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Gut and airway microbiota
dysbiosis and their role in
COVID-19 and long-COVID

Giuseppe Ancona1, Laura Alagna1, Claudia Alteri2,3,
Emanuele Palomba1,4*, Anna Tonizzo1,4, Andrea Pastena1,4,
Antonio Muscatello1, Andrea Gori1,4* and Alessandra Bandera1,4

1Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,
2Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy, 3Multimodal
Research Area, Bambino Gesù Children Hospital (IRCCS), Rome, Italy, 4Department of
Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH),
University of Milan, Milan, Italy
The gut microbiota plays a crucial role in human health and disease. Gut

dysbiosis is known to be associated with increased susceptibility to respiratory

diseases and modifications in the immune response and homeostasis of the

lungs (the so-called gut-lung axis). Furthermore, recent studies have highlighted

the possible role of dysbiosis in neurological disturbances, introducing the notion

of the “gut-brain axis.” During the last 2 years, several studies have described the

presence of gut dysbiosis during coronavirus disease 2019 (COVID-19) and its

relationship with disease severity, SARS-CoV-2 gastrointestinal replication, and

immune inflammation. Moreover, the possible persistence of gut dysbiosis after

disease resolution may be linked to long-COVID syndrome and particularly to its

neurological manifestations. We reviewed recent evidence on the association

between dysbiosis and COVID-19, investigating the possible epidemiologic

confounding factors like age, location, sex, sample size, the severity of disease,

comorbidities, therapy, and vaccination status on gut and airway microbial

dysbiosis in selected studies on both COVID-19 and long-COVID. Moreover,

we analyzed the confounding factors strictly related to microbiota, specifically

diet investigation and previous use of antibiotics/probiotics, and the

methodology used to study the microbiota (a- and b-diversity parameters and

relative abundance tools). Of note, only a few studies focused on longitudinal

analyses, especially for long-term observation in long-COVID. Lastly, there is a

lack of knowledge regarding the role of microbiota transplantation and other

therapeutic approaches and their possible impact on disease progression and

severity. Preliminary data seem to suggest that gut and airway dysbiosis might

play a role in COVID-19 and in long-COVID neurological symptoms. Indeed, the

development and interpretation of these data could have important implications

for future preventive and therapeutic strategies.
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1 Introduction

1.1 COVID-19, long-COVID, and
gastrointestinal disease during
SARS-CoV-2 infection

Coronavirus disease 2019 (COVID-19) is a highly contagious

infectious disease caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) virus, a novel RNA beta-coronavirus,

with more than 663 million cases and 6.71 million deaths worldwide

documented until 20 January 2023 (1). COVID-19 is mainly a

respiratory illness, ranging from asymptomatic, mild-moderate,

severe, and critical illness (2), especially affecting elderly subjects

with underlying medical conditions (3).

After COVID-19, some patients may experience persistent

symptoms or other conditions that are colloquially referred to as

long-COVID. The Centers for Disease Control and Prevention have

defined post-COVID conditions as new, returning, or ongoing

symptoms that people experience ≥4 weeks after being infected

with SARS-CoV-2 (4). The prevalence of these conditions varies

widely from 5% to 80%, and the most frequently reported

symptoms are fatigue, cough, shortness of breath, and chest pain

(2, 5). Furthermore, half of the patients report persistent

neurological symptoms at 6 months, the most frequent being

“brain fog” and cognitive changes, described in up to one-third of

subjects (6).

With regard to the gastrointestinal (GI) tract involvement, early

reports from Wuhan showed that 2% to 10% of patients with acute

COVID-19 had GI symptoms including nausea and diarrhea (7),

but more recent metaanalyses reported a higher prevalence, up to

20% of patients (8). SARS-CoV-2 virus has been detected in anal

swabs and stool samples in almost 50% of patients with COVID-19,

suggesting that the digestive tract might be an extrapulmonary site

for virus replication and activity (9), through ACE2 receptors

binding with spike protein-S.
1.2 Gut microbiota and its role in health
and disease

The human gut microbiota harbors up to 1014 resident

microorganisms, including bacteria, archaea, viruses, fungi, and

other eucaryotes, with bacteria being the most abundant

microorganisms at the gut level. The most represented phyla at

the gut level are Firmicutes, Bacteroidetes, Actinobacteria,

Proteobacteria, Verrucomicrobia, and Fusobacteria (10). An

increase in bacteria has been documented from duodenum to

colon, with a decrease in facultative anaerobic Bacilli (Firmicutes)

and Enterobacterales (Proteobacteria) taxa and an increase in

obligate anaerobic bacteria, especially Bacteroidia (Bacteroidetes)

and Clostridia (Firmicutes) classes (11, 12).

Gut microbiota is crucial for several functions, such as energy

extraction from the diet, vitamin and short-chain fat acids (SCFAs)

production, and immunomodulation, with the regulation of TH17

and T reg balance (13–15). A complex equilibrium exists among

prebiotics, like microbiota accessible carbohydrates (MAC),
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probiotics, and postbiotics, like their products, SCFAs (16, 17),

with involvement of several networks between gut microbiota and

other body sites through axes (i.e., gut-lung, gut-liver, gut-brain

axis), influencing processes in health and disease.

An unbalance of the crucial homeostasis between Firmicutes,

Bacteroidetes, Actinobacteria, and Proteobacteria phyla (Figure 1) is

often associated with a change in the numbers of microbes and/or

diversity of the microbiota; such a condition is defined as dysbiosis

(18). Recently, a new definition of dysbiosis has been suggested,

based on a model represented in several diseases, defined by the

increase in facultative anaerobic bacteria, like Bacilli class and

Enterobacterales order, and a parallel decrease in obligate

anaerobic bacteria, such as propionate and butyrate-producing

bacteria (BPBs) (11).

Gut microbiota dysbiosis can have a role in several disease

models affecting the lung, brain, liver, and heart (19).

In the last decade, research on lung microbiota and its

pathogenetic link to pulmonary conditions has significantly

improved. Previously, the lung has been considered a sterile

organ; however, numerous studies have demonstrated the

presence of bacterial DNA in the lower respiratory tract in

healthy individuals. The lung microbiota of healthy subjects is

characterized by the presence of differentiated ecological niches

belonging to Bacteroidetes, Firmicutes, and Proteobacteria phyla

and Prevotella, Streptococcus, Veillonella, Fusobacterium, and

Haemophilus genera (20). Its balance is the result of acquisition

and clearance (Figure 1). Many other factors contribute to this

complex mechanism, such as the immune system (innate and

adaptive immune recognition, secretory IgA), in addition to

various exogenous components such as diet, environmental

biodiversity, and drug treatments, in particular antibiotics (21).

Chronic respiratory diseases are often characterized by an

imbalance between microbial immigration and elimination in the

lung. Moreover, the presence of chronic inflammation results in the

alteration of physicochemical proprieties that facilitate the growth

of select species in the microbial community, such as

microorganisms from the Proteobacteria phylum, that are linked

to a proinflammatory state (22). It is important to emphasize that

lung and gut microbiota are in close communication with each

other through the circulation of soluble metabolites (i.e.,

peptidoglycan or LPS) transported by the blood (21). These

peptides are recognized by host cells that express pattern-

recognition receptors (PRRs), such as Toll-like receptors (TLRs)

and Nod-like receptors (NLRs). The interplay between lung and gut

microbiota, defined as the gut-lung axis, has been demonstrated in

different animal models (23–26).

Further studies are needed to better understand the complex

gut-lung interplay and characterize the gut microbial metabolites

(i.e., indole derivative, niacin, polyamines, urolithin, and pyruvic

acid) that act as immunomodulants and might have a possible

impact on respiratory health (27, 28).

Another captivating field of microbiota studies is related to its

connection with the brain through the so-called gut-brain axis,

which is thought to be a bidirectional system. On one side, there is

the involvement of microbiota-derived metabolites on the blood–

brain barrier like SCFAs, tryptophan, and linoleic acid metabolites
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1080043
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ancona et al. 10.3389/fimmu.2023.1080043
as well as cytokines produced at the gut level; on the other side, the

brain controls gut activity through the neuroendocrine and

parasympathetic systems (i.e., regulation of intestinal permeability

through the vagus nerve) (29). Such connections have been studied

in animal models: physiological aging affects gut microbiota in

mouse models through cognitive frailty (30).

Gut microbiota dysbiosis seems to play a role in several

neurodegenerative and psychiatric disorders (31), as well as in

other neurological conditions (32). For example, damage to the

GI barrier is a possible pathological pattern for depression

disorders; moreover, increased LPS and microbiota-cytokine

production seems to be related to Alzheimer’s disease (29).

The relationship between gut microbiota and the brain could be

deeper and more complex: alteration of the hypothalamic “master

clock” could impact the diurnal environmental fluctuations and

lead to dysbiosis-related metabolic disorders like obesity and/or

diabetes (33). Furthermore, gut dysbiosis could determine sleep

disturbances (sleep loss, alteration of circadian rhythm), eventually

leading to fatigue (34). Following this hypothesis, the gut

microbiota, which is mostly influenced by diet, could represent a

link between the immune and endocrine systems through brain

function and the host metabolism (35).

High-fat food intake can indeed damage the GI barrier, affecting

both the “intestinal epithelial barrier” (characterized by the mucus

layer and the epithelial cells) (36) and the “gut vascular barrier,”

regulated by the expression of plasmalemma vesicle-associated

protein-1 (PV1). This condition, known as “leaky gut,” can favor

microbial translocation to the liver (37), leading to hepatic and

systemic disease.
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Finally, another example of the role of dysbiosis in disease has

been studied in the cardiological setting, where the increased

production of trimethylamine (and its metabolite-liver

trimethylamine-N-oxide) by gut microbiota has been linked to

the development of cardiovascular disease (29).
2 Gut microbiota dysbiosis in
acute COVID-19

2.1 Study characteristics and
confounding factors

We identified 22 studies on gut microbiota in COVID-19

patients published in a 2-year window period between 03 January

2020 and 03 January 2022 (Table 1A).

