
GUM: a portable parallel implementation of Haskell

PW Trinder K Hammond JS Mattson Jr

�

AS Partridge

y

SL Peyton Jones

z

Department of Computing Science, Glasgow University

Email: ftrinder,kh,simonpjg@dcs.glasgow.ac.uk

Abstract

GUM is a portable, parallel implementation of the Haskell

functional language. Despite sustained research interest in

parallel functional programming, GUM is one of the �rst

such systems to be made publicly available.

GUM is message-based, and portability is facilitated by us-

ing the PVM communications harness that is available on

many multi-processors. As a result, GUM is available for

both shared-memory (Sun SPARCserver multiprocessors)

and distributed-memory (networks of workstations) archi-

tectures. The high message-latency of distributed machines

is ameliorated by sending messages asynchronously, and by

sending large packets of related data in each message.

Initial performance �gures demonstrate absolute speedups

relative to the best sequential compiler technology. To im-

prove the performance of a parallel Haskell program GUM

provides tools for monitoring and visualising the behaviour

of threads and of processors during execution.

The paper appears in the Proceedings of Programming Lan-

guage Design and Implementation, Philadelphia, USA, May

21-24, 1996.

1 Introduction

GUM (Graph reduction for a Uni�ed Machine model) is a

portable, parallel implementation of the non-strict purely-

functional programming language Haskell. Despite hun-

dreds of papers, dozens of designs, and a handful of real

single-site implementations, GUM is one of the �rst such

�

Author's present address: Hewlett-Packard, California Language

Laboratory. Email: jmattson@cup.hp.com.

y

Author's present address: Department of Computer Science, Uni-

versity of Tasmania. Email: A.S.Partridge@cs.utas.edu.au.

z

This work is supported by an SOED personal research fellowship

from the Royal Society of Edinburgh, and the UK EPSRC AQUA and

Parade grants.

systems to be made publicly available. We believe that this

is partly because of the diversity of parallel machine archi-

tectures, but also because the task of implementing a par-

allel functional language is much more substantial than it

�rst appears. The goal of this paper is to give a technical

overview of GUM, highlighting our main design choices, and

present preliminary performance measurements.

GUM has the following features:

� GUM is portable. It is message based, and uses

PVM [21], a communication infrastructure available

on almost every multiprocessor, including both shared-

memory and distributed-memory machines, as well as

networks of workstations. The basic assumed architec-

ture is that of a collection of processor-memory units

(which we will call PEs) connected by some kind of

network that is accessed through PVM. PVM imposes

its own overheads, but there are short-cuts that can be

taken for communication between homogeneous ma-

chines on a single network. In any case, for any partic-

ular architecture a machine-speci�c communications

substrate could readily be substituted.

� GUM can deliver signi�cant absolute speedups, rela-

tive to the best sequential compiler technology. Need-

less to say, this claim relates to programs with lots of

large-grain parallelism, and the name of the game is

seeing how far it extends to more realistic programs.

Nevertheless, such tests provide an important sanity

check: if the system does badly here then all is lost.

The speedups are gained using one of the best avail-

able sequential Haskell compilers, namely the Glasgow

Haskell Compiler (GHC). Indeed GUM is \just" a new

runtime system for GHC. The sequential parts of a pro-

gram run as fast as if they were compiled by GHC for a

sequential machine, apart from a small constant-factor

overhead (Section 3.1).

� GUM provides a suite of tools for monitoring and visu-

alising the behaviour of programs. The bottom line for

any parallel program is performance, and performance

can only be improved if it can be understood. In ad-

dition to conventional sequential tools, GUM provides

tools to monitor and visualise both PE and thread ac-

tivity over time. These tools are outside the scope of

this paper, but are discussed in [9].

� GUM supports independent local garbage collection,

within a single global virtual heap. Each PE has a

local heap that implements part of the global virtual

heap. A two-level addressing scheme distinguishes lo-

cal addresses, within a PE's local heap, from global

addresses, that point between local heaps. The man-

agement of global addresses is such that each PE can

garbage-collect its local heap without synchronising

with other PEs, a property we found to be crucial on

the GRIP multiprocessor [22].

� Thread distribution is performed lazily, but data dis-

tribution is performed somewhat eagerly. Threads are

never exported to another PE to try to \balance" the

load. Instead, work is only moved when a processor is

idle (Section 2.2). Moving work prematurely can have

a very bad e�ect on locality. On the other hand, when

replying to a request for a data value, a PE packs (a

copy of) \nearby" data into the reply, on the grounds

that the requesting PE is likely to need it soon (Section

2.4). Since the sending PE retains its copy, locality is

not lost.

� All messages are asynchronous. The idea | which

is standard in the multithreading community [1] | is

that once a processor has sent a message it can forget

all about it and schedule further threads or messages

without waiting for a reply (Section 2.3.4). Notably,

when a processor wishes to fetch data from another

processor it sends a message whose reply can be ar-

bitrarily delayed | for example, the data might be

under evaluation at the far end. When the reply �-

nally does arrive, it is treated as an independent work

item.

Messages are sent asynchronously and contain large amounts

of graph in order to ameliorate the e�ects of long-latency

distributed machines. Of course there is no free lunch.

Some parallel Haskell programs may work much less well on

long-latency machines than short-latency ones, but nobody

knows to what extent. One merit of having a single portable

framework is that we may hope to identify this extent.

GUM is freely available by FTP, as part of the Glasgow

Haskell Compiler (release 0.26 onwards). It is currently

ported to networks of Sun SPARCs and DEC Alphas, and to

Sun's symmetric multiprocessor SPARCserver. Other ports

are in progress.

