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Gunrock: GPU Graph Analytics

YANGZIHAOWANG, YUECHAO PAN, ANDREW DAVIDSON, YUDUOWU, CARL YANG,
LEYUAN WANG, MUHAMMAD OSAMA, CHENSHAN YUAN, WEITANG LIU, ANDY T.
RIFFEL AND JOHN D. OWENS, University of California, Davis

For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity

of programming GPUs, have presented two significant challenges to developing a programmable high-

performance graph library. “Gunrock”, our graph-processing system designed specifically for the GPU,

uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge

frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance

GPU computing primitives and optimization strategies with a high-level programming model that allows

programmers to quickly develop new graph primitives with small code size and minimal GPU programming

knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock’s overall

performance on different GPU architectures on a wide range of graph primitives that span from traversal-based

algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. �e results

show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and

PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory

graph libraries such as Ligra and Galois, and be�er performance than any other GPU high-level graph library.
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→ Parallel algorithms; •Computer systems organization→ Single instruction, multiple data;
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1 INTRODUCTION

Graphs are ubiquitous data structures that can represent relationships between people (social net-
works), computers (the Internet), biological and genetic interactions, and elements in unstructured
meshes. Many practical problems in social networks, physical simulations, bioinformatics, and
other applications can be modeled in their essential form by graphs and solved with appropriate
graph primitives. Various types of such graph primitives that compute and exploit properties of
particular graphs are collectively known as graph analytics. In the past decade, as graph problems
have grown larger in scale and become more computationally complex, the research of parallel
graph analytics has raised great interest in order to overcome the computational resource and mem-
ory bandwidth limitations of single processors. In this paper, we describe “Gunrock,” our graphics
processor (GPU)-based system for graph processing that delivers high performance in computing
graph analytics with its high-level, data-centric parallel programming model. Unlike previous GPU
graph programming models that focus on sequencing computation steps, our data-centric model’s
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39:2 Wang et al.

key abstraction is the frontier, a subset of the edges or vertices within the graph that is currently
of interest. All Gunrock operations are bulk-synchronous and manipulate this frontier, either by
computing on values within it or by computing a new frontier from it.
At a high level, Gunrock targets graph primitives that are iterative, convergent processes.

Among the graph primitives we have implemented and evaluated in Gunrock, we focus in this
paper on breadth-first search (BFS), single-source shortest path (SSSP), betweenness centrality (BC),
PageRank, connected components (CC), and triangle counting (TC). �ough the GPU’s excellent
peak throughput and energy efficiency [40] have been demonstrated across many application
domains, these applications o�en exploit regular, structured parallelism. �e inherent irregularity
of graph data structures leads to irregularity in data access and control flow, making an efficient
implementation on GPUs a significant challenge.
Our goal with Gunrock is to deliver both performance and programmability. Gunrock’s per-

formance is similar to customized, complex GPU hardwired graph primitives, and its high-level
programming model allows programmers to quickly develop new graph primitives. To do so, we
must address the key challenge in a highly parallel graph processing system: managing irregu-
larity in work distribution. Gunrock integrates sophisticated load-balancing and work-efficiency
strategies into its core. �ese strategies are hidden from the programmer; the programmer instead
expresses what operations should be performed on the frontier rather than how those operations
should be performed. Programmers can assemble complex and high-performance graph primitives
from operations that manipulate the frontier (the “what”) without knowing the internals of the
operations (the “how”).
Our contributions, extending those from our previous work [82], are as follows:

(1) We present a novel data-centric abstraction for graph operations that allows programmers
to develop graph primitives at a high level of abstraction while delivering high performance.
�is abstraction, unlike the abstractions of previous GPU programmable frameworks, is
able to elegantly incorporate profitable optimizations—kernel fusion, push-pull traversal,
idempotent traversal, and priority queues—into the core of its implementation.

(2) We design and implement a set of simple and flexible APIs that can express a wide range of
graph processing primitives at a high level of abstraction (at least as simple, if not more so,
than other programmable GPU frameworks).

(3) We describe several GPU-specific optimization strategies for memory efficiency, load
balancing, and workload management that together achieve high performance. All of our
graph primitives achieve comparable performance to their hardwired counterparts and
significantly outperform previous programmable GPU abstractions.

(4) We provide a detailed experimental evaluation of our graph primitives with performance
comparisons to several CPU and GPU implementations.

Gunrock is currently available to external developers in an open-source repository at h�p://gunrock.
github.io/, under an Apache 2.0 license.

2 RELATED WORK

�is section discusses the research landscape of large-scale graph analytics frameworks in four
fields:

(1) Single-node CPU-based systems, which are in common use for graph analytics today,
but whose serial or coarse-grained-parallel programming models are poorly suited for a
massively parallel processor like the GPU;
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(2) Distributed CPU-based systems, which offer scalability advantages over single-node systems
but incur substantial communication cost, and whose programming models are also poorly
suited to GPUs;

(3) GPU “hardwired,” low-level implementations of specific graph primitives, which provide a
proof of concept that GPU-based graph analytics can deliver best-in-class performance.
However, best-of-class hardwired primitives are challenging to even the most skilled
programmers, and their implementations do not generalize well to a variety of graph
primitives; and

(4) High-level GPU programming models for graph analytics, which o�en recapitulate CPU
programming models. �e best of these systems incorporate generalized load-balance
strategies and optimized GPU primitives, but they generally do not compare favorably
in performance with hardwired primitives due to the overheads inherent in a high-level
framework and the lack of primitive-specific optimizations.

2.1 Single-node CPU-based Systems

Parallel graph analytics frameworks provide high-level, programmable, high-performance abstrac-
tions. �e Boost Graph Library (BGL) is among the first efforts towards this goal, though its serial
formulation and C++ focus together make it poorly suited for a massively parallel architecture like
a GPU. Designed using the generic programming paradigm, the parallel BGL [29] separates the
implementation of parallel algorithms from the underlying data structures and communication
mechanisms. While many BGL implementations are specialized per algorithm, its breadth first visit
pa�ern (for instance) allows sharing common operators between different graph algorithms. Stan-
ford Network Analysis Platform (SNAP) is another general purpose network analysis and graph
mining library which contains C++ and Python implementations of various graph algorithms and
a dataset collection of large networks [46]. It is one of the most important benchmarks in the field
of high performance graph analytics.

2.2 Distributed CPU-based Systems

Traditional distributed data processing system such as MapReduce fits poorly for graph processing
tasks which usually contain highly irregular workloads. �us people have developed distributed
systems for graph processing. �ere are two major framework families for CPU-based large-scale
graph processing system: Pregel and GraphLab. Pregel [50] is a Google-initiated programming
model and implementation for large-scale graph computing that follows the Bulk-Synchronous
Parallel (BSP)model [79]. A typical application in Pregel is an iterative convergent process consisting
of global synchronization barriers called super-steps. �e computation in Pregel is vertex-centric
and based on message passing. Its programming model is good for scalability and fault tolerance.
However, standard graph algorithms in most Pregel-like graph processing systems suffer slow
convergence on large-diameter graphs and load imbalance on scale-free graphs. Apache Giraph
is an open source implementation of Google’s Pregel. It is a popular graph computation engine
in the Hadoop ecosystem initially open-sourced by Yahoo!. GraphLab [49] is an open-source
large scale graph processing library that relies on the shared memory abstraction and the gather-
apply-sca�er (GAS) programming model. It allows asynchronous computation and dynamic
asynchronous scheduling. By eliminating message-passing, its programming model isolates the
user-defined algorithm from the movement of data, and therefore is more consistently expressive.
PowerGraph [24] is an improved version of GraphLab for power-law graphs. It supports both BSP
and asynchronous execution. For the load imbalance problem, it uses vertex-cut to split high-degree
vertices into equal degree-sized redundant vertices. �is exposes greater parallelism in scale-free
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graphs. GraphChi [44] is a centralized system that can process massive graphs from secondary
storage in a single machine. It introduces a novel graph partitioning method called Parallel Sliding
Windows (PSW), which sorts the edges by their source node IDs to provide load balancing.

Beyond these two families, several other graph libraries have influenced the direction of graph an-
alytics research, including shared-memory-based systems and domain-specific languages. Ligra [71]
is a CPU-based graph processing framework for shared memory. It uses a similar operator abstrac-
tion to Gunrock for doing graph traversal. Its lightweight implementation is targeted at shared
memory architectures and uses CilkPlus for its multi-threading implementation. Galois [57, 62] is
a graph system for shared memory based on a different operator abstraction that supports priority
scheduling and dynamic graphs and processes on subsets of vertices called active elements. How-
ever, their model does not abstract the internal details of the iterating process from the user. Users
have to generate the active elements set directly for different graph algorithms. Green-Marl [36] is
a domain-specific language for writing graph analysis algorithms on shared memory with built-in
breadth-first search (BFS) and depth-first search (DFS) primitives in its compiler. Its language
approach provides graph-specific optimizations and hides complexity. However, the language does
not support operations on arbitrary sets of vertices for each iteration, which makes it difficult
to use for traversal algorithms that cannot be expressed using a BFS or DFS. GraphX [25] is a
distributed graph computation framework that unifies graph-parallel and data-parallel computation.
It provides a small, core set of graph-parallel operators expressive enough to implement the Pregel
and PowerGraph abstractions, yet is simple enough to be cast in relational algebra. Help is a library
that provides high-level primitives for large-scale graph processing [65]. Using the primitives in
Help is more intuitive and faster than using the APIs of existing distributed systems.

2.3 Specialized Parallel Graph Algorithms

Recent work has developed numerous best-of-breed, hardwired implementations of many graph
primitives.

BFS. Breadth-first search is among the first few graph primitives researchers developed on
the GPU due to its representative workload pa�ern and its fundamental role as the building
block primitive to several other traversal-based graph primitives. Harish and Narayanan [33] first
proposed a quadratic GPU BFS implementation that maps each vertex’s neighbor list to one thread.
Hong et al. [37] improved on this algorithm by mapping workloads to a series of virtual warps and
le�ing an entire warp cooperatively strip-mine the corresponding neighbor list. Merrill et al.’s linear
parallelization of the BFS algorithm on the GPU [55] had significant influence in the field. �ey
proposed an adaptive strategy for load-balancing parallel work by expanding one node’s neighbor
list to one thread, one warp, or a whole block of threads. With this strategy and a memory-access-
efficient data representation, their implementation achieves high throughput on large scale-free
graphs. Beamer et al.’s recent work on a very fast BFS for shared memory machines [6] uses
a hybrid BFS that switches between top-down and bo�om-up neighbor-list-visiting algorithms
according to the size of the frontier to save redundant edge visits. Enterprise [47], a GPU-based
BFS system, introduces a very efficient implementation that combines the benefits of direction
optimization, Merrill et al.’s adaptive load-balancing workload mapping strategy, and a status-check
array. BFS-4K [12] is a GPU BFS system that improves the virtual warp method to a per-iteration
dynamic one and uses dynamic parallelism for be�er load balancing.
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CC. Connected components can be implemented as a BFS-based primitive. �e current fastest
connected-component algorithm on the GPU is Soman et al.’s work [75] based on a PRAM connected-
component algorithm [30] that initializes each vertex in its own component, and merges component
IDs by traversing in the graph until no component ID changes for any vertex.

BC. Several parallel betweenness centrality implementations on the GPU are based on the work
from Brandes [8]. Pande and Bader [60] proposed the first BC implementation on the GPU using a
quadratic BFS. Sariyüce et al. [67] adopted PowerGraph’s vertex-cut method (which they termed
vertex virtualization) to improve load balancing and proposed a stride-CSR representation to
reorganize adjacency lists for be�er memory coalescing. McLaughlin and Bader [52] developed a
work-efficient betweenness centrality algorithm on the GPU that combines a queue-based linear
multi-source BFS-basedwork-efficient BC implementationwith an edge-parallel BC implementation.
It dynamically chooses between the two according to frontier size and scales linearly up to 192
GPUs.

SSSP. Davidson et al. [17] proposed a delta-stepping-based [56] work-efficient single-source
shortest path algorithm on the GPU that explores a variety of parallel load-balanced graph traversal
and work organization strategies to outperform previous parallel methods that are either based on
quadratic BFS [33] or the Bellman-Ford algorithm (LonestarGPU 2.0 [10]).

TC. Green et al.’s GPU triangle counting algorithm [28] computes set intersections for each edge
in the undirected graph, and uses a modified intersection path method based on merge path [26],
which is considered to have the highest performance for large-sorted-array set intersection on the
GPU.

A�er we discuss the Gunrock abstraction in Section 3, we will discuss how to map these spe-
cialized graph algorithms to Gunrock and the differences in Gunrock’s implementations.

2.4 High-level GPU Programming Models

Several works target the construction of a high-level GPU graph processing library that delivers
both good performance and good programmability. We categorize these into two groups by
programming model: (1) BSP/Pregel’s message-passing framework and (2) the GAS model.
In Medusa [86], Zhong and He presented their pioneering work on parallel graph processing

using a message-passing model called Edge-Message-Vertex (EMV). It is the first high-level GPU
graph analytics system that can automatically execute different user-defined APIs for different
graph primitives, which increases the programmability to some extent. However, its five types
of user-defined API—namely, ELIST, EDGE, MLIST, MESSAGE, VERTEX—are still vertex-centric
and need to be split into several source files. Moreover, Medusa does not have a fine-grained load
balancing strategy for unevenly distributed neighbor lists during graph traversal, which makes its
performance on scale-free graphs uncompetitive compared to specialized graph primitives.

Two more recent works that follow the message-passing approach both improve the execution
model. Totem [22] is a graph processing engine for GPU-CPU hybrid systems. It either processes
the workload on the CPU or transmits it to the GPU according to a performance estimation model.
Its execution model can potentially solve the long-tail problem (where the graph has a large
diameter with a very small amount of neighbors to visit per iteration) on GPUs, and overcome
GPU memory size limitations. Totem’s programming model allows users to define two functions—
algo compute func and msg combine func—to apply to various graph primitives. However, because
its API only allows direct neighbor access, it has limitations in algorithm generality. Frog [70] is a
lock-free semi-asynchronous parallel graph processing framework with a graph coloring model. It

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 39. Publication date: September 2017.