To critically revise the studies, we first considered all the

variables potentially influencing the final observations: study

design, location, material source, microbial technology used,

sample size, and patient characteristics—age, body mass index

(BMI), gender, sexual behaviors, COVID-19 severity index,

comorbidities, recent previous use of antibiotics/probiotics, diet,

and lifestyle.

The cross-sectional study design was the most common. Less

than half of studies (45%) had a longitudinal/prospective design,

20% of which focused on long-COVID-19.

The study location was a critical factor: most studies (19/22, 86%)

were set in Asia (18 in China, one in South Korea), and three of 22

(14%) in Europe; no other geographic regions were represented.
GUT
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COVID-19
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GUT COVID-19 DYSBIOSIS
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Erysipelotrichia class
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VERRUCOMICROBIA
Verrucomicrobiae class
Verrucomicrobiales order
Verrucomicrobiaceae
• Akkermansia †

ACTINOBACTERIA
Ac�nobacteria class
Bifidobacteriales order
Bifidobacteriaceae
• Bifidobacterium
Coriobacteriia class
Coriobacteriales order 
Coriobacteriaceae
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ANTI-INFLAMMATORY 
TAXA (Not propionate, 

Not butyrate producers)

PROTEOBACTERIA
Gammaproteobacteria class
Enterobacterales order
• Enterobacteriaceae

and others taxa

LUNG MICROBIOTA

Bacteroidetes, Firmicutes, and Proteobacteria phyla

Comamonadaceae family

Prevotella, Streptococcus, Veillonella, Fusobacterium and 

Haemophilus genera

LUNG COVID-19 DYSBIOSIS

↓/= (↑) α DIVERSITY
↓ PROTEOBACTERIA, FUSOBACTERIA 

AND SACCHARIBACTERIA PHYLA
↓ UNBALANCE OF SEVERAL ASPECIFIC 

TAXA

ACQUISITION OF MICROBIAL COMMUNITY BY 
TRANSLOCATION FROM UPPER AIRWAY BY 
MISCRO-ASPIRATION

ELIMINATION OF BACTERIA VIA 
MUCOCILIARY TRANSPORT AND 
BRONCHOALVEOLAR 
CLEARANCE
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FIGURE 1

Gut-lung axis microbiota in COVID-19. This figure shows a summary of the gut-lung axis and its alterations during COVID-19. Left: the gut
microbiota taxa obligately anaerobic short-chain fatty acids (propionate and butyrate) producers and anti-inflammatory taxa, not propionate and
butyrate producers. Upper: facultatively anaerobic bacteria. Right: the homeostasis of the lung microbiota, resulting from acquisition (blue arrow)
and elimination (red arrow) clearance. Bottom: the most significant alterations detected in gut and lung microbiota during COVID-19. All around, the
confounding factors are strictly related to Microbiota. BMI: Body Mass Index; ° indicates propionate-producing bacteria, * indicates butyrate-
producing bacteria, Upward arrows “↑”: increase; Downward arrows “↓”: decrease.
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TABLE 1A Selected studies on gut microbiota and COVID-19.
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TABLE 1A Continued

dance analyses Correlations and other findings
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TABLE 1A Continued

dance analyses Correlations and other findings

achnospiraceae
nd Alistipes

The link between gut dysbiosis and the
expression of ACE2: possible role of
Firmicutes members to upregulate ACE2-R
expression; possible role of Bacteroidetes
members to downregulate ACE2-R expression
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terium prausnitzii, and

accae species
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+Correlation in CXCL10, IL-10, TNF-a, AST,
GGT CRP, LDH, NT-proBNP, and
erythrocyte sedimentation rate with
microbiota composition
Microbiota distribution was associated with
COVID-19 and antibiotics but not with stool
SARS-CoV-2 viral replication, antiviral,
corticosteroids, and pomp inhibitor use.
Continuum PCA visualization of a gut
microbial composition according to severity
index disease
Postulated that gut microbiota was associated
with the magnitude of immune response to
COVID-19

e, Staphylococcaceae,
raceae families,

romonadaceae,
ilies

oritellaceae,
and Coriobacteriaceae

icrococcaceae,
hales taxa

abacteraceae,
cobacteriaceae,
ilies; Actinobacteria

d Mycoplasmataceae

High levels of ferritin detected in i-COVID-19
patients in comparison to w-COVID-19
↓ Of SCFA-producing bacteria
A distinct profile can be distinguished
between i-COVID-19 and w-COVID-19 with
the latter being closer to CTRL.

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

Antiviral therapy: LPV/
RTV; ribavirin, INFbeta-
1b

Bacteroides ovatus, Anaerostipes hadrus,
bacterium, Faecalibacterium prausnitzii,
onderdonkii

Yeoh et al.
(43)

China 2 Hospital cross-
sectional study
Longitudinal arm
subgroup 30 days
after virological
clearance
Fecal samples
Shotgun
metagenomic
sequencing

100 Hospitalized
patients with COVID-19
(mild, 45; moderate, 45;
severe, 5; critical, 3)
78 controls
-Age: 36 vs. 45 years old
-Men: 53% vs 42%
-BMI: no data
ABT: 34 patients
Antivirals: 46 patients
prior to stool collection
(LPV/RTV, ribavirin,
oseltamivir)
Comorbidities:
hypertension,
hyperlipidemia, diabetes,
and heart conditions
(17% diarrhea at
admission)
For control hypertension

a-Diversity
No significant differences in species richness
and Shannon diversity between COVID-19
and controls
b-Diversity
Separation among COVID-19 with
antibiotics, without antibiotics, and controls
After virological cure, gut microbiota
remained significantly distinct at 30 days
(more dissimilar composition in patients
who had received antibiotics)

Relative abundance comparison
COVID-19 vs. controls
↑ Bacteroidetes phylum
Ruminococcus gnavus, Ruminococcus torq
species
↓ Actinobacteria phylum
↓ Bifidobacterium adolescentis, Faecalibac
Eubacterium rectale species
After antibiotic effects evaluation:
↑ Parabcteroides genus
↑ Sutterella wadsworthensis, Bacteroides c
↓ Adlercreutzia equolifaciens, Dorea form
leptum species

Mazzarelli
et al. (44)

Italy Cross-sectional
monocenter study
Anal swab
V2, V4, V8, and
V3–6, 7–9 of the
16S gene

-15 hospitalized
inpatients (9 in the ward
w-COVID-19, 6
intensive cure unit, i-
COVID-19)
8 hospitalized inpatient
controls (3 in the
intensive care unit, 5 on
the floor)
Severity: not possible
stratification; all patients
(including controls)
pneumonia
-Age: 67 (ward), 70
(ICU), 69 controls
-Men: 55%, 50%, and
62%, respectively, in
wards, ICU, and controls
-BMI: no data
ABT: 55%, 50%, and
37%, respectively, in the
ward, ICU, and controls

a-Diversity
↓ Chao-1
Trend ↓ Shannon diversity index
b-Diversity
According to Bray–Curtis distinct patterns
among the 3 groups

Relative abundance comparison
w-COVID-19 vs. controls
↑ Proteobacteria phylum
↑ Peptostreptococcaceae, Enterobacteriace
Vibrionaceae, Aerococcaceae, Dermabacte
Actinobacteria taxa
↓ Spirochaetes and Fusobacteria phyla
↓ Nitrospiraceae, Propionibacteriaceae, A
Moraxellaceae, and Mycoplasmataceae fa
w-COVID-19 vs. i-COVID-19:
↑ Carnobacteriaceae, Peptobacteriaceae, M
Selenomonadaceae, Micromonosporaceae,
families
↓ Staphylococcaceae, Microbacteriaceae, M
Pseudonocardiaceae families; Erysipelotric
i-COVID-19 vs. CTRL:
↑ Staphylococcaceae, Aerococcaceae, Derm
Erysipelotrichaceae, Microbacteriaceae, M
Pseudonocardiaceae, Brevibacteriaceae fam
taxa
↓ Carnobacteriaceae, Coriobacteriaceae, a
families
n
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ndance analyses Correlations and other findings

Collinsella genera

FMT effect on B lymphocytes ↓ naïve B cells,
↑ memory B cells, and non-switched B cells
Alleviated GI symptoms were observed after
FMT.
First intervention study with FMT in a
COVID-19 setting

clustering:

own butyrate-producing
utia, and Coprococcus
rium Finegoldia genus
rs

lower-diversity
er-diversity type (I or
ts who had anal swab

ity and the relative
terium from early to
of gut microbiota

Respiratory microbiome:
a-Diversity decreased from type I to type IV.
Except for the duration of COVID-19, the
upper respiratory and gut microbial
community divergence seemed not to be
associated with age, gender, antibiotics use,
and detection of SARS-CoV-2 RNA (the use
of antibiotics could emphasize both dysbioses)
The shift of microbiome community types
over time appeared to match between the
throat and the gut in 6/8 patients
−Correlation a-diversity with serum LPS
Dysbiosis of the upper airways seems to
appear early and worse compared to the gut,
due to a different resilience status in
association with a high permeability among
organs due to inflammation.

ntrols
ncultured, Blautia,
sia, Lachnospiraceae

aecalibacterium,

Oral microbiome alterations:
a-Diversity ! Shannon index and Simpson
index significantly decreased in the CPs vs.
HCs
b-Diversity ! Significant distinction of oral
microbial communities between both groups

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

48% antibiotics 1 or 2
days before the anal
swab

Liu et al.
(45)

China Prospective,
interventional,
single-centered
pilot study on
fecal microbial
transplantation
(FMT)
Fecal samples
before and after 1
week of FMT
16S sequencing