The remainder of this paper is structured as follows. Section

2 describes how the GUM run-time system works. Section

3 gives preliminary performance results. Section 4 discusses

related work. Section 5 contains a discussion and outlines

some directions for development.

2 How GUM works

The �rst action of a GUM program is to create a PVM man-

ager task, whose job is to control startup and termination.

The manager spawns the required number of logical PEs as

PVM tasks, which PVM maps to the available processors.

Each PE-task then initialises itself: processing runtime ar-

guments, allocating a local heap etc. Once all PE-tasks have

initialised, and been informed of each others identity, one of

the PE-tasks is nominated as the main PE. The main PE

then begins executing the main thread of the Haskell pro-

gram.

The program terminates when either the main thread com-

pletes, or an error is encountered. In either case a FINISH

message is sent to the manager task, which in turn broad-

casts a FINISH message to all of the PE-tasks. The man-

ager waits for each PE-task to respond before terminating

the program.

During execution each PE executes the following scheduling

loop until it receives a FINISH message.

Main Scheduler:

1. Perform local garbage collection, if necessary (Sec-

tion 2.3).

2. Process any incoming messages from other PEs,

possibly sending messages in response (Sections 2.2

and 2.3.4).

3. If there are runnable threads, run one of them (Sec-

tion 2.1).

4. Otherwise look for work (Section 2.2).

The inter-PE message protocol is completely asynchronous.

When a PE sends a message it does not await a reply; in-

stead it simply continues, or returns to the main scheduler.

Indeed, sometimes the reply may be delayed a long time, if

(for example) it requests the value of a remote thunk that

is being evaluated by some other thread. These techniques

are standard practice in the multithreading community [1].

2.1 Thread Management

A thread is a virtual processor. It is represented by a (heap-

allocated) Thread State Object (TSO) containing slots for

the thread's registers. The TSO in turn points to the

thread's (heap-allocated) Stack Object (SO). As the thread's

stack grows, further Stack Objects are allocated and chained

on to the earlier ones.

Each PE has a pool of runnable threads | or, rather, TSOs

| called its runnable pool, which is consulted in step (3) of

the scheduling loop given earlier. Currently, once a thread

has begun execution on a PE it cannot be moved to another

PE. This makes programs with only limited parallelism vul-

nerable to scheduling accidents, in which one PE ends up

with several runnable (but immovable) threads, while oth-

ers are idle. In the future we plan to allow runnable threads

to migrate.

When a thread is chosen for execution it is run non-

preemptively until either space is exhausted, the thread

blocks (either on another thread or accessing remote data),

or the thread completes. Compared with fair scheduling,

this has the advantage of tending to decrease both space

usage and overall run-time [4], at the cost of making con-

current and speculative execution rather harder.

2.1.1 Sparks

Parallelism is initiated explicitly in a Haskell program by the

par combinator. At present these combinators are added by

the programmer, though we would of course like this task

to be automated. The par combinator implements a form

of parallel composition. Operationally, when the expression

x `par` e is evaluated, the heap object referred to by the

variable x is sparked, and then e is evaluated. Quite a com-

mon idiom (though by no means the only way of using par)

is to write

let x = f a b in x `par` e

where ementions x. Here, a thunk (or suspension) represent-

ing the call f a b is allocated by the let and then sparked

by the par. It may thus be evaluated in parallel with e.

Sparking a thunk is a relatively cheap operation, consisting

only of adding a pointer to the thunk to the PE's spark

pool. A spark is an indication that a thunk might usefully

be evaluated in parallel, not that it must be evaluated in

parallel. Sparks may freely be discarded if they become too

numerous. A sparked thunk is similar to a future, as used

in MultiLisp and TERA C [19].

2.1.2 Synchronisation

It is obviously desirable to prevent two threads from evaluat-

ing the same thunk simultaneously, lest the work of doing so

be duplicated. This synchronisation is achieved as follows:

1. When a thread enters (starts to evaluate) a thunk, it

overwrites the thunk with a black hole (so called for

historical reasons)

1

.

2. When a thread enters a black hole, it saves its state

in its TSO, attaches its TSO to the queue of threads

blocked on the black hole (the black hole's blocking

queue), and enters the scheduler.

3. When a thread completes the evaluation of a thunk, it

overwrites the latter with its value (the update opera-

tion). When it does so, it moves any queued TSOs to

the runnable pool.

Notice that synchronisation costs are only incurred if two

threads actually collide. In particular, if a thread sparks a

sub-expression, and then subsequently evaluates that sub-

expression before the spark has been turned into a thread

and scheduled, then no synchronisation cost is incurred. In

e�ect the putative child thread is dynamically inlined back

into the parent, and the spark becomes an orphan.

1

In fact, thunks are only overwritten with black holes when a

thread context switches. The advantage of this lazy black-holing is

that many thunks may have been entered and updated without ever

being black-holed.

FISHFISH

SCHEDULE <packet>

ACK

PE CPE BPE A

Figure 1: Fish/Schedule/Ack Sequence

2.2 Load distribution

If (and only if) a PE has nothing else to do, it tries to

schedule a spark from its spark pool, if there is one. The

spark may by now be an orphan, because the thunk to which

it refers may by now be evaluated, or be under evaluation

by another thread. If so, the PE simply discards the spark

and tries the next in �rst-in �rst-out (FIFO) order. FIFO

gives good results for divide-and-conquer programs because

large-grain threads are given priority. If the PE �nds a useful

spark, it turns it into a thread by allocating a fresh TSO and

SO

2

, and starts executing it.

If there are no local sparks, then the PE seeks work from

other PEs, by launching a FISH message that \swims" from

PE to PE looking for available work. Initially only the main

PE is busy | has a runnable thread | and all other PEs

start �shing for work as soon as they begin execution.

