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Type 2 diabetes mellitus (T2DM) is a complex disorder comprehensively influenced by

genetic and environmental risk, and research increasingly has indicated the role of

microbial dysbiosis in T2DM pathogenesis. However, studies comparing the

microbiome characteristics between T2DM and healthy controls have reported

inconsistent results. To further identify and describe the characteristics of the intestinal

flora of T2DM patients, we performed a systematic review and meta-analysis of stool

microbial profiles to discern and describe microbial dysbiosis in T2DM and to explore

heterogeneity among 7 studies (600 T2DM cases, 543 controls, 1143 samples in total).

Using a random effects model and a fixed effects model, we observed significant

differences in beta diversity, but not alpha diversity, between individuals with T2DM and

controls. We identified various operational taxonomic unit (OTUs) and bacterial genera

with significant odds ratios for T2DM. The T2DM signatures derived from a single study by

stepwise feature selection could be applied in other studies. By training on multiple

studies, we improved the detection accuracy and disease specificity for T2DM. We also

discuss the relationship between T2DM-enriched or T2DM-depleted genera and

probiotics and provide new ideas for diabetes prevention and improvement.
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INTRODUCTION

According to the 2019 Ninth International Diabetes Federation Diabetes Atlas, there are

approximately 463 million diabetic patients worldwide (1). It is expected that the number of

diabetic patients will increase from 578.4 million in 2030 to 700.2 million in 2045, representing an
increasing public health threat throughout the world (1). Epidemiologically, Type 2 diabetes
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mellitus (T2DM) characterized by glucose intolerance accounts

for approximately 90% of all diabetic patients worldwide (2, 3),

and is a complex multifactorial metabolic disorder involving

genetic (e.g. Tcf7l2, Kcnq1) and environmental lifestyle factors

(e.g. intake of energy-dense refined food, sedentary behavior)

(4–7). Meanwhile, the imbalance between immune cells results in
the production of excess chemokines and proinflammatory

cytokines that promote systemic inflammation and lead to

peripheral insulin resistance. Subsequently, this immunological

dysfunction leads to diabetic patients being more risky toward

many infectious diseases (diabetic foot, diabetic nephropathy,

et al.) (8, 9). Therefore, the study of pathological mechanisms is
of great significance for the effective prevention and treatment

of T2DM.

With the development of high-throughput sequencing

technology, increasing evidence has shown that gut microbiota

dysbiosis, as an important environmental factor, may lead to

diabetes (10–15). Microbial diversity indexes including the
phylogenetic diversity and Chao1 were significantly decreased

in T2DM (16). Studies have also revealed that the gut

microbiome of T2DM is characterized by an enrichment of

opportunistic pathogens (11) and sulfate-reducing bacteria (17,

18) and depletion of probiotics (19) and butyrate-producing

bacteria (11, 17, 18, 20). For example, butyrate-producing

Roseburia has been shown to causally improve glucose tolerance
(21, 22). Wu et al. found that Bifidobacterium and Bacteroides were

less represented in the diabetic group than in the nondiabetic group

(19). A Chinese study suggested that Clostridium coccoides and

Clostridium leptum were significantly lower, while the fecal count of

Lactobacillus was significantly higher in diabetic patients than in

healthy controls (23), which is in line with previous literature
indicating that Lactobacillus might contribute to chronic

inflammation in diabetes development (10, 24). Moreover, several

studies have investigated the effects of modulation of gut microbiota

on improvements of T2DM. A randomized, double-blind, and

placebo-controlled study (25) showed that consumption of yogurt

containing Bifidobacterium lactis BB-12 and Lactobacillus

acidophilus LA-5 for 6 weeks significantly reduced the levels of
blood glucose and glycated hemoglobin (HbA1) and increased the

levels of erythrocyte superoxide dismutase (SOD) and glutathione

peroxidase (GPx) activity and total antioxidant capacity. Similarly,

the blood glucose, insulin, homeostasis model assessment for insulin

resistance (HOMA-IR) index and inflammation were significantly

reduced by probiotic intervention in a randomized double-blind
placebo-controlled study of 61 Saudi T2DM patients (26). Recently,

Mocanu et al. found that fecal microbiota transplantation (FMT)

combined with low-fermentable fibers interventions regulated gut

microbiota and improved HOMA2-IR and insulin sensitivity of

obesity and metabolic syndrome patients (27). Therefore, gut

microbiota dysbiosis is associated with T2DM, and gut microbial

modulation is likely an effective strategy to improve T2DM by
precision supplement of probiotics and even FMT.