11 COVID-19 patients
1-month after a hospital
discharge form
-Age: 50 average
-Men: 6/11 (54%)
-BMI: no data
10 patients non-severe, 1
patient severe
No antibiotics or an
anti-inflammatory drug
for 2 weeks prior to the
treatment
5 out of 11 patients
suffered from GI

a-Diversity
-6 months ↑ Chao-1 after TMT
No differences with other indexes
(Shannon, Simpson, observed, OUT num)
b-Diversity
No data

Relative abundance comparison
Before vs after 1 week of FMT
↓ Proteobacteria
↑ Actinobacteria
↑ Bifidobacterium, Faecalibacterium, and

Xu et al.
(46)

China Prospective study
35 days after
symptomatic
resolution
Throat samples
and anal swabs
V4 region of
bacterial 16 S
rRNA gene

-35 COVID-19 patients,
19 healthy controls
10 non-COVID-19
patients with other
diseases
34/35 COVID-19
patients with mild
symptoms
-Age: 47 average
-Men: 57%
-BMI: no data
ABT: 13/35 37%,
essentially
fluoroquinolones
1 patient receiving
steroids
14 patients receiving
oseltamivir or INF
Comorbidities: 16/35,
with hypertension, more
representative

a-Diversity
↓ Richness (observed) and Evenness
(Pielou’s evenness) indexes from types I to
III during the early phase of COVID-19
b-Diversity: according to Bray–Curtis, 3
microbial community types were identified
(types I–III)

Dirichlet multinomial mixture (DMM)
comparison among groups
Type I: Bacteroides genus and several kn
bacteria: Faecalibacterium, Roseburia, Bl
genera; 1 opportunistic pathogenic bacte
Type II: Neisseria, Actinomyces, and oth
Type III: Pseudomonas genus members
-A shift of the gut microbiome from the
community type (II or III) toward a hig
II) was observed over time in 7/10 patie
tests at different timepoints
-Clear trend of increased bacterial diver
abundance of Bacteroides and Faecalibac
late stages of COVID-19 like restoration

Ren et al.
(47)

China Cross-sectional
study
-Fecal samples
and tongue-
coating samples
V3–V5 region of
the 16S rRNA
gene

The discovery cohort:
CPs: 24 fecal samples
48 tongue-coating
samples HCs: 48 fecal
samples 100 tongue-
coating samples
-Age: 48 years old, 48
years old for controls

a-Diversity
↓ Observed richness and evenness/diversity
index (Shannon index)
b-Diversity
PCoA separation among groups

Relative abundance comparison
Comparison between COVID-19 and c
↓ Pseudobutyrivibrio, Ruminococcaceae u
Faecalobacterium, Bacteroides, Akkerma
incertae sedis, and Bifidobacterium taxa
↑ Streptococcus and Enterococcus genera
The article described 5 reduced genera (
a

e
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dance analyses Correlations and other findings

reased genera (not

rmed Patients with reduced post-convalescence
richness had higher levels of CRP as well as a
higher occurrence of ICU admission and
HFNC during the acute phase.
In post-convalescence, low richness was
associated with reduced FVC, FEV1,
inspiratory vital capacity, and total lung
capacity.
Post-convalescence patients with lower
microbial richness had worse pulmonary
functions.
Patients with lower richness at 6 months had
an illness severity during the acute phase with
a strong link between inflammatory response
and COVID-19 gut microbiota dysbiosis.

obacillaceae,
phylococcaceae, and

Staphylococcus,
es, Serratia,
cter, Acidaminococcus,

ococcaceae,

, Coprococcus, Blautia,
buria, Anaerofustis,
lister, Oscillospira,
nella genera
were E. faecium (8.4%)
%), and E. villorum

developing BSI.

The severity of COVID-19-related dysbiosis is
strongly associated with the development of
BSI and ICU admission
The percentage of patients who developed E-
BSI was significantly higher during the
COVID-19 pandemic than in the previous 3
years.
Due to the severity of the clinical setting of
the population, they could not exclude
previous antibiotic intake before ICU
admission, but controls were matched also for
this parameter
After an intragroup comparison between
patients ICU admitted vs. patients COVID-19
no-ICU admitted, they did not see a-diversity
differences but only a b-diversity separation
among groups (including ICU controls).
Both COVID-19 subgroups (ICU and no-
ICU) expressed high levels of Enterococcus

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

-Men: 28% vs. 8%
-BMI: not calculated
Severity index not
calculated: probably mild
No clinical information
about comorbidities

Lachnospira genera, and others) and 5 in
specified)

Chen et al.
(48)

China Prospective study:
6 months follow-
up
Fecal samples
V3–V4 of the 16S
rRNA gene

-30 patients subdivided
post-convalescence
phase using the median
Chao-1 cutoff 259 in low
a-diversity (N = 15),
high a-diversity (N =
15)
-Acute phase (from
illness onset to viral
clearance)
-Convalescence (from
viral clearance to 2
weeks after hospital
discharge)
-Post-convalescence (6
months after hospital
discharge)
30 control patients
-Age: 53
-Men: 63%
-BMI: 24
33.3% severe illness

a-Diversity
↓ Richness Chao-1 Index in the acute phase
compared to controls
Richness was not restored to normal levels
after 6-month recovery (trend toward
controls)
b-Diversity
A Bray–Curtis analysis separation between
COVID-19 and controls

Abundance relative analysis was not perf

Gaibani
et al. (49)

Italy Cross-sectional
multicentered
study
Fecal samples
V3–V4 of the 16S
rRNA gene

-69 COVID-19 control
patients: healthy age-
gender-therapy and
hospitalization-related
confounder-matched
(like exposure to
antibiotics 2 weeks
before: 69%) Italians
For a subanalysis, a non-
COVID-19 in ICU
controls matched for
age, gender, antibiotics,
and other factors
-Age: 73
-Men: 55%
-BMI: 24 median (16%
with obesity); 22–27 IQR
77% presented with
moderate/severe

a-Diversity
↓ Evenness index (inv.Simpson index)
b-Diversity
According to Bray–Curtis, the a significant
separation between COVID-19 patients and
healthy controls.
Note: gut microbiota profiles of COVID-19
patients showed no segregation by age, sex,
antibiotic intake in the 2 weeks prior to
fecal sampling, length of hospital stay, the
time interval between fecal sampling, length
of hospital stay, the time interval between
fecal sampling and hospital admission, and
outcome (death/discharge).

LefSe analysis
COVID-19 patients vs. controls
↑ Enterococcaceae, Coriobacteriaceae, Lac
Veillonellaceae, Porphyromonadaceae, Sta
Eysipelotrichaceae families
↑ Enterococcus, Lactobacillus, Collinsella,
Akkermansia, Parabacteroides, Actinomy
Lactococcus, Phascolarbacterium, Odoriba
and Methanobrevibacter genera
↓ Bacteroidaceae, Lachnospiraceae, Rumi
Prevotellaceae, and Clostridaceae families
↓ Prevotella, Bacteroides, Faecalibacterium
Ruminococcus, Erwinia, Oxalobacter Rose
Lachnospira, Scardovia, Anaerofilum, Dia
Holdemania, Cloacibacillus, and Cristense
Note: sequences assigned to Enterococcus
along with E. hirae (5.5%), E. faecalis (1.
(1.1%)
↑ Enterococcus in ICU patients and those
n

c

o

t

c

n

8

https://doi.org/10.3389/fimmu.2023.1080043
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1A Continued

dance analyses Correlations and other findings

other
lostridiales taxa in
d those who had not

species compared to ICU controls
No-ICU COVID-19 had an
overrepresentation of Ruminococcus,
Oscillospira, Dorea, and Coprococcus.
ICU controls had an overrepresentation of
Enterobacteriaceae (in particular, Klebsiella
species)

s genera
ii, Citrobacter
and Saccharomyces

s, Phascolarbacterium,

gilis, Bacteroides
s, Eubacterium

Patients with fever: more pathogens, and lack
butyrate-producing species.
5 epitopes were enriched in the fever group.
Some of these were +correlated with clinical
indices (IL-6, WBC, neutrophils, CRP, D-
dimer, and LDH). 4 of the 5 epitopes were all
+correlated with E. faecalis (↑ in the fever
group).
Same background, although during ABT
treatment and with no available diet
investigation information

; Bacteroidaceae,
s
r

es, Butyricimonas, and
spiraceae and

↑ Firmicutes/Bacteroidetes ratio in an infected
state, in the absence of antimicrobial therapy
and without obese patients
+Correlation between Escherichia/Shigella,
Citrobacter, Collinsella, and Bifidobacterium
and COVID-19

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

pneumonia during
hospitalization:
33% severe respiratory
failure, 23% ICU, and
14% mechanically
ventilated
Hydroxychloroquine,
low-molecular-weight
heparin (LMWH): 88.4%
Tocilizumab: 36%
DRV; DRV/Cobi: 4.4%,
7.2%
Several comorbidities:
hypertension, 63%;
COPD, 22%; diabetes,
17%; and others

↑ Streptococcus, Oscillospira, Blautia, and
Ruminococcaceae, Lachnospiraceae, and C
patients who had not entered the ICU an
developed BSI

Zhou et al.
(50)

China Cross-sectional
study
-Fecal samples
-Shotgun
metagenomic
sequencing

-187 COVID-19 patients
(127 patients with fever
and 60 patients with no
fever).
All moderate COVID-19
-Age: 39 median (37 in
the fever subgroup vs. 48
in the no-fever
subgroup)
-Men: 34% (36% vs.
31%)
-ABT: No data
Several comorbidities
especially hypertension

a-Diversity
↓ In patients with fever with a strong trend
according to Chao-1 (not significant
according to Shannon)
b-Diversity
According to Bray–Curtis, different
compositions in the gut microbiota between
the 2 groups