39:6 Wang et al.

has a preprocessing step to color the graph into sets of conflict-free vertices. Although vertices with
the same color can be updated lock-free in a parallel stage called color-step, on a higher level the
program still needs to process color-steps in a BSP style. Within each color-step, their streaming
execution engine is message-passing-based with a similar API to Medusa. �e preprocessing step
of the color model does accelerate the iterative convergence and enables Frog to process graphs
that do not fit in a single GPU’s memory. However, the CPU-based coloring algorithm is inefficient.
Because of the limitation of its programming model, which requires that it visit all edges in each
single iteration, its performance is restricted.
�e GAS abstraction was first applied on distributed systems [24]. PowerGraph’s vertex-cut

splits large neighbor lists, duplicates node information, and deploys each partial neighbor list to
different machines. Working as a load balancing strategy, it replaces the large synchronization cost
in edge-cut into a single-node synchronization cost. �is is a productive strategy for multi-node im-
plementations. GAS offers the twin benefits of simplicity and familiarity, given its popularity in the
CPU world. VertexAPI2 [19] is the first GPU high-level graph analytics system that strictly follows
the GAS model. It defines two graph operators: gatherApply, the combination of GAS’s gather step
and apply step, and sca�erActivate, GAS’s sca�er step. Users build different graph primitives by
defining different functors for these operators. VertexAPI2 has four types of functors: gatherReduce,
gatherMap, sca�er, and apply. Underneath their abstraction, VertexAPI2 uses state-of-the-art GPU
data primitives based on two-phase decomposition [5]. It shows both be�er performance and
be�er programmability compared to message-passing-based GPU libraries. MapGraph [20] echoes
VertexAPI2’s framework and integrates both moderngpu’s load-balanced search [5] and Merrill et
al.’s dynamic grouping workload mapping strategy [55] to increase its performance. CuSha [42]
is also a GAS model-based GPU graph analytics system. It solves the load imbalance and GPU
underutilization problem with a GPU adoption of GraphChi’s PSW. �ey call this preprocessing
step “G-Shard” and combine it with a concatenated window method to group edges from the same
source IDs.

nvGRAPH1 is a high-performance GPU graph analytics library developed by NVIDIA. It views
graph analytics problems from the perspective of linear algebra and matrix computations [41],
and uses semi-ring SpMV operations to express graph computation. It currently supports three
algorithms: PageRank, SSSP, and Single Source Widest Path.
Table 1 compares Gunrock with the above high-level GPU-based graph analytics systems on

various metrics. Our novel data-centric programming model and its efficient implementation makes
Gunrock the only high-level GPU-based graph analytics systemwith support for both vertex-centric
and edge-centric operations, as well as runtime fine-grained load balancing strategies, without
requiring any preprocessing of input datasets.

From a programmability perspective, Gunrock aims to 1) define a programming model that can
abstract most common operations in graph analytics at a high level; 2) be flexible enough to express
various types of graph analytics tasks; and 3) match the GPU’s high-throughput, data-centric,
massively parallel execution model, balancing on the generality of the model with its performance.
From a performance perspective, Gunrock a�empts to 1) build its low-level optimizations on

top of the state-of-the-art basic data parallel primitives on the GPU and 2) design optimizations to
allow the usage of different combinations and parameter-tuning methods in our graph operations.
Together these goals enable performance that is comparable to specialized GPU implementations.

1nvGRAPH is available at h�ps://developer.nvidia.com/nvgraph.
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Metrics Medusa Totem Frog VertexAPI2 MapGraph CuSha Gunrock

programming model m-p m-p m-p GAS GAS GAS data-centric

operator flexibility v-c, e-c v-c v-c v-c v-c v-c v-c, e-c

load balancing no limited limited fine-grained fine-grained fine-grained fine-grained

preprocessing no no coloring no no G-shard no

execution model BSP BSP,hybrid semi-async BSP BSP BSP BSP

Table 1. Detailed comparison of different high-level GPU graph analytics systems. m-p means message-
passing based model, v-c and e-c mean vertex-centric and edge-centric respectively. Note that part of load
balancing work in Frog and CuSha are done offline (the coloring model for Frog and G-shard generation
process for CuSha). This table focuses on graph-centric abstractions, so we leave out libraries that follow a
linear algebra abstraction such as nvGRAPH.

WorkSet

(Active nodes)

Local Compute

with readin msgs

Messaging 

neighbors

Aggregate

(optional)

Barrier

WorkSet

(Active nodes)

Gather from

neighbors

Apply

(local compute)

Scatter to

neighbors

Barrier

Frontier

(Active nodes

or active edges)

Graph Operator

(local compute

and messaging) Barrier

Fig. 1. Iterative convergence process presented using Pregel’s message passing model, PowerGraph’s GAS
model, and Gunrock’s data-centric model.

3 DATA-CENTRIC ABSTRACTION

A common finding from most CPU and GPU graph analytics systems is that most graph analytics
tasks can be expressed as iterative convergent processes (Figure 1). By “iterative,” we mean
operations that may require running a series of steps repeatedly; by “convergent,” we mean that
these iterations allow us to approach the correct answer and terminate when that answer is reached.
Mathematically, an iterative convergent process is a series of operations f0, f1, ..., fn−1 that operate
on graph data G, where Gi = f (Gi−1), until at iteration i , the stop condition function C (Gi , i )

returns true.
Both Pregel and PowerGraph focus on sequencing steps of computation. Where Gunrock differs

from them and their variants is our abstraction. Rather than focusing on sequencing steps of
computation, we instead focus on manipulating a data structure, the frontier of vertices or edges. �e
frontier represents the subset of vertices or edges that is actively participating in the computation.
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Gunrock’s data-centric framework design not only provides the features of other frameworks but
also provides high performance. It is flexible enough to be expanded by new graph operators, as
long as they operate on one or more input frontiers with graph data and generate one or more
output frontiers. Because of this design, we claim that thinking about graph processing in terms
of manipulations of frontiers is the right abstraction for the GPU. We support this statement
qualitatively in this section and quantitatively in section 7.
One important consequence of designing our abstraction with a data-centered focus is that

Gunrock, from its very beginning, has supported both node and edge frontiers, and can easily
switch between them within the same graph primitive. We can, for instance, generate a new
frontier of neighboring edges from an existing frontier of vertices. In contrast, gather-apply-sca�er
(PowerGraph) and message-passing (Pregel) abstractions are focused on operations on vertices and
either cannot support edge-centric operations or could only support them with heavy redundancy
within their abstractions.

In our abstraction, we expose bulk-synchronous “steps” that manipulate the frontier, and pro-
grammers build graph primitives from a sequence of steps. Different steps may have dependencies
between them, but individual operations within a step can be processed in parallel. For instance, a
computation on each vertex within the frontier can be parallelized across vertices, and updating
the frontier by identifying all the vertices neighboring the current frontier can also be parallelized
across vertices.

�e graph primitives we describe in this paper use three traversal operators: advance, filter, and
segmented intersection. �ey may also use one compute operator, which is o�en fused with one of
the traversal operators (Figure 2). Each graph operator manipulates the frontier in a different way.
�e input frontier of each operator contains either node IDs or edge IDs that specify on which part
of the graph we are going to perform our computations. �e traversal operators traverse the graph
and generate an output frontier. Within a traversal operator, each input item can potentially map
to zero, one, or more output items; efficiently handling this irregularity is the principal challenge
in our implementation. In this section, we discuss the functionality of the operators, then discuss
how we implement them in Section 5.

Advance An advance operator generates a new frontier from the current frontier by visiting
the neighbors of the current frontier. Each input item maps to multiple output items
from the input item’s neighbor list. A frontier can consist of either vertices or edges, and
an advance step can input and output either kind of frontier. Advance is an irregularly-
parallel operation for two reasons: 1) different vertices in a graph have different numbers
of neighbors and 2) vertices share neighbors. An efficient advance is the most significant
challenge of a GPU implementation.

�e generality of Gunrock’s advance allows us to use the same advance implementation
across a wide variety of interesting graph operations. According to the type of input
frontier and output frontier, Gunrock supports 4 kinds of advance: V-to-V, V-to-E, E-to-V,
and E-to-E, where E represents an edge frontier and V represents a vertex frontier. For
instance, we can utilize Gunrock advance operators to 1) visit each element in the current
frontier while updating local values and/or accumulating global values (e.g., BFS distance
updates); 2) visit the node or edge neighbors of all the elements in the current frontier while
updating source vertex, destination vertex, and/or edge values (e.g., distance updates in
SSSP); 3) generate edge frontiers from vertex frontiers or vice versa (e.g., BFS, SSSP, SALSA,
etc.); or 4) pull values from all vertices 2 hops away by starting from an edge frontier,
visiting all the neighbor edges, and returning the far-end vertices of these neighbor edges.
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Filter A filter operator generates a new frontier from the current frontier by choosing a
subset of the current frontier based on programmer-specified criteria. Each input item
maps to zero or one output item. �ough filtering is an irregular operation, using parallel
scan for efficient filtering is well-understood on GPUs. Gunrock’s filters can either 1) split
vertices or edges based on a filter (e.g., SSSP’s 2-bucket delta-stepping), or 2) compact out
filtered items to throw them away (e.g., duplicated vertices in BFS or edges where both end
nodes belong to the same component in CC).

Segmented Intersection A segmented intersection operator takes two input node frontiers
with the same length, or an input edge frontier, and generates both the number of total
intersections and the intersected node IDs as the new frontier. We call input items with
the same index in two input frontiers a pair. If the input is an edge frontier, we treat each
edge’s two nodes as an input item pair. One input item pair maps to multiple output items,
which are the intersection of the neighbor lists of two input items. Segmented intersection
is the key operator in TC, with segment being defined as nodes that belong to one neighbor
list. It is useful for both global triangle counting and computing the clustering coefficient.
�e output frontier could be combined with the two input frontiers to enumerate all the
triangles in the graph.

Compute A compute operator defines an operation on all elements (vertices or edges) in its
input frontier. A programmer-specified compute operator can be used together with all
three traversal operators. Gunrock performs that operation in parallel across all elements
without regard to order. Note that it is the user’s responsibility to handle the potential
data race (the usual way is to use atomic operation). �e computation can access and
modify global memory through a device pointer of a structure-of-array (SoA) that may
store per-node and/or per-edge data. Because this parallelism is regular, computation is
straightforward to parallelize in a GPU implementation. Many simple graph primitives
(e.g., computing the degree distribution of a graph) can be expressed with a single Gunrock
computation operator.

Gunrock primitives are assembled from a sequence of these four operators, which are executed
sequentially: one step completes all of its operations before the next step begins. Typically, Gunrock
graph primitives run to convergence, which on Gunrock usually equates to an empty frontier;
as individual elements in the current frontier reach convergence, they can be filtered out of the
frontier. Programmers can also use other convergence criteria such as a maximum number of
iterations or volatile flag values that can be set in a computation step.

Example: Expressing SSSP in programmable GPU frameworks. Now we use an example to show
how different programmable CPU/GPU frameworks express a graph primitive to further study
the key difference between Gunrock’s data-centric abstraction and other frameworks. We choose
SSSP because it is a reasonably complex graph primitive that computes the shortest path from a
single node in a graph to every other node in the graph. We assume weights between nodes are all
non-negative, which permits the use of Dijkstra’s algorithm and its parallel variants. Efficiently
implementing SSSP continues to be an interesting problem in the GPU world [11, 17, 18].
�e iteration starts with an input frontier of active vertices (or a single vertex) initialized to

a distance of zero. First, SSSP enumerates the sizes of the frontier’s neighbor list of edges and
computes the length of the output frontier. Because the neighbor edges are unequally distributed
among the frontier’s vertices, SSSP next redistributes the workload across parallel threads. �is can
be expressed within an advance operator. In the final step of the advance operator, each edge adds
its weight to the distance value at its source value and, if appropriate, updates the distance value of
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Functor

Frontier1,neighborlist1

Frontier2,neighborlist1

Frontier1,neighborlist n

Frontier2,neighborlist n

Advance Filter

ComputeSegmented Intersection

…

Fig. 2. Four operators in Gunrock’s data-centric abstraction convert a current frontier (in white) into a new
frontier (in black).

its destination vertex. Finally, SSSP removes redundant vertex IDs (specific filter), decides which
updated vertices are valid in the new frontier, and computes the new frontier for the next iteration.
Gunrock maps one SSSP iteration onto three Gunrock operators: (1) advance, which computes

the list of edges connected to the current vertex frontier and (transparently) load-balances their
execution; (2) compute, to update neighboring vertices with new distances; and (3) filter, to generate
the final output frontier by removing redundant nodes, optionally using a two-level priority queue,
whose use enables delta-stepping (a binning strategy to reduce overall workload [17, 56]). With
this mapping in place, the traversal and computation of path distances is simple and intuitively
described, and Gunrock is able to create an efficient implementation that fully utilizes the GPU’s
computing resources in a load-balanced way.

3.1 Alternative Abstractions

In this section we discuss Gunrock’s design choices compared to several alternative abstractions
designed for graph processing on various architectures (shown in figure 3).

Gather-apply-scatter (GAS) abstraction Recently, Wu et al. [84] compared Gunrock vs.
two GPU GAS frameworks, VertexAPI2 and MapGraph, demonstrating that Gunrock had
appreciable performance advantages over the other two frameworks. One of the principal
performance differences they identified comes from the significant fragmentation of GAS
programs across many kernels that we discuss in more detail in section 5. Applying
automatic kernel fusion [58] to GAS+GPU implementations could potentially help close
their performance gap.
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ALGORITHM 1: Single-Source Shortest Path, expressed in Gunrock’s abstraction.

Function Set Problem Data (G, P , root ); ⊲ G:graph data structure,P:problem data structure.

Set P .labels to∞;

Set P .preds to -1;

P .labels[root]← 0;

P .preds[root]← -1;

Insert root to P . f rontier ;

Function Update Label (s id,d id, e id, P ); ⊲ s id,d id,e id:source ID,destination ID,edge ID.

new label ← P .labels[s id]+P .weiдhts[e id];

return new label < atomicMin(P .labels[d id],new label);

Function Set Pred (s id,d id, P )

P .preds[d id]← s id ;

P .output queue ids[d id]← output queue id ;

Function Remove Redundant (node id, P )

return P .output queue ids[node id] == output queue id ;

Function SSSP Enactor (G, P , root )

Set Problem Data (G, P , root);

while P.frontier.Size () > 0 do

Advance (G, P ,Update Label, Set Pred);

Filter (G, P , Remove Redundant);

end

input

frontier

output

frontierEnumerate

Neighbors

Compute

New Frontier

Load

Balancing

Update

Label Values
Compact

Mark

Valid

Traversal:Advance Compute Traversal:Filter

Scatter Vertex-Cut Gather Apply Scatter
GetValue

MutableValue VoteToHalt
SendMsgTo

GetOutEdgeIterator

EdgeMap(including Update) VertexMap(including Reset)

ELIST Combiner VERTEX

Gunrock:

PowerGraph:

Pregel:

Ligra:

Medusa:

Fig. 3. Operations that make up one iteration of SSSP and their mapping to Gunrock, PowerGraph (GAS) [24],
Pregel [50], Ligra [71], and Medusa [86] abstractions.

