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This paper revisits Gurson’s [1,2] classical limit-analg®f n  Unit vector collinear to the position-vector.
a hollow sphere made of some ideal-plastic von Mises m@a- Position-vector.
terial and subjected to conditions of homogeneous bound- Norm ofr.
ary strain rate (Mandel [3], Hill [4]). Special emphasis is S(r) Spherical surface of radius
placed on successive approximations of the overall dissipa Approximate yield surface.
tion, based on a Taylor expansion of one term appearing™ n-th order approximation af .
in the integral defining it. Gurson considered only the aps®@°t Exact yield surface.
proximation based on the first-order expansion, leading © Triaxiality.
his well-known homogenized criterion; higher-order appro T("(n) n-th order Taylor expansion afT+1.
imations are considered here. The most important resultis Trial velocity field.
that the correction brought by the second-order approxima# Gurson’s first trial velocity field.
tion to the first-order one is significant for the porosityeaif vB Gurson’s second trial velocity field.
not for the overall yield criterion. This bears notable cens £ Normalized porosity rate.
guences upon the prediction of ductile damage under certain “Small” parameter (see text).
conditions. M Approximate overall plastic dissipation.
N®  n-th order approximation dfl.
Keywords: Gurson’s limit-analysis, hollow sphere, Taylornexact Exact overall plastic dissipation.
expansion, overall yield criterion, predicted porosityga g, Yield stress in simple tension.
Z Overall stress tensor.
2; i-th eigenvalue ok.

Nomenclature >n Mean part oiz.

a Internal radius of the hollow sphere. %’ Deviatoric part ofz.

b External radius of the hollow sphere. Zeq Overall von Mises equivalent stress.

¢ Approximate domain of reversibility. « Spherical void.

¢ n-th order approximation af . Q Elementary cell (hollow sphere) considered.
c®@t  Exact domain of reversibility. 0Q External boundary of.

d Local strain rate tensor.
deq Local von Mises equivalent strain rate.

D Overall strain rate tensor. 1 Introduction

D; i-th eigenvalue oD. The most classical model of ductile rupture is due to
Dy Mean part oD. Gurson [1, 2]. This model was based on an approximate
D’ Deviatoric part oD. limit-analysis of a hollow sphere (typical “unit cell” in a
Deq Overall von Mises equivalent strain rate. porous material) made of a rigid-ideal plastic materialyebe
Dy Third invariant ofD. ing the von Mises criterion, and subjected to conditions of
Eeq Overall cumulated equivalent strain. homogeneous boundary strain rate (Mandel [3], Hill [4]).

f Porosity. This limit-analysis stood as an extension of the earlier one



of Rice and Tracey [5] of an infinite medium containing @°/b%, made of some rigid-ideal plastic material obeying von
spherical hole. Mises'’s criterion with yield stressg in simple tension, and
While the body of literature devoted &pplicationsof —subjected to conditions of homogeneous boundary stragn rat
Gurson’s model is enormous, comparatively few papers hafddandel [3], Hill [4]):
been devoted to thoundationsof the model themselves.
Among these, one may cite those of Garajeu [6], Monchiet v(r)=D.r for r €9Q (1)
et al.[7], Alves et al. [8] and Cazacet al.[9]. Monchietet
al. questioned the relevance of the trial velocity fields used . . -
. wherev denotes the velocity, the position-vector (originat-
by Gurson themselves (thus paralleling, for a hollow sphere .
; ) ) : ) ng from the center of the spherd),the overall strain rate
Huang’s [10] reconsideration of Rice and Tracey’s [5] anal—
. o . ) ensor andQ the external boundary @®.
ysis of an infinite medium). In contrast, Garajeu, Ale¢sl. . . . -
. ) : Since for the general loading envisaged, the limit-
and Cazacet al, accepting these fields, questioned the ac- . . .
C . aPaIyS|s cannot be performed exactly, Gurson envisagad tri
curacy of an approximation made by Gurson in order to gé . T
- . . —__. YIhcompressible velocity fields of the form
an explicit analytical expression of the overall plastissiti
pation. More specifically, these authors showed that thee int 3
gral expressing this dissipation could be calculated exfyli ) — VAN +VB(r) , VA(r) = Dmb— n, VB =D'r (2)
without any approximation in the specific case of an axisym- ’ 2’
metric loading, and compared their exact result to Gurson’s
approximate one in this special case. wherer =||r ||,n=r/r andDpy = %tr DandD’'=D-Dpl
For an arbitrary 3D loading, the integral expressing thare the mean and deviatoric partdfrespectively.
plastic dissipation is unfortunately no longer amenable to The approximate overall plastic dissipatidrassociated
such an exact analytic calculation. But Gurson [1, 2] dde this family of trial velocity fields is defined by
fined a procedure for approximate evaluation of this dissi-
pation based on a Taylor expansion of a term appearing in 1
the integral. He himself considered only the approximation no) = 43 /inoodeq(r)dQ. )
based on the first-order expansion. The main purpose of this 3
paper is to consider higher-order ones so as to examine the
importance of the corrections brought. It will also, inaide In this expressiom denotes the void, arkg= 1/§d :dthe
tally, be an occasion to revisit and complement some aspeggs Mises equivalent strain rate corresponding to therstrai
of Gurson’s treatment. rate tensod associated to the velocity fielddefined by Eqn.
The paper is organized as follows: (2). Since thetrue dissipation®*at corresponding to the
* Section 2 briefl lis th in el ‘G boundary conditions (1) envisaged is defined asrfimum
ection 2 briefly recalls the main elements of Gurson g, right-hand side of Eqgn. (3) ovall incompressible ve-