When a FISH message is created, it is sent at random to

some other PE. If the recipient has no useful sparks, it in-

creases the \age" of the FISH, and sends the FISH to an-

other PE, again chosen at random. The \age" of a FISH lim-

its the number of PEs that a FISH visits: having exceeded

this limit, the last PE visited returns the unsuccessful FISH

to the originating PE. On receipt of its own, starved, FISH

the originating PE then delays brie
y before launching an-

other FISH. The purpose of the delay is to avoid swamping

the machine with FISH messages when there are only a few

busy PEs. A PE only ever has a single FISH outstanding.

If the PE that receives a FISH has a useful spark (again

located by a FIFO search), it sends a SCHEDULE mes-

sage to the PE that originated the FISH, containing the

sparked thunk packaged with nearby graph, as described in

Section 2.4. The originating PE unpacks the graph, and

adds the newly acquired thunk to its local spark pool. An

ACK message is then sent to record the new location of the

thunk(s) sent in the SCHEDULE (Section 2.4). Note that

the originating PE may no longer be idle because, before the

SCHEDULE arrives, another incoming message may have

unblocked some thread. A sequence of messages initiated

by a FISH is shown in Figure 1.

2

Since we know exactly when we discard TSOs and SOs, and they

are relatively large, we keep them on a free list so that we can avoid

chomping through heap when executing short-lived tasks.

2.3 Memory Management

Parallel graph reduction proceeds on a shared program/data

graph, so a primary function of GUM is to manage the vir-

tual shared memory in which the graph resides.

2.3.1 Local Addresses

Since GUM is based on the Glasgow Haskell Compiler, most

execution is carried out in precisely the same way as on a

uniprocessor. In particular:

� Each PE has its own local heap.

� New heap objects are allocated from a contiguous

chunk of free space in this local heap.

� The heap-object addresses manipulated by the com-

piled code are simply one-word pointers within the lo-

cal heap which we term local addresses.

� Each PE can perform local garbage collection indepen-

dently of all the other PEs. This crucial property al-

lows each PE cheaply to recycle the \litter" generated

by normal execution.

Sometimes, though, the run-time system needs to move a

heap object from one PE's local heap to another's. For ex-

ample, when PE C in Figure 1 with plenty of sparks receives

a FISH message, it sends one of its sparked thunks to A, the

originating PE. When a thunk is moved in this way, the

original thunk is (ultimately) overwritten with a FetchMe

object, containing the global address of the new copy on A.

Why does the thunk need to be overwritten? It would be a

mistake simply to copy it, because then both A and C might

evaluate it separately (remember, there might be other local

pointers to it from C's heap).

2.3.2 Global Addresses

At �rst one might think that a global address (GA) should

consist of the identi�er of the PE concerned, together with

the local address of the object on that PE. Such a scheme

would, however, prevent the PEs from performing compact-

ing garbage collection, since that changes the local address

of most objects. Since compacting garbage collection is a

crucial component of our e�cient compilation technology

we reject this restriction.

Accordingly, we follow standard practice [14] and allocate

each globally-visible object an immutable local identi�er

(typically a natural number). A global address consists of

a (PE identi�er, local identi�er) pair. Each PE maintains a

Global Indirection Table, or GIT, which maps local identi-

�ers to the local address of the corresponding heap object.

The GIT is treated as a source of roots for local garbage

collection, and is adjusted to re
ect the new locations of

local heap objects following local garbage collection

3

. We

3

The alert reader will have noticed that we will need some mech-

anism for recovering and re-using local identi�ers, a matter we will

return to shortly.

say that a PE owns a globally-visible object (that is, one

possessing a global address) if the object's global address

contains that PE's identi�er.

A heap object is globalised (that is, given a global address)

by allocating an unused local identi�er, and augmenting the

GIT to map the local identi�er to the object's address. Of

course, it is possible that the object already has a global ad-

dress. We account for this possibility by maintaining (sepa-

rately in each PE) a mapping from local addresses to global

addresses, the LA!GA table, and checking it before glob-

alising a heap object. Naturally, the LA!GA table has

to be rebuilt during garbage collection, since objects' local

addresses may change.

A PE may also hold copies of globally-visible heap objects

owned by another PE. For example, PE A may have a copy

of a list it obtained from PE B. Suppose the root of the list

has GA (B,34). Then it makes sense for A to remember that

the root of its copy of the list also has GA (B,34), in case it

ever needs it again. If it does, then instead of fetching the

list again, it can simply share the copy it already has.

We achieve this sharing by maintaining (in each PE) a

mapping from global addresses to local addresses, the PE's

GA!LA table. When A fetches the list for the �rst time,

it enters the mapping from (B,34) to the fetched copy in its

GA!LA table; then, when it needs (B,34) again it checks

the GA!LA table �rst, and �nds that it already has a local

copy.

To summarise, each PE maintains the following three ta-

bles. In practice the tables are coalesced into a single data

structure.

� Its GIT maps each allocated local identi�er to its local

address.

� Its GA!LA table maps some foreign global addresses

(that is, ones whose PE identi�er is non-local) to their

local counterparts. Notice that each foreign GA maps

to precisely one LA.

� Its LA!GA table maps local addresses to the corre-

sponding global address (if any).

2.3.3 Garbage collection

This scheme has the obvious problem that once an object

has an entry in the GIT it cannot ever be garbage collected

(since the GIT is used as a source of roots for local garbage

collection), nor can the local identi�er be re-used. Again

following standard practice, e.g. [14], we use weighted refer-

ence counting [2, 24] to recover local identi�ers, and hence

the objects they identify.