At a more fundamental level, we found that a compute-focused programming model
like GAS was not flexible enough to manipulate the core frontier data structures in a way
that enabled powerful features and optimizations such as direction-optimizing traversal
and two-level priority queues; both fit naturally into Gunrock’s abstraction. We believe
bulk-synchronous operations on frontiers are a be�er fit than GAS for forward-looking
GPU graph programming frameworks.

Message-passing Pregel [50] is a vertex-centric programming model that only provides data
parallelism on vertices. For graphs with significant variance in vertex degree (e.g., power-
law graphs), this would cause severe load imbalance on GPUs. �e traversal operator in
Pregel is general enough to apply to a wide range of graph primitives, but its vertex-centric
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design only achieves good parallelism when nodes in the graph have small and evenly-
distributed neighborhoods. For real-world graphs that o�en have an uneven distribution
of node degrees, Pregel suffers from severe load imbalance. �e Medusa authors note the
complexity of managing the storage and buffering of these messages, and the difficulty
of load-balancing when using segmented reduction for per-edge computation. �ough
they address both of these challenges in their work, the overhead of any management of
messages is a significant contributor to runtime. Gunrock prefers the less costly direct
communication between primitives and supports both push-based (sca�er) communication
and pull-based (gather) communication during traversal steps.

CPU strategies Ligra’s powerful load-balancing strategy is based on CilkPlus, a fine-grained
task-parallel library for CPUs. Despite promising GPU research efforts on task paral-
lelism [13, 78], no such equivalent is available on GPUs, thus we implement our own
load-balancing strategies within Gunrock. Galois, like Gunrock, cleanly separates data
structures from computation; their key abstractions are ordered and unordered set iter-
ators that can add elements to sets during execution (such a dynamic data structure is
a significant research challenge on GPUs). Galois also benefits from speculative parallel
execution whose GPU implementation would also present a significant challenge. Both
Ligra and Galois scale well within a node through inter-CPU shared memory; inter-GPU
scalability, both due to higher latency and a lack of hardware support, is a much more
manual, complex process.

Help’s primitives Help [65] characterizes graph primitives as a set of functions that enable
special optimizations for different primitives at the cost of losing generality. Its Filter,
Local Update of Vertices (LUV), Update Vertices Using One Other Vertex (UVUOV), and
Aggregate Global Value (AGV) are all Gunrock filter operations with different computations.
Aggregating Neighbor Values (ANV) maps to the advance operator in Gunrock. We also
successfully implemented Form Supervertices (FS) in Gunrock using two filter passes, one
advance pass, and several other GPU computing primitives (sort, reduce, and scan).

Asynchronous execution Many CPU and GPU frameworks (e.g., Galois, GraphLab, and
Frog) efficiently incorporate asynchronous execution, but the GPU’s expensive synchro-
nization or locking operations would make this a poor choice for Gunrock. We do recover
some of the benefits of prioritizing execution through our two-level priority queue (details
in section 5.1.5).

Gunrock’s so�ware architecture is divided into two parts. Above the traversal-compute ab-
straction is the application module. �is is where users define different graph primitives using
the high-level APIs provided by Gunrock. Under the abstraction are the utility functions, the
implementation of operators used in traversal, and various optimization strategies.

Gunrock programs specify three components: the problem, which provides graph topology data
and an algorithm-specific data management interface; the functors, which contain user-defined
computation code and expose kernel fusion opportunities that we discuss below; and an enactor,
which serves as the entry point of the graph algorithm and specifies the computation as a series of
graph operator kernel calls with user-defined kernel launching se�ings.

Given Gunrock’s abstraction, the most natural way to specify Gunrock programs would be as a
sequence of bulk-synchronous steps, specified within the enactor and implemented as kernels, that
operate on frontiers. Such an enactor is in fact the core of a Gunrock program, but an enactor-only
program would sacrifice a significant performance opportunity. We analyzed the techniques that
hardwired (primitive-specific) GPU graph primitives used to achieve high performance. One of their
principal advantages is leveraging producer-consumer locality between operations by integrating
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multiple operations into single GPU kernels. Because adjacent kernels in CUDA or OpenCL share
no state, combining multiple logical operations into a single kernel saves significant memory
bandwidth that would otherwise be required to write and then read intermediate values to and
from memory. In the CUDA C++ programming environment, we have no ability to automatically
fuse neighboring kernels together to achieve this efficiency.

We summarize the interfaces for these operations in figure 4. Our focus on kernel fusion enabled
by our API design is absent from other programmable GPU graph libraries, but it is crucial for
performance.

// functor interfaces

static __device__ __forceinline__ bool

AdvanceFunctor(

VertexId s_id , // source node ID

VertexId d_id , // destination node ID

DataSlice *d_data_slice ,

SizeT edge_id , // edge list ID

LabelT label , // label value

SizeT input_pos , // input queue idx

SizeT &output_pos); // output queue idx

static __device__ __forceinline__ bool

FilterFunctor(

VertexId node , // node ID

DataSlice *d_data_slice ,

LabelT label , // label value

SizeT input_pos , // input queue idx

SizeT output_pos); // output queue idx

// operator interfaces

// advance

template <typename AdvancePolicy , typename

Problem , typename Functor , typename

AdvanceType >

__global__ void Advance(

SizeT queue_length ,

VertexId *input_frontier ,

VertexId *output_frontier ,

DataSlice *data_slice);

// filter

template <typename FilterPolicy , typename

Problem , typename Functor , bool

ComputeFlag >

__global__ void Filter(

SizeT queue_length ,

VertexId *input_frontier ,

VertexId *output_frontier ,

DataSlice *data_slice);

// neighborhood reduction

template <typename NeighborhoodPolicy ,

typename Problem , typename Functor ,

typename ReduceOp >

__global__ void Neighborhood(

SizeT queue_length ,

VertexId *input_frontier ,

VertexId *output_frontier ,

DataSlice *data_slice);

// segmented intersection

template <typename IntersectionPolicy ,

typename Problem , typename Functor >

__global__ long Intersection(

SizeT queue_length ,

VertexId *input_frontier1 ,

VertexId *input_frontier2 ,

VertexId *output_frontier ,

DataSlice *data_slice);

Fig. 4. Gunrock’s Graph Operator and Functor APIs. The Operator APIs divide the whole workloads into
load-balanced per-edge or per-node operations and fuse the kernel with a functor that defines one such
operation.

To conclude this section, we list the benefits of Gunrock’s data-centric programming model for
graph processing on the GPU:

• �e data-centric programming model allows more flexibility on the operations, since the
frontier is a higher level abstraction of streaming data, which could represent nodes, edges,
or even arbitrary sub-graph structures. In Gunrock, every operator can be vertex-centric
or edge-centric for any iteration. As a result, we can concentrate our effort on solving
one problem—implementing efficient operators—and see that effort reflected in be�er
performance on various graph primitives.

• �e data-centric programming model decouples a compute operator from traversal opera-
tors. For different graph primitives, compute operators can be very different in terms of
complexity and the way they interact with graph operators. Decoupling Gunrock’s compute
operator from its traversal operators gives Gunrock more flexibility in implementing a
general set of graph primitives.

• �e data-centric programming model allows an implementation that both leverages state-
of-the-art data-parallel primitives and enables various types of optimizations. �e result is
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an implementation with be�er performance than any other GPU graph-processing system,
achieving comparable performance to specialized GPU graph algorithms.

• �e data-centric programming model uses high level graph operator interfaces to encap-
sulate complicated implementations. �is makes Gunrock’s application code smaller in
size and clearer in logic compared to other GPU graph libraries. Gunrock’s Problem class
and kernel enactor are both template-based C++ code; Gunrock’s functor code that speci-
fies per-node or per-edge computation is C-like device code without any CUDA-specific
keywords.

• �e data-centric programming model eases the job of extending Gunrock’ single-GPU
execution model to multiple GPUs. It fits with other execution models such as a semi-
asynchronous execution model and a multi-GPU single-node/multi-node execution model.
Our multi-GPU graph processing framework [59] is built on top of our data-centric program-
ming model with an unchanged core single-GPU implementation coupled with advanced
communication and partition modules designed specifically for multi-GPU execution.

4 EFFICIENT GRAPH OPERATOR DESIGN

In this section, we analyze the implementation of each graph operator, and briefly discuss how these
implementations enable optimizations (with more details in section 5). Figure 5 shows the sample
graph we use to illustrate our graph operator design, and figure 6 shows the corresponding arrays
for graph storage in compressed sparse row (CSR) format (discussed in section 5.4) in Gunrock.
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Fig. 5. A sample directed graph with 7 nodes and 15
edges.
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Fig. 6. CSR format of sample graph in Gunrock.

4.1 Advance

�e advance operator takes the input frontier, visits the neighbor list of each item in the input
frontier, then writes those neighbor lists to the output frontier (figure 7). �e size of these neighbor
lists may differ significantly between different input items. �us an efficient implementation of
advance needs to reduce the task granularity to a homogeneous size and then evenly distribute
these smaller tasks among threads [55] so that we can efficiently parallelize this operator.
At a high level, advance can be seen as a vectorized device memory assignment and copy,

where parallel threads place dynamic data (neighbor lists with various lengths) within shared data
structures (output frontier). �e efficient parallelization of this process requires two stages: 1) for
the allocation part, given a list of allocation requirements for each input item (neighbor list size
array computed from row offsets), we need the sca�er offsets to write the output frontier; 2) for the
copy part, we need to load-balance parallel sca�er writes with various lengths over a single launch.
�e first part is typically implemented with prefix-sum. For the second part, there are several

implementation choices, which differ in two primary ways:
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Fig. 7. Both push-based advance and pull-based advance have a prefix-sum part and a load balancer part.

load balancing A coarse-grained load-balancing strategy divides the neighbor lists by size
into multiple groups, then processes each group independently with a strategy that is
optimized for the sizes in that group. A fine-grained load-balancing strategy instead
rebalances work so that the same number of input items or the same number of output
items are assigned to a thread or group of threads.

traversal direction A push-based advance expands the neighbor lists of the current input
frontier; a pull-based advance instead intersects the neighbor lists of the unvisited node
frontier with the current frontier.

We provide more details in section 5.1.

4.2 Filter

Gunrock’s filter operator is in essence a stream compaction operator that transforms a sparse
representation of an array (input frontier) to a compact one (output frontier), where the sparsity
comes from the different returned values for each input item in the validity test function (figure 8).
(In graph traversal, multiple redundant nodes will fail the validity test.) Efficient stream compaction
implementations also typically rely on prefix-sum; this is a well-studied problem [7, 34]. In Gunrock,
we adopt Merrill et al.’s filtering implementation [55], which is based on local prefix-sums with
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Fig. 8. Filter is based on compact, which uses either a global scan and sca�er (for exact filtering) or a local
scan and sca�er a�er heuristics (for inexact filtering).

various culling heuristics. �e byproduct of this implementation is a uniquification feature that
does not strictly require the complete removal of undesired items in the input frontier. We provide
more detail in Section 5.2.

4.3 Segmented Intersection

Gunrock’s segmented intersection operator takes two input frontiers. For each pair of input items,
it computes the intersection of two neighbor lists, then outputs the intersected items (figure 9).
It is known that for intersection computation on two large frontiers, a modified merge-path
algorithm would achieve high performance because of its load balance [4]. However, for segmented
intersection, the workload per input item pair depends on the size of each item’s neighbor list.
For this reason, we still use prefix-sum for pre-allocation, then perform a series of load-balanced
intersections according to a heuristic based on the sizes of the neighbor list pairs. Finally, we use a
stream compaction to generate the output frontier, and a segmented reduction as well as a global
reduction to compute segmented intersection counts and the global intersection count.
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Fig. 9. Segmented intersection implementation that uses prefix-sum, compact, merge-based intersection,
and reduction.

High-performance segmented intersection requires a similar focus to high-performance graph
traversal: effective load-balancing and GPU utilization. In our implementation, we use the same
dynamic grouping strategy proposed in Merrill’s BFS work [55]. We divide the edge lists into two
groups: 1) small neighbor lists and 2) one small and one large neighbor list. We implement two
kernels (Two-Small and Small-Large) that cooperatively compute intersections. Our TwoSmall
kernel uses one thread to compute the intersection of a node pair. Our SmallLarge kernel starts
a binary search for each node in the small neighbor list on the large neighbor list. By using this
2-kernel strategy and carefully choosing a threshold value to divide the edge list into two groups,
we can process intersections with the same level of workload together to gain load balancing and
higher GPU resource utilization. Currently, if two neighbor lists of a pair are both large ones, we
use the SmallLarge kernel. Ideally a third kernel that utilizes all threads within a block to work on
two large neighbor lists would yield be�er performance.
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Optimization Strategy Module Name in Gunrock

Static Workload Mapping �readExpand

Dynamic Grouping Workload Mapping TWC FORWARD

Merge-based Load-Balanced Partitioning Workload Mapping LB, LB LIGHT, and LB CULL

Pull Traversal Inverse Expand

Table 2. Four graph traversal throughput optimization strategies and their corresponding module names in
the Gunrock implementation, where LB LIGHT processes load balance over an input frontier, LB processes
load balance over an output frontier, and LB CULL combines LB and LB LIGHT with a follow-up filter into a
fused kernel.

5 SYSTEM IMPLEMENTATION AND OPTIMIZATIONS

Choosing the right abstraction is one key component in achieving high performance within a
graph framework. �e second component is optimized implementations of the primitives within
the framework. One of the main goals in designing the Gunrock abstraction was to easily allow
integrating existing and new alternatives and optimizations into our primitives to give more
options to programmers. In general, we have found that our data-centric abstraction and our focus
on manipulating the frontier have been an excellent fit for these alternatives and optimizations,
compared to a more difficult implementation path for other GPU computation-focused abstractions.
In this section, we offer examples by discussing optimizations that help increase the performance
in four different categories:

• Graph traversal throughput
• Synchronization throughput
• Kernel launch throughput
• Memory access throughput

5.1 Graph Traversal Throughput Optimizations

One of Gunrock’s major contributions is generalizing different types of workload-distribution
and load-balance strategies. �ese strategies previously only appeared in specialized GPU graph
primitives. We implement them in Gunrock’s general-purpose advance operators. As a result, any
existing or new graph primitive that uses an advance operator benefits from these strategies.