treatment and especially his definition of a sequence f?)fcity fields satisfying these conditionid,necessarily obeys

successive approximations of the overall plastic dissipﬁ]-e inequality

tion.

* In Section 3, after having established a few general exac

properties of this sequence of approximations, we pro- M(D) > N®eHD,). (4)
vide explicit analytical expressions of the second- and

third-order approximations of the plastic dissipation. The approximate reversibility domain defined byl

* Section 4 examines the corrections brought by theonsists of those overall stress tensbrior whichZ : D <
second- and third-order approximations to the first-ord€r(D) for everyD, and its boundary, that is the approximate

one, for theoverall yield criterion yield surfaces, is given by the equation

* |n Section 5, the same job is done for tpeadicted

porosity rate(connected to the normal to the yield crite- on

rion). The predictions of the successive approximations 2= D (D) ()

are also compared to reputedly exact results obtained

through numerical limit-analysis of the hollow sphere. where the tensob acts as a parameter. Since thee re-
* Finally Section 6 discusses the implications of the regersibility domainc ®@tand yield surface ®@tare defined
sults found for the prediction of ductile rupture in varisjmilarly to ¢ and.s but with M®@tinstead off1, ¢ nec-
ous conditions. essarily containg ®@tby inequality (4), and therefore is
necessarily exterior tg €@t
Since the functiori1(D) is isotropic, the tenso® and

2 Preliminaries 2 are diagonal in the same (orthonormal) basis and the eigen-
2.1 Limit-analysisof a hollow sphere values,, 3, 33 of Z are given by
Gurson [1, 2] (see also the review of Benzerga and
Leblond [11]) performed a limit-analysis of a hollow sphere an .
(L) p P 5= 2 (D.D2Ds) (i=123) ®)

Q of internal radiusa, external radiush, porosity f = aD;



where M is considered as a (symmetric) function of théy T (n(r)), whereT (™ (n) denotes the-th order Taylor
eigenvalue®1, Dy, D3 of D. expansion of,/1+ n around the poinfjy = 0. This leads to
introducing a family of approximatiorid3(™ of M defined by

2.2 Successive approximationsof the plastic dissipation
and yield criterion 0o 5 5 ) 3

Even for the simple velocity fields defined by Eqn. (2),1™ (D) = ne /a3 4Df g +D&q (TT(N(r)))sr) d(r™).
the integral in the right-hand side of Egn. (3) cannot be cal- (12)
culated analytically, except in the special case of axisgtam Gurson in fact calculated onIM . At the first order,
ric loadings (see Garajeu [6], Alves al.[8] and Cazacet (TM(n(r r))sr = (1+ In(r Nsin =1, and calculation of the
al. [9]). Gurson [1, 2] therefore proposed a procedure fqhtegral over3 yields
approximate calculation dfl, which is sketched hereafter.

