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This paper revisits Gurson’s [1,2] classical limit-analysis of
a hollow sphere made of some ideal-plastic von Mises ma-
terial and subjected to conditions of homogeneous bound-
ary strain rate (Mandel [3], Hill [4]). Special emphasis is
placed on successive approximations of the overall dissipa-
tion, based on a Taylor expansion of one term appearing
in the integral defining it. Gurson considered only the ap-
proximation based on the first-order expansion, leading to
his well-known homogenized criterion; higher-order approx-
imations are considered here. The most important result is
that the correction brought by the second-order approxima-
tion to the first-order one is significant for the porosity rate, if
not for the overall yield criterion. This bears notable conse-
quences upon the prediction of ductile damage under certain
conditions.

Keywords: Gurson’s limit-analysis, hollow sphere, Taylor
expansion, overall yield criterion, predicted porosity rate

Nomenclature
a Internal radius of the hollow sphere.
b External radius of the hollow sphere.
C Approximate domain of reversibility.
C
(n) n-th order approximation ofC .
C

exact Exact domain of reversibility.
d Local strain rate tensor.
deq Local von Mises equivalent strain rate.
D Overall strain rate tensor.
Di i-th eigenvalue ofD.
Dm Mean part ofD.
D′ Deviatoric part ofD.
Deq Overall von Mises equivalent strain rate.
DIII Third invariant ofD.
Eeq Overall cumulated equivalent strain.
f Porosity.

n Unit vector collinear to the position-vector.
r Position-vector.
r Norm of r.
S(r) Spherical surface of radiusr.
S Approximate yield surface.
S
(n) n-th order approximation ofS .
S

exact Exact yield surface.
T Triaxiality.
T(n)(η) n-th order Taylor expansion of

√
1+η.

v Trial velocity field.
vA Gurson’s first trial velocity field.
vB Gurson’s second trial velocity field.
ξ Normalized porosity rate.
η “Small” parameter (see text).
Π Approximate overall plastic dissipation.
Π(n) n-th order approximation ofΠ.
Πexact Exact overall plastic dissipation.
σ0 Yield stress in simple tension.
ΣΣΣ Overall stress tensor.
Σi i-th eigenvalue ofΣΣΣ.
Σm Mean part ofΣΣΣ.
ΣΣΣ′ Deviatoric part ofΣΣΣ.
Σeq Overall von Mises equivalent stress.
ω Spherical void.
Ω Elementary cell (hollow sphere) considered.
∂Ω External boundary ofΩ.

1 Introduction
The most classical model of ductile rupture is due to

Gurson [1, 2]. This model was based on an approximate
limit-analysis of a hollow sphere (typical “unit cell” in a
porous material) made of a rigid-ideal plastic material obey-
ing the von Mises criterion, and subjected to conditions of
homogeneous boundary strain rate (Mandel [3], Hill [4]).
This limit-analysis stood as an extension of the earlier one



of Rice and Tracey [5] of an infinite medium containing a
spherical hole.

While the body of literature devoted toapplicationsof
Gurson’s model is enormous, comparatively few papers have
been devoted to thefoundationsof the model themselves.
Among these, one may cite those of Garajeu [6], Monchiet
et al. [7], Alves et al. [8] and Cazacuet al. [9]. Monchietet
al. questioned the relevance of the trial velocity fields used
by Gurson themselves (thus paralleling, for a hollow sphere,
Huang’s [10] reconsideration of Rice and Tracey’s [5] anal-
ysis of an infinite medium). In contrast, Garajeu, Alveset al.
and Cazacuet al., accepting these fields, questioned the ac-
curacy of an approximation made by Gurson in order to get
an explicit analytical expression of the overall plastic dissi-
pation. More specifically, these authors showed that the inte-
gral expressing this dissipation could be calculated explicitly
without any approximation in the specific case of an axisym-
metric loading, and compared their exact result to Gurson’s
approximate one in this special case.

For an arbitrary 3D loading, the integral expressing the
plastic dissipation is unfortunately no longer amenable to
such an exact analytic calculation. But Gurson [1, 2] de-
fined a procedure for approximate evaluation of this dissi-
pation based on a Taylor expansion of a term appearing in
the integral. He himself considered only the approximation
based on the first-order expansion. The main purpose of this
paper is to consider higher-order ones so as to examine the
importance of the corrections brought. It will also, inciden-
tally, be an occasion to revisit and complement some aspects
of Gurson’s treatment.