In this section, we define the workload for graph primitives as per-edge and/or per-node computa-
tion that happens during graph traversal. Gunrock’s advance step generates an irregular workload.
Consider an advance that generates a new vertex frontier from the neighbors of all vertices in the
current frontier. If we parallelize over input vertices, graphs with a variation in vertex degree (with
different-sized neighbor lists) will generate a corresponding imbalance in per-vertex work. �us,
mapping the workload of each vertex onto the GPU so that all vertex work can be processed in a
load-balanced way is essential for efficiency. Table 2 shows our traversal throughput optimization
strategies and their corresponding module name in Gunrock implementation. Later in this section,
we summarize the pros and cons, with guidelines for usage, of these optimizations in Table 3.

�e most significant previous work in this area balances load by cooperating between threads.
Targeting BFS, Hong et al. [37] map the workload of a single vertex to a series of virtual warps.
Merrill et al. [55] use a more flexible strategy that maps the workload of a single vertex to a thread,
a warp, or a block, according to the size of its neighbor list. Targeting SSSP, Davidson et al. [17]
use two load-balanced workload mapping strategies, one that groups input work and the other
that groups output work. �e first load-balances over the input frontier, the second load-balances
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over the output frontier. Every strategy has a tradeoff between computation overhead and load-
balance performance. We show in Gunrock how we integrate and redesign these two strategies,
use heuristics to choose from them to achieve the best performance for different datasets, and
generalize this optimization to various graph operators.

5.1.1 Static Workload Mapping Strategy. One straightforward approach to map the workload is
to map one frontier vertex’s neighbor list to one thread. Each thread loads the neighbor list offset for
its assigned node, then serially processes edges in its neighbor list. �ough this simple solution will
cause severe load imbalance for scale-free graphs with unevenly distributed degrees and extremely
small diameter, it has the significant advantage of negligible load balancing overhead and works
well for large-diameter graphs with a relatively even degree distribution. �us in Gunrock, we
keep this static strategy but provide several improvements in the following aspects:

cooperative process We load all the neighbor list offsets into shared memory, then use a
block of threads to cooperatively process per-edge operations on the neighbor list.

loop strip mining We split the neighbor list of a node so that multiple threads within the
same SIMD lane can achieve be�er utilization.

�is “�readExpand” method performs be�er when used for large-diameter graphs with a relatively
even degree distribution since it balances thread work within a block, but not across blocks. For
graphs with a more uneven degree distribution (e.g., scale-free social graphs), we turn to a second
strategy.

Frontier that contains neighbor lists with various sizes
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Fig. 10. Dynamic grouping workload mapping strat-
egy [55].

Frontier that contains neighbor lists with various sizes

Load balancing search

Block cooperative advance for chunks

Equally sized chunks, neighbor lists could get split into several chunks

Fig. 11. Merge-based load-balanced partitioning
workload mapping strategy [17].

5.1.2 Dynamic Grouping Workload Mapping Strategy. Gunrock uses a load balancing strategy
called TWC (�read/Warp/CTA Expansion) based on Merrill et al.’s BFS implementation [55] but
with more flexible launch se�ings and user-specific computation functor support. As a graph
operator building block, it now can be generalized to support the traversal steps in other traversal-
based graph primitives. It is implemented to solve the performance bo�leneck when�readExpand
is applied to frontiers with significant differences in neighbor list sizes. Like Merrill et al., we
directly address the variation in size by grouping neighbor lists into three categories based on their
size, then individually processing each category with a strategy targeted directly at that size. Our
three sizes are 1) lists larger than a block, 2) lists larger than a warp (32 threads) but smaller than a
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block, and 3) lists smaller than a warp. We begin by assigning a subset of the frontier to a block.
Within that block, each thread owns one node. �e threads that own nodes with large lists arbitrate
for control of the entire block. All the threads in the block then cooperatively process the neighbor
list of the winner’s node. �is procedure continues until all nodes with large lists have been
processed. Next, all threads in each warp begin a similar procedure to process all the nodes with
medium-sized lists. Finally, the remaining nodes are processed using our �readExpand method.
As Merrill et al. noted in their paper, this strategy can guarantee a high utilization of resource
and limit various types of load imbalance such as SIMD lane underutilization (by using per-thread
mapping), intra-thread imbalance (by using warp-wise mapping), and intra-warp imbalance (by
using block-wise mapping) (Figure 10).

5.1.3 Merge-based Load-Balanced Partitioning Workload Mapping Strategy. �e specialization of
dynamic grouping workload mapping strategy allows higher throughput on frontiers with a high
variance in degree distribution, but at the cost of higher overhead due to the sequential processing
of the three different sizes. Also, to deal with intra-block load imbalance, additional scheduling and
work stealing method must be applied, which further adds to the load-balancing overhead. A global
one-pass load balancing strategy would potentially solve the intra-block load imbalance problem
and thus bring be�er performance. Davidson et al. [17] and Gunrock improve on the dynamic
grouping workload mapping strategy by globally load-balancing over either the input frontier or
the output frontier (figure 11). �is introduces load-balancing overhead, but significantly increases
the traversal throughput for scale-free graphs.

Input frontier load balance maps the same number of input items to a block, then puts
the output offset for each input item computed by prefix-sum into shared memory. Just
as in �readExpand, Gunrock uses cooperative processing and loop strip mining here as
well. All threads within a single block will cooperatively visit all the neighbor lists of the
input items that belong to this block. When a thread starts to process a new neighbor list,
it requires a binary search to find the corresponding source node ID.

Output frontier load balance first uses a global prefix-sum to compute all output offsets,
then forms an arithmetic progression of 0,N , 2N , . . . , |Input| where N is the number of
edges each block processes. A global sorted search [5] of this arithmetic progression in
the output offset array will find the starting indices for all the blocks within the frontier.
A�er organizing groups of edges into equal-length chunks, all threads within one block
cooperatively process edges. When we start to process a neighbor list of a new node, we
use binary search to find the node ID for the edges that are going to be processed. Using
this method, we ensure both inter-and-intra-block load-balance (Figure 11).

At a high level, Gunrockmakes its load-balancing strategy decisions depending on graph topology.
We note that our load-balancing workload mapping method performs be�er on social graphs with
irregularly distributed degrees, while the dynamic grouping method is superior for graphs where
node degrees are evenly distributed. For this reason, in Gunrock we implement a hybrid of both
methods on both vertex and edge frontiers, using the dynamic grouping strategy for nodes with
relatively smaller neighbor lists and the load-balancing strategy for nodes with relatively larger
neighbor lists. We pick average degree as the metric for choosing between these two strategies.
When the graph has an average degree of 5 or larger, we use the load-balancing strategy, otherwise
we use dynamic grouping strategy. Within the load-balancing strategy, we set a static threshold.
When the frontier size is smaller than the threshold, we use coarse-grained load balance over
nodes (load balance on the input frontier), otherwise coarse-grained load balance over edges
(load balance on the output frontier). We have found that se�ing this threshold to 4096 yields
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consistent high performance for tests across all Gunrock-provided graph primitives. Users can
also change this value easily in the Enactor module for their own datasets or graph primitives.
Superior load balancing is one of the most significant reasons why Gunrock outperforms other
GPU frameworks [84].

5.1.4 Push vs. Pull Traversal. Certainly other GPU programmable graph frameworks also support
an advance step. However, because they are centered on vertex operations on an implicit frontier,
they generally only support “push”-style advance: the current frontier of active vertices “pushes”
active status to its neighbors, which creates a new frontier of newly active vertices. We show this in
figure 12.Beamer et al. [6] described a “pull”-style advance on CPUs (figure 13): instead of starting
with a frontier of active vertices, pull starts with a frontier of unvisited vertices, filters it for vertices
with neighbors in the current frontier, and generates a new frontier with the output of the filter.

From v3From v2From v1

6 7

4 5

1 2 3

0

Label=?

Label=1

Label=0

Input frontier (sparse): V1, V2, V3

Push-based

Traversal

-1 4 -1 -1 -1 5

Output frontier (sparse): V4, V5

Fig. 12. Push-based graph traversal. -1 means invalid
label.

From v7From v6From v4

6 7

4 5

1 2 3

0

Label=?

Label=1

Label=0

Input frontier (sparse): V4, V5, V6, V7

Pull-based

Traversal

1 4 5 5

0 1 1 1 0 00 0

From v5

3

Visit bitmap frontier (dense)

Output frontier (sparse): V6, V7

0 1 1 1 0 01 1

Visit bitmap frontier (dense)

Fig. 13. Pull-based graph traversal.

Beamer et al. showed this approach is beneficial when the number of unvisited vertices drops
below the size of the current frontier. Vertex-centered GPU frameworks have found it challenging to
integrate this optimization into their abstraction due to the lack of a flexible frontier representation.
Compared to them, our data-centric abstraction is a much more natural fit, because we can easily
perform more flexible operations on frontiers. Gunrock achieves this with two frontiers. During
the “push” phase, it uses the active frontier as usual in the advance step. When switching to the
“pull” phase, it first generates a unvisited frontier with all the unvisited nodes, �en it uses the
unvisited frontier in the advance step, visiting all unvisited nodes that have visited predecessors,
and generates both a new active frontier and a new unvisited frontier. �e capability of keeping
two active frontiers differentiates Gunrock from other GPU graph processing programming models.
For be�er performance, Gunrock may use per-node bitmaps to indicate whether a node has been
visited.

For pull-based traversal on the GPU, we modified Beamer et al.’s shared-memory-CPU-based
heuristics to switch between push and pull-based traversal. Given the number of edges to check from
the frontier (mf ), the number of vertices in the frontier (nf ), the edges to check from unexplored
vertices (mu ), and two tuning parameters α and β , Beamer et al. define two equations:

mf >
mu

α
= CT B (1)

nf <
n

β
= CBT (2)

where n is number of nodes in the graph andCT B andCBT are thresholds for the push-to-pull-based
traversal switch and the pull-to-push-based traversal switch separately. However, on the GPU,
because computingmf andmu requires two additional passes of prefix-sum, we estimate them as
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ALGORITHM 2: Direction optimizing BFS

Input: G; ⊲ Csr format of graph storage

Input: I active; ⊲ The input active frontier

Input: I unvisited ; ⊲ The input unvisited frontier

Output: O active; ⊲ The output active frontier

Output: O unvisited ; ⊲ The output unvisited frontier

if DirectionDecision() == push then

Advance(G, I active, O active);

advance mode← push;
end

else

if advance mode == push then
I unvisited← GenerateUnvisitedFrontier(G.labels, V);

end

Reverse Advance(G, I unvisited, O active, O unvisited);

advance mode← pull;
end

follows:

mf =
nf ×m

n
(3)

mu =
nu × n

n − nu
(4)

wherem is the number of edges in the graph, nf is the current frontier length, and nu is the number
of unvisited nodes. Instead of directly using the size of I unvisited , we keep subtracting the size of
I active from n for each iteration to calculate nu , because I unvisited is not available during the
“push” phase. We also modified the switching points:

mf > mu × do a = CT B (5)

mf < mu × do b = CBT (6)

With proper selection of do a and do b, our new heuristics find the optimal iteration to switch.
With this optimization, we see a large speedup on BFS for scale-free graphs. In an abstraction

like Medusa, with its fixed method (segmented reduction) to construct frontiers, it would be a
significant challenge to integrate a pull-based advance.

5.1.5 Two-Level Priority �eue. A straightforward BSP implementation of an operation on
a frontier treats each element in the frontier equally, i.e., with the same priority. Many graph
primitives benefit from prioritizing certain elements for computation with the expectation that
computing those elements first will save work overall (e.g., delta-stepping for SSSP [56]). Gunrock
generalizes the approach of Davidson et al. [17] by allowing user-defined priority functions to
organize an output frontier into “near” and “far” slices. �is allows the GPU to use a simple and
high-performance split operation to create and maintain the two slices. Gunrock then considers
only the near slice in the next processing steps, adding any new elements that do not pass the near
criterion into the far slice, until the near slice is exhausted. We then update the priority function
and operate on the far slice.
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Optimization Strategy Summary

Static Workload Mapping
Low cost for load balancing; bad for varying degree distributions. Should use

to traverse graphs with a relatively uniform edge distribution per vertex.

Dynamic Grouping Workload

Mapping

Moderate cost for load balancing; bad for scale-free graphs. Should use to

traverse mesh-like graphs with large diameters when frontier size gets larger

than 1 million.

Merge-based Load-Balanced Par-

titioning Workload Mapping

High cost for load balancing on power-law graphs, but low cost for regular

graphs; shows consistently be�er performance on most graphs. Should use

as a default traversal strategy choice.

Pull Traversal

Has one-time frontier conversion/preparation cost; good for scale-free graphs

with a large amount of common neighbors. Should not use on regular graphs

and when the number of unvisited vertices is either too large or too small

(for more detail, refer to section 7.4.)

Table 3. Four graph traversal throughput optimization strategies, with their pros, cons, and guidelines for
usage in Gunrock.

Like other graph operators in Gunrock, constructing a priority queue directly manipulates the
frontier data structure. It is difficult to implement such an operation in a GAS-based programming
model since that programming model has no explicit way to reorganize a frontier.

Gunrock’s two-level priority queue implementation is a modified filter operator, which uses two
stream compactions to not only form the output frontier of input items with true flag values, but
also to form a “far” pile of input items with false flag values.

Currently Gunrock uses this specific optimization only in SSSP. However, we believe a workload
reorganization strategy based on a more general multisplit operator [2], which maps one input
frontier to multiple output frontiers according to an arbitrary number of priority levels, would
fit nicely into Gunrock’s data-centric programming model. By dividing a frontier into multiple
subfrontiers and making the computation of each subfrontier not conflict with the computation
of others, we can run the computation of each subfrontier asynchronously. �is, in turn, offers
more opportunity to exploit parallelism between subfrontiers and will potentially increase the
performance of various types of algorithms, such as node ranking, community detection, and label
propagation, as well as those on graphs with small “long tail” frontiers.