We augment both the GIT and the GA!LA table to hold

a weight as well as the local address. The invariant we main-

tain is that for a given global address, G, the sum of:

� G's weight in the GA!LA tables of all foreign PEs,

and

� G's weight in its owner's GIT, and

� the weight attached to any Gs inside any in-
ight mes-

sages

is equal to MaxWeight, a �xed constant. With this invariant

in mind, we can give the following rules for address manage-

ment, which are followed independently by each PE:

1. Any entries in a PE's GIT that have weightMaxWeight

can be discarded, and the local identi�er made avail-

able for re-use. (Reason: because of the invariant, no

other PEs or messages refer to this global address.)

All the other entries must be treated as roots for local

garbage collection.

2. A PE can choose whether or not the local addresses

in its GA!LA table are treated as roots for local

garbage collection. If it has plenty of space available,

it can treat them as roots, thereby preserving local

copies of global objects in the hope that they will prove

useful in the future.

If instead the PE is short of space, it refrains from

treating them as roots. After local garbage collection

is complete, the GA!LA table is scanned. Any en-

tries whose local object has (for some other reason)

been identi�ed as live by the garbage collector are

redirected to point to the object's new location. Any

entries whose object is dead are discarded, and the

weight is returned to the owning PE in a FREE mes-

sage, which in turn adds the weight in the message to

its GIT entry (thereby maintaining the invariant).

3. If a PE sends a GA to another PE, the weight held in

the GIT or GA!LA table (depending on whether the

GA is owned by this PE or not) is split evenly between

the GA in the message and the GA remaining in the

table. The receiving PE adds the weight to its GIT or

GA!LA table, as appropriate.

4. If the weight in a GA to be sent is 1 it can no longer

be split, so instead a new GA is allocated. The new

GA maps to the same local address in the GIT. The

new and old GAs are aliases for the same heap ob-

ject, which is unfortunate because it means that some

sharing is not preserved. To prevent every subsequent

shipping of the GA from allocating a new GA, we iden-

tify the new GA, with weight to give away, as the pre-

ferred GA. LA!GA lookup always returns the pre-

ferred GA.

The only garbage not collected by this scheme consists of

cycles that are spread across PEs. We plan ultimately to

recover these cycles too, by halting all PEs and performing

a global collective garbage collection, but we have not yet

even begun its implementation. In practice, local garbage

collection plus weighted reference counting seems to recover

most garbage.

2.3.4 Distributing Data

Global references are handled by special Fetch-Me objects.

When a thread enters a Fetch-Me the following steps are

carried out:

FM B36

A21

FETCH (B36,A21)

RESUME (A21,<packet>)

ACK

B36

PE A PE B

Figure 2: Fetch/Resume/Ack Sequence

1. The Fetch-Me object is globalised, i.e. given a new

local GA. It will already have a foreign GA, namely

the GA of the remote object, so this step creates a

temporary alias for it.

2. The Fetch-Me object is overwritten with a Fetching

object.

3. The demanding thread is blocked, by queueing its TSO

on a blocking queue attached to the Fetching object.

4. A FETCH message is sent to the PE that owns the

foreign GA of the Fetch-Me.

5. The PE then returns to the main scheduler: i.e it may

run other threads, garbage collect or process messages

while awaiting the response to the FETCH. Any sub-

sequent thread that demands the same foreign object

will also join the queue attached to the Fetching ob-

ject.

On receipt of a FETCH message, the target PE packages up

the appropriate object, together with some \nearby" graph,

and sends this in a RESUME message to the originator.

When the RESUME arrives, the originating PE unpacks

the graph, restarts the thread(s) that were blocked on the

Fetching object, and redirects the Fetching object to point to

the root of this graph

4

. Having done this, an ACK message

is returned to the PE that sent the RESUME (the following

section explains why). Figure 2 depicts the whole process.

2.4 Packing/Unpacking Graph

When an object is requested we also speculatively pack some

\nearby" reachable graph into the same packet, with the

object of reducing the number of explicit FETCH messages

that need to be sent. The objective is to increase through-

put over high-latency networks by sending fewer, larger mes-

sages. Packing arbitrary graph is a non-trivial problem, and

[9] discusses related work and the algorithm and heuristics

used in GUM.

Packing proceeds object by object, in a breadth-�rst traver-

sal of the graph. As each object is packed it is given a

global address, if necessary, and its location in the packet

is recorded in a table, so that sharing and cycles within the

packet are preserved. We stop packing when either all reach-

able graph has been packed, or the packet is full. Once the

4

Actually, it is possible that the RESUME might include in its

\nearby" graph some objects for which there are other Fetch-Me or

Fetching objects on the recipient PE. If so, they are each redirected

to point to the appropriate object in the newly-received graph, and

any blocked threads are restarted.

packet is full, the links from packed objects to local heap

objects are packed as Fetch-Mes.

Unpacking traverses the packet, reconstructing the graph

in a breadth-�rst fashion. As each object is unpacked the

GA!LA table is interrogated to �nd existing local copies

of the object. If no copy exists, then the GA!LA and

LA!GA tables are updated appropriately. However, if

there is already a local copy of the object, care is taken

to choose the more de�ned object. In particular, an incom-

ing normal-form object is preferred to an existing Fetch-Me.

The weight of the incoming GA is added to the weight of

the existing reference. The duplicate is overwritten by an

indirection to the more de�ned object.

While objects representing (normal form) values are freely

copied, care is taken to ensure that there is only ever one

copy of a thunk, which represents a potentially unbounded

amount amount of work. An ACK message is sent after un-

packing a packet to indicate the new location of any thunks

in the packet.