Althoughmany studies have monitored the gut microbiota and

investigated its relationship with T2DM in different populations

(28–32), inconsistent results describing microbial differences have

been reported between diabetic and healthy individuals.

For example, Larsen et al. found that the proportions of the

phylum Firmicutes and class Clostridia were significantly reduced

in T2DM patients compared to the control group (10); whereas

one Pakistani study with 60 individuals revealed that bacteria from

Firmicutes along with those from Clostridia and Negativicutes

were predominant in obese T2DM patients (28). On the other
hand, Doumatey et al. reported a significantly lower richness in

T2DM (30), while Ahmad et al. and Chávez-Carbajal et al.

observed no significant difference in the alpha diversity index

observe (28, 29). In short, the key issue associated with the gut

microbiota differences between T2DM and healthy controls is the

lack of apparent reproducibility in different studies when
identifying the microbiome characteristics in T2DM.

Here, we systematically reviewed, collected, and analyzed 16S

rRNA gene raw sequencing data from 7 studies that investigated

the intestinal microbiome of T2DM patients in relation to

controls, and performed a meta-analysis on gut bacterial

alpha-diversity, beta-diversity, community composition, as well
as the analyses of classification model and bacterial correlation.

We were aiming to better understand the gut microbe differences

between T2DM patients and controls across countries, develop a

complementary approach for the risk assessment of T2DM, and

reveal the potential of probiotic therapeutic measures for T2DM

from the perspective of intestinal microecology.

MATERIALS AND METHODS

Database Search and Study Selection
In adherence with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guidelines (33), a
systematically computerized literature search of PubMed,

EMBASE, and Web of Science was conducted until May 2020.

The search strategy was as follows: diabetes (T2DM) and fecal

microbiota and human and 16S rRNA. Additionally, the

reference lists of identified original articles and reviews were

reviewed manually for potential studies that might have been

missed during the search. After an overview of the titles and
abstracts, 22 publications were retained for further review of the

full texts (Table S1). Studies were finally included if they met the

following inclusion criteria: 1) studies were based on human fecal

samples from T2DM patients and healthy subjects; 2) samples

were sequenced by NGS for the 16S rRNA gene; and 3) raw

sequencing data, barcodes, and metadata were publicly available
or provided by the authors until October 20, 2020 upon request

by email. Finally, sequencing datasets and metadata from 7

studies were obtained for subsequent analyses (16, 28–32),

excluding the other 15 studies due to incomplete information

on sequences, barcodes, or metadata (10, 15, 23, 34–44)

(Table 1). The baseline clinical characteristics of participants

recruited in the 7 studies were summarized in Table S2. The
other five data-sets downloaded for model validation were

generated from patients who suffered from the following

diseases: colorectal cancer (CRC) (45), Parkinson (46),

inflammatory bowel disease (IBD) (47), non-alcoholic fatty

liver disease (NAFLD) (48), and fat syndrome (49).
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Microbiome Data Processing
The V4 or V3-V4 region of the 16S rRNA gene was the most

frequently sequenced fragment with the Illumina (MiSeq or

HiSeq) or Ion Torrent platform (PGM or S5) among the

included studies (Table 1). Despite the different sequencing
platforms and hypervariable regions of the 16S rRNA gene, we

applied a uniform analytical pipeline to minimize the impact of

these differences. Briefly, raw reads were quality filtered by

Usearch (50) with -fastq_maxee 0.5 or were assembled using

FLASH (v1.2.11) by with -x 0.2 and -M 200 for V3-V4/-M 250

for V3-V5/-M 150 for the V4 region. Closed-reference OTU
picking at 97% identity was performed with Usearch against the

SILVA132 database (51). For all taxonomic and diversity

analyses, samples with sequencing depths less than 10000

sequences in the OTU table were not used for downstream

analyses. The OTU table was rarefied to the lowest sequencing

depth within each study.