LEfSe analysis
Fever group vs. no-fever group
↑ Ascomycota phylum (fungal)
↑ Saccharomyces (fungal) and Enterococc
↑ Enterococcus faecalis, Citrobacter freun
unclassified, Haemophilus parainfluenzae
cerevisiae species
↓ Bacteroidetes phylum
↓ Anaerostipes, Prevotella, Parabacteroide
Eggerthella genera
↓ Bacteroides cellulolyticus, Bacteroides fr
thetaiotaomicron, Bacteroides xylanisolve
ramulus, and Erysipelotrichacae bacterium

Kim et al.
(51)

South
Korea

Prospective
monocenter study
2 time points:
from positive to
negative
virological cure
Fecal samples
V3–V4 of the 16S
rRNA gene

12 out-patients
Longitudinal analysis
from positive (infected
state) to negative
virological test
(recovered state)
36 controls
Asymptomatic infection
or mild COVID-19
-Age: 26
-Men: 66%
-BMI: 23
No medicines and/or
antibiotics and/or
probiotics ongoing
Few comorbidities but
gastrointestinal tract

a-Diversity
↑ Evenness index in the recovered state
(Pielou’s evenness) (the trend for Shannon;
not for richness indexes like faith and
observed) trend toward controls
b-Diversity
Differences for quantitative indexes Bray–
Curtis and weighted Unifrac (respectively
phylogenetic and no-phylogenetic
measures).
No differences for qualitative indexes
Jaccard and unweighted Unifrac
(respectively no-phylogenetic and
phylogenetic measures) trend toward
controls

Relative abundance comparison
Infected state vs. recovered state
↓ Bacteroidetes, Bacteroidia, Bacteroidale
Marinifilaceae, and Tannerellaceae famili
↑ Actinomycetals order, Actinomyces ord
COVID-19 vs. controls
↓ SCFA-producing bacteria and Bacteroi
Odoribacter taxa and members of Lachno
Ruminococcaeae families
n

u
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ibacter genera
artlett, Clostridium
ctor plautii, and

milies
bacter, Ruminococcus,
Romboutsia,

inulinivorans,
occus bromii, Blautia
Intestinimonas

−Correlation between Faecalibacterium
prausnitzii and chest tightness after activity
−Correlation between Intestinimonas
butyriproducens and cough
+Correlation between Escherichia unclassified
and fatigue, chest tightness after activity, and
myalgia
+Correlation between Intestinobacter bartlettii
and anorexia and fatigue
Compared with HCs, the fecal microbiota of
recovered HCWs at 3 months after discharge
exhibited decreased bacterial diversity

19 and mild COVID-

e and from moderate

s) and Coriobacteriaceae
ifferences ↓ for
achnospira genera)
) with COVID-19

ed through severity

In a multivariate analysis, the Shannon index
and CRP were associated with COVID-19
severity, with cut-off values of 2.25 and 96.8
ml/L.
RNA viral replication: no associations were
found for SARS-CoV-2 replication and
COVID-19 severity
Patients with lower Shannon diversity
displayed SARS-CoV-2 fecal replications
4 features:
↓ Firmicutes/Bacteroidetes ratio; ↑
Proteobacteria phylum; ↓ butyrate-producing
bacteria from Lachnospiraceae family
(Roseburia and Lachnospira genera)
↓ Actinobacteria essentially Bifidobacteria
(Collinsella)

ntrols
nera
ilous, Blautia obeum,

othia, Lactobacillus,

Granulicatella and Rothia increased in both
districts investigated (oral and gut) of
COVID-19 patients.
At the gut level, SARS-CoV-2 replication:
+Correlation to P. copri and E. dolichum
−Correlation to other taxa like S. anginosus,

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

involvement (reflux
esophagitis, irritable
bowel disease, fatty liver)

Zhou et al.
(52)

China Cross-sectional
prospective study
of recovered
COVID-19
healthcare
workers (HCWs)
after 3 months
Fecal samples
V3–V4 of the 16S
rRNA gene

-15 HCWs, 14 controls
80% had at least 1 long
COVID-19-related
symptom (especially
cough and fatigue)
-Age: 29 medians vs. 37
controls
-Men: 20% vs. 35% in
controls
-BMI: 22 vs. 24
2 recovered HCWs with
hypertension; no
comorbidities in the
controls
Excluded patients with
previous antibiotics and/
or probiotics within 3
months before
enrolment (no
information on lifestyle/
diet)

a-Diversity
HCWs vs. controls
↓ with Shannon (and not sign with other
indexes)
b-Diversity
According to Bray–Curtis, a significant
difference in the fecal microbiota between
recovered HCWs and HCs

Relative abundance comparison
HCWs vs. controls
↑ Actinobacteria phylum
↑ Escherichia, Flavonifractor, and Intesti
↑ Esherichia unclassified, Intestinibacter
aldenense, Clostridium bolteae, Flavonifr
Clostridium ramosum species
↓ Lachnospiraceae, Desulfovibrionaceae f
↓ Faecalibacterium, Roseburia, Fusicaten
Clostridium XVIII, Dorea, Butyricicoccus
Intestinimonas and Bilophila genera
↓ Faecalibacterium prausnitzii, Roseburi
Fusicatenibacter saccharivorans, Rumino
faecis, Butyricicoccus pullicaecorum, and
butyriciproducens species

Moreira-
Rosario
et al. (53)

Portugal Multicenter
cross-sectional
study
Fecal samples
V3–V4 of the 16S
rRNA gene

-115 COVID-19 patients
Severity index: 19 mild,
37 moderate, 59 severe
Location: 14 ambulatory,
40 wards, 61 ICU
-Age: 68 median
-Men: 63%
-BMI: not shown,
percentage of overweight
or obese: 65%
Comorbidities:
hypertension, diabetes,
and other
ABT: 38% during the
last 6 months

a-Diversity
Decrease trend for a-diversity Shannon
index (diversity index) from mild to severe.
b-Diversity
No data

Relative abundance comparison
Mild COVID-19 vs. moderate COVID
19 vs. sever COVID-19:
Decrease tendency from mild to modera
to severe for:
Bifidobacteriaceae (Bifidobacterium genu
(Collinsella genus) taxa with significant
Lachnospiraceae family (Roseburia and L
↑ Ralstonia genus (Proteobacteria phylu
severity score index
Firmicutes/Bacteroidetes ratio has decrea
increase

Wu et al.
(54)

China Longitudinal
study for both
(oral and fecal
districts) during
hospitalization
from positive to

-53 COVID-19 patients
divided into 2
subgroups: non-severe
COVID-19 (mild-
moderate) and severe
group (sever–critical)

a-Diversity
↓ Faith in severe COVID-19 and non-
severe COVID-19 subgroups compared to
controls (with increased gradient among
groups from severe to non-severe to
controls)

LEfSe analysis
Comparison between COVID-19 and c
↓ Blautia, Coprococcus, and Collinsella g
↓ Bacteroides caccae, Bacteroides coproph
Clostridium colinum species
↑ Streptococcus, Weisella, Enterococcus, R
n
b
a

a
i
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a
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dance analyses Correlations and other findings

ongum, Rothia
Dialister, Alistipes, Ruminococcus, C.
citronieae, Bifidobacterium, Haemophylus, and
H. parainfluenzae taxa
SARS-CoV-2 infection associated with oral
microbiome alterations
In b-diversity: distinguishing ongoing
antibiotics: both subgroups (with and without
antibiotics) displayed different clusters
compared to controls (but not between
subgroups)

omic approach:

um, Ruminococcus,
genera)

Feature of this study: enrichment of gut
bacteria-related deleterious metabolites as well
as altered host and bacterial lipids.

rium longum,
a (note that several
e: Bifibacterium
actobacillus bulgaricus)
s, Bacteroides
ptococcus thermophilus,
, Erysipelotrichaceae

orionacteriaceae family
genera

ius, Coprococcus catus,
s, and Adlercrutzia

−Correlation between COVID-19 severity and
Rosebura and Megasphaer genera
−Correlation between COVID-19 severity and
Roseburia inulinivorans, Bacteroides faecis,
Bifidobacterium bifidum, Parabacteroides
goldsteinii, Lachnospiraceae bacterium, and
Megasphaera species
+Correlation between Paraprevotella,
Lachnospiraceae, Erysipelotrichaceae taxa, and
COVID-19 severity
+Correlation between Paraprevotella species,
Streptococcus thermophilus, Clostridium
ramosum, and Bifidobacterium animalis

(Continued)
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

negative
virological cure
Fecal samples
and throat swabs
V3–V4 of the 16S
rRNA gene

73 controls
Also, throat analyses
Clinical features not
shown

b-Diversity
Separation among 3 groups (severe
COVID-19, non-severe COVID-19 and
controls) according to unweighted Unifrac

Actinomyces, and Granulicatella genera
↑ Clostridium citroniae, Bifidobacterium
mucilaginosa species

He et al.
(55)

China Longitudinal
study until 3
months follow-up
Fecal samples
Multi-omics
profiling
(metaproteomics,
glycoproteomics,
metabolomics,
lipidomics)

-13 COVID-19 patients
with different severity
index disease (7 mild, 5
moderates, 1 severe)
21 controls
-Age 27 median but 2
patients < 3 years old (1
patient 1 year old, 1
patient 10 months), 1
patient 5 years old;
controls 43 years old
-Male 77%; controls 57%
-BMI 24 with 2 obese
patients and 1
underweight
Comorbidities: 1 diabetic
patient, 2 patients with
sinusitis or rhinitis;
several patients with
gastrointestinal disorders
and anorexia

a-Diversity
No data
b-Diversity
Multiomics profiling confirmed the
separation between COVID-19 and controls

Relative abundance from the metaprote
COVID-19 vs. controls
↓ Lachnospiraceae family (Lachnoclostrid
Butyrivibio, Dorea, Blautia, and Tyzerella
↑ Bacteroides genus

Li et al.
(56)

