank 36 than 33. To the north, the 

deep westward flow appears in a number of places but is concentrated be- 

tween stations 65 and 69; here it is part of a nearly barotropic 

southwest flow in the Slope Water region. This feature is consistent 

with the mean flow across 70"W presented by Hogg (19831, exhibiting both 

a surface-intensified westward velocity and a slight bottom intensifica- 

tion. South of the deep Gulf Stream between stations 59-60 is a second- 

ary eastward flow extending to the bottom; this happens to correlate well 

with one of the deep long-term current meter records used by Hogg (1983). 
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The combined inverse solution also offers us a picture of the 

vertical water movements (fig. 11). Although the uncertainties are 

relatively large and mass transfer w; is not strictly a vertical 

velocity, fig. llb displays some similarity to conventional beliefs; the 

consistent upwelling in the deep water is particularly encouraging. The 

magnitudes of the w;'s do seem large for typical vertical 

velocities, but this is not a typical region, and these could be 

consistent with the large velocity shears associated with a western 

boundary current. Joyce et al. (1986) also present vertical mass 

transfers for the region; their results are in rough agreement but also 

include downward velocities among the bottom few layers rather than the 

broad upwelling of fig. llb. Since our range of uncertainty is between 

figs. lla and llb, it is not possible to make a definitive statement 

regarding the vertical mass transfer. 

In the thorough analysis made by Hall (1985) of the data set from 

the GUSTO mooring at 68"W, vertical velocities are derived theoretically 

from the measured horizontal currents and temperatures. Although these 

values are found through completely different methods, they compare well 

with our results. Hall (1985) calculates average vertical velocities of 

-4.4 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo-' cm/s at 575 db, 3.5 x lo-' cm/s at both 875 db and 1175 

db, and -6.7 x cm/s at 2000 db. Our results agree with the 

downwelling in shallow water as well as the upwelling at mid-depths, 

while the negative velocity at 2000 db is more like the result of Joyce 

et al. (1986). Also reassuring are the similar large magnitudes for the 

vertical velocities found by Hall in this region. 
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The total horizontal mass transport across both of our sections is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
152 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 Sv (Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). The narrow range of uncertainty between the rank 

33 and 36 solutions is another indication that the total zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass con- 

servation assumption is an excellent one. We present fig. 14 as a 

summary of the integrated transport top to bottom between each station 

pair, and fig. 15 gives total accumulated transport across both sec- 

tions. To discuss the Gulf Stream transport figures we must first decide 

on a definition for the 'Gulf Stream'; this is not a simple issue, and in 

fact Knauss (1969) suggests that this is the greatest source of discrep- 

ency among historical Gulf Stream transport calculations. One way of 

defining the edge is to look at where the transport per unit width 

changes direction. This tends to work well with the northern edge, but 

to the south the total transport does not diminish so quickly. To define 

the Sargasso Sea edge of the Gulf Stream, we look for a change in sign of 

the velocities somewhere rather than a change in the net transport. 

We settle upon a definition which is the total net transport 

between stations 48-54 in the south and 60-65 in the north. This means 

that the width of the Gulf Stream is roughly equal at both locations and 

consistent with'previous definitions of the Stream. The result is a Gulf 

Stream transport of 116 2 2 Sv across the south section and 161 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 

Sv across the north. To compare with some previous estimates that only 

integrate down to a depth of 2000db, we figure a transport from 0-2000db 

of 98 t 2 for the south and 120 2 2 for the north. 

We make a brief comparison with some historical Gulf Stream trans- 

port estimates; Table 3 lists some previous values from sections located 
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close to our south leg. The Richardson and Knauss result is an example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 

underestimate. The Worthington zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1976) numbers are averages of six his- 

torical estimates for the 0-2000db case but only two for the 0-bottom 

of the use of discrete transport float measurements. Spatial aliasing I 

I 

, 
1 might be a significant problem with this technique and could result in an 

Rossby (1985) recently performed 16 crossings at 73"W with the 'Pegasus' 

vertical profiler over a 2.5 year period. Their results demonstrate the 

variability of the transport and they arrive at a mean value slightly 

higher than Worthington's. Joyce et al. (1986) present Gulf Stream 

transports at 73"W which agree within uncertainties with the present 

study. Although the EN86 transects did not extend as far on the Sargasso 

Sea side, the Gulf Stream defined here does not include the additional 

length of the EN88 southern leg. 

TABLE 3 

Gulf Stream Transport Comparisons at 73"W 

study dates of observations 0/2000db O/bottom 
Richardson and KMUSS (1971) July, 1967 - 63 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 5 
Worthington (1976) summary 1932-1959 78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 7 114 2 3 

Joyce, Wunsch, and Pierce (1986) 
using EN86 data June, 1982 100 2 6 107 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 11 
present study using EN88 data August, 1982 98 2 2 116 2 2 

88 2 17 - Halkin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Rossby (1985) 1980-1983 
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Both the EN86 and EN88 synoptic values are above the mean offered 

by Worthington but well within Halkin and Rossby's range of values. 

Halkin and Rossby (1985) argue that Worthington's use of a level of no 

motion in his recalculations produces estimates that are systematically 

too low; their results support this. If a few more estimates were 

available.with the same level of accuracy as the EN86 and EN88 studies, 

we could begin to develop a reliable mean picture to compare with the 

Pegasus mean. For now, our values seem to be larger than the mean 

estimates but within the range of variability expected for this region. 