5.2 Synchronization Throughput Optimization

For graph processing on the GPU, the bo�lenecks of synchronization throughput come from two
places:

concurrent discovery In a tree traversal, there can be only one path from any node to any
other node. However in graph traversal, starting from a source node, there could be several
redundant visits if no pruning is conducted. Beamer et al. [6] categorize these redundant
visits into three types: 1) visited parents; 2) being-visited peers; and 3) concurrently discov-
ered children. Concurrent discovery of child nodes contributes to most synchronization
overhead when there is per-node computation.

dependencies in parallel data-primitives Sometimes the computation during traversal
has a reduction (Pagerank, BC) and/or intersection (TC) step on each neighbor list.
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For synchronization overhead brought by concurrent discovery, the generalized pull-and-push based
traversal discussed in section 5.1.4 will reduce it. In this section we present another optimization
that solves this problem from the perspective of the idempotence of a graph operation.

5.2.1 Idempotent vs. non-idempotent operations. Multiple elements in the frontier may share a
common neighbor. �is has two consequences: 1) it will cause an advance step to generate an output
frontier that has duplicated elements; 2) it will cause any computation on the common neighbors
to run multiple times. �e second consequence causes a potential synchronization problem by
producing race conditions. A general way to avoid race conditions is to introduce atomic operations.
However, for some graph primitives with idempotent operations (e.g., BFS’s visit status check),
repeating a computation causes no harm. In such a case, Gunrock’s advance step will avoid (costly)
atomic operations, repeat the computation multiple times, and output all redundant items to the
output frontier. Again, users need to be responsible for data race in the per-edge computation
(see section 3). Gunrock’s filter step has incorporated a series of inexpensive heuristics [55] to
reduce, but not eliminate, redundant entries in the output frontier. �ese heuristics include a global
bitmask, a block level history hash table, and a warp level hash table. �e sizes of each hash table
is adjustable to achieve the optimal tradeoff between performance and redundancy-reduction rate.

5.2.2 Atomic Avoidance Reduction Operations. To reduce the synchronization overhead of re-
duction, we either 1) reduce the atomic operations by hierarchical reduction and the efficient use
of shared memory on the GPU or 2) assign several neighboring edges to one thread in our dynamic
grouping strategy so that partial results within one thread can be accumulated without atomic
operations.

5.3 Kernel Launch Throughput Optimization

Gunrock and all other BSP-model-based GPU graph processing libraries launch one or several
GPU kernels per iteration, and o�en copy a condition check byte from device to host a�er each
iteration to decide whether to terminate the program. Pai and Pingali also noted this kernel launch
overhead and recently proposed several compiler optimizations to reduce it [58]. In Gunrock, we
implemented two optimizations that target this overhead:

Fuse computation with graph operator Specialized GPU implementations fuse regular
computation steps together with more irregular steps like advance and filter by running
a computation step (with regular parallelism) on the input or output of the irregularly-
parallel step, all within the same kernel. To enable similar behavior in a programmable way,
Gunrock exposes its computation steps as functors that are integrated into all its graph
operator kernels at compile time to achieve similar efficiency. We support functors that
apply to {edges, vertices} and either return a Boolean value (the “cond” functor), useful
for filtering, or perform a computation (the “apply” functor). �ese functors will then be
integrated into Gunrock’s graph operator kernel calls, which hide any complexities of how
those steps are internally implemented.

Fuse filter step with traversal operators Several traversal-based graph primitives have a
filter step immediately following an advance or neighborhood-reduction step. Gunrock
implements a fused single-kernel traversal operator that launches both advance and filter
steps. Such a fused kernel reduces the data movement between double-buffered input and
output frontiers.
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5.4 Memory Access Throughput Optimization

For graph problems that require irregular data accesses, in addition to exposing enough parallelism, a
successful GPU implementation benefits from the following application characteristics: 1) coalesced
memory access, 2) effective use of the memory hierarchy, and 3) reducing sca�ered reads and
writes. Our choice of graph data structure helps us achieve these goals.

By default, Gunrock uses a compressed sparse row (CSR) sparse matrix for vertex-centric opera-
tions. Gunrock also allows users to choose coordinate list (COO) representation for edge-centric
operations. CSR uses a column-indices array,C , to store a list of neighbor vertices and a row-offsets
array, R, to store the offset of the neighbor list for each vertex. It provides compact and efficient
memory access, and allows us to use prefix-sum to reorganize sparse and uneven workloads into
dense and uniform ones in all phases of graph processing [55]. In terms of data structures, Gunrock
represents all per-node and per-edge data as structure-of-array (SOA) data structures that allow co-
alesced memory accesses with minimal memory divergence. In terms of graph operators, Gunrock
implements carefully designed for loops in its kernel to guarantee coalesced memory access. We
also efficiently use shared memory and local memory to increase memory access throughput in the
following ways:

In dynamic grouping workload mapping Gunrock moves chunks of input frontiers into
local memory, and uses warp scan and warp streaming compaction.

In load-balanced partition workload mapping Gunrock uses sharedmemory to store the
resulting indices computed by merge-based load balanced search.

In filter operator Gunrock stores two types of hash tables (block-wise history hash tables
and warp-wise history hash tables) in shared memory.

6 GRAPH APPLICATIONS

One of the principal advantages of Gunrock’s abstraction is that our advance, filter, segmented
intersection and compute steps can be composed to build new graph primitives with minimal
extra work. For each primitive in Figure 14, we describe the hardwired GPU implementation to
which we compare, followed by how we express this primitive in Gunrock. Section 7 compares the
performance between hardwired and Gunrock implementations.

Advance Filter

Update

label value

Remove

Redundant

frontier OutputInput

Advance Filter

Relax

distance value

Remove

Redundant

frontier OutputInput

two-level

priority queue

Advance Filter

Accumulate

sigma value

Remove
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frontier OutputInput
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Compute

BC value

frontier

OutputInput
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Distribute
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frontier OutputInput
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OutputInput
Filter
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c[c[v]]. Remove v 

when c[v]==c[c[v]]

frontier

OutputInput

              BFS                                                            PR                                                                            CC

             SSSP                                                                                                                                             BC
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Fig. 14. Operation flow chart for selected primitives in Gunrock (a black line with an arrow at one end
indicates a while loop that runs until the frontier is empty).
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6.1 Breadth-First Search (BFS)

BFS initializes its vertex frontier with a single source vertex. On each iteration, it generates a
new frontier of vertices with all unvisited neighbor vertices in the current frontier, se�ing their
depths and repeating until all vertices have been visited. BFS is one of the most fundamental graph
primitives and serves as the basis of several other graph primitives.

Hardwired GPU Implementation �ewell-knownBFS implementation ofMerrill et al. [55]
achieves its high performance through careful load-balancing, avoidance of atomics, and
heuristics for avoiding redundant vertex discovery. Its chief operations are expand (to
generate a new frontier) and contract (to remove redundant vertices) phases.

Gunrock Implementation Merrill et al.’s expand and contract map nicely to Gunrock’s
advance operator and filter operator separately. During advance, we set a label value for
each vertex to show the distance from the source, and/or set a predecessor value for each
vertex that shows the predecessor vertex’s ID. We implement efficient load-balancing
(section 5.1.2 and section 5.1.3) and both push- and pull-based advance (section 5.1.4) for
more efficient traversal. Our base implementation uses atomics during advance to prevent
concurrent vertex discovery. When a vertex is uniquely discovered, we set its label (depth)
and/or predecessor ID. Gunrock’s BFS uses the idempotent advance operator to avoid the
cost of atomics and uses heuristics within its filter that reduce the concurrent discovery of
child nodes (section 5.2.1).

6.2 Single-Source Shortest Path

Single-source shortest path finds paths between a given source vertex and all other vertices in the
graph such that the weights on the path between source and destination vertices are minimized.
While the advance mode of SSSP is identical to BFS, the computation mode differs.

Hardwired GPU Implementation We implement the GPU SSSP algorithm from the work
from Davidson et al. [17]. �ey provide two key optimizations in their SSSP implementa-
tion: 1) a load-balanced graph traversal method and 2) a priority queue implementation
that reorganizes the workload. Gunrock generalizes both optimization strategies into its
implementation, allowing them to apply to other graph primitives as well as SSSP. We
implement Gunrock’s priority queue as an additional filter pass between two iterations.

Gunrock Implementation We start from a single source vertex in the frontier. To compute
a distance value from the source vertex, we need one advance and one filter operator. On
each iteration, we visit all associated edges in parallel for each vertex in the frontier and
relax the distance’s value (if necessary) of the vertices a�ached to those edges. We use an
AtomicMin to atomically find the minimal distance value we want to keep and a bitmap
flag array associated with the frontier to remove redundant vertices. A�er each iteration,
we use a priority queue to reorganize the vertices in the frontier.

6.3 Betweenness Centrality

�e BC index can be used in social network analysis as an indicator of the relative importance of
vertices in a graph. At a high level, the BC for a vertex in a graph is the fraction of shortest paths
in a graph that pass through that vertex. Brandes’s BC formulation [8] is most commonly used for
GPU implementations.

Hardwired GPU Implementation Brandes’s formulation has two passes: a forward BFS
pass to accumulate sigma values for each node, and a backward BFS pass to compute
centrality values. Jia et al. [38] and Sariyüce et al. [67] both use an edge-parallel method to
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implement the above two passes. We achieve this in Gunrock using two advance operators
on an edge frontier with different computations. �e recent (hardwired) multi-GPU BC
algorithm by McLaughlin and Bader [52] uses task parallelism, dynamic load balancing,
and sampling techniques to perform BC computation in parallel from different sources on
different GPU streaming multiprocessors.

Gunrock Implementation Gunrock’s implementation also contains two phases. �e first
phase has an advance step identical to the original BFS and a computation step that computes
the number of shortest paths from source to each vertex. �e second phase uses an advance
step to iterate over the BFS frontier backwards with a computation step to compute the
dependency scores. We achieve competitive performance on scale-free graphs with the
latest hardwired BC algorithm [54]. Within Gunrock, we have not yet considered task
parallelism since its execution model does not fit Gunrock’s current framework, but it is an
interesting area for future work.

6.4 Connected Component Labeling

�e connected component primitive labels the vertices in each connected component in a graph
with a unique component ID.

Hardwired GPU Implementation Soman et al. [75] base their implementation on two
PRAM algorithms: hooking and pointer-jumping. Hooking takes an edge as the input and
tries to set the component IDs of the two end vertices of that edge to the same value. In odd-
numbered iterations, the lower vertex writes its value to the higher vertex, and vice versa
in the even numbered iteration. �is strategy increases the rate of convergence. Pointer-
jumping reduces a multi-level tree in the graph to a one-level tree (star). By repeating these
two operators until no component ID changes for any node in the graph, the algorithm will
compute the number of connected components for the graph and the connected component
to which each node belongs.

Gunrock Implementation Gunrock uses a filter operator on an edge frontier to implement
hooking. �e frontier starts with all edges and during each iteration, one end vertex of each
edge in the frontier tries to assign its component ID to the other vertex, and the filter step
removes the edge whose two end vertices have the same component ID. We repeat hooking
until no vertex’s component ID changes and then proceed to pointer-jumping, where a filter
operator on vertices assigns the component ID of each vertex to its parent’s component ID
until it reaches the root. �en a filter step removes the node whose component ID equals
its own node ID. �e pointer-jumping phase also ends when no vertex’s component ID
changes.

6.5 PageRank and Other Node Ranking Algorithms

�e PageRank link analysis algorithm assigns a numerical weighting to each element of a hyper-
linked set of documents, such as the World Wide Web, with the purpose of quantifying its relative
importance within the set. �e iterative method of computing PageRank gives each vertex an initial
PageRank value and updates it based on the PageRank of its neighbors until the PageRank value
for each vertex converges. PageRank is one of the simplest graph algorithms to implement on
GPUs because the frontier always contains all vertices, so its computation is congruent to sparse
matrix-vector multiply; because it is simple, most GPU frameworks implement it in a similar way
and a�ain similar performance.
In Gunrock, we begin with a frontier that contains all vertices in the graph and end when all

vertices have converged. Each iteration contains one advance operator to compute the PageRank
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value on the frontier of vertices, and one filter operator to remove the vertices whose PageRanks
have already converged. We accumulate PageRank values with AtomicAdd operations.

Bipartite graphs. Geil et al. [21] used Gunrock to implement Twi�er’s who-to-follow algorithm
(“Money” [23]), which incorporated three node-ranking algorithms based on bipartite graphs
(Personalized PageRank (PPR), Stochastic Approach for Link-Structure Analysis (SALSA), and
Hyperlink-Induced Topic Search (HITS)). �eir implementation, the first to use a programmable
framework for bipartite graphs, demonstrated that Gunrock’s advance operator is flexible enough
to encompass all three node-ranking algorithms, including a 2-hop traversal in a bipartite graph.

6.6 Triangle Counting

Hardwired GPU Implementation �e extensive survey by Schank andWagner [68] shows
several sequential algorithms for counting and listing triangles in undirected graphs. Two
of the best performing algorithms, edge-iterator and forward, both use edge-based set
intersection primitives. �e optimal theoretical bound of this operation coupled with its
high potential for parallel implementation make this method the core idea behind several
GPU implementations [28, 63].

Gunrock Implementation In Gunrock, we view the TC problem as a set intersection prob-
lem [81] by the following observation: An edge e = (u,v ), where u,v are its two end nodes,
can form triangles with edges connected to both u and v . Let the intersections between
the neighbor lists of u and v be (w1,w2, . . . ,wN ), where N is the number of intersections.
�en the number of triangles formed with e is N , where the three edges of each triangle
are (u,v ), (wi ,u), (wi ,v ), i ∈ [1,N ]. In practice, computing intersections for every edge
in an undirected graph is redundant. We visit all the neighbor lists using advance. If two
nodes u and v have two edges (u,v ) and (v,u) between them, we only keep one edge that
points from the node with larger degree to the node with smaller degree (for nodes with
identical degree number, we use vertex ID as the tie breaker). �is halves the number of
the edges that we must process. �us, in general, set intersection-based TC algorithms
have two stages: (1) forming edge lists; (2) computing set intersections for two neighbor
lists of an edge. Different optimizations can be applied to either stage. Our GPU implemen-
tation follows the forward algorithm and uses advance, filter, and segmented-intersection
operators.

6.7 Subgraph Matching

�e subgraph matching primitive finds all embeddings of a graph pa�ern q in a large data graph д.
It can also be extended to handle graph homomorphism problems, which can be used in database
pa�ern searching.