China Cross-sectional
study
Fecal samples
Shotgun
metagenomic
sequencing

-37 COVID-19 and 10
controls in the discovery
cohort
10 COVID-19 and 9
controls in the validation
cohort (controls
matched for age, gender,
and BMI. No antibiotics
and/or probiotics 4
weeks before
enrollment)
According to the severity
index: 7 mild, 29
moderate, 8 severe, and
3 critical (patients from
both cohorts)

a-Diversity
Comparison between COVID-19 and
controls
↓ Number of species
In the intragroup COVID-19 analysis
according to the severity index:
↓ Evenness and Pielou indexes in mild type
vs. controls
b-Diversity
Bray–Curtis separation

Relative abundance comparison
COVID-19 vs. controls
↑ Bacteroidetes phylum and ↑ Bifidobacte
Streptococcus thermophilus, and other tax
patients received probiotics, which includ
longum Streptococcus thermophilus, and L
↑ Bacteroides stercoris, Bacteroides vulgat
massiliensis, Bifidobacterium longum, Stre
Lachospiraceae bacterium, Prevotella bivi
bacterium (2 variants)
↓ Firmicutes phylum
↓ Candidatus saccharibacteria taxa and C
↓ Ruminococcus, Dorea, and Adlercreutzi
↓ Clostridium nexile, Streptococcus saliva
Eubacterium hallii, Enterobacter aerogene
equolifaciens
n

l

i

u

a

a
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TABLE 1A Continued

undance analyses Correlations and other findings

s controls
at 1 and 6 months
a. When the effect of
d at 6 months, overall
r between antibiotic-naïve
s the overall gut
1 month
t least 1 COVID-19
ed a different gut
by:
lgatus, Bacteroides
erium oral taxon,
des distasonis, Clostridium
bacillus delbrueckii,
nella morganii,
lutetiensis
lla aerofaciens,
minococcus torques,
ecis, Adlecreutzia

The first study to demonstrate persistent gut
dysbiosis at 6 months after recovery from
COVID-19 and the link between altered gut
microbiota and common lingering symptoms.
Specific gut microbiome profiles were
associated with the presence of PACS and
with different PACS symptoms
+Correlation between PACS patients with
respiratory symptoms and opportunistic
pathogens
+Correlation between the abundance of
nosocomial pathogens with neuropsychiatric
symptoms and fatigue
−Correlation between the relative abundance
of multiple bacterial species beneficial to host
immunity and the presence of PACS at 6
months
−Associations of walking distance test with
pathogenic bacteria species
+Correlation between walking distance and
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative ab

-Age: 44-year-old
patients and 37-year-old
controls in discovery
cohort; 56-year-old
patients and 46-year-old
controls in validation
cohort
-Men: 51% COVID-19
vs. 70% controls in the
discovery cohort; 50%
vs. 55% in the validation
cohort
BMI: 23 vs. 21 in the
discovery cohort; 23 vs.
23 in the validation
cohort
ABT: 32% in the
discovery cohort; 60% in
the validation cohort
Antiretroviral: 0% in the
discovery cohort; 100%
in the validation cohort
Probiotic during
hospitalization: 0% in
the discovery cohort:
50% in the validation
cohort

Liu et al.
(57)

China A prospective,
multicentered
pilot study with a
6-month follow-
up after hospital
discharge (after
virological
clearance)
Fecal samples
shotgun
metagenomic
sequencing

-68 patients (from 106
enrolled) followed up
from admission to 6
months
68 non-COVID controls
Post-acute COVID-19
symptoms (PACS): at
least 1 persistent
symptom 4 weeks after
clearance ! N = 50/68
at 6 months
Severity of COVID-19:
most patients had mild
to moderate severity of
COVID-19 (81.1%)
-Age, 48 years old
-Men: 47%
-BMI: no data
Comorbidities (45%):
hypertension is the most

a-Diversity
Longitudinal comparison from baseline to 6
months and vs. controls
↓ Shannon diversity and Chao-1 richness at
6 months compared to controls
↓ Shannon diversity and richness at
admission in patients who developed PACS
compared to controls
b-Diversity
Separation among groups: basal COVID-19
naïve antibiotic patients (and overall),
longitudinal time points (1 month and 6
months with essential overlap), and controls
No differences between COVID-19-naïve
antibiotic patients and antibiotic patient
subgroups during follow-up

LEfSe analysis
Longitudinal COVID-19 subgroups v
↓ Ruminococcus and Bifidobacterium (
compared with controls) and other tax
antibiotics was examined at baseline a
gut microbiota composition was simila
and antibiotic-treated patients. Where
microbiota composition was distinct a
PACS analysis: patients who referred a
symptom at 6 months (76%) maintain
microbiota composition characterized
↑ Ruminococcus gnavus, Bacteroides vu
thetaiotaomicron, Lachnospiraceae bac
Bacteroides xylanisolvens, Parabacteroi
innocuum, Flavonifractor plautii, Lacto
Erysipelatoclostridium ramosum, Morg
Lactobacillus acidophilus, Streptococcus
↓ Faecalibacterium prausniztii, Collins
Eubacterium rectale, Blautia obeum, R
Ruminococcus bicirculans, Roseburia fa
n

a
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TABLE 1A Continued

dance analyses Correlations and other findings

ongicatena, Firmicutes
riciproducens, Dorea
1, Roseburia
mans, Gemigger
hominis, Ruminococcus

several short-chain fatty acids and butyrate
producers.
No significant correlations between viral load
and PACS development.

ees
n BNT162b2 vaccinees
lercreutzia
utia obeum, Blautia
ngicatena, Coprococcus
la aerofaciens, and
ved in both vaccine

ignificant dietary
72 randomly selected
tailed dietary intake
fter the second dose of

CoronaVac vaccinees:
-21/37 (56.8%) showed sVNT (surrogate virus
neutralization test) lower than 60% (low
responders). Distinct baseline gut microbiome
from those with sVNT higher than 60% (high
responders).
Bifidobacterium adolescentis was enriched in
high responders while Bacteroides vulgatus,
Bacteroides thetaiotaomicron, and
Ruminococcus gnavus were more abundant in
the low responder.
BNT162b2 vaccinees:
Similar to CoronaVac, low responders had a
persistently low level of Actinobacteria,
particularly B. adolescentis. 4 specific bacteria
in the baseline gut microbiome, including
Eubacterium rectale, Roseburia faecis, and 2
Bacteroides species, B. thetaiotaomicron, and
Bacteroides sp. OM05-12 were significantly
increased in the highest-tier responders with
the top 25% of sVNT level

ass spectrometry; HCWs, healthcare workers; HCs, healthy controls; SCFAs, short-
ative and positive correlation.
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ID Country Study character-
istics

Population characteris-
tics

a/b-Diversity Microbiome modifications: relative abu

common comorbidity
followed by type 2
diabetes mellitus
ABT 23% but analyses
on antibiotic-naïve
patients
Antiviral: 52% LPV/
RTV, 28%RBV, 36%
INF, 5% remdesivir
Symptoms 6 months:
fatigue, poor memory,
hair loss, anxiety,
difficulty sleeping
They documented
dietary records during
the time of
hospitalization
Exclusion criteria for
non-COVID-19 controls
were the use of
antibiotics in the past 6
months, the use of
laxatives or antidiarrheal
drugs in the past 3
months, and recent
dietary changes

equolifaciens, Coprococcus comes, Dorea l
bacterium CAG-83, Agathobaculum buty
formicigenerans, Eubacterium sp CAG-25
inulinivorans, Ruthenibacrerium lactatifo
formicilis, Enterococcus avium, Roseburia
lactaris

Ng et al.
(58)

China Prospective
observational
study
Fecal samples
Shotgun
metagenomic
sequencing

-138 adults who have
received 2 doses of
either the inactivated
vaccines (CoronaVac; n
= 37) or the mRNA
vaccine (BNT162b2; n =
101)
-Age; 47 years
-Men: 32.6%
-BMI 38.4% were
classified as OWOB (i.e.,
BMI ≥ 23).
It is a study to
determine whether
baseline gut microbiome
composition was
associated with the
immune response to
COVID-19 vaccines

a-Diversity
↓ At 1 month after the second dose of
vaccination compared with baseline samples
in both vaccine groups
b-Diversity
Shift at 1 month after the second dose of
vaccination compared with baseline samples
in both vaccine groups

At the species level:
↑ Bacteroides caccae in CoronaVac vaccin
↑ Bacteroides caccae and Alistipes shahii
↓ Common bacterial species including A
equolifaciens, Asaccharobacter celatus, Bla
wexlerae, Dorea formicigenerans, Dorea l
comes, Streptococcus vestibularis, Collinse
Ruminococcus obeum CAG 39 were obse
groups
↓ Actinobacteria and Firmicutes
Note: None of the participants reported
changes during the study period. Among
participants, no significant changes in de
were recorded at baseline and 1 month a
vaccination
Note: BNT162b2 ! Comirnaty

ICU, Intensive Care Unit; BSI, bloodstream infections; OWOB, overweight and obese; sVNP, surrogate virus neutralization test; UPLC-MS, ultra-performance Liquid chromatography-m
chain fat acids; BPBs, butyrate-producing bacteria; upward arrows “↑”, increase; downward arrows “↓”, decrease. In correlation and other findings, “−” and “+” means respectively ne
n

r
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Lifestyle and diet were not analyzed, even though both factors

are crucial elements in shaping microbial core composition (32,

59, 60).

The material source was a fecal sample in 19/22 (86%) studies,

while three of 22 (14%) were based on anal swab analysis. Most

studies (12/22) used next-generation sequencing (NGS) technology

through ribosomal-S16-DNA hypervariable region sequencing (V4

or V3–V4 regions preferred) to analyze microbiota; shotgun

metagenomic sequencing was used in seven of 22 studies, whereas

one study used multi-omics methodologies (55), one study

nanopore technology (38), and another used quantitative PCR (39).

Regarding patients’ characteristics, all studies included both

men and women, but no studies considered sexual behavior,

although its impact on microbiota core is known in several

disease models (61, 62). Only one-third of studies (seven of 22)

included BMI data, and control groups, when included, were often

matched for BMI. Fifty percent of the subjects in the studies, 50%

were aged 50 or younger.