3 Preliminary Results

This section reports results of experiments performed to ver-

ify that the basic mechanisms in GUM are working properly,

and also to perform preliminary performance evaluation and

tuning. The results should be viewed as indicative that

speedups are possible using GUM, rather than conclusive

evidence that GUM speeds-up real programs.

3.1 Single Processor E�ciency

The �rst experiment investigates the underlying costs of par-

allel evaluation, compared with sequential evaluation, on a

single processor. Section 3.3 investigates parallel overheads

on multiple processors. Unless the overhead on a single pro-

cessor is small, we cannot hope to achieve good absolute

speed-ups, i.e. speed-ups relative to a good sequential im-

plementation. The single-processor overhead can be cate-

gorised as follows.

� There is a more-or-less �xed percentage overhead on

every program regardless of its use of parallelism. An

example of these overheads is that GUM must test

each new object to see whether it is under evaluation

already.

� There are overheads introduced by every spark site in

the program, as described below.

We investigate these overheads using a single processor ex-

ecuting a divide-and-conquer factorial. This toy program

is a good stress-test for the second overhead, because when

compiled for sequential execution all of the values used in

the main loop are held in registers. However, in its parallel

form, the compiler is obliged to insert code to build a heap

object for each spark site. If the program is written in the

usual naive way, each thread does very little work before

sparking another thread, and the overheads of parallelism

are high.

The version of divide-and-conquer factorial that we use,

parfact, has an explicit cut-o� parameter: if the problem

size is smaller than the cut-o� then it is solved using purely

sequential code; otherwise, the parallel code is used. In the

next experiment (Section 3.2) the cut-o� is varied to inves-

tigate how well GUM copes with various size threads. An

interested reader can �nd the Haskell program in Appendix

A.

We report all speedups in this paper relative to a fast se-

quential version of each program compiled using GHC with

full optimisation. The following table reports parallel over-

heads using parfact on one processor from two Sparc-based

architectures. The Sun multiprocessor has six Sparc 10 pro-

cessors and communicates by shared memory segments. The

Sun 4/15s are connected to a common ethernet segment. A

memory-resident 4Mb heap is used on both machines. The

�gures reported are the mean of at least three runs of the

program on a lightly-loaded, but not necessarily completely

idle, machine. Unix scheduling introduces some variabil-

ity into the results, and hence they are reported to only 2

signi�cant �gures. The GUM runtimes are presented as a

percentage e�ciency, i.e. the sequential runtime divided by

the GUM runtime.

Single-processor Efficiency

Platform seq. seq-par par- par-

runtime e�ciency worst best

Sun 4/15 43.2s 93% 35% 92%

SunMP 35.9s 90% 36% 92%

The seq. runtime column gives the elapsed or wall-clock

runtime in seconds when the fully optimised sequential ver-

sion of the program is run under the standard (sequential)

runtime system.

The seq-par e�ciency column of the table gives the ef-

�ciency when the sequential version of the program is run

under GUM on a single processor. The GUM runtimes are

elapsed time, but exclude the startup time because it is a

small (e.g. 0.6s elapsed), �xed period independent of the

program being run. The increased runtime shows that the

overhead imposed by GUM on all code, including sequential,

is in the region of 10%.

The par-worst column of the table gives the e�ciency when

the parallel version of the program is run under GUM on

a single processor, with the �nest possible grain of paral-

lelism. That is, the cut-o� is set to 1, and the program is

forced to create a heap object to spark in every recursive

call. The overheads are high, but it should be remembered

that parfact is very much a worst case. In most programs

that do real work, there will already be a heap object at

most of the spark sites and the cost of the sparks will be

quite low.

The par-best column of the table gives the e�ciency when

the parallel version of the program is run under GUM on a

single processor, with an `good' grain of parallelism. In the

next section we discover that choosing a cut-of value of 8192

produces a good thread-size for GUM on both architectures.

The behaviour of parfact with cut-o� 8192 is more typical

of parallel programs in that it creates some heap objects in

order to spark them, but also has large sections of sequential

code.

 0

 1

 2

 3

 4

 5

 6

 10 1000 100000 10000000

S
pe

ed
up

Cut-off

1
2
4
6
8

Figure 3: parfact speedups on Ethernetted Sun 4/15s

 0

 1

 2

 3

 4

 5

 6

 10 1000 100000 10000000

S
pe

ed
up

Cut-off

1
2
4
6

Figure 4: parfact speedups on SunMP

3.2 Granularity Investigation

In the following experiment we investigate the minimum ac-

ceptable grain-size for two di�erent architectures, again us-

ing parfact. Figure 3 shows the absolute speedups obtained

for parfact with di�erent cut-o� values and di�erent num-

bers of processors on the network of Sun 4/15s. Figure 4

shows results from the same experiments run on the Sun

multiprocessor.

The speedups shown in these �gures are median speedups

obtained over 4 runs. The maximum speedup curves (not

given here) are smooth, but the median curves are not

smooth because (1) the network and the processors were

lightly-loaded, but there was no way of preventing other peo-

ple using them while the experiments were being run; and

(2) the load distribution is sometimes poor because PEs �sh

for work at random, and without thread-migration one pro-

cessor may end up with a number of runnable threads while

another has none.

The peak speedup achieved on the SunMP with 6 proces-

sors was 5.1, at a cut-o� value of 128. For the Ethernet-

ted Sun 4/15s, the peak speedup with 6 processors was 4.4,

at a cut-o� value of 8192. The thread size, or granularity,

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

 1 2 4 6 8

S
pe

ed
up

Number of processors

Sun 4/15
SunMP

Ideal

Figure 5: Linearity of parfact speedups

corresponding to a cut-o� value of 8192 is about 45ms for

the Ethernetted SparcClassic system. For the SunMP, the

thread size corresponding to a cut-o� value of 128 is about

0.6ms. Since at both these cut-o� values there are still po-

tentially thousands of parallel threads, this is a reasonable

indication of the �nest grain size that can be tolerated by

each platform.