Statistical Analysis
The a diversity indexes, bacterial richness (observed OTUs),

Shannon index, and evenness (J) were calculated based on OTU

tables of each study. Significance tests between T2DM patients

and healthy controls were conducted by the Wilcoxon test method.

Differences in community structure across samples (b diversity) were

visualized by principal coordinates analysis (PCoA) plots based on
Bray-Curtis distance. Significance tests were determined using

permutational multivariate analysis of variance (PERMANOVA)

with 104 permutations in vegan (52). Meta-analysis of bacterial

alpha diversity indexes and microbial taxa among the 7 studies was

performed to determine the consistency using both the random

effects (RE) model and fixed effects (FE) model in the metafor

package (53). Generally, we calculated the odd ratios (ORs) of these
metrics by assigning any value above the median of the metric within

the study as positive.

Random forest (RF; number of trees, 500) models were

trained for individual studies, and datasets combined all

studies together at the OTU and genus levels to test whether a

mixture of featured taxa can predict T2DM. We evaluated their
performance using leave-one-out (LOO) cross-validation and

scored the predictive power in a receiver operating characteristic

(ROC) analysis. Meanwhile, to refine microbiome signatures for

diabetic detection, we developed a two-step procedure modeling

workflows with rigorous external validation to avoid overfitting

and overoptimistic reports of model accuracy. In the first step, we

ranked the common OTUs and genera by their relative

abundances. Next, as a precaution against overoptimistic

evaluation, stepwise feature selection was employed to select
predictive microbial features and eliminate uninformative

features based on 10-fold cross-validation (the depict in

Figure S1). The discriminatory power of OTUs and genera

was calculated as the area under the ROC curve (AUC).

Subsequently, we further explored the interaction between

different genera and probiotics by Cytoscape (v3.5.1) (54). All
statistical and correlation analyses were conducted in R (v3.5.3)

(55). Figures were plotted mainly used ggplot2 (v3.0.0) (56) and

gridExtra (57).

RESULTS

Characteristics of Included Studies
Following quality filtering, a total of 1143 samples (543 healthy

controls and 600 T2DM patients) from 7 studies were retained

for downstream analyses (Table 1). Overall gut microbial

community structures in T2DM patients were significantly

different from those in healthy individuals (PERMANOVA,

F=16.706, p<0.001) when combining all samples from the 7
individual studies together. However, samples were distinctly

clustered primarily by individual studies in PCoA (Figure 1),

probably due to different populations (ethnicity) worldwide, as

well as strong variables such as DNA extraction methods, 16S

rRNA gene regions investigated, and sequencing platforms

adopted by individual studies. This large variability in the gut

microbiota across studies prompted us to perform a further
meta-analysis.

Microbiome Profile Differences Between
T2DM and Controls
The differences in alpha diversity metrics between T2DM
patients and controls were first analyzed. When calculating the

TABLE 1 | Characteristics of the data sets included in the fecal sample-based analysis.

Source Year Country HC T2DM DNA extraction Region Seq platform

PRJNA325931 2016 (32) Colombia 84 28 QIAamp DNA V4 Miseq

Stool Mini Kit

SRP168691 2019 (31) China 35 65 FastDNA Spin Kit V3-V4 Ion S5

PRJNA554535 2019 (28) Pakista 20 40 Tiagen DNA V3–V4 Miseq

Stool kit

PRJNA472187 2020 (29) Mexico 76 68 PowerSoil DNA V3 PGM

Isolation Kit

PRJNA607849 2020 (30) Nigeria 193 98 MoBioPowerMag V4 Miseq

Microbiome kit

ERP107659 2020 (16) China 40 20 QIAamp DNA V4-V5 Hiseq

Stool Mini kit

PRJNA670300 2020 China 95 281 QIAamp DNA V4 Miniseq

Stool Mini kit
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odds ratios (ORs), none of the ORs of alpha diversity metrics
were significantly higher than 1.0 for T2DM in either the RE

model or FE model with low heterogeneity (Figure 2A),

indicating nonsignificant differences in microbial alpha

diversity between T2DM patients and controls. Even compared

within individual studies, significantly higher microbial richness

in controls than T2DM was observed in only 2 of 7 studies, while

significantly higher Shannon diversity and evenness were
observed in only one study (Supplementary Table 3A).