The small sample size was a limit reported by several authors,

with a total number of enrolled subjects below 40 in almost two-

thirds of studies 13/21 (62%). The COVID-19 severity index was

reported by most studies, with high heterogeneity in the

works analyzed.

Scarce data were available on comorbidities and concomitant

medications; hypertension was the most commonly reported,

followed by diabetes.

No data were generally reported on COVID-19 vaccine status

for subjects enrolled after the introduction of the vaccine; only one

study investigated the microbiota changes in two groups of patients

vaccinated with two different vaccines (58). During hospitalization,

both antibiotics and/or antiretroviral treatments and probiotics

were administered in several studies; however, these data were

not critically investigated in most published studies.
2.2 Microbiota analysis

After assessing the possible confounding factors, we compared

the gut microbiota features according to two ecological measures,

a-diversity and b-diversity, in association with relative

abundance results.

In humans, a-diversity measures the level of diversity within

individual samples; it includes several indexes gathered in two

groups: richness indexes (Faith index, Observed and Chao-1

index) and evenness indexes (Shannon index, Peliou’s evenness,

Simpson, and inverse Simpson indexes) (63, 64).

In parallel to other disease models, a-diversity at the gut level,

more frequently described with richness indexes (like Chao-1),

resulted in a global reduction in all COVID-19 patients compared

to controls (see details in Table 1A). An interesting study observed

this reduction already in the acute phase of the disease (48). On the

contrary, Yeoh et al. (43) did not report alterations in a-diversity
indexes, even though they enrolled most COVID-19 patients with a

mild or moderate severity index (90% of patients).

In a Korean longitudinal analysis performed on patients who

were asymptomatic or affected by the mild disease, an increase in a-
Frontiers in Immunology 14
diversity (Peliou’s evenness) was observed in the recovered

subgroups compared to infected patients (51). Interestingly, Xu

et al. (46) observed a trend toward increased bacterial diversity from

the early to late stages of COVID-19 in a 35-day longitudinal

analysis of inpatients with mild disease. Furthermore, the same

study described an interesting synchronous restoration of

microbiota in both gut and upper airways, suggesting a possible

role of the gut-lung axis.

Moreira-Rosario et al. (53) described a reduced a-diversity
gradient trend (Shannon index) from mild to severe COVID-19

patients, and Chen et al. (48) showed how richness was not restored

to a normal level even after 6 months in 30 COVID-19 patients

(one-third with severe disease), although a trend toward healthy

controls was noticed.

b-Diversity measures the level of diversity (or dissimilarity)

between samples, mostly by using a Permanova analysis (65, 66). All

the studies showed a difference between COVID-19 patients and

controls, in general, and according to different severity

index categories.

Mazzarelli et al. (44) have shown a difference in b-diversity
among patients hospitalized in regular wards compared to ICU

patients and hospitalized no-COVID-19 controls, although no data

on prior antibiotic intake was gathered. Regarding this aspect, two

studies (9, 43) compared microbiota composition in COVID-19

patient subgroups (with and without antibiotics) with healthy

controls, confirming a separation among groups, with high

heterogeneity revealed in the antibiotic subgroup.

Regarding relative abundance analysis, several studies described

a significant reduction in Firmicutes members, especially for BPBs

(both Lachnospiraceae and Ruminococcaeae families, mostly

Faecalibacterium prausnitzii) in COVID-19 patients compared to

no-COVID controls, while discordant data have been reported

about Erysipelotrichaceae and Veillonellaceae taxa.

Conversely, several facultative anaerobic bacteria like members

of the Bacilli class, resulted in increased growth, mostly in the

Enterococcaceae family as well as Streptococcaceae and

Lactobacillaceae (Table 1). Contrasting data have been described

regarding the Bacteroidetes phylum during COVID-19, with some

works reporting an increase in Bacteroidetes phylum with a

consequent reduction of the Firmicutes/Bacteroidetes ratio (53) as

opposed to other studies reporting a reduction in taxa belonging to

this phylum. Other factors, like diet and/or antibiotics, could play a

role in these findings, highlighting the importance of assess for

confounding factors when considering the study results.

Reduction in the Actinobacteria phylum, including the

Bifidobacterium genus and Collinsella genus (recently associated

with SARS-CoV-2-ACE2 binding inhibition), represents another

significant finding in COVID-19 studies (67). The Bifidobacterium

genus was found to be increased only in three studies (notably, in

one study, a probiotic including this taxon was administered (56)),

while the Collinsella genus resulted was increased in a few other

studies (40, 45, 49); the reason for this last difference is not clear.

Proteobacteria resulted increased in almost all studies performed on

COVID-19 patients, although some authors have described an

increase in Enterococcaceae/Enterobacteriaceae ratio (39),

probably linked to the use of antibiotics. Finally, the Akkermansia
frontiersin.org
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genus (Verrucomicrobia), a propionate-producing bacterium genus

with anti-inflammatory features, resulted in reduced COVID-19

(but not in all studies). To note, the severity of COVID-19 disease

seems to emphasize differences in the relative abundance of gut

microbiota, although most studies included asymptomatic/mild/

moderate categories.
3 Airway microbiota dysbiosis in acute
COVID-19

We analyzed 13 studies on airway microbiota changes during

SARS-CoV-2 infection, mostly comparing COVID-19 patients with

healthy subjects and/or patients with different respiratory

diseases (Table 1B).

Nasopharyngeal swabs were the most studied material, with the

exception of three studies analyzing samples from the lower

respiratory tract, such as bronchoalveolar lavage fluid and

endotracheal aspirate. Bacterial communities were prevalently

mapped by amplification of 16S gene hypervariable regions, with

only a few studies employing genome sequencing. Eighty percent of

the studies were set in China or Europe (five studies each). No data on

possible confounding factors such as diet, BMI, relevant comorbidity,

and antibiotic/antiviral consumption were investigated.

Overall, patients with SARS-CoV-2 infection showed

diminished diversity in airway microbiota composition, by means

of Shannon, Simpson, and Chao-1 indexes, when compared to both

healthy subjects (46, 69, 70, 75, 77–79) and patients with

community-acquired pneumonia (70).

A similar reduction in diversity measures is reported in

critically ill COVID-19 patients, as opposed to subject with

milder symptoms, other coronavirus infections, and healthy

subjects (69). Interestingly, a reduction in diversity and greater

difference at principal coordinate analysis (PCoA) is observed in

patients needing mechanical ventilation compared to non-

intubated patients regardless of SARS-CoV-2 infection (75). Such

data suggest that COVID-19 impacts airway microbiota diversity

mostly in severe infections, and this imbalance is strongly biased by

other confounding factors such as intubation.

Of note, a number of the report showed no significant

differences between COVID-19 patients and the control group in

both bacterial richness and diversity/evenness indexes (observed

species, Shannon index, and inverse Simpson index) (68, 71, 76).

These findings can be partially explained by the heterogeneous

population included in the studies and by the different methods

used to sequence bacterial communities and assess diversity.

Curiously, Rosas-Salazar et al. (74) observed higher overall a-
diversity in SARS-CoV-2-infected subjects compared to healthy

controls, with no significant differences in any of the measured

b-diversity.
COVID-19 severity correlates to a-diversity in oropharyngeal

samples at the first time point, with lower diversity associated with

higher disease severity (79). However, no significant association

between high versus low SARS-CoV-2 viral load and any of the a-
diversity or b-diversity metrics was observed (74).
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In the studies analyzed, the airway microbiota of healthy

individuals is characterized by the predominance of Bacteroidetes

and Comamonadaceae taxa (46, 68), and no specific microbiota

pattern has been found in COVID-19 patients. However, some

peculiar alterations in relative composition have been observed.

Reduced abundance in Proteobacteria and Fusobacteria phyla is

reported in subjects with SARS-CoV-2 infection as compared to

controls, and decreased oropharyngeal Proteobacteria and

Actinobacteria phyla correlate with greater disease severity (71,

79). At the genus level, patients with more severe diseases have

significantly lower relative abundances of Haemophilus,

Actinomyces, and Neisseria, all of which are abundant in the

normal oropharyngeal microbiome (74, 79). Interestingly,

Fusobacterium periodonticum is less represented in COVID-19

patients, negatively correlating with the severity of symptoms

(71). A possible explanation is that these bacteria could modulate

sialic acid metabolism and regulate ACE expression, impacting

SARS-CoV-2 binding to the epithelium of the respiratory tract, as

shown for other intestinal microorganisms (71, 80).

Conversely, COVID-19 patients show a high abundance of

Saccharibacteria (formerly known as TM7), Streptococcus mitis

group, Streptococcus bovis group, and Rothia mucilaginosa taxa

(46, 72, 73), the latter often associated with cancer and

bacteremia (81).

Significant changes among operational taxonomic unit (OTU)

abundances are also reported, with decreased complexity of

coabundance networks in severe COVID-19. OTUs associated

with higher disease severity are members of the genus Prevotella

and Veillonella. Particularly, it has been postulated that Prevotella

spp. can worsen disease progression by activating immune signaling

pathways that modulate inflammation (73).

Critically ill COVID-19 patients display a complete depletion of

Bifidobacterium and Clostridium genera, with the presence of

Salmonella, Scardovia, Serratia, and Pectobacteriaceae taxa. In

these subjects, there is also a relative abundance of the

Pseudomonaceae family, known to be associated with pathogenic

conditions such as severe acute respiratory syndromes (69).

Another characteristic of the airway microbiota in severe

COVID-19 patients is low diversity and more richness in non-

fermenting bacteria like Acinetobacter, Pelomonas, Ralstonia, and

Sphingomonas genera. As mentioned before, these changes might be

attributed to intubation and mechanical ventilation rather than

COVID-19 pneumonia per se (75).