The paper is organized as follows:

* Section 2 briefly recalls the main elements of Gurson’s
treatment and especially his definition of a sequence of
successive approximations of the overall plastic dissipa-
tion.
* In Section 3, after having established a few general
properties of this sequence of approximations, we pro-
vide explicit analytical expressions of the second- and
third-order approximations of the plastic dissipation.
* Section 4 examines the corrections brought by the
second- and third-order approximations to the first-order
one, for theoverall yield criterion.
* In Section 5, the same job is done for thepredicted
porosity rate(connected to the normal to the yield crite-
rion). The predictions of the successive approximations
are also compared to reputedly exact results obtained
through numerical limit-analysis of the hollow sphere.
* Finally Section 6 discusses the implications of the re-
sults found for the prediction of ductile rupture in vari-
ous conditions.

2 Preliminaries
2.1 Limit-analysis of a hollow sphere

Gurson [1, 2] (see also the review of Benzerga and
Leblond [11]) performed a limit-analysis of a hollow sphere
Ω of internal radiusa, external radiusb, porosity f ≡

a3/b3, made of some rigid-ideal plastic material obeying von
Mises’s criterion with yield stressσ0 in simple tension, and
subjected to conditions of homogeneous boundary strain rate
(Mandel [3], Hill [4]):

v(r) = D.r for r ∈ ∂Ω (1)

wherev denotes the velocity,r the position-vector (originat-
ing from the center of the sphere),D the overall strain rate
tensor and∂Ω the external boundary ofΩ.

Since for the general loading envisaged, the limit-
analysis cannot be performed exactly, Gurson envisaged trial
incompressible velocity fields of the form

v(r) = vA(r)+ vB(r) , vA(r)≡ Dm
b3

r2 n , vB(r)≡ D′.r (2)

wherer ≡‖ r ‖, n ≡ r/r andDm ≡ 1
3 tr D andD′ ≡ D−Dm1

are the mean and deviatoric parts ofD, respectively.
The approximate overall plastic dissipationΠ associated

to this family of trial velocity fields is defined by

Π(D)≡ 1
4
3πb3

∫
Ω−ω

σ0deq(r)dΩ. (3)

In this expressionω denotes the void, anddeq≡
√

2
3 d : d the

von Mises equivalent strain rate corresponding to the strain
rate tensord associated to the velocity fieldv defined by Eqn.
(2). Since thetrue dissipationΠexact corresponding to the
boundary conditions (1) envisaged is defined as theinfimum
of the right-hand side of Eqn. (3) overall incompressible ve-
locity fields satisfying these conditions,Π necessarily obeys
the inequality

Π(D)≥ Πexact(D). (4)

The approximate reversibility domainC defined byΠ
consists of those overall stress tensorsΣΣΣ for which ΣΣΣ : D ≤
Π(D) for everyD, and its boundary, that is the approximate
yield surfaceS , is given by the equation

ΣΣΣ =
∂Π
∂D

(D) (5)

where the tensorD acts as a parameter. Since thetrue re-
versibility domainC exactand yield surfaceS exactare defined
similarly to C and S but with Πexact instead ofΠ, C nec-
essarily containsC exact by inequality (4), and thereforeS is
necessarily exterior toS exact.

Since the functionΠ(D) is isotropic, the tensorsD and
ΣΣΣ are diagonal in the same (orthonormal) basis and the eigen-
valuesΣ1, Σ2, Σ3 of ΣΣΣ are given by

Σi =
∂Π
∂Di

(D1,D2,D3) (i = 1,2,3) (6)



where Π is considered as a (symmetric) function of the
eigenvaluesD1, D2, D3 of D.

2.2 Successive approximations of the plastic dissipation
and yield criterion

Even for the simple velocity fields defined by Eqn. (2),
the integral in the right-hand side of Eqn. (3) cannot be cal-
culated analytically, except in the special case of axisymmet-
ric loadings (see Garajeu [6], Alveset al. [8] and Cazacuet
al. [9]). Gurson [1, 2] therefore proposed a procedure for
approximate calculation ofΠ, which is sketched hereafter.

By Eqn. (2), the local equivalent strain rate may be put,
with obvious notations, in the following form:

deq(r) =
√

2
3 [d

A(r)+dB(r)] : [dA(r)+dB(r)]

=
√

[

dA
eq(r)

]2
+
[

dB
eq(r)

]2
+ 4

3dA(r) : dB(r)

=
√

[

dA
eq(r)

]2
+
[

dB
eq(r)

]2 √
1+η(r)

where

η(r)≡
4
3dA(r) : dB(r)

[

dA
eq(r)

]2
+
[

dB
eq(r)

]2 . (7)

Equation (3) becomes, upon use of this expression ofdeq(r)

and calculation of
[

dA
eq(r)

]2
and

[

dB
eq(r)

]2
:

Π(D) =
σ0

4
3πb3

∫
Ω−ω

√

4D2
m

b6

r6 +D2
eq

√

1+η(r) dΩ

=
σ0

b3

∫ b3

a3

√

4D2
m

b6

r6 +D2
eq 〈

√

1+η(r) 〉S(r)d(r3)

(8)

where Deq ≡
√

2
3D′ : D′ is the overall von Mises equiva-

lent strain rate and the symbol〈g(r)〉S(r) denotes the average
value of an arbitrary functiong(r) over the spherical surface
S(r) of radiusr:

〈g(r)〉S(r) ≡
1

4πr2

∫
S(r)

g(r)dS. (9)

Now

∣

∣

∣

∣

2
3

dA(r) : dB(r)

∣

∣

∣

∣

≤ dA
eq(r)d

B
eq(r)≤

1
2

(

[

dA
eq(r)

]2
+
[

dB
eq(r)

]2
)

(10)
where Eqn. (10)1 is Cauchy-Schwartz’s inequality and Eqn.

(10)2 results from the fact that
[

dA
eq(r)−dB

eq(r)
]2 ≥ 0. It then

follows from the definition (7) ofη that

−1≤ η(r)≤ 1 for everyr. (11)

This suggests, consideringη as a “small” (!) parameter, to
replace the expression

√

1+η(r) in the integral of Eqn. (8)

by T(n)(η(r)), whereT(n)(η) denotes then-th order Taylor
expansion of

√
1+η around the pointη = 0. This leads to

introducing a family of approximationsΠ(n) of Π defined by

Π(n)(D)≡ σ0

b3

∫ b3

a3

√

4D2
m

b6

r6 +D2
eq 〈T(n)(η(r))〉S(r) d(r3).

(12)
Gurson in fact calculated onlyΠ(1). At the first order,

〈T(1)(η(r))〉S(r) = 〈1+ 1
2η(r)〉S(r) = 1, and calculation of the

integral overr3 yields

Π(1)(D)≡ ΠGurson(D)

= σ0



2Dmargsinh

(

2Dmx
Deq

)

−

√

4D2
mx2+D2

eq

x





1/ f

x=1
(13)

where[g(x)]x2
x=x1 ≡ g(x2)−g(x1). It then follows from Eqn.

(6) and the fact thatΠ(1) depends only onDm andDeq that
the corresponding approximate yield surfaceS (1) ≡ S Gurson

is given by

Σi =
∂Π(1)

∂Dm

∂Dm

∂Di
+

∂Π(1)

∂Deq

∂Deq

∂Di
=

1
3

∂Π(1)

∂Dm
+

2
3

D′
i

Deq

∂Π(1)

∂Deq
(14)

whereD′
i ≡Di −Dm denotes thei-th eigenvalue ofD′. Identi-

fying the mean and deviatoric partsΣm≡ 1
3 trΣΣΣ, ΣΣΣ′ ≡ΣΣΣ−Σm1

of the tensorΣΣΣ in this expression, calculating the overall

von Mises equivalent stressΣeq≡
√

3
2ΣΣΣ′ : ΣΣΣ′ from there, and

eliminating the ratioDm/Deq between the expressions ofΣm

andΣeq found, one finally gets Gurson’s classical homoge-
nized criterion [1,2]:

Σ2
eq

σ2
0

+2 f cosh

(

3
2

Σm

σ0

)

−1− f 2 = 0. (15)

3 The second- and third-order approximations
3.1 General results

Before calculating the second- and third-order approx-
imations ofΠ, it is instructive to study general properties
of the sequence of successive approximationsΠ(1), Π(2), ...,
Π(n), ... .

It is shown in Appendix A that for everyη in the interval
[−1,1] and everyn,

T(2n−1)(η)≥ T(2n+1)(η) and T(2n−1)(η)≥ T(2n)(η), (16)

and it immediately follows that

Π(2n−1)(D)≥ Π(2n+1)(D) and Π(2n−1)(D)≥ Π(2n)(D).
(17)

Furthermore, it is also shown in Appendix B that the se-
quence of approximationsΠ(n)(D) converges towardΠ(D)



for everyD. (This property, although quite appealing, should
probably not be just taken for granted, since Gurson’s ap-
proximation procedure involves an expansion in powers ofη
which is not truly a “small” parameter, as is clear from Eqn.
(11)!).

These properties bear the following consequences upon
the sequences of approximate reversibility domainsC (n) and
yield surfacesS (n) corresponding to the sequence of approx-
imationsΠ(n):

1. The sequences ofoddreversibility domainsC (2n+1) and
yield surfacesS (2n+1) are “decreasing”, in the sense
thatC (2n+1) is contained inC (2n−1) andS (2n+1) interior
to S (2n−1), and converge towardC andS .