However, when measuring differences in the entire community

between T2DM and controls by PERMANOVA, significant

differences in overall communities between T2DM and healthy

individuals were obtained in 6 of 7 studies (Supplementary

Table 3B). Again, by calculating the ORs based on the Bray-
Curtis metric in each study, we found significant bacterial

community differences between T2DM and controls in both

RE models and FE models with high heterogeneity (Figure 2B).

To further identify the significantly different taxa between

healthy controls and T2DM patients, we calculated the ORs and

relative abundance of all common taxa in each study (Figures 2C
and S2A–S5B). Taxonomic abundances of bacterial phyla

grouped by individual study showed consistent trends:

increased relative abundances of Firmicutes (class Negativicutes

or order Selenomonadales or family Veillonellaceae) and

Actinobacteria (class Actinobacteria) and decreased relative

abundances of Bacteroidetes (class Bacteroidia or order

Bacteroidales) in patients with T2DM, which coincided with
the RE model in our pooled meta-analysis (Figures S2A–S5B).

The relative abundance and OR values of other species,

includingbacterial phyla, class, order, and family, were depicted

in Figures S2A–S5B, respectively. At the genus level, a total of 24
genera were identified as significantly associated with T2DM

(Figure 2C). Six genera had significant ORs higher than 1.0 for

the absence of diabetes in the RE and FE models, including

Barnesiella, Butyrivibrio, Coprobacter, Tyzzerella 3, and

Paraprevotella. Eighteen genera possessed significant ORs

lower than 1.0 for the presence of diabetes, three of which were

thought to be harmful to humans, including Desulfovibrio,
Enterobacter, and Neisseria. In addition, there were some

genera, such as Lactobacillus, Prevotella_6, and Eubacteria (58),

which were beneficial to the human. These results showed that

there were dependable and significant community-wide changes

in the bacterial community structures of diabetic patients.

Metagenomic T2DM Classification Models
To determine whether unique OTUs or genera could serve as

biomarkers to classify patients with diabetes, we constructed two

separate RF classifiers by employing a two-step procedure

methodology. With the dimension decreasing from each study,

the AUC value increased to varying degrees for the prediction

of common OTUs and genera for seven studies (Figures 3A

and S6A). Notably, these AUC values for each study were

improved and reached peaks of 16% (PRJNA607849) and 27%

(PRJNA325931) for OTUs and genera, respectively. The

sensitivity and specificity of the total study for detection based

on the cross-validation set using common OTUs were 78%

(95% CI 73.8–82.1%) and 75.7% (95% CI 71.6–79.7%;
AUC=0.84), respectively, for conducting feature selection,

compared to 76.8% (95% CI 72.7–80.9%) and 73.6% (95% CI

70.1–77.1%; AUC=0.82), respectively, for nonconducting feature

FIGURE 1 | The principal coordinates analysis (PCoA) of all samples at OTU level, depicting the great microbial variations from different studies with population

variation, DNA extraction methods, 16S rRNA gene regions investigated, sequencing platforms, etc. The points represent samples, shapes represent the different

group, and the colors represent the different study. Top 10 genera with significant (P < 0.001, p < 0.05) correlations were fitted to the PCoA.
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selection (Figure 3A). When using the common genera, the
sensitivity and specificity were 77.3% (95% CI 74.0–81.0%) and

77.2% (95% CI 73.0–81.4%; AUC=0.85), respectively, for feature

extraction, compared to 77.3% (95% CI 73.9–80.7%) and 74.6%

(95% CI 70.4–78.8%; AUC=0.83), respectively, for no feature

extraction (Figure S6A).