By Eqgn. (2), the local equivalent strain rate may be put,

with obvious notations, in the following form: (D) = nCur=D) Ut
2521 D2
[ 2Dmx\  \/4Pmx° +Dgq
— . /2[gA Alr B = 2D h —
deqr) = /310 <r>+d (1) 07+ &°(1) = { nargsint( 5™ .
=/ [d8(N)] 7 + [dBy(r)]° + 4dA(r) : dB(r) )
_ \/[dé r (r)]2 ) where[g(xX)}2x, = 9(X2) —g(x1). It then follows from Eqn.
il (6) and the fact thal¥ depends only oDy, andDeq that
where the corresponding approximate yield surfac® = sGurson
is given by
o 3dA(r) :dB(r) .
= L]+ [oRr VoW eDy ooy 1on® 2 b on®
'” 0Dy OD;  0Deq OD; 3 0Dy 3 Deq ODeq

. . . (14)
Equation (3) becomes, upon use of this expressiaiygf ) whereD! = D; — Dy, denotes théeth eigenvalue ob’. Identi-

: 2 2 S
and calculation ofdsy(r)]” and [dgy(r)]™: fying the mean and deviatoric palis=ItrL, &'=3-5,1
of the tensorZ in this expression, calculating the overall
, von Mises equivalent stre@sq= 4/ gz’ : 2’ from there, and
n(D) = 4T|b3/— 4Dm r6 +D qV 14+n(r) dQ eliminating the ratidm/Deq between the expressions o
andZeq found, one finally gets Gurson’s classical homoge-
=5 /a3 4D%nr—6 +D%q (V14+n(r) )sn d(r®)  nized criterion [1,2]:

(8)
= ./2D' "D i i A 52
where D.eq = /5D : D’ is the overall von Mises equiva ezq+2fcosh<§é> 1 f2_p (15)
lent strain rate and the symb@(r))s) denotes the average o 2 0o

value of an arbitrary functiog(r) over the spherical surface

S(r) of radiusr:
3 The second- and third-order approximations

1 3.1 General results
a(r))sm = W/ g(r)ds 9) Before calculating the second- and third-order approx-
S0 imations of1, it is instructive to study general properties
of the sequence of successive approximatiofs, 1
Now nm, ...

L Itis shown in Appendix A that for eveny in the interval
2 2\ [—
< doyn)dy(r) < 5 ([dan)]” + [dByr)]?) -1, and evenn,
(10)
where Eqn. (10)is Cauchy-Schwartz's inequality and Eqn. T 2(n) > T () and T Y (n) > T (n), (16)
(10, results from the fact thatlgy(r ) — dgy(r)] > 0. Itthen
follows from the definition (7) Oh that and |t |mmed|ate|y fOIIOWS that

‘:—idA(r) :dB(r)

—1<n(r)<1 foreveryr. (11) n@-1(p) >N+ (p) and N@-Y(D) >N (D).
17)
This suggests, considerimgas a “small” () parameter, to Furthermore, it is also shown in Appendix B that the se-
replace the expressiog1+n(r) in the integral of Eqn. (8) quence of approximatiorid(™ (D) converges towardl(D)



for everyD. (This property, although quite appealing, should One then sees that the calculation of the average
probably not be just taken for granted, since Gurson’s apgalue (T (n(r r))sr = (1+ n(r) - [r]( ))? )s(r) just re-
proximation procedure involves an expansion in powers ofquires that of average values of the typé S(r >S<r)’
which is not truly a “small” parameter, as is clear from Eqn<n2n2 )sr)- The first two calculations are easily performed