2. The sequences ofevenreversibility domainsC (2n) and
yield surfacesS (2n) also converge towardC andS , C (2n)

being contained inC (2n−1) andS (2n) interior to S (2n−1).

(Note that in contrast, nothing can be said about the compar-
ison ofC (2n) andC (2n+1), S (2n) andS (2n+1), nor about that
of C (2n) andC , S (2n) andS ).

Point 1 here, combined with the properties mentioned in
Subsection 2.1, implies in particular that the domainsC and
C

exactare contained inC (1), and the surfacesS andS exact in-
terior toS (1). These results can also be established in a some-
what more direct way using Cauchy-Schwartz’s inequality,
see Benzerga and Leblond [11].

3.2 Explicit second-order approximation
Although Gurson’s work [1,2] has received considerable

attention, no one seems to have calculated the second-order
approximationΠ(2).1 Such a calculation is however perfectly
feasible, as will now be seen.

The values of the strain ratesdA, dB corresponding to the
velocity fieldsvA, vB are easily deduced from the definition
(2) of these fields:

dA(r) = Dm
b3

r3 (1−3n⊗n) ; dB(r) = D′. (18)

It follows that

dA(r) : dB(r) = −3Dm
b3

r3 n.D′.n

= −3Dm
b3

r3

(

D′
1n2

1+D′
2n2

2+D′
3n2

3

)

where the vectorn is expressed in the principal basis ofD,
which in turns implies, by the definition (7) ofη, that

η(r) =− 4Dmb3/r3

4D2
mb6/r6+D2

eq

(

D′
1n2

1+D′
2n2

2+D′
3n

2
3

)

. (19)

1In his thesis [1], Gurson proposed an explicitapproximationof the yield
surfaceS 2, but it was not clear whether the corresponding reversibility do-
main was even convex for all possible values of the parameters, and he dis-
carded the proposal in his final paper [2].

One then sees that the calculation of the average
value〈T(2)(η(r))〉S(r) = 〈1+ 1

2η(r)− 1
8[η(r)]

2〉S(r) just re-
quires that of average values of the type〈n2

i 〉S(r), 〈n4
i 〉S(r),

〈n2
i n2

j 〉S(r). The first two calculations are easily performed
by noting that as a consequence of symmetries,〈n2

1〉S(r) =

〈n2
2〉S(r) = 〈n2

3〉S(r), 〈n4
1〉S(r) = 〈n4

2〉S(r) = 〈n4
3〉S(r), and evalu-

ating〈n2
3〉S(r) and〈n4

3〉S(r) using spherical coordinates. Also,
the third calculation is reduced to the previous ones by noting
that 〈n2

1n2
2〉S(r) =

1
2〈n2

1(n
2
2 + n2

3)〉S(r) =
1
2〈n2

1(1− n2
1)〉S(r) =

1
2〈n2

1〉S(r)− 1
2〈n4

1〉S(r).

The final result for〈T(2)(η(r))〉S(r) reads

〈T(2)(η(r))〉S(r) = 1− 2
5

D2
mD2

eqb6/r6

(

4D2
mb6/r6+D2

eq

)2 . (20)

Inserting this result into the definition (12) ofΠ(2), one finds
that the integral is again calculable analytically; the final re-
sult reads

Π(2)(D) = Π(1)(D)− 2
5

σ0





D2
mx

√

4D2
mx2+D2

eq





1/ f

x=1

(21)

whereΠ(1) is given by Eqn. (13).
Thus the approximate dissipationΠ(2), just like Π(1),

depends only onDm andDeq, so that the corresponding yield
surfaceS (2) is given by a formula similar to (14):

Σi =
1
3

∂Π(2)

∂Dm
+

2
3

D′
i

Deq

∂Π(2)

∂Deq
. (22)

3.3 Explicit third-order approximation
The calculation ofΠ(3) requires that of the average value

〈T(3)(η(r))〉S(r) = 〈1+ 1
2η(r)− 1

8[η(r)]
2+ 1

16[η(r)]
3〉S(r) and

therefore, by Eqn. (19), of extra average values of the type
〈n6

i 〉S(r), 〈n4
i n2

j 〉S(r), 〈n2
i n2

j n
2
k〉S(r). Such calculations are feasi-

ble using the same methods as before. Again, the integration
overr3 can be done analytically and the final result forΠ(3)

reads

Π(3)(D) = Π(2)(D)+
8

315
σ0

[

DmD3
III

(

4D2
mx2+D2

eq

)3/2

]1/ f

x=1
(23)

where

DIII ≡
(

D′3
1 +D′3

2 +D′3
3

)1/3
=
[

tr
(

D′3)]1/3
(24)

andΠ(2) is given by Eqn. (21).
The major novelty here is thatΠ(3), unlike Π(1) and

Π(2), does not depend only on Dm and Deq but also on the
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Fig. 1. Comparison of approximate criteria ( f = 0.01)

third invariant DIII of D. (The effect may however be antic-
ipated to be small owing to the smallness of the coefficient

8
315 in Eqn. (23)).