Hardwired GPU Implementation Existing subgraphmatching algorithms aremostly based
on a backtracking strategy. First, vertices that cannot contribute to the final solutions are
filtered out based on their labels. �en these candidates are passed to a recursive proce-
dure to be further pruned in different matching orders based on the query graph and the
sub-region where the candidate is located in the data graph. �e order can significantly
affect the performance. �e recursive subroutine is hard to map efficiently to GPUs for two
reasons. First, because of different matching orders for candidate vertices, warp divergence
is a problem. Second, due to irregular graph pa�ers, we see uncoalesced memory accesses.
Some existing GPU implementations parallelize the backtracking method to join candidate
edges in parallel to form partial solutions and repeat the method until the query graph
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pa�ern is obtained. However, these implementations generate more intermediate results,
which makes the problem memory-bounded.

Gunrock Implementation Our implementation using Gunrock [81] follows a filtering-and-
joining procedure. In the filtering phase, we use a filter operator on a vertex frontier to
prune out vertices based on both vertex labels and vertex degrees. Vertices with degree less
than a certain query node’s degree or with a different label cannot be that node’s candidate.
A�er that, we use advance and filter operators to collect the candidate edges. �en we do a
join using our optimized segmented intersection operator.

7 PERFORMANCE CHARACTERIZATION

We first show overall performance analysis of Gunrock on nine datasets including both real-world
and generated graphs; the topology of these datasets spans from regular to scale-free.

We ran all experiments in this paper on a Linux workstation with 2×Intel Xeon E5-2637 v2 CPUs
(3.50 GHz, 4-core, hyperthreaded), 256 GB of main memory, and an NVIDIA K40c GPU with 12 GB
on-board memory. GPU programs were compiled with NVIDIA’s nvcc compiler (version 8.0.44)
with the -O3 flag. �e BGL and PowerGraph code were compiled using gcc 4.8.4 with the -O3
flag. Ligra was compiled using icpc 15.0.1 with CilkPlus. For Ligra, elapsed time for best possible
sub algorithm was considered (for example, BFSCC was considered instead of CC when it was
the faster implementation for some particular datasets). All PageRank implementations were
executed with maximum iteration set to 1. All results ignore transfer time (both disk-to-memory
and CPU-to-GPU). All Gunrock tests were run 10 times with the average runtime and MTEPS used
for results.

Datasets. We summarize the datasets we use for evaluation in Table 4. Soc-orkut (soc-ork), soc-
livejournal1 (soc-lj), and hollywood-09 (h09) are three social graphs; indochina-04 (i04) is a crawled
hyperlink graph from indochina web domains; rmat s22 e64 (rmat-22), rmat s23 e32 (rmat-23), and
rmat s24 e16 (rmat-24) are three generated R-MAT graphs with similar vertex counts. All seven
datasets are scale-free graphs with diameters of less than 30 and unevenly distributed node degrees
(80% of nodes have degree less than 64). Both rgg n 24 (rgg) and roadnet USA (roadnet) datasets
have large diameters with small and evenly distributed node degrees (most nodes have degree less
than 12). soc-ork is from the Stanford Network Repository; soc-lj, i04, h09, and roadnet are from the
UF Sparse Matrix Collection; rmat-22, rmat-23, rmat-24, and rgg are R-MAT and random geometric
graphs we generated. For R-MAT, we use 16 as the edge factor, and the initiator parameters for
the Kronecker graph generator are: a = 0.57,b = 0.19, c = 0.19,d = 0.05. �is se�ing is the same
as in the Graph 500 Benchmark. For random geometric graphs, we set the threshold parameter
to 0.000548. �e edge weight values (used in SSSP) for each dataset are uniform random values
between 1 and 64.

Measurement methodology. We report both runtime and traversed edges per second (TEPS) as
our performance metrics. (In general we report runtimes in milliseconds and TEPS as millions of
traversals per second [MTEPS].) Runtime is measured by measuring the GPU kernel running time
and MTEPS is measured by recording the number of edges visited during the running (the sum of
neighbor list lengths of all visited vertices) divided by the runtime. When a library does not report

MTEPS, we use the following equations to compute it for BFS and BC: |E |
t

(BFS) and 2×|E |
t

(BC),
where E is the number of edges visited and t is runtime. For SSSP, since one edge can be visited
multiple times when relaxing its destination node’s distance value, there is no accurate way to
estimate its MTEPS number.
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Fig. 15. Execution-time speedup for Gunrock vs. five other graph processing libraries/hardwired algorithms
on nine different graph inputs. Data is from Table 6. Black dots indicate Gunrock is faster, white dots slower.
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Dataset Vertices Edges Max Degree Diameter Type

soc-orkut 3M 212.7M 27,466 9 rs

soc-Livejournal1 4.8M 85.7M 20,333 16 rs

hollywood-09 1.1M 112.8M 11,467 11 rs

indochina-04 7.4M 302M 256,425 26 rs

rmat s22 e64 4.2M 483M 421,607 5 gs

rmat s23 e32 8.4M 505.6M 440,396 6 gs

rmat s24 e16 16.8M 519.7M 432,152 6 gs

rgg n 24 16.8M 265.1M 40 2622 gm

roadnet USA 23.9M 57.71M 9 6809 rm

Table 4. Dataset Description Table. Graph types are: r: real-world, g: generated, s: scale-free, andm: mesh-like.
All datasets have been converted to undirected graphs. Self-loops and duplicated edges are removed.

Algorithm Galois BGL PowerGraph Medusa

BFS 8.812 — — 22.49

SSSP 2.532 99.99 8.058 2.158∗

BC 1.57 32.12 — —

PageRank 2.16 — 17.73 2.463∗

CC 1.745 341.1 182.7 —

Table 5. Geometric-mean runtime speedups of Gunrock on the datasets from Table 4 over frameworks not in
Table 6. ∗Due to Medusa’s memory limitations [86], its SSSP and PageRank comparisons were measured on
four smaller datasets from Medusa’s original paper.
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Fig. 16. Performance in MTEPS for Gunrock vs. six other graph processing libraries/hardwired algorithms on
nine different graph inputs. Data is from Table 6.

7.1 Performance Summary

Tables 5 and 6, and Figures 15, 16, and 17, compare Gunrock’s performance against several other
graph libraries and hardwired GPU implementations. In general, Gunrock’s performance on BFS-
based primitives (BFS, BC, and SSSP) shows comparatively be�er results when compared to other
graph libraries on seven scale-free graphs (soc-orkut, soc-lj, h09, i04, and rmats), than on two
small-degree large-diameter graphs (rgg and roadnet). �e primary reason is our load-balancing
strategy during traversal and particularly our emphasis on good performance for highly irregular
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Runtime (ms) [lower is be�er] Edge throughput (MTEPS) [higher is be�er]

Hardwired Hardwired
Alg. Dataset CuSha MapGraph GPU Ligra Gunrock CuSha MapGraph GPU Ligra Gunrock

B
FS

soc-ork 244.9 OOM 25.81 26.1 5.573 868.3 OOM 12360 8149 38165
soc-lj 263.6 116.5 36.29 42.4 14.05 519.5 1176 5661 2021 6097
h09 855.2 63.77 11.37 12.8 5.835 131.8 1766 14866 8798 19299
i04 17609 OOM 67.7 157 77.21 22.45 OOM 8491 1899 3861

rmat-22 1354 OOM 41.81 22.6 3.943 369.1 OOM 17930 21374 122516
rmat-23 1423 OOM 59.71 45.6 7.997 362.7 OOM 12971 11089 63227
rmat-24 1234 OOM 270.6 89.6 16.74 426.4 OOM — 5800 31042
rgg 68202 OOM 138.6 918 593.9 3.887 OOM 2868 288.8 466.4

roadnet 36194 763.4 141 978 676.2 3.189 151 1228 59.01 85.34

SS
SP

soc-ork — OOM 807.2 595 981.6 — OOM 770.6 — 216.7
soc-lj — — 369 368 393.2 — — 1039 — 217.9
h09 — 1069 143.8 164 83.2 — — 1427 — 1354
i04 — OOM — 397 371.8 — OOM — — 801.7

rmat-22 — OOM — 774 583.9 — OOM — — 827.3
rmat-23 — OOM — 1110 739.1 — OOM — — 684.1
rmat-24 — OOM — 1560 884.5 — OOM — — 587.5
rgg — OOM — 80800 115554 — OOM — — 2.294

roadnet — OOM 4860 29200 11037 — OOM 25.87 — 5.229

B
C

soc-ork — — 1029 186 397.8 — — 413.3 4574 1069
soc-lj — — 492.8 180 152.7 — — 347.7 1904 1122
h09 — — 441.3 59 73.36 — — 510.3 7635 3070
i04 — — 1270 362 117 — — 469 3294 5096

rmat-22 — — 1867 399 742.6 — — 517.5 4840 1301
rmat-23 — — 2102 646 964.4 — — 481.3 3130 1049
rmat-24 — — 2415 978 1153 — — 430.3 2124 901.2
rgg — — 26938 2510 1023 — — 19.69 422.5 518.4

roadnet — — 15803 2490 1204 — — 7.303 92.7 95.85

P
ag
eR

an
k

soc-ork 52.54 OOM — 476 173.1
soc-lj 33.61 250.7 — 200 54.1
h09 34.71 93.48 — 77.4 20.05
i04 164.6 OOM — 210 41.59

rmat-22 188.5 OOM — 1250 304.5
rmat-23 147 OOM — 1770 397.2
rmat-24 128 OOM — 2180 493.2
rgg 53.93 OOM — 247 181.3

roadnet — 123.2 — 209 24.11

C
C

soc-ork — OOM 46.97 260 211.7
soc-lj — OOM 43.51 184 93.27
h09 — 547.1 24.63 90.8 96.15
i04 — OOM 130.3 315 773.7

rmat-22 — OOM 149.4 563 429.8
rmat-23 — OOM 212 1140 574.3
rmat-24 — OOM 256.7 1730 664.1
rgg — OOM 103.9 6000 355.2

roadnet — OOM 124.9 50500 208.9

Table 6. Gunrock’s performance comparison (runtime and edge throughput) with other graph libraries
(CuSha, MapGraph, Ligra) and hardwired GPU implementations on a Tesla K40c GPU . All PageRank times
are normalized to one iteration. Hardwired GPU implementations for each primitive are Enterprise (BFS) [47],
delta-stepping SSSP [17], gpu BC (BC) [67], and conn (CC) [75]. OOM means out-of-memory. A missing
data entry means either there is a runtime error, or the specific primitive for that library is not available.

graphs. As well, graphs with uniformly low degree expose less parallelism and would tend to
show smaller gains in comparison to CPU-based methods. Table 7 shows Gunrock’s scalability. In
general, runtimes scale roughly linearly with graph size for BFS, but primitives with heavy use
of atomics on the frontier (e.g., BC, SSSP, and PR) show increased atomic contention within the
frontier as graph sizes increase and thus do not scale ideally. For CC, the reason for non-ideal
scalability is mainly the increase of race conditions when multiple edges try to hook their source
node to a common destination node, which happens more o�en when power-law graphs get bigger
and degree numbers become more unevenly distributed.

7.2 vs. CPU Graph Libraries

We compare Gunrock’s performance with four CPU graph libraries: the Boost Graph Library
(BGL) [73], one of the highest-performing CPU single-threaded graph libraries [51]; PowerGraph,

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 39. Publication date: September 2017.
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BC BFS CC PageRank SSSP
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Fig. 17. Performance in runtime for Gunrock vs. six other graph processing libraries/hardwired algorithms on
nine different graph inputs. Data is from Table 6.

a popular distributed graph library [24]; and Ligra [71] and Galois [57, 62], two of the highest-
performing multi-core shared-memory graph libraries. Against both BGL and PowerGraph, �e
speedup of Gunrock on average on all primitives ranges from 6x to 337x. Compared to Ligra,
Gunrock’s performance is generally comparable on most tested graph primitives; note Ligra results
are on a 2-CPU machine. �e performance inconsistency for SSSP vs. Ligra is due to comparing
our delta-stepping-based method [56] with Ligra’s Bellman-Ford algorithm. Our SSSP’s edge
throughput is smaller than BFS but similar to BC because of similar computations (atomicMin vs.
atomicAdd) and a larger number of iterations for convergence. �e performance inconsistency for
BC vs. Ligra on four scale-free graphs is because Ligra applies pull-based traversal on BC while
Gunrock has not yet done so. Compared to Galois, Gunrock shows more performance advantage
on traversal-based graph primitives (BFS, SSSP, and BC) and less on PageRank and CC, due to their
dense computation and more regular frontier structures.

7.3 vs. Hardwired GPU Implementations and GPU Libraries

Compared to hardwired GPU implementations, depending on the dataset, Gunrock’s performance
is comparable or be�er on BFS, BC, and SSSP. For CC, Gunrock is 5x slower (geometric mean) than
the hardwired GPU implementation due to irregular control flow because each Gunrock iteration
starts with full edge lists in both hooking and pointer-jumping phases. �e alternative is extra
steps to perform additional data reorganization. �is tradeoff is not typical of our other primitives.
While still achieving high performance, Gunrock’s application code is smaller in size and clearer in
logic compared to other GPU graph libraries.
Gunrock’s problem class (that defines problem data used for the graph algorithm) and kernel

enactor are both template-based C++ code; Gunrock’s functor code that specifies per-node or per-
edge computation is C-like device code without any CUDA-specific keywords. Writing Gunrock
code may require parallel programming concepts (e.g., atomics) but neither details of low-level
GPU programming nor optimization knowledge.2

Gunrock compares favorably to existing GPU graph libraries.

vs. MapGraph MapGraph is faster than Medusa on all but one test [20] and Gunrock is faster
than MapGraph on all tests: the geometric mean of Gunrock’s speedups over MapGraph
on BFS, SSSP, PageRank, and CC are 4.679, 12.85, 3.076, and 5.69, respectively.

2We believe this assertion is true given our experience with other GPU libraries when preparing this evaluation section,

but freely acknowledge this is nearly impossible to quantify. We invite readers to peruse our annotated code for BFS and

SALSA at h�p://gunrock.github.io/gunrock/doc/annotated primitives/annotated primitives.html.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 39. Publication date: September 2017.
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Fig. 18. Gunrock’s performance on different GPU devices. The Tesla M40 24GB is a�ached to a Haswell CPU
and has a higher boost clock (1.3 GHz). The Tesla M40 is a�ached to an Ivy Bridge CPU with a boost clock of
1.1 GHz.

vs. CuSha Gunrock outperforms CuSha on BFS and SSSP. For PageRank, Gunrock achieves
comparable performance with no preprocessing when compared to CuSha’s G-Shard data
preprocessing, which serves as the main load-balancing module in CuSha.

vs. Totem �e 1-GPU Gunrock implementation has 1.83x more MTEPS (4731 vs. 2590) on
direction-optimized BFS on the soc-LiveJournal dataset (a smaller scale-free graph in their
test set) than the 2-CPU, 2-GPU configuration of Totem [66].

vs. nvGRAPH For SSSP, nvGRAPH is faster than Gunrock on the roadnet dataset, but slower
on the other datasets. Gunrock in general performs be�er on scale-free graphs than it does
on regular graphs. For PageRank, nvGRAPH is faster than Gunrock on six datasets and
slower on three (h04, i09, and roadnet). nvGRAPH is closed-source and thus a detailed
comparison is infeasible.