Dy noting that as a consequence of symmetria =
These properties bear the following consequences upz))é g S sequ Sy %'>v8(r
n3 S(r)s <n1>s(r = <n2>s(r) = <n3>s(r and evalu-

the sequences of approximate reversibility domaiff$ and ] ] .
using spherical coordinates. Also,

yield surfaces (" corresponding to the sequence of appro,2iing <n3>5(r) and(n3)s)
imationsr (M- the third calculation is reduced to the prewous ones byngoti

that (n?n3 =Ln2(ng+n =in2(1- =
1. The sequences ofidreversibility domaing ("1 and l<n2>< ' 2_>S_1<r<)n4> 2+ M8)se) = 3L~ m))sin =
yield surfacess @) are “decreasing’, in the sense 2 - i” G 2| ! S“I)'f @
that ¢ @1 is contained inc @Y ands ?"t1) interior The final result for ™= (n(r)))s) reads
to.s (21 and converge toward and.s.
2. The sequences efenreversibility domainsc 2 and 2 DZDZ,0b/r8

ield surfaces (2" also converge toward ands, ¢ (2" (TAM))sn =1-2 . (20)
Y g S0 5 (4D2,b/r6 4 DZ,)°

being contained i @1 and.s (2" interior to s ("1,
(Note that in contrast, nothing can be said about the compar-
|son ofC(Zn andc (2n+1)  5(2M ands (21 nor about that Inserting this result into the definition (12) B2, one finds
of ¢® andc, s ands). that the integral is again calculable analytically; thelfiea
Point 1 here, combined with the properties mentioned Bt reads
Subsection 2.1, implies in particular that the domairsnd

c®tare contained i (Y, and the surfaces and.s ®tin- ) /f
teriortos'>. These results can also be establlsh,eq ina some @(p) = N (D) 200 DX 21)
what more direct way using Cauchy-Schwartz’s inequality, 3 JAD2x2 +- D2, .

X=

see Benzerga and Leblond [11].

3.2 Explicit second-order approximation whereln is given by Eqn. (13).

Although Gurson’s work [1,2] has received considerable ~ Thus the approximate dissipatidh®, just like M,
attention, no one seems to have calculated the second- o,@@pends only 0D, andDeg, SO that the corresponding y|9|d
approximatiorrl( 2) 1 such a calculation is however perfectlysurfaces (?) is given by a formula similar to (14):
feasible, as will now be seen.

The values of the strain ratd$, d® corresponding to the 19n1@ 2 D! an®

velocity fieldsvA, vB are easily deduced from the definition Ti== . (22)
(2) of these fields: 3 0D 3 Deq 0Dgq
b3 5 ) 3.3 Explicit third- order approximation
d*(r) = Dm— 3 (1-3nen) ; d*(r)=D"  (18) The calculation of1® requwes that of the average value

(TO(M(r)))sr) = (1+3n(r) =g+ 55N ()% s and
therefore, by Eqn. (19), of extra average values of the type

It follows that { 6)S<r_) (') ), (NPn?ng) ). Such calculations are feasi-
A 5 b3 . ble using the same methods as before. Again, the integration
d*(r) :d%(r) = —3Dm—5 n.D".n overr3 can be done analytically and the final result Fdf)

b3 reads
= ~3Dm 5 (DinZ + D5n3 + D5ng)

where the vecton is expressed in the principal basis Df n® (D) =n? (D)
which in turns implies, by the definition (7) af, that a

1t
DmD||| ]
(4D2x2+D2y) V2]

*315%
“(23)
4Dmbs3/r3 where
nir) = ~ R0 /15 D (Din%+D5n3 +D5nd) . (19)

Du = (O + D5 +D5) = [r 09)]7°  (24)

1in his thesis [1], Gurson proposed an explagitproximatiorof the yield 2) i ni
surfaces?, but it was not clear whether the corresponding reversitilo- andrn'“is glyen by Eqn. (21)'_ @3) . 1)
main was even convex for all possible values of the paramesaxd he dis- The major novelty here is thdl'®, unlike M%) and
carded the proposal in his final paper [2]. n®, does not depend only onsPand Deq but also on the



considered through numerical minimization of the expres-
sion (3) of the plastic dissipation over a large space of tria
velocity fields. The surface®@they obtained is not repre-
sented in Figure 1 because, just like the surfacé would

be practically indistinguishable from(3.

5 Comparison of the successive approximations of the

| P S Y \ porosity rate and the exact one
The object of study of this Section is the “normalized
02/{ —— 1st order (G i o i

2ot order (Gurson) porosity rate’¢ defined by

0111 - - - 3rd order Lode=0 deg.