Subsequently, we assessed how well the classifier trained on
one study can be generalized to the other six studies. Cross-

validation performance as quantified by AUC showed poor

prediction performance of other studies on the predictor of

one single study [median AUC = 0.58, ranging in (0.45, 0.78)

for OTUs and median AUC = 0.59, ranging in (0.44, 0.77) for
genera], compared to the single study’s own test set [median

AUC = 0.94, ranging in (0.77, 1.0) for OTUs and median AUC =

0.95, ranging in (0.73, 1.0) for genera] (Figures 3B and S6B). We

further assessed whether including data from all but one study in

model training could improve prediction in the remaining hold-

out study (LOOS validation). The LOOS performance of OTU-
level models ranged from 0.74 to 0.85, while the LOOS

performance of genus-level models ranged from 0.75 to 0.87

(Figures 4A and S7). These results suggest that the inclusion of

multiple studies in the training set of a classifier can substantially

A

C

B

FIGURE 2 | Forest plot of (A) the alpha diversity metrics and (B) Bray-Cutris distances between the individual with diabetics and the controls and (C) the genus

metrics (Among them, the full name of L_AC2044_group is Lachnospiraceae_AC2044_group). The error bar depicts the 95% confidence interval. The value less than

1.0 (left side of the dashed line) depicts that the metric is higher in T2DM than the control. The values bigger than 1.0 (right side of the dashed lines) depicts that the

metric is lower in T2DM than the control. There were significantly difference between the case and the control, if there was no cross between the dashed line and the

error bar.
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improve its predictive performance relative to models trained on
data from a single study. Then, by performing feature

importance ranking on features obtained by feature screening

based on shared OTUs of the total study (Figure 4B), we found

that this model ranked OTUs belonging to Dorea ,

Clostridium_sensu_stricto_1, and Lactobacillus as the top 3

features in terms of mean decrease accuracy (Table S4).

Meanwhile, we assessed the prediction performance of our
T2DM classifiers based on studies for colorectal cancer (45),

Parkinson’s disease (46), inflammatory bowel disease (47),

NAFLD (48), and fat patients (49) (Figure 4C). Interestingly,

we found that our OTU classification models were significantly

improved over those observed for classifiers trained on other

diseases, calibrated to have an average value of 0.87± 0.01 on
T2DM data sets (t-test, p<0.05, Figure 4C). However, the average

value of predicted probabilities on other disease data sets ranged

from 0.48± 0.02 to 0.68 ±0.01. At the same time, the difference

test found that diabetes is significantly different from other

diseases (Figure 4C).

The Correlation of Featured Genera
With Probiotics
In the context of diabetes mellitus, experimental and clinical
studies have demonstrated that different species of bacteria

reduce oxidative stress, showing antidiabetic effects (59). Thus,

to further discuss the effects of probiotics on metabolic control in

T2DM subjects, we studied the interaction between selected

genera and probiotics. Based on the 149 differentially enriched

genera and the top 30 genera corresponding to the importance of
OTUs selected based on feature selection, 24 overlapping genera

were selected for downstream analysis (Tables 2 and S5). In
addition to distinguishing between individuals with and without

T2DM, twenty-two of the 24 genera showed associations with a

number of probiotics (Spearman correlation p < 0.05, abs(r-

value) >0.1, Figure 5). For example, T2DM-depleted genera,

including Clostridium_sensu_stricto_1, Blautia, and Dorea,

were positively correlated with Bifidobacterium breve and

Bifidobacterium adolescnts and were negatively correlated with
L. acidophils. Meanwhile, Clostridium_sensu_stricto_1, Blautia,

and Lactobacillus were correlated negatively with Bifidobacterium

bifidum. Also, Lactobacillus that was enriched in T2DM patients

was positively correlated with Lactobacillus delbruecki, B. breve,

and Lactobacillus salivarius. By observing correlations with

probiotics, supplementation with specific probiotics may
effectively regulate the gut microbiota and improve T2DM,

implying that balancing the intestinal microecology could

provide a new prevention and treatment method for T2DM

patients. Indeed, studies have shown that there is a significant

association between certain genera and diabetes.

DISCUSSION

This study systematically evaluated the differences in intestinal

flora between T2DM patients and healthy controls based on 1143

samples from China (16, 31), Colombia (32), Pakistan (28),

Africa (30), Mexico (29). We observed significant differences in

overall microbial communities (beta diversity) between T2DM

and the controls but no differences in alpha diversity indexes.