For both machines, a good thread size is independent of the

number of processors. Furthermore, a good speedup is not

dependent on getting exactly the right thread size: good

speedups are achieved for cut-o� values between 128 and

8192.

3.3 Multiprocessor E�ciency

The results from Section 3.2 assure us that GUM is not

grossly ine�cient on a single processor. With multiple PEs,

what are the overheads of communication, scheduling mul-

tiple threads and managing global data? The linearity of

speedup as more processors are added gives a good measure

of the parallel e�ciency of an implementation. Figure 5

plots the speedups obtained for the parfact program with

good granularity on both architectures, i.e. using a cut-o�

of 8192.

As expected, e�ciency falls with more processors because

of greater communication and increased volumes of global

data. Because of the high communication cost, the ethernet-

ted Sun 4/15s lose e�ciency more quickly than the SunMp.

With six processors e�ciency in the Sun 4/15 network has

fallen from 92% to 73%, and in the SunMp from 92% to

85%.

3.4 The e�ect of packet size

To investigate the e�ect of packet size we use a program that

generates a list of integers on one processor, and consumes

the list (summing it) on another. Figure 6 shows the abso-

lute runtimes for bulktest when run on a pair of Sun 4/15

workstations connected to the same segment of Ethernet.

The x-axis shows varying packet sizes, while the multiple

 10

 1000

 100000

10000000

 10 1000 100000

T
im

e
(m

ill
is

ec
on

ds
)

Packet size (words)

2
32

256
1024
8192

16384
32768
60000

Figure 6: bulktest runtimes on Ethernetted Sun 4/15s

plots are for di�erent list lengths, as set by a command-line

argument.

We make the following observations on the results. The time

required to communicate very long lists (in excess of 8000

elements) is predictable, and reduces as the packet size in-

creases. The time required to communicate short lists (less

than 8000 elements) is chaotic, but nevertheless quite small;

this is probably due to the random nature of the Ethernet.

Most of the bene�t of bulk fetching is achieved with packet

sizes of about 4K words. Larger packet sizes improve per-

formance slightly for this experiment, but for more realistic

programs they may prove detrimental. This result is in close

agreement with the PVM example program timing.

4 Related Work

There has been much work on parallel functional program-

ming. Hammond [8] provides a historical overview and in-

troduces the principal approaches that have been taken at

both the language and implementation levels. This sec-

tion describes the implementations that are most closely

related to GUM: those based on compiled graph reduction

for non-strict purely-functional languages. Less closely re-

lated are the variety of implementations for strict functional

languages, including Lisp derivatives such as Qlisp [7] or

Mul-T [12], and data
ow languages such as Sisal [16].

4.1 Shared-Memory Implementations

Shared-memory implementations of non-strict functional

languages have been quite successful, often showing good

relative speedup for limited numbers of processors on sim-

ple programs. One of the �rst successful implementations

was Buckwheat [6], which ran on the Encore Multimax.

This used a fairly conventional stack-based implementation

of compiled graph-reduction, with a single shared heap, and

a two-level task queue, which aimed to reduce memory con-

tention. To avoid duplicating work, each thunk was locked

when it was entered, an expensive operation on a shared-

memory machine. Relative speedups of 6 to 10 were achieved

with 12 processors.

The < �;G >-Machine [3] was based on the sequential

Chalmers G-Machine compiler, and ran on a 16-processor

Sequent Symmetry. There was no stack, but instead thunks

were built with enough space to hold all necessary argu-

ments plus some local workspace for temporary variables.

As with Buckwheat, a single shared heap was used, with

thunks locked on entry. Garbage collection was implemented

using a global stop-and-copy policy. The spark creation pol-

icy was similar to that for GUM, but only a single global

spark pool was provided. There are several obvious prob-

lems with this scheme: the global spark pool is a memory

hot-spot; the lack of an explicit stack means cache locality is

lost; and garbage collection requires inter-processor synchro-

nisation. As a consequence absolute speedups achieved were

a factor of 5 to 11 on a 16-processor con�guration. Mattson

observed similar problems with a similar shared-memory im-

plementation of the STG-Machine on a 64-processor BBN

Butter
y [18].

The more recent GAML implementation is an attempt to

address some of the shortcomings of the original <�;G>-

Machine. GAML introduces the notion of possibly shared

nodes, which are the only nodes that must be locked. It

also uses a linked list of stack chunks similar to those we

use in GUM. Garbage collection is done in parallel, with

all processors synchronising �rst. Control of parallelism is

by load-based inlining which may lead to starvation, and

should be used only on programs that are coarse-grained or

continuously generate parallelism. On the Sequent Balance,

GAML achieves relative speedups of between 3.3 and 5.8 for

small programs [17].

WYBERT [13] is based on the FAST/FCG sequential com-

piler, and runs on a 4-processor Motorola HYPERmodule.

Rather than de�ning a general primitive for parallelism, the

implementation uses an explicit divide-and-conquer skele-

ton. This limits the programs that can be run to those suit-

ing a single, albeit common, paradigm. The cost of locking

is avoided entirely by ensuring that shared redexes cannot

arise! This is achieved by eagerly evaluating all shared data

before a task is created. A secondary advantage is that a

task can perform independent garbage collection since no

remote processor can refer to any of its data. Relative

speedups are fairly good: between 2.4 and 4 on 4 proces-

sors.