. - - -3rd ‘order Lod§=60 deg. ‘ ‘ ‘ ‘ 1 d f

0 05 1 z15 /00 2 25 3 E = (25)

m 3(1—f)dEeq

Fig. 1. Comparison of approximate criteria (f = 0.01)

where Eeq = [ Deq(T)dT denotes the overall cumulated
equivalent strain. This quantity is connected to the overal

third invariant Dy, of D. (The effect may however be an.t'.c_syirain rate (and thus to the normal to the yield surface)esinc
ipated to be small owing to the smallness of the coefficien

S in Eqn. (23)).

The third-order yield surface(® is given by a formula § = f — Dm (26)
analogous to those, (14) and (22), pertaining to the first- 3(1—f)Deq Deq
and second-order yield surfaces, 5@, but slightly more
complex because of the extra dependend@@f uponDyii.  \where use has been made of the equaficn3(1— f)Dm

resulting from matrix incompressibility.

4 Comparison of the successive approximations of the . . .
criterﬁon > PP 5.1 Approximationsof the porosity rate

. . i - At ordern=1 or 2, the plastic dissipation depends only
Flg_ure 1 S.hOWS the (1;|)rst ’ (Secon(g) gnd third ordeorn Dm andDeg, and it results from Eqns. (14) or (22) that
approximate yield locis'Y, s9, s in a plane

(2m/00,2eq/ 00) for a typical porosity of 102. (The yield
locuss, corresponding to the plastic dissipatidrdefined by = — :
Eqn. (3) withv(r) given by Eqgn. (2) but without any further 3 0Dm
approximation, is not represented because it would be-virtu, . . L .
ally indistinguishable frors (®)). Because of the dependenc%hICh implies that the tr|aX|a_I|t9r = Zm/ Zeqis connected to
of M3 uponDy;, the third-order yield criterion has an extra~™ andDegq through the relation

dependence upon the third invariant of the overall strass te

sor, or equivalently upon the Lode angle; hesé® is repre- 1 on™ /oDy,

sented for the two extreme values of this angfe(axisym- T= 3 W/aDeq' (27)
metric load with major axial stres&; > >, = 23) and 60
(axisymmetric load with major lateral stre&g,= >, > Z3).
The following observations are in order: Calculation of the derivatives dii) andM(@ using Eqns.
(13) and (21) then yields the following relation connecting
1. Allyield surfaces are very close to each other the triaxiality and the normalized porosity rate:
2. The distance between the second- and third-order sur- , C
facess(®, s is even smaller than that between the 1+ 3t 0rder 1 (Gurson’s prediction):
first- and second-order surfaced), s (2.
3. The surfaces® ands® are both interior tas V), as 2 [argsinh(2&x) 12
predicted. T= 3 1/t (28)
4. The surface 3 is neither interior nor exterior to(?. [*%( 4E2x2 + 1} _
It thus appears that with regard to the yield criterion,
Gurson’s first-order approximation is sufficient, the cofre 2. atorder 2:
tions brought by higher-order ones being very small. (But i
this conclusion does not hold for the porosity rate, as véll b : 2 Ex(2852+1) L
seen in Section 5 below). T=— 2 {argsml"(ZEx) 5 (452X2+l)3/2}x:1 (29)
A final remark is that Gologanet al. [12] have deter- 3 Yt

1 292 2 £2x }
. . 3 S < S
mined theexactyield surfaces®@ of the hollow sphere [ VA& 5 (@52 +1)%2 [y



Ler . 2. The predictions of the third-order approximation differ
very little from those of the second-order one.

1ar v 3. The reputedly exact numerical results confirm the
second-order approximation’s predictions that the ratio
f /fGUrsONjs a decreasing function of the triaxiality, this

g function being larger than unity for low-values and
3 lower than unity for large ones.
E D 4. For small triaxialities, the numerical results exhit_xitc&
g order aprox N\ table influence of Lode’s angle upon _the porosity rate,
—3rd order approx. Lode=0 deg. \ absent from the second-order predlctlénSThe effect

— 3rd order approx. Lode=60 deg. i .
N, Lodoon deg, Y has been known for some time; see e.g. Gologanu [15]).