Various OTUs and bacterial genera with significant odds ratios

A B

FIGURE 3 | (A) The performances of models to classify the case and the normal before and after feature selection (FS) based on common OTUs; The horizontal

ordinates represent the seven studies and the total study. The vertical coordinates depict the AUC of the individual study. (B) T2DM classification accuracy resulting

from cross-validation within each study (the boxed along the diagonal) and study-to-study model transfer (external validations off the diagonal) as measured by the

AUROC for the classification models trained on OTUs. The color of the scale bar on the right represents the AUC value.
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were identified for T2DM. Through ranking abundance and

stepwise feature selection, the RF models based on single studies

maintained their accuracy in other studies. By training on

multiple studies, we further improved the accuracy and

specificity of models for T2DM. Finally, the correlations
between T2DM-associated genera and probiotics provide

support for diabetes intervention or prevention by probiotics.

Our sequence-based analysis portrayed non-significant

differences in OTU richness, evenness and Shannon diversity

index between T2DM cases and controls. This is consistent with

the results of most included studies, among which only two

studies reported significant differences in Chao1 in patients with

T2DM compared to controls (16, 29) and one study reported

significant differences in observed and Shannon indicators (30).
Meanwhile, comparing alpha diversity based on OR values, the

PRJNA472187 study showed that diabetic patients tended to

have less evenness and Shannon diversity than controls, while

other studies showed the opposite trend. The absence of

A

C

B

FIGURE 4 | Cross-study performance of statistical models based on OTUs. (A) ROC of data from all other studies are combined for training (LOOS validation).

(B) The prediction probability relative to T2DM classification models trained on fecal samples from patients with other conditions. The "****" indicates that the

predictive performance of the model between other diseases and diabetes is significantly different (t-test, p < 0.05). (C) The relative abundance, AUC value and

feature ranking of the selected 96 OTUs based on two-step feature selection.
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consistency indicates no significant differences in alpha diversity

between T2DM and healthy controls, possibly due to the

relatively small sample sizes or methodological variability for

generating microbiome data. Significant differences in beta
diversity metrics between T2DM cases and controls were

reported by five studies (16, 28–31). There were also significant

differences between T2DM and HC samples in a meta-analysis

with higher heterogeneity for the RE model. Meanwhile, we

observed distinct clustering of 7 individual studies by Bray-

Curtis metrics (p<0.001). This heterogeneity in 7 studies of

cases and controls may be due to the methodological, clinical,
or study heterogeneity (geography, ethnicity, diet) of the

included studies.

Meanwhile, studies have reported a positive correlation

between Lactobacillus and T2DM (19, 20, 44, 60, 61). In

agreement with these results, Lactobacillus and Eubacteria were

significantly enriched with diabetes in the meta-analysis.
Eubacteria have been reported as SCFA producers, including

propionate and butyrate. Sanna et al. found that butyrate

produced by intestinal microorganisms can improve the body’s

insulin response and further promote immune modulation,

while propionate abnormalities can increase the risk of T2DM

(22). Moreover, the reported microbial profiles of patients with
T2DM were analogical across the 7 included studies. Chávez-

Carbajal et al. reported that the phylum Actinobacteria was

highly abundant in patients with T2DM, whereas the phylum

Bacteroidetes was less abundant (29). Five studies and some

literatures reported the predominance of Firmicutes in T2DM

patients (15, 29, 62). In our pooled meta-analysis, we found a

consistent trend toward increased relative abundances of the
phyla Firmicutes (class Negativicutes or family Veillonellaceae)

and Actinobacteria and decreased relative abundances of

Bacteroidetes (class Bacteroidia or family Bacteroidaceae) for

T2DM. If dysbiosis with increased Actinobacteria and decreased

Bacteroidetes is associated with T2DM, then measures to balance
these taxa by FMT or other methods may be beneficial and

feasible to improve T2DM.