4.2 Distributed-Memory Implementations

There have been several Transputer-based distributed-

memory implementations, and a few on other architectures.

Alfalfa was a distributed-memory implementation for the

Intel iPSC, similar to, but predating Buckwheat [5]. Unfor-

tunately, the communication overhead on this system was

high, and performance results were disappointing: relative

speedups of around 4 to 8 being achieved for 32 processors.

Like WYBERT, ZAPP [15] aims to implement only divide-

and-conquer parallelism, using an explicit fork-and-join

skeleton. Once generated, tasks can either be executed on

the processor that generated them or stolen by a neighbour-

ing processor. There is no task migration, so the program

retains a high degree of locality. A simple bulk-fetching

strategy is implemented, with all necessary graph being ex-

ported when the task that needs it is exported. Perfor-

mance results on the transputer were impressive for the few

programs that were tried, with relative speedups generally

improving as the problem size increased, up to 39.9 on 40

transputers for naive Fibonacci.

The HDG-Machine [11] uses a packet-based approach to

memory allocation that is similar to that of the <�;G>-

Machine, but with a distributed weighted reference-counting

garbage collection scheme [14]. Task distribution is similar

to ZAPP. Only incremental fetching strategies were tested

with this scheme, though presumably a bulk fetching strat-

egy would also be possible. Relative speedup for naive Fi-

bonacci was 3.6 on 4 transputers.

Concurrent Clean runs on transputers and networks of Mac-

intoshes [20]. Like GUM, it is stack-based, and uses tables

of \in-pointers" to allow independent local garbage collec-

tion. A bulk graph-fetching algorithm is implemented, but

in contrast to GUM, there is no limit on the size of graph

that will be sent, and graph is reduced to normal form before

it is transferred. In contrast to the GUM �shing strategy,

tasks are statically allocated to processors by means of an-

notations. Relative speedups of 8.2 to 14.8 are reported

for simple benchmarks on a 16-processor Transputer sys-

tem [10].

4.3 GRIP

GUM's design is a development of our earlier work on the

GRIP multiprocessor [22]. GRIP's memory was divided into

fast unshared memory that was local to a PE, with sepa-

rate banks of globally addressed memory that could be ac-

cessed through a fast packet-switched network. Objects were

fetched from global memory singly on demand rather than

using GUM-style bulk fetching. While GUM no longer has

two kinds of memory, we have retained the two-level sep-

aration of local and global heap that permits each PE to

garbage collect independently. Another potential advantage

is that purely local objects might be held in faster unshared

memory on a shared-memory machine.

On GRIP, in addition to the spark pool on each PE, spe-

cial hardware maintained a distributed global spark pool.

GRIP's scheme had the advantage that PEs never processed

FISH messages unnecessarily, but, because local memory

was unshared, a sparked thunk could only be exported after

all graph reachable from it had also been exported. The

work-stealing scheme used in GUM avoids this problem.

Relative speedups on GRIP were generally good, for exam-

ple, a parallel ray tracer achieved speedups of around 14 on

16 processors.

5 Discussion and Further Work

We have described a portable, parallel implementation

of Haskell, built on the PVM communications har-

ness. GUM is currently on public �-release with ver-

sion 0.26 (and onwards) of the Glasgow Haskell com-

piler. Further information is available on the internet at

http://www.dcs.gla.ac.uk/fp/software/ghc.html.

It is quite ambitious to target such a variety of architectures,

and it is not obvious that a single architectural model will

su�ce for all machines, even if we start from such a high-

level basis as parallel Haskell. We do however believe that

it is easier and more e�cient to map a message-based pro-

tocol onto a shared-memory machine than to map a shared-

memory protocol onto a distributed-memory machine. A

port of GUM to a CM5, a distributed-memory machine

with 512 Sparc processors, is nearing completion at Los

Alamos National Laboratory. We hope that experiments

with GUM on shared-memory and distributed-memory ma-

chines will reveal how realistic a single implementation is for

both classes of architecture.

The performance �gures given here are indicative rather

than conclusive. They show that we have not fallen into

the trap of building a parallel system whose performance is

fundamentally slower by a large factor than the best unipro-

cessor compilation technology. They do not, however, say

much about whether real programs can readily be run with

useful speedups. Indeed, we believe that considerable work

is required to tune the existing system.

The development of GUM is being driven by users who want

parallel Haskell to make their programs run faster. The two

main users are a 30K-line natural language processor, and

a user writing complex database queries. Both are in the

preliminary stages of parallelising their applications.

While we have initially targeted PVM because of its wide

availability this is not a �xed decision and our implementa-

tion is designed to be easily re-targeted to other message-

passing libraries such as MPI. Indeed the CM5 implementa-

tion uses the CMMD message-passing library native to the

machine. We would like to measure the speedups can be ob-

tained by using machine-speci�c communication primitives,

particularly on shared-memory machines.

The GUM implementation could be improved in many ways.

The load management strategy could be made less naive. In

the medium term, the addition of multiple-packet messages

and distributed garbage collection for cyclic graphs would

increase the number of programs that could be run, and

thread migration would improve the ability of the system

to cope with arbitrarily partitioned programs. In the longer

term, we plan to investigate adding speculative evaluation

and support for explicit concurrent processes [23]. We hope

that the public availability of the system will encourage oth-

ers to join us in these developments.

References

[1] Arvind and Iannucci RA, \Two Fundamental Issues in

Multiprocessing", Proc DFVLR Conference on Paral-

lel Processing in Science and Engineering, Bonn-Bad

Godesberg (June 1987).

[2] Bevan DI, \Distributed Garbage Collection using Ref-

erence Counting", Proc PARLE, deBakker JW, Nij-

man L and Treleaven PC (eds), Eindhoven, Netherlands

(June 1987).