All three GPU BFS-based high-level-programming-model efforts (Medusa, MapGraph, and Gun-
rock) adopt load-balancing strategies from Merrill et al.’s BFS [55]. While we would thus expect
Gunrock to show similar performance on BFS-based graph primitives to these other frameworks,
we a�ribute our performance advantage to two reasons: 1) our improvements to efficient and load-
balanced traversal that are integrated into the Gunrock core, and 2) a more powerful, GPU-specific
programming model that allows more efficient high-level graph implementations. 1) is also the
reason that Gunrock implementations can compete with hardwired implementations; we believe
Gunrock’s load-balancing and work distribution strategies are at least as good as if not be�er than
the hardwired primitives we compare against. Gunrock’s memory footprint is at the same level as
Medusa and be�er than MapGraph (note the OOM test cases for MapGraph in Table 6). Our data
footprint is α |E | + β |V | for current graph primitives, where |E | is the number of edges, |V | is the
number of nodes, and α and β are both integers where α is usually 1 and at most 3 (for BC) and β

is between 2 to 8.
Figure 18 shows the performance of Gunrock’s v0.4 release on four different GPUs: Tesla K40m,

Tesla K80, Tesla M40, and Tesla P100. Programs are compiled by nvcc (8.0.44) with -O3 flag and
GPU SM versions according to the actual hardware. Across different GPUs, Gunrock’s performance
generally scales with memory bandwidth, with the newest Tesla P100 GPU demonstrating the best
performance.

7.4 Optimization Strategies Performance Analysis

Figures 19 and 20 show how different optimization strategy combinations and different workload
mapping strategies affect the performance of graph traversal.

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 39. Publication date: September 2017.
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Runtime (ms) Edge throughput (MTEPS)

Dataset BFS BC SSSP CC PR BFS BC SSSP

kron g500-logn18 (v = 218, e = 14.5M) 1.319 12.4 13.02 9.673 3.061 10993 2339 1113
kron g500-logn19 (v = 219, e = 29.7M) 1.16 26.93 26.59 20.41 6.98 25595 2206 1117
kron g500-logn20 (v = 220, e = 60.6M) 2.355 67.57 56.22 43.36 19.63 25723 1793 1078
kron g500-logn21 (v = 221, e = 123.2M) 3.279 164.9 126.3 97.64 60.14 37582 1494 975.2
kron g500-logn22 (v = 222, e = 249.9M) 5.577 400.3 305.8 234 163.9 44808 1248 817.1
kron g500-logn23 (v = 223, e = 505.6M) 10.74 900 703.3 539.5 397.7 47077 1124 719

Table 7. Scalability of 5 Gunrock primitives (runtime and edges traversed per second) on a single GPU on
five differently-sized synthetically-generated Kronecker graphs with similar scale-free structure.

hollywood-2009 indochina-2004 rgg_n24_0.000548 rmat_n22_e64 rmat_n23_e32 rmat_n24_e16 road_usa soc-LiveJournal1 soc-orkut
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Fig. 19. Gunrock’s performance with different combinations of idempotence and direction-optimized traversal.

Without losing generality, for our tests on different optimization strategies, we use BFS and fix the
workload mapping strategy to LB CULL so that we can focus on the impact of different optimization
strategies. Our two key optimizations—idempotence and direction-optimized traversal—both show
performance increases compared to the baseline LB CULL traversal, except for rgg and roadnet, for
which idempotence does not increase performance because the inflated frontiers cancel out the
performance increase for avoiding atomics. Also, our experiment shows that when using LB CULL
for advance, enabling both direction-optimized and idempotence always yields worse performance
than with only direction-optimized enabled. �e reason behind this is that enabling idempotence
operation in direction-optimized traversal iteration causes additional global data accesses to a
visited-status bitmask array. We also note that for graphs with very small degree standard deviation
(< 5), using idempotence will actually hurt the performance. �e reason is for these graphs, the
number of common neighbors is so small that avoiding atomic operations will not provide much
performance gain, but using idempotence introduces an additional pass of filter heuristics, and the
cost of that pass outweighs the performance gain from avoiding atomic operations.
Our tests on different workload mapping strategies (traversal mode) shows that LB CULL con-

stantly outperforms other two strategies on these 9 datasets. Its be�er performance compared to
TWC is due to its switching between load-balance over the input frontier and load- balance over the
output frontier according to the input frontier size (Section 5.1.3). Its be�er performance compared
to LB is due to its kernel fusion implementation, which reduces the kernel launch overhead and
also some additional data movement between operators. However, without a more thorough
performance characterization, we cannot make the conclusion that LB CULL will always have
be�er performance. For instance, in our SSSP tests on two mesh-like graphs with large diameters
and small average degrees, TWC shows be�er performance. In general, we currently predict which
strategies will be most beneficial based only on the degree distribution; many application scenarios
may allow pre-computation of this distribution and thus we can choose the optimal strategies
before we begin computation.
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Fig. 20. BFS, SSSP, and PR’s performance in Gunrock using three different workload mapping strategies: LB,
LB CULL, and TWC. For PR, since its current operation order in the enactor is an advance followed by a
filter, so LB CULL is not valid.

Figure 21 shows performance as a function of the direction-optimized parameters do a and
do b (Section 5.1.4). In general, R-Mat graphs, social networks, and web graphs show different
pa�erns due to their different degree distributions. But every graph has a rectangular region
where performance figures show a discontinuity from the region outside that rectangle. �is
is because our two direction-optimized parameters indirectly affect the number of iterations of
push-based traversal and pull-based traversal. �e number of iterations is discrete and thus forms
the rectangular region. As shown in figure 21, with one round of BFS execution that starts with
push-based traversal, increasing do a from a small to a large value speeds up the switch from
push-based to pull-based traversal, and thus always yield be�er performance at first. However,
when do a is too large, it causes pull-based traversal to start too early and performance drops
because usually in early iterations, small-sized frontiers show be�er performance on push-based
traversal than pull-based traversal. Parameter do b controls when to switch back from pull-based to
push-based traversal. On most graphs, regardless of whether they are scale-free or mesh-like graphs,
keeping a smaller do b so that the switch from pull-based to push-based traversal never happens
would help us achieve be�er performance. However, this is not always true: in indochina-2004, the
location of its rectangular region is at the lower right, which means either keeping both a larger
do a and do b will yield be�er performance on this dataset, or the parameter range we have chosen
is not wide enough to show the complete pa�ern for this dataset. At any rate, it is clear that the
same parameters do not deliver the best performance for all datasets.

Figures 22 and 23 show Gunrock’s per-iteration advance performance as a function of input and
output frontier size. �e input frontier figure is noisier because for some scale-free datasets, a small
input frontier can generate a very large output frontier, causing an outlier in the sca�er plot. In
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Fig. 21. Heatmaps show how Gunrock’s two direction-optimized parameters, do a, and do b, affect BFS
performance. Each square represents the average throughput of 25 BFS runs, each starting at a random node.
Darker color means higher TEPS . Datasets on the top row are hollywood-2009 and indochina-2004; on the
second row, rmat-n22 and rmat-n23; and on the bo�om row, soc-livejournal and soc-orkut.
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Fig. 22. Per-iteration advance performance (in
MTEPS) vs. input frontier size.
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Fig. 23. Per-iteration advance performance (in
MTEPS) vs. output frontier size.

Table 8. Experimental datasets for GPU Who-To-Follow algorithm.

Dataset Vertices Edges

wiki-Vote 7.1k 103.7k
twi�er-SNAP 81.3k 2.4M
gplus-SNAP 107.6k 30.5M
twi�er09 30.7M 680M

these plots, for the two roadnet graphs (roadnet and rgg), we are using our TWC strategy, while
the other datasets use LB CULL. �is creates two different types of curve. For datasets that use
the LB CULL strategy, the input frontier performance curve reaches a horizontal asymptote when
the input frontier size is larger than 1 million, and the output frontier performance curve keeps
growing even for a billion-element output frontier. However, the performance increase for datasets
that use LB CULL slows down when the output frontier size is larger than one million. For the
two datasets that use the TWC strategy, both the input frontier performance curve and the output
frontier performance curve are linear, and present be�er performance than datasets using LB CULL
when the output frontier size is larger than 1 million. �e results of this experiment demonstrate
that in general, to achieve good performance, Gunrock needs a relatively large frontier to fully
utilize the computation resource of a GPU.

7.5 GPU Who-To-Follow Performance Analysis

We characterize our who-to-follow implementation (based on Goel et al.’s algorithm [23]) with
different datasets (Tables 8). Table 9 shows the runtimes of this primitive on these datasets. Runtimes
are for GPU computation only and do not include CPU-GPU transfer time. �e wiki-Vote dataset is
a real social graph dataset that contains voting data for Wikipedia administrators; all other datasets
are follow graphs from Twi�er and Google Plus [43, 45]. Twi�er09 contains the complete Twi�er
follow graph as of 2009; we extract 75% of its user size and 50% of its social relation edge size to
form a partial graph that can fit into the GPU’s memory.

7.5.1 Scalability. In order to test the scalability of our WTF-on-GPU recommendation system,
we ran WTF on six differently-sized subsets of the twi�er09 dataset. �e results are shown in
Figure 24. We see that the implementation scales sub-linearly with increasing graph size. As we
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Table 9. GPU WTF runtimes for different graph sizes.

Time (ms) wiki-Vote twi�er gplus twi�er09

PPR 0.45 0.84 4.74 832.69
CoT 0.54 1.28 2.11 51.61

Money 2.70 5.16 18.56 158.37
Total 4.37 8.36 26.57 1044.99
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Fig. 24. Scalability graph of our GPU recommendation system.

double the graph size, the total runtime increases by an average of 1.684x, and the runtime forMoney
increases by an average of 1.454x. �e reason lies in our work-efficient parallel implementation.
By doing per-vertex computation exactly once and visiting each edge exactly once, our parallel
algorithm performs linearO (m +n) work. �e reason that we have be�er scalability for the Money
algorithm is that although we are doubling the graph size each time, we always prune the graph
with a fixed number of nodes that we computed via personalized PageRank (PPR) and we call
“Circle of Trust” (CoT). In our implementation we set the size of CoT to 1000 to match the original
Who-To-Follow algorithm.

7.5.2 Comparison to Cassovary. We chose to use the Cassovary graph library for our CPU
performance comparison. �e results of this comparison are shown in Table 10. Cassovary is a graph
library developed at Twi�er. It was the library Twi�er used in their first WTF implementation [31].

We achieve speedups of up to 1000x over Cassovary for the Google Plus graph, and a speedup of
14x for the 2009 Twi�er graph, which is the most representative dataset for the WTF application.
One difference between the GPU algorithm and the Cassovary algorithm is that we used the SALSA
function that comes with the Cassovary library, instead of using Twi�er’s Money algorithm for the
final step of the algorithm. Both are ranking algorithms based on link analysis of bipartite graphs,
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Table 10. GPU WTF runtimes comparison to Cassovary (C).

wiki-Vote twi�er gplus twi�er09

Step (runtime) C GPU C GPU C GPU C GPU

PPR (ms) 418 0.45 480 0.84 463 4.74 884 832.69
CoT (ms) 262 0.54 2173 1.28 25616 2.11 2192 51.61

Money (ms) 357 2.70 543 5.16 2023 18.56 11216 158.37
Total (ms) 1037 4.37 3196 8.36 28102 26.57 14292 1044.99
Speedup 235.7 380.5 1056.5 13.7
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Fig. 25. Execution-time speedup (top figure) for our Gunrock TC implementations (“tc-intersection-full”
and “tc-intersection-filtered”), Green et al.’s GPU implementation [28] (“Green et al.-GPU”), Shun and
Tangwongsan’s 40-core CPU implementation [72] (“Shun and Tangwongsan-T40”) and Green et al.’s 40-core
CPU implementation [27] (“Green et al.-T40”). All are normalized to a baseline CPU implementation [68] on
six different datasets. Baseline runtime (in seconds) is given in the table.

and in the original Who-To-Follow paper [31], Gupta et al. use a form of SALSA for this step, so
this is reasonable for a comparison.

7.6 GPU Triangle Counting Performance Analysis

We compare the performance of our GPU TC to three different exact triangle counting methods:
Green et al.’s state-of-the-art GPU implementation [28] that runs on an NVIDIA K40c GPU, Green
et al.’s multicore CPU implementation [27], and Shun and Tangwongsan’s multicore CPU imple-
mentation [72]. Both of the state-of-the-art CPU implementations are tested on a 40-core shared
memory system with two-way hyper-threading; their results are from their publications. Our CPU
baseline is an implementation based on the forward algorithm by Schank and Wagner [68].
In general, Gunrock’s TC implementation shows be�er performance than the state-of-the-art

GPU implementations because of our key optimizations on workload reduction and GPU resource
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utilization (figure 25 ). It achieves comparable performance to the fastest shared-memory CPU
TC implementation. Gunrock’s TC implementation with only the simple per-thread batch set
intersection kernel achieves a 2.51× and 4.03× (geometric-mean) speedup as compared to Green et
al.’s CPU [27] and GPU [28] implementations respectively. We believe our speedup is the result of
two aspects of our implementation: 1) using filtering in edge list generation, and reforming the
induced subgraph with only the edges not filtered, effectively reducing five-sixths of the workload;
and 2) dynamic grouping that helps maintain a high GPU resource utilization. In practice we observe
that for scale-free graphs, the last step of optimization to reform the induced subgraph show a
constant speedup over our intersection method without this step. However, for road networks and
some small scale-free graphs, the overhead of using segmented reduction will cause a performance
drop. We expect further performance gains from future tuning of launch se�ings for the large-
neighbor-list intersection kernel, which we do not believe is quite optimal yet. �ese optimizations
are all transparent to our data-centric programming model and apply to our segmented intersection
graph operator, which we hope to use in other graph primitives in the future.