We developed random forest classification models using

microbiota data at the OTU and genus levels. Through

extensive and statistically rigorous validation, our meta-

analysis firmly establishes that gut microbial signatures are

highly predictive of diabetes. In particular, 16S rRNA classifiers
trained on OTU and genus profiles from multiple studies

maintained a median AUROC of 0.83 [ranging in (0.77, 0.87)]

and 0.84 [ranging in (0.75, 0.87)], respectively, in six out of seven

data sets compared to a single study [median AUC = 0.56,

ranging in (0.52, 0.62)]. This may be attributed to the fact that

the samples studied by a single center are not universal.
Meanwhile, our RF analysis identified several OTUs related to

Dorea, Clostridium_sensu_stricto_1, and Lactobacillus as the

most important features for predicting diabetes. The

relationship between T2DM-associated (enriched or depleted)

genera and probiotics shows that Clostridium_sensu_stricto_1

and Blautia were positively correlated with B. breve, and that
Lactobacillus enriched in T2DM patients was correlated

negatively with B. bifidum . Previously, Clostridium_

sensu_stricto_1 was reported to be negatively correlated with

insulin (63), C-peptide and triacylglycerol (64). Lactobacillus was

significantly positively correlated with glucose and glycated

hemoglobin (23). L. reuteri (65) used as a monoprobiotic have

been reported to improve T2DM-related symptoms in humans.
Our results support prior work suggesting adjustment of the

TABLE 2 | Importance, odd ration, confidence interval, and relative abundance of the 24 genera selected for the RF model for T2DM based on all samples.

Genera Mean decrease Gini OR CI_ub CI_lb Abundance (%) Abundance (%) P-value

in DM in the Normal

Romboutsia 42.283 1.486 0.419 5.276 0.965 ± 2.89 2.842 ± 5.01 1.22E-38

Dorea 25.959 1.326 0.889 1.977 0.866 ± 1.66 1.521 ± 1.78 5.31E-27

Lactobacillus 21.221 0.402 0.199 0.813 1.251 ± 5.21 0.330 ± 1.23 6.32E-07

Clostridium_sensu_stricto_1 16.924 1.147 0.462 2.850 1.416 ± 4.61 4.270 ± 7.53 1.32E-25

Blautia 14.026 0.996 0.632 1.570 2.699 ± 5.45 5.963 ± 7.85 3.94E-19

Agathobacter 12.796 0.677 0.276 1.662 0.894 ± 1.89 0.868 ± 1.60 8.97E-06

Subdoligranulum 12.743 1.022 0.653 1.599 2.264 ± 3.77 3.059 ± 5.36 2E-08

Parabacteroides 11.993 1.076 0.349 3.312 1.942 ± 4.14 0.688 ± 1.37 1.93E-18

Marvinbryantia 11.899 0.727 0.558 0.947 0.104 ± 0.26 0.154 ± 0.25 1.11E-11

Ruminiclostridium_9 11.706 0.708 0.393 1.273 0.163 ± 0.41 0.079 ± 0.15 1.1E-06

Ruminiclostridium_5 11.188 1.225 0.688 2.178 0.109 ± 0.20 0.125 ± 0.18 0.001016

Bacteroides 11.113 0.895 0.695 1.152 19.200 ± 20.57 11.896 ± 18.69 3.48E-16

Ruminococcus_2 10.370 1.444 0.923 2.259 1.604 ± 4.09 2.304 ± 4.18 1.96E-07

Sutterella 10.159 0.680 0.449 1.030 0.809 ± 1.85 0.249 ± 0.78 1.93E-19

Acidaminococcus 10.157 0.361 0.154 0.848 0.456 ± 2.11 0.013 ± 0.12 2.45E-17

Enterorhabdus 9.869 1.006 0.763 1.325 0.189 ± 0.69 0.463 ± 1.55 9.33E-17

Lachnospira 9.102 1.166 0.856 1.588 0.462 ± 1.41 0.378 ± 1.06 0.007919

Dialister 8.702 0.651 0.336 1.258 1.717 ± 4.87 1.066 ± 4.05 0.000239

Lachnospiraceae_NC2004_group 8.347 0.879 0.500 1.543 0.414 ± 1.37 0.376 ± 1.19 6.86E-10