The third-order yield surfaceS (3) is given by a formula
analogous to those, (14) and (22), pertaining to the first-
and second-order yield surfacesS (1), S (2), but slightly more
complex because of the extra dependence ofΠ(3) uponDIII .

4 Comparison of the successive approximations of the
criterion
Figure 1 shows the first-, second- and third-order

approximate yield loci S (1), S (2), S (3) in a plane
(Σm/σ0,Σeq/σ0) for a typical porosity of 10−2. (The yield
locusS , corresponding to the plastic dissipationΠ defined by
Eqn. (3) withv(r) given by Eqn. (2) but without any further
approximation, is not represented because it would be virtu-
ally indistinguishable fromS (3)). Because of the dependence
of Π(3) uponDIII , the third-order yield criterion has an extra
dependence upon the third invariant of the overall stress ten-
sor, or equivalently upon the Lode angle; henceS (3) is repre-
sented for the two extreme values of this angle, 0◦ (axisym-
metric load with major axial stress,Σ1 ≥ Σ2 = Σ3) and 60◦

(axisymmetric load with major lateral stress,Σ1 = Σ2 ≥ Σ3).
The following observations are in order:

1. All yield surfaces are very close to each other.
2. The distance between the second- and third-order sur-

facesS (2), S (3) is even smaller than that between the
first- and second-order surfacesS (1), S (2).

3. The surfacesS (2) andS (3) are both interior toS (1), as
predicted.

4. The surfaceS (3) is neither interior nor exterior toS (2).

It thus appears that with regard to the yield criterion,
Gurson’s first-order approximation is sufficient, the correc-
tions brought by higher-order ones being very small. (But
this conclusion does not hold for the porosity rate, as will be
seen in Section 5 below).

A final remark is that Gologanuet al. [12] have deter-
mined theexactyield surfaceS exact of the hollow sphere

considered through numerical minimization of the expres-
sion (3) of the plastic dissipation over a large space of trial
velocity fields. The surfaceS exact they obtained is not repre-
sented in Figure 1 because, just like the surfaceS , it would
be practically indistinguishable fromS (3).

5 Comparison of the successive approximations of the
porosity rate and the exact one
The object of study of this Section is the “normalized

porosity rate”ξ defined by

ξ ≡ 1
3(1− f )

d f
dEeq

(25)

where Eeq ≡ ∫ t
0 Deq(τ)dτ denotes the overall cumulated

equivalent strain. This quantity is connected to the overall
strain rate (and thus to the normal to the yield surface) since

ξ =
ḟ

3(1− f )Deq
=

Dm

Deq
(26)

where use has been made of the equationḟ = 3(1− f )Dm

resulting from matrix incompressibility.

5.1 Approximations of the porosity rate
At ordern= 1 or 2, the plastic dissipation depends only

onDm andDeq, and it results from Eqns. (14) or (22) that

Σm =
σ0

3
∂Π(n)

∂Dm
; Σeq= σ0

∂Π(n)

∂Deq
,

which implies that the triaxialityT ≡ Σm/Σeq is connected to
Dm andDeq through the relation

T =
1
3

∂Π(n)/∂Dm

∂Π(n)/∂Deq
. (27)

Calculation of the derivatives ofΠ(1) andΠ(2) using Eqns.
(13) and (21) then yields the following relation connecting
the triaxiality and the normalized porosity rate:

1. at order 1 (Gurson’s prediction):

T =
2
3

[ argsinh(2ξx) ]1/ f
x=1

[

− 1
x

√

4ξ2x2+1
]1/ f

x=1

; (28)

2. at order 2:

T =
2
3

[

argsinh(2ξx)− 2
5

ξx(2ξ2x2+1)
(4ξ2x2+1)3/2

]1/ f

x=1
[

− 1
x

√

4ξ2x2+1+ 2
5

ξ2x
(4ξ2x2+1)3/2

]1/ f

x=1

. (29)
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mation and exact (numerical) values ( f = 0.01)

At order 3, the relation between the triaxiality and the
normalized porosity rate may be obtained in a similar way,
but is more complex and depends on the third invariant ofΣΣΣ
because of the dependence ofΠ(3) uponDIII .