Num. Lode=30 deg. 7 The third-order approximation does incorporates such
_* - Num. Lode=60 deg. an influence, but unfortunately largely underestimates it.

0 10 20 30

0.6

0.4

4‘0 5‘0 6‘0 7‘0 8‘0 9‘0
0 (deg.)
Fig. 2. Comparison of values of f/fG“rsorT second-order approxi-

_ _ 6 Discussion
mation and exact (numerical) values (f = 0.01)

The results just presented have evidenced a lack of ac-
curacy of the porosity rate predicted by Gurson’s model. But
At order 3, the relation between the triaxiality and théhis model is generally used in a slightly modified form,
normalized porosity rate may be obtained in a similar wagpmmonly referred to as tf@TN mode[16]*, in which the
but is more complex and depends on the third invaria of porosity is heuristically multiplied, in the expressiontbé
because of the dependencdBf) uponDy; . yield function, by a parametag slightly larger than unity
(Tvergaard[17]). The question naturally arises of whetiner

52 Comparison with the exact porosity rate _not the d_eﬁmencywst evidenced may be remedied by simply
introducing such a parameter.

. An |mpor.tantprellm|nary remark is thatsm_cg all numer Figure 3 compares, for porosities of fand 102, the
ical results given below are for spherical cavities, they ca S Gurson :

. . . : . “Vvalues of the ratiof / f predicted by the second-order
only provide, in problems of ductile rupture involving im-

portant changes of the void shape, thiéial porosity rate? appromm_atm_)n and the GTN model, foqa/alug Of. 125 en-
Figure 2 shows, for a fixed porosity = 102, the suring coincidence of these values at low triaxialitiesis It

) : . —__.clearthat the GTN model, once “calibrated” for such tri&xia
porosity rate predicted by the second-order approximation

; £ £ Gurson
(Ean. (29)) normalized by Gurson' prediction (Eqn. (28)]°%, 52 20 0% Re B Yereetielid © i O
g EGurson — f /fGurson a5 a function of the angl® = ' P

arctanT. The figure also shows the predictions of the thiraqoes not on_Iy e’?t‘?r the expression of the porosityeafsic- _
L2 itly, but alsamplicitly through the values of the macroscopic
order approximation and, as a reference, the supposaedly

act values of f / fGUrson deduced from some finite elementtheL;V;IS':ite:':grgl(;?]ntﬂgz;giagﬂ'gztgﬁﬁ; d upon it since

limit-analyses of the hollow sphere considered, subjetded In problems ofguasistatiaductile rupture, however, the

boundary conditions of type (1). (The details of the method.axiality is known 1o never exceed a value of about 3 in

used are presented in [13, 14] and are notrepeated here). )z(a_ctice. Such triaxialities correspond to values of thgiean

! . pY
c_ept for those Corfesf%‘u’[‘sg;”g to the _s_econd order apprexw@anot exceeding 7Q for which Fig. 3 makes it clear that
tion, the values of /f are sensitive to the value of the .
) -use of the GTN model with g-value of about 115 would
Lode angle. Therefore three types of loading corresponding . .
provide an acceptable representation, on the averagee of th

to Lode angles of 0(axisymmetric load with major axial rosity rates predicted by the second-order approximatio

stress), 30 (pure shear with superposed hydrostatic tensioﬁﬁis means that the GTN model may safely be used for such
and 60 (axisymmetric load with major lateral stress) have roblems

been envisaged for the numerical valuesf gf&uson For P . . L
g p For problems oflynamicductile rupture, the situation is

those corresponding to the third-order approximation LOdoeifferent since extremely large triaxialities may be encou
angles of 0 and 60 have been considered sufficient to illus- y1arg Y

tered, and it is clear from Fig. 3 that no single valuegof
trate the results. £/ £ Gurson i
. ) can match the values df/ f predicted by the second-
Several points are noteworthy here: o T
order approximation over the full range of triaxialitiesf O
1. The porosity rate resulting from the second-order ap-
proximation differs significantly from that predicted by——

Gurson_s first-order apprOX|mat|Q.rth.e _r?‘UOf/qurson 3Because of this influence of Lode’s angle, the numerical gitraate

amounting to about.25 for low triaxialities (values of goes not vanish for an exactly zero triaxiality, but for a #raae, the sign

0 close to 0) versus about @ for high ones (values of of which depends upon the Lode angle; since for Gurson’s hbiterate

0 close to 90). vanishes for an exactly zero triaxiality, this implies tfiat the numerical
results, the ratidf / U behaves oddly for very small triaxialities. This
behavior is not represented in Figure 2 because it is df littlerest, bottf
and f Ursonpeing very small anyway under such conditions.