[3] Augustsson L, and Johnsson T, \Parallel Graph Re-

duction with the <�;G>-Machine\, Proc. FPCA '89,

London, UK, (1989), pp. 202{213.

[4] Burton FW, and Rayward-Smith VJ, \Worst Case

Scheduling for Parallel Functional Programming",

Journal of Functional Programming, 4(1), (January

1994), pp. 65{75.

[5] Goldberg B, and Hudak P, \Alfalfa: Distributed Graph

Reduction on a Hypercube Multiprocessor", Proc.

Workshop on Graph Reduction, Fasel RMKJF (ed.),

Santa F�e, NM, Springer Verlag LNCS 279, (1986),

pp. 94{113.

[6] Goldberg BF, \Buckwheat: Graph Reduction on a

Shared Memory Multiprocessor", Proc. ACM Conf. on

Lisp and Functional Programming, Snowbird, Utah,

(1988), ppp. 40{51.

[7] Goldman R, and Gabriel RP, \Qlisp: Parallel Process-

ing in Lisp", IEEE Software, pp. 51{59, (1989).

[8] Hammond K, \Parallel Functional Programming: an

Introduction", Proc. PASCO '94, Linz, Austria, World

Scienti�c, (September 1994), pp. 181{193.

[9] Hammond K, Mattson JS, Partridge AS, Peyton Jones

SL, and Trinder PW \GUM: a portable Parallel Im-

plementation of Haskell", Proc 7th. Intl. Workshop on

Implementation of Functional Languages, Bastad, Swe-

den (September 1995).

[10] Kesseler M, \Reducing Graph Copying Costs { Time

to Wrap it up", Proc. PASCO '94 | First Intl.

Symposium on Parallel Symbolic Computation, Hagen-

berg/Linz, Austria, World Scienti�c, (September 1994),

pp. 244{253.

[11] Kingdon H, Lester D, and Burn GL, \The HDG-

Machine: a Highly Distributed Graph Reducer for a

Transputer Network", The Computer Journal, 34(4),

(April 1991), pp. 290{302.

[12] Kranz DA, Halstead RH, and Mohr E, \Mul-T: a High-

Performance Parallel Lisp", Proc. PLDI '89, Portland,

Oregon, (1989), pp. 81{90.

[13] Langendoen K, \Graph Reduction on Shared Memory

Multiprocessors", PhD Thesis, University of Amster-

dam, 1993.

[14] Lester D \An E�cient Distributed Garbage Collection

Algorithm", Proc. PARLE '89, LNCS 365, Springer

Verlag, (June 1989).

[15] McBurney DL, and Sleep MR, \Transputer Based Ex-

periments with the ZAPP Architecture", Proc. PARLE

'87, LNCS 258/259, Springer Verlag, (1987), pp. 242{

259.

[16] McGraw J, Skedzielewski S, Allan S, Odehoeft R,

Glauert JRW, Kirkham C, Noyce W, and Thomas R,

\SISAL: Streams and Iteration in a Single-Assignment

Language: Reference Manual Version 1.2", Manual M-

146, Rev. 1, Lawrence Livermore National Laboratory,

(March 1985).

[17] Maranget L, \GAML: a Parallel Implementation of

Lazy ML" Proc. FPCA '91, Springer Verlag LNCS 523,

p.102{123, (1991).

[18] Mattson JS, An E�ective Speculative Evaluation Tech-

nique for Parallel Supercombinator Graph Reduction,

PhD thesis, Dept. of Computer Science and Engineer-

ing, University of California, San Diego, (1993).

[19] Mohr E, Kranz DA, and Halstead RH, \Lazy Task Cre-

ation { a Technique for Increasing the Granularity of

Parallel Programs", IEEE Transactions on Parallel and

Distributed Systems, 2(3), (July 1991), pp. 264{280.

[20] N�ocker EGJMH, Smetsers JEW, van Eekelen MCJD

and Plasmeijer MJ, \Concurrent Clean", Proc. PARLE

'91, Springer Verlag LNCS 505/506, pp. 202{220,

(1991).

[21] Oak Ridge National Laboratory, University of Ten-

nessee, \Parallel Virtual Machine Reference Manual,

Version 3.2", (August 1993).

[22] Peyton Jones SL, Clack C, Salkild J, \High-

performance parallel graph reduction", Proc PARLE

'89, Springer Verlag LNCS 365 (June 1989).

[23] Peyton Jones SL, Gordon AD, and Finne SO, \Concur-

rent Haskell", Proc. ACM Symposium on Principles of

Programming Languages, St Petersburg Beach, Florida,

(January 1996).

[24] Watson P and Watson I, \An E�cient Garbage Col-

lection Scheme for Parallel Computer Architectures",

Proc PARLE, deBakker JW, Nijman L and Treleaven

PC (eds), Eindhoven, Netherlands (June 1987).

5.1 Appendix: Parallel Factorial

module Main(main) where

import Parallel

pfc :: Int -> Int -> Int -> Int

pfc x y c

| y - x > c = f1 `par`

(f2 `seq` (f1+f2))

| x == y = x

| otherwise = pf x m + pf (m+1) y

where

m = (x+y) `div` 2

f1 = pfc x m c

f2 = pfc (m+1) y c

pf :: Int -> Int -> Int

pf x y

| x < y = pf x m + pf (m+1) y

| otherwise = x

where

m = (x+y) `div` 2

parfact x c = pfc 1 x c

main

= getArgs exit (\[a1, a2] ->

let x = fst (head (readDec a1))

c = fst (head (readDec a2))

in

appendChan stdout

(show (parfact x c))

exit done)