Hall (1985) calculates Gulf Stream transports using the single 

GUSTO current meter mooring at 68OW. From four crossings of the Stream 

an average transport of 103 Sv is calculated, compared to our value of 

161 Sv across 71OW. Fuglister (1963) used hydrographic data and a bottom 

level of no motion to yield 136 Sv across 68.5"W. The Hall (1985) 

results required extrapolating the velocities from the current meter at 

575 db to the surface, and Hall admits that the method used for this may 

be too conservative. Given the substantial bottom velocities across our 

north section, it is not surprizing that' our value is also larger than 

Fuglister's for this region. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A downstream increase in Gulf Stream flow between our south and 

north sections is to be expected; this is due both to the addition of 

Slope Water from the north and some recirculation south of the Gulf 

Stream, as seen in figs. 14 and 15. The contributions from each of these 

effects are nearly equal; 21 Sv comes from the southwest flow north of 

the Stream while 24 Sv is added south of the Stream. We note a 
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total increase of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45 Sv, or an average downstream rate of increase of 

13.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.6 Sv/100km. Knauss (1969) studies the downstream increase in 

transport for the entire Gulf Stream system and predicts an average rate 

of 7% per 100 km; this translates to 9.7 f 1.6 Sv/lOOkm for this 

region, quite consistent with our result. Halkin and Rossby (1985) also 

measure this increase and report 15.4 f 5.8 Sv/lOOkm. 

We calculate a transport for the DWBC by summing up the components 

of deep, high oxygen water moving southwest within the density layers 11 

and 12 (Table 1). The result is 3 Sv across the south leg and 5 Sv for 

the north; we express our estimate as 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 Sv. Historical estimates 

of the DWBC transport have varied tremendously, probably due to both time 

variability and differing techniques. Richardson (1977) reviews a number 

of historical estimates at various locations and calcalates a mean of 

16 Sv but with a standard deviation of 214 Sv. Perhaps the most 

reliable estimate of the mean is that of Hogg (19831, who used long term 

current meter records at 7OoW and reported 10 Sv of 'classic' DWBC 

transport. Our value is below most estimates of the mean flow but 

certainly consistent with the apparent variability of the feature. The 

Cape Hatteras region is of particular interest since the Gulf Stream and 

the DWBC seem to cross paths here. Along our north section the DWBC is 

primarily found to the north of the axis of the Gulf Stream, while to the 

south the southwestward moving water is found on either side of the 

Stream. This splitting of the DWBC agrees with the observations of 

Richardson and Knauss (1971), who suggest that the extension of Gulf 

Stream flow to the bottom is connected with this separation of the DWBC 



into two components. Joyce et al. (1986) quote a transport of 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 

of Slope Water across the north section of 23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASv, while Joyce et al. 

(1986) found this to be 18 Sv. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Sv for the DWBC, closer to Hogg (1983), and present a similar DWBC 
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Fig. 14. Total mass transport between each station pair for the 
south and north sections. Heavy line is rank 36 solution; light line is 
rank 33. Distance scale begins at Slope Water end of sections. 
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6. Final Remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
, 

We have achieved a complete description of the synoptic velocity 

field in the region through the combined inversion of the acoustic dopp- 

ler and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACTD/O2 data. The quality of the data set and the application 

~ 

I 
I 

of the inverse techniques yield a result with smaller formal errors than ~ 

any previous estimates. 

The errors in the acoustic doppler velocities are dominated by the 

ship's navigational uncertainties; improvements in navigation techniques 

could greatly improve the quality of the acoustic data. More accurate 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LORAN or the future zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGPS navigation system might reduce the errors to the I 

1 cm/s level. This would allow meaningful direct use of the acoustic 

data to reference geostrophic calculations. 

Since we have a region enclosed by hydrographic sections and the 

continental boundary, we are able to write property conservation 1 

equations appropriate for the inverse procedures introduced by Wunsch 

(1978). Our problem is nearly a fully determined one; in this sense it 

differs greatly from typical 'pure' hydrographic inversions which tend to 

be grossly underdetermined. The property constraints offer us additional 

information to refine our acoustic velocities, rather than being the only 

source of information in the pure case. The fact that the same proce- 

dures can be successfully applied to either underdetermined or over- 

determined cases demonstrates the versatility of the technique (see 

Wunsch, 1985). The method allows for the extraction of any useful infor- 

mation out of a data set, and also allows for the incorporation of any 

additional data from a variety of sources. Both Joyce et al. (1986) and 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the present study have demonstrated the power of the technique applied to 

the combination of acoustic doppler and property data. 

Similar methods applied to an area with less time variability and 

smaller velocities could produce even greater accuracy. In this region, 

however, the assumption that the Gulf Stream has not varied substantially 

during our 4 day observation period might be a weak one; Halkin and 

Rossby (1985) for example have noted variations in their transport 

measurements of 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASU over the course of 7 days. This limitation implies 

that further efforts to improve the accuracy of our synoptic description 

are not warranted; we have obtained as much useful information as 

possible out of this 'snapshot' of a varying system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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, Near-surface velocities from an  acoust ic doppler instrument are used in conjunction with CTD/O2 
data to produce estimates of t he  absolute flow field off of Cape Hatteras. The data set consists 1 of two transects across t he  Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. 

1 An inverse procedure is applied which makes use of both t h e  acoustic doppler data and property I conservation constraints. Velocity sections at approximately 73OW and 71OW are presented with 
formal  errors of 1-2 cm/s. The net  Gulf Stream transports are est imated to be 116 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 2 Sv across 
the  'south' leg and 161 f 4 Sv across t he  'north'. A Deep Western Boundary Current transport 1 of 4 f 1 Sv is also estimated. While these values do not necessarily represent the  mean, they 
are accura te  est imates of t he  synoptic flow field in the region. 
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