2This of course assumes that the voids are initially sphlerica 4GTN: Gurson-Tvergaard-Needleman.



13r cell calculations. In order to incorporate this effect ithe
GTN model, Gologanu [15] suggested to adopgtwzlue de-
pending on the Lode angle. The same proposal could be
made to improve the second-order model; but again doing
so would be dangerous since the convexity of the reversibil-
ity domain would no longer be guaranteed.
What is in question here isot the approximation re-

sulting from the second-order Taylor expansion of the term

1+n(r) in Gurson’s expression of the plastic dissipation,
since pursuing the expansion to the third order does not suf-

f'/f"Gurson

:g;g g:gg: :gg;g; Eg:g‘il fice to match the numerical results (although it does intro-
0sl| - - ~GTN f=0.001 duces a slightinfluence of the Lode angle). Clearly, the prob
L e lem lies in the inaccuracy of Gurson’s velocity fields defined
Y ey " by Eqn. (2) themselves. Matching the numerical values of

the porosity rate would require using more realistic and-com
plex fields. An interesting first step in this direction hasibe
made by Monchieet al.[7], who used Eshelby-like veloc-
ity fields. (Again, this work parallels, for a hollow sphere,

Huang’s [10] improvement of Rice and Tracey’s [5] limit-

course, the problem could be solved by adopting the Sugh\ysis of an infinite medium containing a spherical hole).
gestion made by Sovik and Thaulow [18] and Pardoen and

Hutchinson [19] of considering as a function of the triaxi-
ality; but doing so would be dangerous since the introducti
of heuristic load-dependent parameters into the yield func
tion may destroy the convexity of the reversibility domai
It therefore seems preferable, for such problems, to use

“second-order model” defined by the expression (21)6f cial emphasis on successive approximations arising from a

rather than the GTN model. Taylor expansion of one term arising in the expression of the

Two objections to this proposal may be raised. Firshyerall plastic dissipation.

Gurson’s homogenization procedure did not include micro- The second-order approximation has been shown to
inertia effects; therefore his model, and its improvedasais  pying a small correction to Gurson’s first-order one for the
such as the second-order model, become inadequate in §)gral| yield criterion, but a significant one for the predit
presence of such effects, and thus are inapplicable anyWayosity rate. For problems ofuasistaticductile rupture for

to problems of dynamic ductile rupture. The answer to thignich the triaxiality never becomes very large, this correc
objection lies in a paper of Molinari and Mercier [20], Whajon may be considered as approximately constant, and in-
proposed a convincing, though approximate, method of eXsrporated within the variant of Gurson’s model known as
tension of overall yield criteria for plastic porous ma#si he GTN model by ascribing a suitable value to Tvergaard’s
subjected to quasistatic loads to fully dynamic ones. Thbsparameter. For problems afynamicductile rupture for
method may be applied without difficulty to the second-ordgfnich the triaxiality may take arbitrary values, such a denp
model discussed above, resulting in a model incorporatilggmedy becomes impossible, and the best solution seems to
both second-order corrections to Gurson's ma@@lmicro-  se the second-order model (suitably extended to incotgora
inertia effects. micro-inertia effects) instead of that of Gurson.

A second, natural objection to the possible use of the The third-order approximation appears to be of little
second-order model is that it is formally more complex thapractical interest in that it has been found to bring onlyyver
Gurson’s model, since the expression (21) of the relevagrhall corrections to the second-order one, with respect to
plastic dissipation no longer permits to eliminate the paoth the overall criterion and the predicted porosity rate.
rameterD in the expression (22) of the principal stresses.