5.2 Comparison with the exact porosity rate
An important preliminary remark is that since all numer-

ical results given below are for spherical cavities, they can
only provide, in problems of ductile rupture involving im-
portant changes of the void shape, theinitial porosity rate.2

Figure 2 shows, for a fixed porosityf = 10−2, the
porosity rate predicted by the second-order approximation
(Eqn. (29)) normalized by Gurson’s prediction (Eqn. (28)),
ξ/ξGurson ≡ ḟ / ḟ Gurson, as a function of the angleθ ≡
arctanT. The figure also shows the predictions of the third-
order approximation and, as a reference, the supposedlyex-
act values of ḟ/ ḟ Gurson deduced from some finite element
limit-analyses of the hollow sphere considered, subjectedto
boundary conditions of type (1). (The details of the method
used are presented in [13,14] and are not repeated here). Ex-
cept for those corresponding to the second-order approxima-
tion, the values oḟf / ḟ Gursonare sensitive to the value of the
Lode angle. Therefore three types of loading corresponding
to Lode angles of 0◦ (axisymmetric load with major axial
stress), 30◦ (pure shear with superposed hydrostatic tension)
and 60◦ (axisymmetric load with major lateral stress) have
been envisaged for the numerical values ofḟ/ ḟ Gurson. For
those corresponding to the third-order approximation Lode
angles of 0◦ and 60◦ have been considered sufficient to illus-
trate the results.

Several points are noteworthy here:

1. The porosity rate resulting from the second-order ap-
proximation differs significantly from that predicted by
Gurson’s first-order approximation, the ratio ḟ/ ḟ Gurson

amounting to about 1.25 for low triaxialities (values of
θ close to 0◦) versus about 0.8 for high ones (values of
θ close to 90◦).

2This of course assumes that the voids are initially spherical.

2. The predictions of the third-order approximation differ
very little from those of the second-order one.

3. The reputedly exact numerical results confirm the
second-order approximation’s predictions that the ratio
ḟ/ ḟ Gurson is a decreasing function of the triaxiality, this
function being larger than unity for lowT-values and
lower than unity for large ones.

4. For small triaxialities, the numerical results exhibit ano-
table influence of Lode’s angle upon the porosity rate,
absent from the second-order predictions.3 (The effect
has been known for some time; see e.g. Gologanu [15]).
The third-order approximation does incorporates such
an influence, but unfortunately largely underestimates it.

6 Discussion
The results just presented have evidenced a lack of ac-

curacy of the porosity rate predicted by Gurson’s model. But
this model is generally used in a slightly modified form,
commonly referred to as theGTN model[16]4, in which the
porosity is heuristically multiplied, in the expression ofthe
yield function, by a parameterq slightly larger than unity
(Tvergaard [17]). The question naturally arises of whetheror
not the deficiency just evidenced may be remedied by simply
introducing such a parameter.

Figure 3 compares, for porosities of 10−3 and 10−2, the
values of the ratioḟ/ ḟ Gurson predicted by the second-order
approximation and the GTN model, for aq-value of 1.25 en-
suring coincidence of these values at low triaxialities. Itis
clear that the GTN model, once “calibrated” for such triaxial-
ities, errs for larger ones by overestimatingḟ / ḟ Gurson. (Note
that the effect ofq is not a trivial one, because this parameter
does not only enter the expression of the porosity rateexplic-
itly, but alsoimplicitly through the values of the macroscopic
equivalent and mean stresses, which depend upon it since
they are tied through theq-dependent criterion).

In problems ofquasistaticductile rupture, however, the
triaxiality is known to never exceed a value of about 3 in
practice. Such triaxialities correspond to values of the angle
θ not exceeding 70◦, for which Fig. 3 makes it clear that
use of the GTN model with aq-value of about 1.15 would
provide an acceptable representation, on the average, of the
porosity rates predicted by the second-order approximation.
This means that the GTN model may safely be used for such
problems.

For problems ofdynamicductile rupture, the situation is
different since extremely large triaxialities may be encoun-
tered, and it is clear from Fig. 3 that no single value ofq
can match the values oḟf / ḟ Gursonpredicted by the second-
order approximation over the full range of triaxialities. Of

3Because of this influence of Lode’s angle, the numerical porosity rate
does not vanish for an exactly zero triaxiality, but for a small one, the sign
of which depends upon the Lode angle; since for Gurson’s model this rate
vanishes for an exactly zero triaxiality, this implies thatfor the numerical
results, the ratioḟ/ ḟ Gursonbehaves oddly for very small triaxialities. This
behavior is not represented in Figure 2 because it is of little interest, botḣf
and ḟ Gursonbeing very small anyway under such conditions.