Interestingly, similar characteristics of an imbalanced

microbiota wi th an enr ichment of pro inflammatory

Enterobacteriaceae are found in patients with other respiratory

diseases (46).

To date, there is scarce data coming from longitudinal studies

on airway microbiota in SARS-CoV-2 infection. Analyzing throat

swabs from 64 patients, 35 of which with confirmed infection, Xu

et al. (46) postulated that a peculiar microbial community might

represent the progressive imbalance of the respiratory microbiota.

Interestingly, even though over half COVID-19 patients analyzed

maintained relatively stable microbiome community types, 70% of

the subjects experienced a gradual decrease of microbial diversity,
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TABLE 1B Selected studies on airway microbiota and COVID-19.

ID Country Study
characteristics

Population
characteristics

a/b-diversity Microbiome modifications:
relative abundance analyses

Correlations and
other findings

De Maio
et al. (69)

Italy Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

40 patients; 18
with confirmed
SARS-CoV-2
infection, 22 HCs

No difference
(observed species,
Shannon index,
and inverse
Simpson)

Most sequences in all samples (98% in
both SARS-CoV-2 and HCs) belonged to
5 phyla: Firmicutes (42% and 51%,
respectively), Bacteroidetes (25% and
20%, respectively), Proteobacteria (18%
and 16%, respectively), Actinobacteria
(8% and 6%, respectively), and
Fusobacteria (5% and 5%, respectively)

Rueca et al.
(70)

Italy Cross-sectional study
Nasal and
oropharyngeal swabs
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

39 patients, 21
with confirmed
SARS-CoV-2
infection; 8
affected by a
different human
coronavirus
(HKU, NL63, and
OC43); 10 HCs
Disease severity:
critically ill (ICU)
vs.
paucisymptomatic
(Pauci)

Chao-1 decreased
SARS-CoV-2 ICU
as compared to
SARS-CoV-2
Pauci patients,
other HCoVs and
HCs
Shannon index
decreased in
SARS-CoV-2 ICU
patients compared
to HCs and SARS-
CoV-2 Pauci
patients

At the phylum level:
-Deinococcus Thermus was present only
in controls as compared to SARS-CoV-2
ICU patients, SARS-CoV-2 Pauci, or
other HCoV patients
- Candidatus Saccharibacteria (TM7) was
strongly increased in negative controls
and SARS-CoV-2 Pauci patients as
compared to SARS-CoV-2 ICU patients
and Other HCoV patients
At the family level:
- Alicyclobacillaceae, Chromobacteriaceae,
Deinococcacaee, Hydrogenophilaceae,
Thermoanaerobacteraceae,
Sporomusaceae, and
Thermoanaerobacterales family III.
Incertae Sedis were exclusive
microorganisms detected in neg control
patients
-Pectobacteriaceae were exclusive to
SARS-CoV-2 ICU patients
At the lower taxonomic level:
-Johnsonella, Tepidiphilus,
Thermoanaerobacter,
Thermoanaerobacterium, Thermosinus,
and Variovorax were exclusive to neg
control patients
-Salmonella, Scardovia, Serratia, and
unk_Pseudomonadaceae were included
exclusively in SARS-CoV-2 ICU patients

SARS-CoV-2 ICU
patients displayed a
complete depletion of
Bifidobacterium and
Clostridium
The presence of
Moraxellacaea spp.
was observed
exclusively in SARS-
CoV-2 Pauci patients
The presence of
Pseudomonaceae was
found exclusively in
SARS-CoV-2 ICU

Shen et al.
(71)

China Cross-sectional study
BALF
RNA extraction,
reverse-transcripted,
amplified

53 patients, 8 with
confirmed SARS-
CoV-2 infection;
25 with CAP, and
20 healthy
controls

Significative lower
in patients with
pneumonia (both
COVID-19 and
CAP)

3 types of microbiotas:
-Type I dominated by the possible
pathogens
-Type II were mostly environmental
organisms (contamination)
-Type III mainly commensal species

Nardelli
et al. (72)

Italy Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

38 patients, 18
with confirmed
SARS-CoV-2
infection; 20 HCs

No difference
(Chao-1: p = 0.28,
Shannon: p =
0.27, and
Simpson: p =
0.32)

5 phyla prevalent in both HCs and
COVID-19:
- Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, and Fusobacteria
In COVID-19:
-Significant lower abundance of
Proteobacteria and Fusobacteria
-At the genus level, reduced Leptotrichia,
Fusobacterium, and Haemophilus

Negative correlation
between the relative
abundance of
Fusobacterium
periodonticum and the
severity of the
patient’s symptoms

Budding
et al. (73)

The
Netherlands

Cross-sectional study
Throat swab
Differentiation of
species by length
polymorphisms of
the 16S-23S rDNA
region combined
with phylum-specific
sequence

135 patients, 46
with confirmed
SARS-CoV-2
infection, 89 HCs

No data A cluster of 77 samples with a similar
microbiota composition (both HCs and
COVID-19) with a high abundance of
Haemophilus parainfluenzae, Neisseria
cinerea, Streptococcus mitis group,
Streptococcus bovis group, Leptotrichia
buccalis, and Rothia mucilaginosa
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TABLE 1B Continued

ID Country Study
characteristics

Population
characteristics

a/b-diversity Microbiome modifications:
relative abundance analyses

Correlations and
other findings

polymorphisms of
the 16S rDNA

Ventero
et al. (74)

Spain Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

74 patients, 56
with confirmed
SARS-CoV-2
infection; 18 HCs

No data Most abundant phylum:
-Firmicutes (52.9% ± 4.0%)
-Bacteroidota (22.1% ± 6.1%)
-Proteobacteria (12.7% ± 7.3%)
-Actinobacteria (5.4% ± 0.6%)
At the genus level:
-Streptococcus (25.2% ± 2.0%)
-Prevotella (16.2% ± 5.7%)
-Veillonella (14.4% ± 2.2%)
-Haemophilus (5.23% ± 4.78%)
-Moraxella (3.2% ± 3.6%)
OTUs:
-Bacteroidota (18)
-Firmicutes (25)

The most common
genera among the
OTUs found
exclusively on
COVID-19-positive
patients were
Prevotella (13),
followed by
Leptotrichia (4) and
Streptococcus
Among the OTUs
positively associated
with COVID-19
severity, 3 were
classified as members
of the genus
Prevotella, and 1 to a
closely related genus,
Alloprevotella

Rosas-
Salazar
et al. (75)

USA Cross-sectional study
Nasal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

59 patients, 38
with confirmed
SARS-CoV-2
infection; 21 HCs

Higher a-diversity
in SARS-CoV-2
No differences in
any of the
measured b-
diversity metrics
between groups

HCs:
-Staphylococcus (41.56%),
Corynebacterium_1 (28.09%), Moraxella
(8.48%), Dolosigranulum (3.56%), and
Neisseria unclassified (1.98%)
COVID-19:
-Corynebacterium_1 (33.66%),
Staphylococcus (29.34%), Dolosigranulum
(5.29%), Peptoniphilus (3.91%), and
Lawsonella (3.22%)
COVID-19 with high viral load:
-Corynebacterium_1 (35.69%),
Staphylococcus (28.83%), Peptoniphilus
(6.67%%), Anaerococcus (4.79%%), and
Bacteroides (3.83%)
COVID-19 with low viral load
-Corynebacterium_1 (41.44%),
Staphylococcus (20.75%), Dolosigranulum
(12.30%), Lawsonella (4.50%), and
Peptoniphilus (2.76%).

No correlation
between SARS-CoV-2
viral load and
diversity measures

Miao et al.
(76)

China Cross-sectional study
BALF, ETA
RNA and DNA
extraction, reverse
transcription, and
use of DNA libraries

50 airway samples
from 323 patients
with confirmed
SARS-CoV-2
infection

a-Diversity of
critically severe
COVID-19
patients is lower
than non-
intubated patients
but similar to
intubated non-
COVID-19 group
PCoA analysis: the
greatest difference
between non-
intubated patients
versus the other 2
groups with
intubation

Higher relative abundance in COVID-19:
-Acinetobacter, Klebsiella, Pelomonas,
Ralstonia, and Sphingomonas
Lower relative abundance in COVID-19:
-Actinomyces, Haemophilus, Neisseria,
Prevotella, Streptococcus, and Veillonella

Braun et al.
(77)

Israel Cross-sectional study
Nasopharyngeal swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

33 patients with
confirmed or
suspected SARS-
CoV-2 infection

No difference in
a-diversity (faith’s
phylogenetic
diversity,
Shannon) and
evenness

No cluster identified
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TABLE 1B Continued

ID Country Study
characteristics

Population
characteristics

a/b-diversity Microbiome modifications:
relative abundance analyses

Correlations and
other findings

(Wilcoxon rank
sum test)
Unweighted
Unifrac-based
PCoA: no
clustering by
COVID-19 test
results

Zhang et al.
(78)

China Cross-sectional study
Nasopharyngeal swab
and sputum
RNA isolation,
reverse transcription
with N6 random
primers after adaptor
ligation with T4
ligase and library
amplification,
sequencing

187 patients, 62
with confirmed
SARS-CoV-2
infection; 125 HCs

Shannon diversity
index in sputum
samples is
significantly lower
in COVID-19
cases

31 species in nasopharyngeal samples and
178 species in sputum samples with
different abundance between COVID-19
and non-COVID-19 cases
Most species less abundant in COVID-19
cases

Mostafa
et al. (79)

China Cross-sectional study
Nasopharyngeal swab
cDNA sequencing
for sequencing poly
(A) RNA full-length
transcripts

50 patients; 40
with confirmed
SARS-CoV-2
infection; 10 with
suspected SARS-
CoV-2 infection
Each patient was
assigned a 4-point
severity index
according to the
clinical
presentation

Lower diversity in
COVID-19
(Shannon
diversity index,
Chao-1 richness
estimate, Simpson
diversity)

Propionibacteriaceae are proportionately
more abundant in COVID-19
Corynebacterium accolens decreased in
COVID-19