The answer to that objection is that the slightly greatercom

plexity of the second-order model just makes it somewhaicknowledgements

less elegant, but no less convenient for its implementation The authors wish to express their sincere thanks to Prof.
into some finite element programme; indeed yield criteri@ana Cazacu of the University of Florida, for stimulating th

in parametrized form, such as (22), do not raise any speggksent research through her recent papers and thoroughly
problems in this context. discussing its results with them.

A final remark must be made about the adequacy of the
second-order model itself. Although this model brings a-defi
nite improvement to that of Gurson, it is still imperfeche® References
it does not predict any influence of the Lode angle upon th¢l] Gurson, A., 1975. *Plastic flow and fracture behav-
porosity rate, in clear contrast to the results of numericél ior of ductile materials incorporating void nucleation,

Fig. 3. Comparison of values of f/fG“rsorT second-order approxi-
mation and GTN model (with q = 1.25)
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pointz = 0; in particular, on the real line,

im TW@n)=/1+n if

N—>-+o0

—1l<n<1l (30)

Step 2: study of the possibility thag(r) may take
the valuestl. Assume that(r) = +1. This is possi-
ble only if inequalities (10) and (10} are in fact equali-
ties, that is if the tensord”(r) andd®B(r) are collinear, and
day(r) = d8y(r); that is, if d*(r) = +£d®(r). Then, since
dA(r) = Dmg (1-3n®n) (see Eqn. (18) has a double
eigenvalue, the same must be trued8fr) = D’ (see Eqn.
(18)); that is, the tensob must be axisymmetric. LeDxg
denote the axis passing through the ce@ef the spher&
and parallel to the principal direction &f corresponding to
its other, simple eigenvalue. The equality(r) = +d5(r)

implies that the principal directions of these tensorseorr

The conclusion is thal ("(n) is positive in all cases for
—1<n<1.

Step 5: conclusionCombining Egn. (16) and the result
of Step 4, one concludes that<0T ™ (n(r)) < TO(n(r))
and therefordT™ (n(r))| < TW(n(r)) within the domain
of integration; and the integr@l® (D) involving T (n(r))
converges, its value being given by Gurson’s result (13).
Combination of these properties and the result of Step 3 per-
mits to apply Lebesgue’s dominated convergence theorem,
and conclude that the sequence of approximatiti(D)
converges towarfl(D) for everyD.

sponding to their simple eigenvalues must coincide; that is

the vectorn must be parallel to the axi®xz. But since
n =r/r, this can occur only for points lying on this axis.
Furthermore, even on this axis, the equadifyr) = +-d5(r)

may occur only for one specific value of that is at two

points, since the norm@q(r) of the first tensor varies propor-

tionally tor —* whereas the normi&;(r ) of the second is inde-
pendent of. The conclusion is that the equalifyr) = £1
may occur, depending on the valuesayfb and D, either
nowhere in the domai@ — w, or at two points of this do-
main only.

Step 3: combination of Steps 1 andThe two possible
points where)(r) may take the values1 may be excluded
from the domain of integratio — w since they form a set of
measure zero. Then, by Eqn. (30), for eveiy this domain,
T (n(r)) goes to,/1+ n(r) whenn goes to infinity.

Step 4: study of the sign of¥(n) for —1 < n < 1.

1. If n <0, consider the difference

g*(0) onia

T =T = Ty

where the notations of Appendix A are used again; the

derivativeg®t1)(0) is positive since there araheg-
ative terms in the product defining it, amg"! < 0.
HenceT @1 () —T(@)(n) < 0. Since, by Eqn. (16)

T@(n) —T@-1(n) <0 also, the sequence of Tay-
lor approximationd (" (n) is decreasing. Since it con-

verges toward the limi{/1+ n which is positive, all the
T (n) are necessarily positive.
2. If n > 0, consider the difference

(2k+1)(0)

T(n) n _T(n) _r]) — 297r]2k+1

(n) ( 2k+Z§n (2k+1)!

Each term in this sum is positive, singé“*(0) > 0
andn®+1 > 0; henceT™(n) — T (—n) > 0. Since
T(W(—n) is positive by what precede$ (" (n) is also
necessarily positive.