4GTN: Gurson-Tvergaard-Needleman.
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course, the problem could be solved by adopting the sug-
gestion made by Sovik and Thaulow [18] and Pardoen and
Hutchinson [19] of consideringq as a function of the triaxi-
ality; but doing so would be dangerous since the introduction
of heuristic load-dependent parameters into the yield func-
tion may destroy the convexity of the reversibility domain.
It therefore seems preferable, for such problems, to use the
“second-order model” defined by the expression (21) ofΠ(2)

rather than the GTN model.
Two objections to this proposal may be raised. First,

Gurson’s homogenization procedure did not include micro-
inertia effects; therefore his model, and its improved variants
such as the second-order model, become inadequate in the
presence of such effects, and thus are inapplicable anyway
to problems of dynamic ductile rupture. The answer to this
objection lies in a paper of Molinari and Mercier [20], who
proposed a convincing, though approximate, method of ex-
tension of overall yield criteria for plastic porous materials
subjected to quasistatic loads to fully dynamic ones. This
method may be applied without difficulty to the second-order
model discussed above, resulting in a model incorporating
both second-order corrections to Gurson’s modelandmicro-
inertia effects.

A second, natural objection to the possible use of the
second-order model is that it is formally more complex than
Gurson’s model, since the expression (21) of the relevant
plastic dissipation no longer permits to eliminate the pa-
rameterD in the expression (22) of the principal stresses.
The answer to that objection is that the slightly greater com-
plexity of the second-order model just makes it somewhat
less elegant, but no less convenient for its implementation
into some finite element programme; indeed yield criteria
in parametrized form, such as (22), do not raise any special
problems in this context.

A final remark must be made about the adequacy of the
second-order model itself. Although this model brings a defi-
nite improvement to that of Gurson, it is still imperfect, since
it does not predict any influence of the Lode angle upon the
porosity rate, in clear contrast to the results of numericalunit

cell calculations. In order to incorporate this effect intothe
GTN model, Gologanu [15] suggested to adopt aq-value de-
pending on the Lode angle. The same proposal could be
made to improve the second-order model; but again doing
so would be dangerous since the convexity of the reversibil-
ity domain would no longer be guaranteed.

What is in question here isnot the approximation re-
sulting from the second-order Taylor expansion of the term
√

1+η(r) in Gurson’s expression of the plastic dissipation,
since pursuing the expansion to the third order does not suf-
fice to match the numerical results (although it does intro-
duces a slight influence of the Lode angle). Clearly, the prob-
lem lies in the inaccuracy of Gurson’s velocity fields defined
by Eqn. (2) themselves. Matching the numerical values of
the porosity rate would require using more realistic and com-
plex fields. An interesting first step in this direction has been
made by Monchietet al. [7], who used Eshelby-like veloc-
ity fields. (Again, this work parallels, for a hollow sphere,
Huang’s [10] improvement of Rice and Tracey’s [5] limit-
analysis of an infinite medium containing a spherical hole).

7 Summary and conclusion
The aim of this paper was to revisit Gurson’s [1,2] clas-

sical limit-analysis of a hollow plastic sphere subjected to
conditions of homogeneous boundary strain rate, with spe-
cial emphasis on successive approximations arising from a
Taylor expansion of one term arising in the expression of the
overall plastic dissipation.

The second-order approximation has been shown to
bring a small correction to Gurson’s first-order one for the
overall yield criterion, but a significant one for the predicted
porosity rate. For problems ofquasistaticductile rupture for
which the triaxiality never becomes very large, this correc-
tion may be considered as approximately constant, and in-
corporated within the variant of Gurson’s model known as
the GTN model by ascribing a suitable value to Tvergaard’s
q-parameter. For problems ofdynamicductile rupture for
which the triaxiality may take arbitrary values, such a simple
remedy becomes impossible, and the best solution seems to
use the second-order model (suitably extended to incorporate
micro-inertia effects) instead of that of Gurson.

The third-order approximation appears to be of little
practical interest in that it has been found to bring only very
small corrections to the second-order one, with respect to
both the overall criterion and the predicted porosity rate.
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Appendix A: Proof of inequalities (16)
Consider the functiong(η) ≡ √

1+η. The n-th order
Taylor expansionT(n)(η) of this function around the point
η = 0 is defined by

T(n)(η)≡ 1+
n

∑
k=1

g(k)(0)
k!

ηk

where, obviously,

g(k)(0) =
1
2

(

1
2
−1

)(

1
2
−2

)

...

(

1
2
− (k−1)

)

.

It follows that

T(2n+1)(η)−T(2n−1)(η) =
g(2n)(0)
(2n)!

η2n+
g(2n+1)(0)
(2n+1)!

η2n+1

=
g(2n)(0)
(2n)!

η2n

(

1+
1
2 −2n

2n+1
η

)

.