Hungatella 7.428 0.662 0.366 1.195 0.093 ± 0.45 0.018 ± 0.05 5.21E-13

Catenibacterium 7.403 0.852 0.512 1.418 0.889 ± 2.73 1.757 ± 4.25 6.59E-09

Turicibacter 7.275 1.293 0.774 2.161 0.174 ± 0.63 0.516 ± 1.34 1.58E-13

Negativibacillus 6.485 0.669 0.490 0.912 0.033 ± 0.13 0.015 ± 0.06 1.25E-07

Neisseria 5.859 0.347 0.213 0.565 0.013 ± 0.08 0.001 ± 0.005 5.61E-09
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intestinal microecology to provide new prevention and treatment

strategies for T2DM.

There were limitations in this study. First, the study

methodology in the included studies varied. These studies were

performed with different sequencing platforms and sequencing
regions, and differences in research methods have certain effects

on the intestinal microbiota. Second, the included reports had

relatively small sample sizes, with three of the seven studies

recruiting more than 50 participants with T2DM. Some authors

were reluctant to share data. Third, the studies included in our

analysis used 16S rRNA sequencing to analyze the changes in

bacterial groups, which underestimated the complexity of the gut
microbiota. Despite these limitations, we systematically searched

all raw sequencing data and meta-data and analyzed them in a

suitable and uniform manner to minimize heterogeneity, which is

important to detect alterations in the gut microbiota in patients

with diabetes.

In summary, our study analyzed diverse fecal 16S rRNA gene
sequencing datasets in a uniform manner and revealed shifts in

fecal bacterial diversity and taxa in T2DM. By selecting bacterial

features and building an RF model, we raise the possibility of a

fecal bacterial mode of monitoring gut health and a

complementary approach for risk assessment of T2DM.

Furthermore, by analyzing the interaction between T2DM-

associated genera and probiotics, we provide evidence for the
therapeutic potential of probiotics applied in T2DM to restore

and maintain a healthy gut microbiota state.
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Moreno-Indias I, Urda-Cardona A, et al. Gut Microbiota Differs in

Composition and Functionality Between Children With Type 1 Diabetes

and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes

Care (2018) 41(11):2385–95. doi: 10.2337/dc18-0253

43. Hashimoto Y, Hamaguchi M, Kaji A, Sakai R, Osaka T, Inoue R, et al. Intake

of Sucrose Affects Gut Dysbiosis in Patients With Type 2 Diabetes. J Diabetes

Invest (2020) 11(6):1623–34. doi: 10.1111/jdi.13293

44. Candela M, Biagi E, Soverini M, Consolandi C, Quercia S, Severgnini M, et al.

Modulation of Gut Microbiota Dysbioses in Type 2 Diabetic Patients by

Macrobiotic Ma-Pi 2 Diet. Br J Nutr (2016) 116(1):80–93. doi: 10.1017/

s0007114516001045

45. Deng X, Li Z, Li G, Li B, Jin X, Lyu G. Comparison of Microbiota in Patients

Treated by Surgery or Chemotherapy by 16S rRNA Sequencing Reveals

Potential Biomarkers for Colorectal Cancer Therapy. Front Microbiol (2018)

9:1607. doi: 10.3389/fmicb.2018.01607

46. Pietrucci D, Teofani A, Unida V, Cerroni R, Biocca S, Stefani A, et al. Can Gut

Microbiota Be a Good Predictor for Parkinson’s Disease? AMachine Learning

Approach. Brain Sci (2020) 10(4):242. doi: 10.3390/brainsci10040242

47. Duvallet C, Zellmer C, Panchal P, Budree S, Osman M, Alm EJ. Framework

for Rational Donor Selection in Fecal Microbiota Transplant Clinical Trials.

PloS One (2019) 14(10):e0222881. doi: 10.1371/journal.pone.0222881

48. Zhang Y, Xu J,Wang X, Ren X, Liu Y. Changes of Intestinal Bacterial Microbiota

in Coronary Heart Disease Complicated With Nonalcoholic Fatty Liver Disease.

BMC Genomics (2019) 20(1):862. doi: 10.1186/s12864-019-6251-7
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