Merenstein
et al. (80)

USA Longitudinal study
Oropharyngeal,
nasopharyngeal,
ETA, BALF
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

83 patients with
confirmed SARS-
CoV-2 infection;
42 HCs

Lower diversity in
COVID-19

Upper airway microbiota comparison
between COVID and HCs:
-COVID-19 patients lower abundance of
Proteobacteria, a greater abundance of
Bacteroidetes
Association with disease severity:
-Different microbiota between COVID-19
patients with moderate/severe (WHO 4–
6) and critical/fatal outcomes (WHO 7–
10)
-Decreased oropharyngeal Proteobacteria
and Actinobacteria correlated with greater
WHO score over the course of
hospitalization
-At the genus level, patients with more
severe disease had significantly lower
relative abundances of Hemophilus,
Actinomyces, and Neisseria, all of which
are abundant in the normal
oropharyngeal microbiome

a-Diversity in
oropharyngeal samples
at the first time point
correlated with
COVID-19 severity,
with lower diversity
associated with higher
severity
The rate of change in
oropharyngeal
bacterial community
structure was
significantly greater in
COVID-19 than in
non-COVID subjects

Xu et al.
(46)

China Longitudinal study
Throat swab
Amplification V1–
V2–V3 regions of the
bacterial 16S rRNA

64 patients, 35
with confirmed
SARS-CoV-2
infection, 10 with
other diseases

Decrease in a-
diversity,
significantly lower
richness and
evenness in
COVID-19

HCs:
-Prevalence of genus Bacteroides and
unclassified Comamonadaceae
COVID-19, 4 community types, with a
progressive imbalance of microbiota:
-Type 1: Alloprevotella
-Type 2: Porphyromonas, Neisseria,
Fusobacterium, and unclassified
Bacteroidales
-Type 3: Pseudomonas
-Type 4: Saccharibacteria incertae sedis,
Rothia, and unclassified Actinomycetales

Among 22 COVID-19
adults who had
specimens at 2 or
more timepoints, over
half (12, 54.5%)
maintained a relatively
stable microbiome
community types
F
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ICU, Intensive Care Unit; HCs, healthy controls; BALF, bronchoalveolar lavage fluid; CAP, community acquired pneumonia; OTU, operational taxonomic unit; ETA, endotracheal aspirate.
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with the enrichment of opportunistic pathogenic bacteria such as

Saccharibacteria and Rothia and a reduction of Alloprevotella. This

shift toward dysbiosis shows how impaired homeostasis of

inflammation pathways, a hallmark of the advanced stage of

SARS-CoV-2 infection, affects microbial communities and can

represent a biomarker of disease progression.
4 Microbiota dysbiosis in long-COVID

4.1 Microbiota changes in long-COVID

Few studies tried to investigate a-diversity alterations during

long-COVID: in this setting, Zhuo et al. (52) reported a reduced

Shannon index in a 15-patient cohort, followed up for 3 months

with at least one persistent COVID-19 symptom. Coherently with

these findings, in a 6-month follow-up, Liu et al. (57) have

confirmed in long-COVID patients both a persistently reduced a-
diversity (Shannon and Chao-1 indexes) and different gut

microbiota clusters compared to controls. Notably, the subgroup

who had COVID-19 at baseline without developing long-COVID

did not show the same dysbiosis pattern. Reduced BPBs were

reported in both COVID-19 subgroups compared to controls, but

only in the long-COVID subgroup the microbial composition was

different compared to controls at 6-month follow-up (Table 1A).

Interestingly, the authors found no correlation between viral load in

the gut and respiratory levels and long-COVID development at 6

months, nor did they find any effect of previous antibiotic intake.

On the contrary, in the long-COVID subgroup, increased fecal

relative abundance of opportunistic pathogens was positively

associated with fatigue, respiratory and neuropsychiatric

symptoms, while decreased other anti-inflammatory/BPB taxa

was negatively correlated with long-COVID at 6 months.

Coherently, Zhuo et al. (52) described both a negative correlation

between some taxa (Faecalibacterium prausnitzii, Intestinimonas

butyriproducens) and chronic respiratory symptoms as well as a

positive correlation between Proteobacteria members and long-

COVID symptoms.
4.2 Microbiota role in neurological and
pulmonary symptoms

Persistent dysbiosis in long-COVID and its pathogenic role still

need to be studied in humans, while rodent and non-human

primate animal models of COVID-19 already showed long-term

changes in both lung and gut microbiome (82, 83). The influence of

gut microbiota on neurological symptoms, via the gut-brain axis,

has been investigated in the animal model since the early decades of

the new millennium. In murine models, Bercik at al. suggested that

gut microbiota could influence the behavior of mice (84). Recently,

Carloni et al. identified a closing in the choroid plexus vascular

barrier during gut inflammation, suggesting a link between

intestinal inflammation and neurologic/psychiatric symptoms, like

a deficit in short-term memory and anxiety-like behavior (85).
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Moreover, a recent review summarized three different arms of

inflammation for the gut-brain axis in a non-COVID-19 setting,

where the systemic humoral pathway, cellular immune pathway,

and neuronal pathway are involved (86). By translating these

inflammatory patterns to the long-COVID setting, where gut

dysbiosis persists at least after 6 months of follow-up, we can

conclude that this microbial imbalance plays a role in

maintaining both a chronic inflammatory status at the gut level

and favoring the development of neurological/neuropsychiatric

symptoms, as seen in the animal models mentioned above.

However, it is not clear which immunologic pathway is dominant

during long-COVID. It is plausible that several factors could coexist

in the same disease model: (a) reduction in BPBs leading the

butyrate loss linked to neuropsychiatric disorders (87); (b)

development of the cytokine release syndrome during COVID-19,

in particular with increased kynurenine:tryptophan ratio, already

linked to depression syndrome (88); and (c) changes in L-DOPA

production, regulated by ACE2 activation at the gut level (89).

There is still a lack of evidence on the role of microbiota

dysbiosis in respiratory symptoms during long-COVID. Shortness

of breath, frequently experienced by subjects after recovery from

primary SARS-CoV-2 infection, could represent a clinical

manifestation of the fibrosis secondary to chronic inflammation

of lung parenchyma, leading to reduced total lung capacity. Such a

condition is already linked to gut dysbiosis in non-COVID patients,

as described in a recent review (90).
5 Relationship between gut dysbiosis,
fecal SARS-CoV-2 replication, and
immune-inflammation in COVID-19

It is well known that some microbial species can modulate

ACE2 receptor expression and/or prevent SARS-CoV-2-ACE2

binding (67). Moreover, some studies found that the gut

microbiota composition of COVID-19 patients, especially during

hospitalization, is correlated with plasma concentrations of several

cytokines, chemokines, and inflammation markers, suggesting that

the gut microbiota could play a role in modulating host immune

response and potentially influence disease severity and

outcomes (43).

Interestingly, Zhuo et al. (50) studied a-diversity in a COVID-

19 cohort stratified according to the presence of fever, discovering

that COVID-19 patients with fever have shown a trend in reduced

Chao-1 index compared to patients without fever, and similarly a b-
diversity separation measured with Bray–Curtis. A negative

correlation between PBPs and both inflammatory markers (9, 39,

43) and viral gut SARS-CoV-2 replication (40) was reported, despite

the presence of GI disease and/or virological clearance.

Interestingly, Zuo et al. (9) have discovered a negative correlation

between Bacteroides taxa and fecal SARS-CoV-2 load and a positive

correlation between Erysipelotrichaceae taxa and fecal SARS-CoV-2

replication. In contrast, Moreira-Rosario et al. (53) failed to see an

association between fecal RNA viral replication and COVID-

19 severity.
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Wu et al. (46) reported a positive correlation between fecal

SARS-CoV-2 replication and P. copri, E. dolichum taxa and a

negative correlation between SARS-CoV-2 replication and other

taxa like Streptococcus, Dialister, Alistipes, Ruminococcus,

Clostridium, Bifidobacterium, and Haemophylus genera.

Finally, a longitudinal interventional study implementing fecal

microbiota transplantation (FMT) in COVID-19 (45) described

modulation of both gut microbiota core and peripheral lymphocyte

subsets, with an increase in healthy taxa associated with a reduction

in peripheral naïve B cells and an increase in memory B cells.

Data coming from clinical trials enrolling COVID-19 patients

analyzing other possible drugs modulating gut microbiota, such as

probiotics, are still scarce and not conclusive (91).
6 Conclusion

Microbiota homeostasis plays a role in human health and

disease, and that applies to SARS-CoV-2 infection as well. During

the last 2 years, several studies reported dysbiosis in COVID-19

patients for both gut and lung microbial composition. The main

microbiota alterations that have been observed during COVID-19

were (a) significant reduction in a-diversity, already during the

early phase of the disease and especially at the gut level, with a

gradient from mild to severe clinical categories; (b) different b-
diversity composition of microbiota core, characterized by a profile

with higher facultative anaerobic bacteria and lower obligate

anaerobic bacteria; and (c) possible connections between gut

dysbiosis and peripheral inflammation markers, such as cytokines.

Data from longitudinal analyses currently available do not

clearly show whether gut dysbiosis in COVID-19 ends with a

complete functional restoration or if it does persist, posing the

physiopathological premises for long-COVID. Indeed, a prolonged

alteration of gut microbiota following the primary infection could

contribute to causing some of the neurological and respiratory

symptoms reported via the gut-brain and gut-lung axis. Further

longitudinal studies are needed to characterize these conditions and

assess the impact of prior comorbidity on the natural history of

dysbiosis in SARS-CoV-2 infection.

Moreover, a knowledge gap regarding the role of FMT and other

therapeutic approaches emerged, reinforcing the necessity for new

evidence on the interaction of microbiota with host immunity. Such

information is paramount to developing microbiota interventions

aimed at improving COVID-19 and long-COVID outcomes.
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