Now g(2n)(0)< 0 since there are 2n−1 negative terms in the

product defining this derivative,η2n ≥ 0 and 1+
1
2−2n
2n+1 η ≥ 0

since−1<
1
2−2n
2n+1 < 0 and−1≤ η ≤ 1 (Eqn. (11)). Hence

T(2n+1)(η)− T(2n−1)(η) is non-positive, as stated by Eqn.
(16)1.

The proof of Eqn. (16)2 is even simpler since

T(2n)(η)−T(2n−1)(η) =
g(2n)(0)
(2n)!

η2n

whereg(2n)(0) has already been noted to be negative.

Appendix B: Convergence of the sequence of approxima-
tions Π(n)

Step 1: study of the convergence of the Taylor expan-
sions T(n)(η). The complex functionz 7→

√
1+ z is analytic

on the unit open disk{z∈ C, |z|< 1}. By a well-known the-
orem of complex analysis, this implies that for everyz in this
disk,

√
1+ z is the sum of its infinite Taylor series around the



pointz= 0; in particular, on the real line,

lim
n→+∞

T(n)(η) =
√

1+η if −1< η < 1. (30)

Step 2: study of the possibility thatη(r) may take
the values±1. Assume thatη(r) = ±1. This is possi-
ble only if inequalities (10)1 and (10)2 are in fact equali-
ties, that is if the tensorsdA(r) anddB(r) are collinear, and
dA

eq(r) = dB
eq(r); that is, if dA(r) = ±dB(r). Then, since

dA(r) = Dm
b3

r3 (1−3n⊗n) (see Eqn. (18)1) has a double
eigenvalue, the same must be true ofdB(r) = D′ (see Eqn.
(18)2); that is, the tensorD must be axisymmetric. LetOx3

denote the axis passing through the centerO of the sphereΩ
and parallel to the principal direction ofD corresponding to
its other, simple eigenvalue. The equalitydA(r) = ±dB(r)
implies that the principal directions of these tensors corre-
sponding to their simple eigenvalues must coincide; that is,
the vectorn must be parallel to the axisOx3. But since
n = r/r, this can occur only for pointsr lying on this axis.
Furthermore, even on this axis, the equalitydA(r) =±dB(r)
may occur only for one specific value ofr, that is at two
points, since the normdA

eq(r) of the first tensor varies propor-
tionally tor−3 whereas the normdB

eq(r) of the second is inde-
pendent ofr. The conclusion is that the equalityη(r) = ±1
may occur, depending on the values ofa, b and D, either
nowhere in the domainΩ−ω, or at two points of this do-
main only.

Step 3: combination of Steps 1 and 2. The two possible
points whereη(r) may take the values±1 may be excluded
from the domain of integrationΩ−ω since they form a set of
measure zero. Then, by Eqn. (30), for everyr in this domain,
T(n)(η(r)) goes to

√

1+η(r) whenn goes to infinity.
Step 4: study of the sign of T(n)(η) for −1< η < 1.

1. If η ≤ 0, consider the difference

T(2n+1)(η)−T(2n)(η) =
g(2n+1)(0)
(2n+1)!

η2n+1

where the notations of Appendix A are used again; the
derivativeg(2n+1)(0) is positive since there are 2n neg-
ative terms in the product defining it, andη2n+1 ≤ 0.
HenceT(2n+1)(η)−T(2n)(η)≤ 0. Since, by Eqn. (16)2,
T(2n)(η)− T(2n−1)(η) ≤ 0 also, the sequence of Tay-
lor approximationsT(n)(η) is decreasing. Since it con-
verges toward the limit

√
1+η which is positive, all the

T(n)(η) are necessarily positive.
2. If η > 0, consider the difference

T(n)(η)−T(n)(−η) = ∑
2k+1≤n

2
g(2k+1)(0)
(2k+1)!

η2k+1.

Each term in this sum is positive, sinceg(2k+1)(0) > 0
andη2k+1 > 0; henceT(n)(η)− T(n)(−η) > 0. Since
T(n)(−η) is positive by what precedes,T(n)(η) is also
necessarily positive.

The conclusion is thatT(n)(η) is positive in all cases for
−1< η < 1.

Step 5: conclusion. Combining Eqn. (16) and the result
of Step 4, one concludes that 0< T(n)(η(r)) ≤ T(1)(η(r))
and therefore|T(n)(η(r))| ≤ T(1)(η(r)) within the domain
of integration; and the integralΠ(1)(D) involving T(1)(η(r))
converges, its value being given by Gurson’s result (13).
Combination of these properties and the result of Step 3 per-
mits to apply Lebesgue’s dominated convergence theorem,
and conclude that the sequence of approximationsΠ(n)(D)
converges towardΠ(D) for everyD.