8 CONCLUSION

Our work on the data-centric programming model for graph processing on the GPU has enabled
us to build a highly programmable, high-performance graph analytics system. It also opens up
various interesting yet challenging research opportunities.

8.1 Limitations

Single-GPU Our current data-centric programming model is designed and optimized for a
single-GPU architecture. We have extended our implementation to multiple GPUs on one
node [59], but have not yet addressed larger machines [61].

Fits-in-memory Our current single-GPU implementation does not support computation on
graphs that exceed the size of a GPU’s global memory.

Static Graph Our current programming model targets static graphs; we have not yet consid-
ered streaming graphs or graphs with dynamically changing topology.

Limited Compiler Optimizations Our current implementation does not support extensive
compiler optimizations such as kernel fusion and AST (abstract syntax tree) generation [58].

8.2 Future Work

Moving forward, there are several aspects of Gunrock we could improve, including architecture,
execution model, meta-linguistic abstraction, performance characterization, core graph operators,
new graph primitives, graph datatype, and usability.

8.2.1 Architecture and Execution Model. To enable large-scale graph analysis where the data do
not fit in single GPU device memory, we see three ways to scale:

Scale-Out Gunrock is designed to serve as a standalone framework that can be integrated
into a multi-GPU single-node graph processing system [59]. When we built this system,
we identified two interesting research problems: 1) the impact of different partitioning
methods on the performance, and 2) tradeoffs between computation and communication
for inter-GPU data exchange. We hope to extend this framework to multiple nodes and
explore these two problems more completely, and also investigate dynamic repartitioning
for load balancing, vertex cut, and heterogeneous processing for large-diameter graphs.

Scale-Up CPU-GPU memory bandwidth is still limited compared to intra-GPU and inter-
GPU bandwidth. �us we need to identify the situations where out-of-core approaches are
necessary and/or useful. �e current Gunrock framework has not been designed to support
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out-of-core directly, but several other projects [44, 70] offer interesting conclusions that
would influence Gunrock’s development in terms of graph data representation, partitioning,
and communication reduction to make it suitable for out-of-core computation.

Streaming Recent work maps the streaming model to GPUs by partitioning graphs into edge
streams and processing graph analytics in parallel [64, 69]. Supporting streaming requires
more significant changes than out-of-core and raises interesting research questions such
as how to partition the graph and when to synchronize. At its core, we expect Gunrock’s
data-centric programming model maps naturally to streaming process where a frontier is
an edge stream.

We see two interesting future directions for Gunrock’s execution model:

Asynchronous �e work of Wang et al. [80] views an asynchronous execution model in BSP
as the relaxation of two synchrony properties: 1) isolation, meaning within an iteration,
newly generated messages from other vertices can not be seen; and 2) consistency, meaning
each thread waits before it proceeds to the next iteration until all other threads have finished
the process for the same iteration. To enable asynchronous execution on current Gunrock,
we could 1) use a priority queue in a single-node GPU, allowing the merging of multiple
remote frontiers in multi-node GPU, or adding multi-pass micro iterations within one
iteration to relax the consistency property; or 2) allow per-vertex/per-edge operations to
propagate results to others to relax the isolation property. In terms of the impact to our
data-centric programming model, asynchronous execution could significantly accelerate
convergence in primitives such as SSSP, CC, PR, and LP, by intelligently ordering vertex
updates and incorporating the most recent updates.

Higher-level task parallelism Higher-level task parallelism can bring more parallelism for
several graph primitives. Preliminary work [48, 53] in this direction executes multiple BFS
passes simultaneously on GPUs. Applications that benefit from adding this additional level
of parallelism at the streaming multiprocessor level include all-pairs shortest paths and
BC. Usually such higher-level task parallelism requires keeping multiple active frontiers
and specifying different groups of blocks to handle graph workloads on different active
frontiers. Gunrock’s data-centric abstraction can be used to implement this with some
additional modifications to frontier management and workload mapping.

8.2.2 Meta-Linguistic Abstraction.

Gunrock as a Backend Gunrock currently offers C/C++-friendly interfaces that make Gun-
rock callable from Python, Julia, and other high-level programming languages. �e future
work along this path is to identify and implement support for Gunrock as a back end to a
higher-level graph analytics framework (such as TinkerPop or NetworkX) or create our
own graph query/analysis DSL on top of Gunrock.

Add More Backends to Gunrock Gunrock’s current implementation is not the only way to
implement our data-centric programming model. Another interesting research direction is
to make other back ends support our data-centric programming model. Candidates include
GraphBLAS (a matrix-based graph processing framework) [41], VertexAPI2 (a GAS-style
graph processing framework) [19], and the EmptyHeaded Engine [1] (a Boolean algebra
set-operation-based graph query library).

8.2.3 Core Graph Operators. Every graph analytics framework implements its abstraction as a
set of supported operators on a graph. Which operators to choose may be a function of the hardware
architecture and programming language. What is the right set of graph operators that Gunrock
should support? To Gunrock’s original three operators—advance, filter, and compute—we have
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added segmented intersection. We see several other operators as candidates for future Gunrock
implementation:

Neighborhood Reduction Neighborhood reduction will visit the neighbor list of each item
in the input frontier and perform a user-specified reduction over each neighbor list. It
shares many similarities to our advance operator. An efficient neighborhood reduction
operator would accelerate several graph primitives that need to reduce over neighborhoods,
such as maximal independent set, coloring, and PageRank.

Priority �eue Using multi-split [2], we can create priority queues with more than one
priority level. �is can be applied to the delta-stepping SSSP algorithm and can also serve
as an alternative frontier manipulation method in an asynchronous execution model.

Sampling A sampling operator can be viewed as an extension to the standard filter. Currently
its applications include approximated BC, TC, and more approximated graph primitives.

Forming Supervertex In our current minimum-spanning-tree primitive, we have imple-
mented a supervertex-forming phase using a series of filter, advance, sort, and prefix-sum.
�is could be integrated into a new operator. Note that currently, we form supervertices by
rebuilding a new graph that contains supervertices. �is can be used in hierarchical graph
algorithms such as clustering and community detection.

An alternative direction would be to offer a set of lower-level data-parallel primitives including
both general primitives such as prefix-sum and reduction, as well as graph-specific primitives
such as load-balanced search (for evenly distributing edge expanding workload), and use them to
assemble our higher-level graph operators.

Which of these two approaches—implementing many graph operators and specific optimizations
for each operator, and building up graph operators on top of lower-level data-parallel primitives—
we use in a GPU graph analytics programming model will affect both the programmability and
performance of the system. In Gunrock, we use amixedmodel where we share common components
such as load-balanced search, prefix-sum, and compact for advance, filter and neighborhood
reduction, while we also include specialized optimizations for advance, filter, and segmented
intersection. An interesting future research direction is to think of the graph operator abstraction at
a more meta level, and try to build up a hierarchical framework for designing graph operators that
includes not only graph traversal and computation building blocks such as all five graph operators
we have in Gunrock today, but also memory- and workload-optimization building blocks that can
be plugged into and replaced in our higher-level graph operator implementation.

8.2.4 New Graph Primitives. Our current set of graph primitives are mostly textbook-style
algorithms. One future work is to expand this list to more complex graph primitives spanning from
network analysis, machine learning, data mining, and graph queries.

Graph Coloring and Maximal Independent Set Efficient graph matching and coloring
tasks [15] can be computed by Gunrock more efficiently than previous work. Maximal
independent set (MIS) algorithms follow the same path. Both primitives can be implemented
using Gunrock’s current operator set with new operators such as neighborhood reduction
and multi-level priority queue potentially improving their performance. �ese primitives
can serve as the building blocks for asynchrony and task-level parallelism.

Strongly Connected Components A directed graph is strongly connected if any node can
reach any other node. �is algorithm is traditionally a problem related to depth-first search,
which is considered unsuitable for GPUs. However, Slota et al.’s work [74] improved on
Barnat et al.’s DFS-based work [3] and avoids DFS by combining BFS and graph coloring.
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More Traversal-based Algorithms To make use of our efficient graph traversal operators,
we can modify our BFS to implement several other similar primitives: 1) st-connectivity,
which simultaneously processes two BFS paths from s and t ; 2) A* search as a BFS-based
path finding and search algorithm; 3) Push-Relabel algorithm as a BFS-based maximum
flow algorithm [35]; 4) {reverse} Cuthill-McKee algorithm, a sparse matrix bandwidth
reduction algorithm based on BFS [16]; 5) belief propagation, a sum-product message
passing algorithm based on BFS; and finally 6) radii estimation, a k-sample BFS-based
algorithm for estimating the maximum radius of the graph.

Subgraph Isomorphism Most optimized subgraph matching algorithms on CPUs [32] are
based on backtracking strategies, which follow a recursive routine and cannot efficiently
be adapted to GPUs. Recent subgraph matching on large graphs on the GPU [77] and
distributed memory cloud [9, 76], both of which use graph traversal extensively, and could
fit nicely and turn out to work more efficiently in Gunrock’s framework. However, these
methods are memory-bound which suggests a focus on more effective filtering and joining
methods. Extensions to our current segmented intersection operator more flexible input
format support for query graphs will potentially make subgraph matching in Gunrock
perform be�er.

k-SAT k-SAT is a type of Boolean satisfiability problem that can be represented as an iterative
updating process on a bipartite graph. Combining the sampling operator and our efficient
traversal operator, it potentially fits nicely into Gunrock.

SGD and MCMC Both Stochastic Gradient Descent in matrix completion and Markov Chain
Monte Carlo have large amounts of parallelism. �e former can be presented as either
an iterative bipartite graph traversal-updating algorithm [39] or a conflict-free subgraph
parallel updating algorithm. In order to decrease the number of conflict updates and increase
the data re-usage rate, the incomplete matrix is divided into sub-matrices where graph
coloring can help identify the conflict-free elements in those small sub-matrices. Graph
coloring can take advantage of Gunrock’s efficient traversal operator to achieve be�er
performance. MCMC’s iterative dense update makes it a good candidate for matrix-based
graph algorithms. However, Gunrock operators can also represent this problem.

8.2.5 New Graph Datatypes. All graph processing systems on the GPU use CSR and edge lists
internally. We see significant opportunity in designing suitable graph datatypes and data structures
to enable graph primitives on mutable graphs and matrix-typed graph primitives.

Mutable Graphs �e meaning of mutable is twofold: mutable by primitive, and mutable
by input data. Mutable by primitive means that the graph primitive changes the graph
structure, and includes primitives such as MST, community detection, mesh refinement,
and Karger’s mincut. �e operations related include simple ones such as adding/removing
nodes/edges, and more complex ones such as forming supervertices. Currently there is no
good solution for handling general graph mutations on GPUs with efficiency. Mutable by

input data means that we process our algorithms on input datasets that change over time
(so we would like to both incrementally update the graph data structure and incrementally
update a solution given the incremental change in the data structure). We need to provide
either approximated results or the capability of doing incremental computation.

Adjacency Matrix Form Matrix-based graph algorithms are also widely used for graph
processing such as BFS and PageRank. Our sparse-matrix sparse-vector operator and
its application to BFS [85] has shed light on more applications in matrix form such as
MIS, PageRank, SSSP, and several spectral methods, which are used in algorithms like
collaborative filtering.
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Optimized Graph Topology Format �e work of Wu et al. [83] shows how data reorga-
nization can help with memory uncoalescing. However, for graph analytics, we need to
design be�er strategies since the memory access indices (node IDs in the frontier) change
dynamically every iteration. Both CuSha [42] and Graphicionado [14] proposed optimiza-
tions on memory access via edge-list grouping according to source node ID and destination
node ID. Such optimizations, and a well-designed cache framework, would reduce random
memory access during graph analytics. It is also an open question if bandwidth reduction
algorithms such as reverse Cuthill-McKee would bring be�er memory locality for graph
analytics.

Rich-data-on-{vertices,edges} Complex networks o�en contain rich data on vertices and/or
edges. Currently Gunrock puts all the information on edges/vertices into a data structure on
the GPU, which is not ideal. Adding the capability of loading partial edge/vertex information
onto the GPU could enable graph query tasks and allow us to support several network
analysis primitives that use this rich information during their computation.

8.3 Summary

Gunrock was born when we spent two months writing a single hardwired GPU graph primitive. We
knew that for GPUs to make an impact in graph analytics, we had to raise the level of abstraction in
building graph primitives. With this work, we show that with appropriate high-level programming
model and low-level optimizations, parallel graph analytics on the GPU can be both simple and
efficient. More specifically, this work has achieved its two high-level goals:

• Our data-centric, frontier-focused programming model has proven to map naturally to
the GPU, giving us both good performance and good flexibility. We have also found that
implementing this abstraction has allowed us to integrate numerous optimization strategies,
including multiple load-balancing strategies for traversal, direction-optimal traversal, and
a two-level priority queue. �e result is a framework that is general (able to implement nu-
merous simple and complex graph primitives), straightforward to program (new primitives
only take a few hundred lines of code and require minimal GPU programming knowledge),
and fast (on par with hardwired primitives and faster than any other programmable GPU
graph library).

• Our open-sourced GPU graph processing library Gunrock provides a graph analytics
framework for three types of users: 1) data scientists who want to take the advantage of the
GPU’s superior computing power in big data applications; 2) algorithm designers who want
to use the existing efficient graph operators in Gunrock to create new graph algorithms
and applications; and 3) researchers who want to reproduce the results of our research, or
make improvements to our core components. We hope that in the future, Gunrock will
serve as a standard benchmark for graph processing on the GPU.
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Based Graph Processing. CoRR abs/1503.02368 (2015). h�p://arxiv.org/abs/1503.02368

[2] Saman Ashkiani, Andrew A. Davidson, Ulrich Meyer, and John D. Owens. 2016. GPU Multisplit. In Proceedings of

the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2016). 12:1–12:13. DOI:

h�p://dx.doi.org/10.1145/2851141.2851169

[3] Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceska. 2011. Computing Strongly Connected Components in Parallel

on CUDA. In Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium (IPDPS ’11). IEEE

Computer Society, Washington, DC, USA, 544–555. DOI:h�p://dx.doi.org/10.1109/IPDPS.2011.59

[4] Sean Baxter. 2013. Modern GPU Multisets. (2013). h�ps://nvlabs.github.io/moderngpu/sets.html.

[5] Sean Baxter. 2013–2016. Moderngpu: Pa�erns and Behaviors for GPU Computing. (2013–2016). h�p://moderngpu.

github.io/moderngpu.
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